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Abstract

Existing research in low-level vision has shifted its focus from "one-by-one"
task-specific methods to "all-in-one" multi-task unified architectures. However,
current all-in-one image restoration approaches primarily aim to improve overall
performance across a limited number of tasks. In contrast, how to incrementally
add new image restoration capabilities on top of an existing model — that is, task-
incremental learning — has been largely unexplored. To fill this research gap, we
propose a minimalistic and universal paradigm for task-incremental learning called
MINI. It addresses the problem of parameter interference across different tasks
through a simple yet effective mechanism, enabling nearly forgetting-free task-
incremental learning. Specifically, we design a special meta-convolution called
MINIconv, which generates parameters solely through lightweight embeddings
instead of complex convolutional networks or MLPs. This not only significantly
reduces the number of parameters and computational overhead but also achieves
complete parameter isolation across different tasks. Moreover, MINIconv can
be seamlessly integrated as a plug-and-play replacement for any convolutional
layer within existing backbone networks, endowing them with incremental learning
capabilities and boosting their multi-task overall performance. Therefore, our
method is highly generalizable. Finally, we demonstrate that our method achieves
state-of-the-art performance compared to existing incremental learning approaches
across five common image restoration tasks. Moreover, the near forgetting-free
nature of our method makes it highly competitive even against all-in-one image
restoration methods trained under joint learning. Our code is available at https:
//github.com.

1 Introduction

The core challenge of all-in-one(AIO) image restoration lies in the need to accomplish diverse feature
extraction and image manipulation tasks using a single set of fixed parameters, which inevitably leads
to parameter conflicts between different tasks. To alleviate this issue, most existing methods introduce
additional information (prompts) to guide the model in handling different types of degradations (as
Figure 1a), such as [1, 2, 3, 4, 5]. Alternatively, a more recent trend is to leverage the priors from large-
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Figure 1: Illustration of different multi-task image restoration paradigms. Colors indicate distinct
image restoration tasks such as deraining, dehazing, and raindrop removal etc. (a) prompt/prior-based
methods: although additional prompt information is provided, the parameters are not isolated—shared
weights are still responsible for multiple tasks; (b) muiti-head methods: parameter isolation is achieved
by parallelizing multiple task-specific subnetworks, but the overall structure becomes bloated and
difficult to deploy; (c) MINI: parameter isolation is implemented at each layer within a single network,
resulting in a lightweight architecture that is easier to deploy and transfer.

scale models as guidance, such as [6, 7, 8, 9, 10]. Although these methods have achieved impressive
results, they do not fundamentally address the issue of parameter conflict across different tasks.
As a result, they often suffer from significant performance degradation compared to task-specific
models. Moreover, when performing incremental learning over new tasks, these methods are prone to
severe catastrophic forgetting, leading to unacceptable overall performance. This demonstrates that
parameter conflict is a shared bottleneck for both all-in-one image restoration and task-incremental
learning.

To address the parameter conflict issue, a natural idea is to train multiple models, each responsible
for a different task, and then select different pathways through some selection mechanism, thereby
achieving parameter isolation across tasks (as Figure 1b). However, such a multi-head approach means
that a complete new pathway must be added for each new task, resulting in increased parameters and
computational overhead. In addition, some regularization-based approaches have been proposed in
incremental learning to alleviate catastrophic forgetting[11, 12, 13]. However, these methods are
often limited in effectively addressing parameter conflicts. A more elegant solution is to employ
dynamic parameters within a single model instead of fixed ones, allowing the parameters to adapt
based on the model input. Such approaches are known as dynamic convolution or meta convolution
[14, 15, 16, 17]. These methods aim to use a small network, referred to as a meta-network, to
generate the convolutional weights of the main network, thereby avoiding the parameter conflicts
caused by fixed weights. Nevertheless, these meta-networks introduce significant computational
overhead and are notoriously difficult to optimize during training. Furthermore, paradoxically, since
the meta-networks themselves rely on fixed parameters, they are also prone to parameter conflicts
when handling diverse inputs.

For addressing the above issues, we propose the Minimalistic Incremental Network for Image
Restoration(MINI), a novel and lightweight universal architecture. MINI’s core component is a
specialized Meta Convolution module, which we call MINIconv. Unlike vanilla meta convolutions,
it does not introduce any additional computational overhead. Instead, it achieves complete parameter
isolation between different tasks through a selective embedding mechanism, thus possessing an
extremely simple structure. Moreover, this embedding-based structure is naturally well-suited for
task-incremental learning, and when combined with a simple query mechanism, it can achieve near-
forgetting-free task expansion. Finally, we design a specialized embedding regularization method to
enhance the robustness of MINI. Extensive comparative experiments demonstrate that our method
surpasses all existing incremental learning approaches in task-incremental settings, achieving state-
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Table 1: Qualitative comparison among different types of multi-task image restoration methods

Methods/Property parameter-isolated low-overhead incrementally-adaptive optimization-friendly
Prompt/Prior-based × ✓ × ✓

Multi-head ✓ × ✓ ✓
Meta-Conv ✓ × × ×

MINI (Ours) ✓ ✓ ✓ ✓

of-the-art performance. Remarkably, under our MINI architecture, the overall multi-task performance
of most existing image restoration methods is significantly improved. Overall, the main contributions
of this paper are as follows:

• To the best of our knowledge, MINI is one of the first attempts to explore task-incremental
learning in the field of image restoration. It serves as a strong and minimal baseline that can
inspire future research in this emerging sub-task.

• We propose MINI with a minimalistic design that achieves almost complete parameter
isolation across different tasks. Moreover, the proposed MINIconv can be seamlessly
integrated into any existing image restoration backbone, endowing it with task-incremental
learning capability and boosting their multi-task overall performance, while introducing
negligible additional computational cost.

• To further enhance the robustness of MINI, we introduce a task-aware embedding consistency
regularization tailored to its structure.

• MINI achieves state-of-the-art performance compared to existing task-incremental learning
methods, and is even competitive with AIO image restoration approaches trained under joint
learning.

2 Preliminary: Meta Convolution in Image Restoration

Meta convolution (MetaConv) is a class of parameter-adaptive techniques that dynamically gen-
erate convolutional weights based on task-specific or input-conditioned information. First intro-
duced in the context of dynamic filter networks[18], and further popularized by approaches such as
HyperNetworks[17] and Dynamic Convolution [19], MetaConv has recently been applied to a range
of low-level vision tasks, such as super-resolution[20]. The core idea is to replace fixed convolutional
weights with weights produced by a small auxiliary network—known as a meta-network—which
allows the model to adapt to varying tasks or degradations by conditioning on additional embeddings
or features.

While conceptually appealing, existing MetaConv methods face several significant limitations:

• Increased computational complexity: The meta-network itself often comprises multi-layer
perceptrons or lightweight convolutional sub-networks. These introduce considerable
overhead during both training and inference[17].

• Optimization difficulties: MetaConv introduces a nested dependency between the generated
weights and the meta-network’s parameters, which complicates gradient flow and frequently
results in unstable or slow convergence[21].

• Static meta-parameters: Paradoxically, while MetaConv aims to mitigate task interference
by generating dynamic weights, the meta-network itself is typically fixed once trained. This
means the meta-network may still suffer from parameter conflicts when facing multiple
tasks or distribution shifts.

These issues limit the scalability and robustness of MetaConv, particularly in the context of incre-
mental image restoration, where tasks arrive sequentially and require both parameter isolation and
computational efficiency. Addressing these challenges is the motivation behind our proposed archi-
tecture. Table 1 presents a qualitative comparison of various types of multi-task image restoration
methods.
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Figure 2: An overview of the MINI architecture. MINI can be built upon any existing image restora-
tion backbone by simply replacing the original convolutional layers with our proposed MINIconv
and introducing a lightweight degradation query mechanism. Subfigure (b) shows the structure of
MINIconv, which consists of only two parallel embedding pools without any complex components,
as detailed in Section 3.1. Subfigure (c) illustrates our lightweight degradation query module, which
provides specific task IDs for MINIconv to select the corresponding embeddings for use, as detailed
in Section 3.2.

3 Minimalistic multi-task image restoration architecture

Our proposed MINI architecture is illustrated in Figure 2(a). As shown, the design is remarkably
simple and intuitive, and can be built upon any existing image restoration backbone. The only modifi-
cations required are to replace the standard convolutions in the original backbone with MINIconvs
and to introduce a lightweight query function. In other words, the MINI framework is essentially
"MINIconv + query + any backbone." It is worth emphasizing that our approach does not focus on
designing complex novel structures or sub-modules. In contrast, we aim to address the problem of
parameter conflicts across multiple tasks using the most minimalistic paradigm possible.

3.1 MINIconv: embeddings are all your need

Classical regularization-based methods[11, 12, 13, 22] in incremental learning focus on constraining
the model to update parameters that are more relevant to the current task, while minimizing changes
to those deemed less important. We consider this essentially a form of "soft" parameter isolation.
Inspired by these methods, we seek a hard parameter isolation mechanism, where only a subset of
parameters is deterministically updated during incremental learning, while the remaining parameters
are completely excluded from training. In this way, when training the model on new tasks, the weights
associated with previously learned tasks remain completely unaffected.

Unfortunately, it is difficult to implement the aforementioned hard isolation mechanism in a standard
convolutional layer, as convolution kernel is overly compact and the convolution operation itself is
inherently continuous and sliding. To address this, we propose MINIconv, a specialized and flexible
convolutional structure, as illustrated in Figure 2(b). The core components of MINIconv only consist
of two embedding pools, each composed of a fixed number of embeddings with desirable separability.
In the PyTorch framework, they can be conveniently implemented using nn.Embedding. Each weight
embedding pool is set to have a size of (Cin × Cout ×K2)/G, where Cin is the number of input
channels of the hidden state h, Cout is the number of output channels, K is the kernel size, and G is
the number of groups in the grouped convolution. And each bias embedding pool is set to have a size
of Cout. Each pool consists of T embeddings of the same size, representing the maximum number of
tasks the model can accommodate. During training and inference, one embedding is selected from
each of the two pools via the query function (detail in Section 3.2). Then after a simple reshaping,
these two embeddings are used to perform standard convolution operations on the hidden state h,
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and the remaining embeddings are excluded from both forward and backward propagation, thereby
achieving complete parameter isolation. The complete computation process of MINIconv can be
formulated as follows: 

t = q(x),

Wt = reshape(e
(t)
w ) ∈ RCout×Cin×K×K ,

bt = e
(t)
b ∈ RCout ,

h′ = Wt ⊛ h+ bt,

(1)

where "⊛" denotes convolution operation, e(t)w , e
(t)
b denote t-th embedding of weight embedding pool

and bias embedding pool respectively, q(·) is the query function.

Intuitively, a specific task (e.g., deraining or dehazing) exclusively uses its assigned weight and
bias embeddings. When a new task arrives, it only needs to be allocated an unused embedding
pair as its dedicated parameters. Therefore, this mechanism is highly suitable for task-incremental
learning. Interestingly and perhaps surprisingly, although MINIconv increases the total number of
convolutional parameters by a factor of T , its minimalist select-and-use mechanism incurs almost
no additional computational cost. This is because only the parameters corresponding to a single
standard convolution kernel are actually involved during each forward pass. Therefore, MINIconv
can be extensively applied throughout the network, unlike traditional MetaConv approaches that rely
on auxiliary networks to generate dynamic kernels, which can lead to considerable computational
overhead when used widely.

3.2 Degradation query mechanism

As described in the previous section, MINIconv requires a query mechanism to determine the
task type of the input image and select the corresponding embedding accordingly — essentially
serving as a degradation classifier. Some promising related works already be proposed, such as DA-
CLIP[6]. However, to adhere to the principle of minimalism, we propose a lightweight degradation
classification module, as illustrated in Figure 2(c). We observe that most image degradations can be
roughly categorized into global (e.g., low-light, blur) and local (e.g., rain, raindrops, fog). Therefore,
we first divide the input image into patches and feed them into a global/local classification MLP,
which outputs a two-dimensional vector. The degradation type is then determined via an argmax
operation. Based on this result, the patched image is further routed to either the global or local MLP
branch for more fine-grained degradation classification. The final output vector is passed through a
softmax function, and the task ID is obtained via an argmax operation. The entire process can be
described as follows: 

{xi}Ni=1 = Patching(x),
z = MLPglobal−local(Aggregate({xi})) ∈ R2,
tmode = argmax(σ(z)) ∈ {1, 2},

v =

{
MLPglobal({xi}), if tmode = 1
MLPlocal({xi}), if tmode = 2

∈ RT

tid = argmax(σ(v)),

(2)

where N is the number of image patches, σ(·) denotes the softmax operation, and tid denotes the
final task ID obtained. Before training the main network, the entire query module can be simply
pretrained using the following loss function:

Lquery = −log

(
evm∑T
j=1 evj

)
− λquerylog

(
ezn∑2
i=1 ezi

)
, (3)

where n ∈ {1, 2} is the ground-truth label indicating whether the degradation is global or local,
m ∈ {1, 2, ..., T} is the ground-truth task ID, and λquery is a balance coefficient. In our early
experiments, we attempted to build the degradation classifier using either a single MLP or a series
of MLPs in sequence. However, we found that the classifier consistently struggled to distinguish
certain types of degradations, such as blur and fog. To address this issue, we proposed a two-stage
degradation classification mechanism — performing coarse classification first, followed by fine-
grained classification — which led to the design of our current query module. This simple yet
effective change improved the classification accuracy by approximately 15
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3.3 Embedding-consistency regularization

Although the above MINIconv and query mechanism are sufficient to construct a complete multi-
task image restoration framework, we observe in practice that the overall performance of MINI is
highly sensitive to the accuracy of the query mechanism. Once the degradation type of a sample
is misclassified — even for a small number of samples — it can significantly degrade the overall
performance. Therefore, in training phase, to enhance the fault tolerance and robustness of MINI, we
introduce a specialized embedding-consistency regularization (ECR) method, as formulated below:

W̄ (l) = 1
tnow−1

∑tnow−1
t=1 W

(l)
t ,

b̄(l) = 1
tnow−1

∑tnow−1
t=1 b

(l)
t ,

Lecr =
∑L

l=1 ∥W
(l)
tnow

− W̄ (l)∥22 +
∑L

l=1 ∥b
(l)
tnow

− b̄(l)∥22

(4)

where L is the total number of MINIconv layers in the model, W (l)
t , b

(l)
t denote the t-th weight

embedding and bias embedding in the l-th MINIconv layer respectively, and tnow denotes the ID of
the newly introduced task currently being trained, and W̄ (l), b̄(l) denote the mean of the first tnow − 1
weight embeddings and bias embeddings in l-th MINIconv layer, respectively.

Intuitively, we expect the embedding of the new task to not differ significantly from those of existing
tasks, encouraging the embeddings responsible for different tasks to remain as consistent as possible.
In this way, even if the query mechanism makes an incorrect degradation prediction and selects the
embedding of another task, the overall performance will not be significantly degraded. Overall, the
total training loss of MINI is as follows:

Lall = Lmain + λecrLecr, (5)

where λecr is the ECR regularization coefficient, Lmain refers to common reconstruction losses such
as L1, L2, or perceptual loss etc.

4 Experiments

4.1 Comparative experiment

Table 2: Quantitative comparison of several image restoration baselines trained on five datasets using
one-for-one, joint learning, and incremental learning (MINI) strategies. The incremental learning
is conducted in a sequential manner following the task order of rain → haze → blur → raindrop →
low light. In all-in-one manner, the symbol * indicates that the data is reported from the original
paper. "↑" indicates that a higher value is better for the metric, while "↓" indicates that a lower value
is preferable. In the MINI framework, the metric values that show improvement compared to the
all-in-one setting are highlighted in bold.

datasets R100H (rain) RESIDE-6k (haze) GoPro (blur) Raindrop (raindrop) LOLv2 (low light)
methods / metrics PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

one-for-one
(task-specific)

MAXIM[23] 30.81 0.901 - 29.12 0.932 - 33.86 0.961 - - - - 23.43 0.863 0.111
NAFNet[24] - - - - - - 32.85 0.960 - - - - - - -

Restormer[25] 31.46 0.904 - - - - 32.92 0.961 - - - - - - -
IR-SDE[26] 31.65 0.904 0.047 - - - 30.70 0.901 0.064 - - - - - -
DA-CLIP[6] 33.91 0.926 0.031 30.16 0.936 0.030 30.88 0.903 0.058 31.50 0.944 0.056 23.77 0.830 0.083

all-in-one
(joint learning)

AirNet[1] 30.21 0.905 0.145 27.94 0.912 0.041 27.85* 0.892* - 27.13 0.890 0.089 21.05 0.862 0.124
PromptIR[2] 31.02* 0.914* - 29.57 0.923 0.045 28.05 0.901 0.068 28.36 0.912 0.074 21.96 0.886 0.118
MAXIM[23] 29.34 0.886 0.075 29.15 0.914 0.039 29.51 0.905 0.063 27.90 0.895 0.081 21.35 0.875 0.121
NAFNet[24] 30.42 0.875 0.066 27.09 0.941 0.037 28.03 0.856 0.074 29.75 0.916 0.051 20.97 0.871 0.105

Restormer[25] 30.59 0.893 0.086 28.12 0.957 0.041 29.32 0.879 0.063 29.87 0.918 0.042 21.37 0.873 0.111
IR-SDE[26] 30.95 0.892 0.067 29.33 0.950 0.038 28.85 0.881 0.068 30.34 0.926 0.032 21.94 0.882 0.109
DA-CLIP[6] 31.51 0.923 0.052 29.58 0.956 0.036 29.29 0.902 0.070 30.44 0.880 0.078 22.15 0.887 0.101

MINI
(incremental

learning)

AirNet[1] 31.20 0.914 0.075 29.75 0.948 0.033 30.26 0.905 0.063 29.81 0.904 0.056 21.91 0.882 0.108
PromptIR[2] 31.51 0.912 0.064 30.64 0.952 0.037 28.90 0.916 0.065 30.67 0.918 0.059 21.94 0.885 0.101
MAXIM[23] 31.32 0.903 0.059 30.55 0.941 0.037 32.33 0.957 0.060 31.94 0.927 0.043 23.01 0.896 0.094
NAFNet[24] 30.90 0.918 0.042 29.83 0.960 0.028 29.96 0.893 0.095 30.48 0.912 0.046 22.60 0.873 0.108

Restormer[25] 31.39 0.901 0.040 30.15 0.968 0.024 32.09 0.924 0.056 31.54 0.923 0.039 22.56 0.884 0.105
IR-SDE[26] 31.33 0.905 0.056 30.20 0.957 0.029 29.96 0.909 0.059 32.09 0.930 0.035 22.45 0.891 0.098
DA-CLIP[6] 31.89 0.927 0.039 30.18 0.949 0.032 30.25 0.914 0.053 31.01 0.921 0.041 23.15 0.890 0.095

4.1.1 Experiment setup

To demonstrate the effectiveness of our proposed MINI architecture for task-incremental image
restoration, we conduct detailed comparisons on five datasets (five tasks) based on several existing im-
age restoration methods, the five datasets are R100H[27], RESIDE-6K[28], GoPro[29], Raindrop[30],
and LOLv2[31]. We evaluate image restoration performance using the following metrics: PSNR,
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SSIM[32], LPIPS[33]. We compare the overall performance of these methods under three training
paradigms: one-for-one task-specific training, all-in-one joint training, and incremental training
using the proposed MINI framework. For the all-in-one training setting, we train for 2000 epochs
on a mixed dataset composed of the five aforementioned training sets. The learning rate follows a
cosine annealing schedule with warm-up, peaking at 0.0002. The loss function consists of an L2 loss
combined with a VGG16-based perceptual loss. It is important to NOTE that during actual training,
the embeddings need to be manually initialized using He initialization[34]; otherwise, the model
may struggle to converge. The training is conducted on two NVIDIA 2080ti GPUs.And due to the
imbalance in the sizes of the five datasets, we adopt a common resampling strategy during training to
ensure that each training batch contains a balanced number of images from each dataset. Specifically,
since IR-SDE[26] and DA-CLIP[6] are diffusion-based methods that require more training iterations,
they are trained for 3000 epochs. For MINI, we adopt an incremental learning strategy following
the task sequence: R100H → RESIDE-6K → GoPro → Raindrop → LOLv2. For each baseline, we
train on each dataset for 400 epochs under the same settings, while IR-SDE and DA-CLIP are trained
for 600 epochs. During the training phase, the degradation query module and the main network are
trained separately. The MINIconv layers in the main network take the ground-truth task ID as input
instead of q(x). The hyperparameter settings are as follows: λquery = 1, λecr = 0.001, T = 5.
During inference, q(x) is used as the input to MINIconv.

Table 3: Final performance comparison of model-agnostic generic incremental learning methods
under NAFNet[24] backbone. L2P[35] and DualPrompt[36] use the backbone networks from their
original papers, and their results are provided as reference for comparison.The training task sequence
is: rain → haze → blur → raindrop → low light. The best results are highlighted in bold.

datasets R100H (rain) RESIDE-6k (haze) GoPro (blur) Raindrop (raindrop) LOLv2 (low light)
methods / metrics PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LwF[13] 14.23 0.572 0.674 19.23 0.633 0.286 24.03 0.712 0.166 26.94 0.804 0.081 21.78 0.885 0.101
EWC[11] 13.36 0.512 0.584 19.51 0.653 0.271 21.36 0.623 0.255 23.45 0.740 0.156 22.12 0.871 0.111

SI[12] 11.36 0.496 0.612 18.24 0.597 0.365 22.34 0.603 0.311 24.97 0.769 0.163 21.24 0.869 0.113
MAS[22] 14.37 0.654 0.509 20.77 0.733 0.205 24.81 0.753 0.154 28.48 0.883 0.067 22.73 0.890 0.097
L2P[35] 17.06 0.694 0.201 22.73 0.763 0.137 24.53 0.788 0.105 24.61 0.908 0.052 21.39 0.907 0.090

DualPrompt[36] 16.03 0.682 0.124 20.03 0.733 0.136 24.48 0.792 0.116 27.04 0.874 0.071 21.90 0.904 0.073
MINI 30.90 0.918 0.042 29.83 0.960 0.028 29.96 0.893 0.095 30.48 0.912 0.046 22.60 0.873 0.108

4.1.2 Analysis

As shown in Table 2, under our MINI framework, the overall performance of various baseline methods
on multi-task image restoration has been significantly improved. In some tasks, the performance even
rivals that of their corresponding task-specific training versions. More importantly, MINI endows
these methods with excellent incremental learning capabilities. Meanwhile, we take NAFNet[24]
as baseline methods and compare MINI with existing model-agnostic generic incremental learning
approaches, as shown in Table 3. The results show that our MINI design, based on "hard parameter
isolation," effectively eliminates catastrophic forgetting and achieves state-of-the-art performance in
task-incremental learning. In contrast, other methods suffer increasingly from catastrophic forgetting
as the task sequence grows longer, ultimately leading to poor overall performance. The visual
comparison is shown in Figure 3.

In addition, we compared meta-conv with our proposed MINI-conv under the same training settings
in FLOPs and Rarams, and the results are shown in Table 4. We adopted the same NAFNet as
the backbone, replaced its original standard convolutions, and conducted tests on images with a
resolution of 256×256. It can be observed that, compared with standard 2D convolutions, meta-conv
increases both FLOPs and Params, with a particularly large increase in Params, which is impractical
for real-world applications. This limits the scalability of MetaConv within backbone networks. In
contrast, our MINIconv has no impact on FLOPs, and its Params increase only linearly with the
number of tasks, allowing it to replace standard 2D convolutions in the backbone on a large scale.

Table 4: Comparison between MetaConv and MINIconv. MetaConv generates convolution parameters
using a single-layer MLP. The backbone network is NAFNet.

methods FLOPs↓ Params↓
standard 2D-conv 22.56G 19.30M

MetaConv 30.22G 1814.1M
MINIconv 22.56G 96.5M
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Figure 3: Visual comparison of model-agnostic generic incremental learning methods. Zoom in for
details.

4.2 Ablation study

Embedding-consistency regulation. As described in Section 3.3, the accuracy of the query mech-
anism significantly affects the overall performance of MINI. To enhance the robustness and fault
tolerance of MINI, we introduce an Embedding-Consistency Regularization (ECR). To validate its ef-
fectiveness, we intentionally inject a certain proportion of random incorrect degradation classifications
into the model and compare its overall performance with and without the proposed regularization.
Similarly, we train the MINI-based NAFNet on the five aforementioned datasets. The results are
shown in Figure 4. Under different degradation classification error rates, ECR consistently leads to
better overall performance compared to the case without ECR. Visual results under several misclassi-
fication cases are shown in Figure 5. It can be observed that even when degradation is misclassified,
the model trained with ECR still maintains a certain level of image restoration capability, whereas the
model trained without ECR exhibits almost no fault tolerance.

Our pretrained query module achieves an error rate of approximately 6%. While it is possible to adopt
more advanced image classification models—such as the powerful DA-CLIP[6]—to further reduce
the error rate, this would come at the cost of increased structural complexity and computational
overhead. Therefore, applying ECR on top of a lightweight degradation classifier can be viewed as a
better trade-off between performance and efficiency.

Task sequence order. To explore the impact of task training order on MINI, we train the MINI-based
NAFNet under four different task sequence orders and compare the final performance, as shown in
Table 5. The results show that, thanks to MINI’s strong parameter isolation capability, changing
the task sequence order has little impact on its final performance. The variation in average PSNR is
within 0.3 dB, SSIM within 0.01, and LPIPS within 0.002. This demonstrates the robustness of the
MINI architecture to task order.

It is worth noting that, a model with complete parameter isolation should, in theory, achieve consistent
performance regardless of the training order. Although our MINI achieves near-complete parameter
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Figure 4: Overall performance comparison with and without ECR under different degradation
classification error rates. The baseline architecture is the MINI-based NAFNet, with λecr set to 0.001.
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Figure 5: Visual comparison with and without ECR under incorrect degradation classification, based
on the MINI-based NAFNet.

isolation, as discussed in Section 5 (Discussion), most baseline architectures still contain a small
number of shared parameter components beyond standard convolutions—such as LayerNorm and
nn.Parameter elements—which may introduce minor parameter conflict. This residual overlap is
the primary reason behind the slight performance differences observed under different training
orders. However, we found in practice that these shared parameters rarely lead to catastrophic
forgetting. Therefore, in favor of architectural simplicity, we did not propose replacements like
“MINI-LayerNorm” to fully isolate these components.

Table 5: Final overall performance of the MINI-based NAFNet under different training orders. The
task IDs and corresponding datasets are as follows: 1: derain (R100H); 2: dehaze (RESIDE-6K); 3:
deblur (RESIDE-6K); 4: raindrop removal (Raindrop); 5: low-light enhancement (LOLv2).

orders/ metrics ave PSNR↑ ave SSIM↑ ave LPIPS↓
1→2→3→4→5 28.754 0.911 0.0632
5→4→3→2→1 28.612 0.912 0.0614
1→3→2→5→4 28.518 0.908 0.0619
3→2→4→1→5 28.625 0.914 0.0628

5 Discussion

Other parameter components except for convolutional layers.

In most CNN-based backbones, in addition to convolutional layers, there are also some smaller
parameter components such as LayerNorm and nn.Parameter etc. Although these components can
also suffer from parameter conflict across different tasks, we find in practice that converting them
into "embedding-based" forms—similar to MINIconv—does not lead to significant improvements
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in multi-task performance (detailed in Appendix B). This is mainly because the parameter norms
of these components do not vary substantially across tasks, meaning that even without explicit
parameter isolation, they have limited impact on the overall performance. The application of the
MINI architecture to transformer-based backbones will be explored in our future work. In addition, a
preliminary test result on SwinIR[37] can be found in Appendix C.

Limitations of MINI.

Despite the strong performance and efficiency demonstrated by the proposed MINI architecture in
task-incremental image restoration, there remain several limitations worth noting.

First, the number of tasks that MINI can support is inherently limited by the size of the embedding
pool T in each MINIconv layer. This value must be predetermined during model design and cannot
be extended dynamically afterward, which may pose challenges in scenarios where the total number
of tasks is unknown or incrementally growing over time. Second, although MINIconv introduces no
additional computational overhead during inference and remains equivalent to standard convolution
in terms of forward computation, its use of hard parameter isolation causes the total number of
parameters to scale by a factor of T . While this expansion is the trade-off for achieving interference-
free learning across tasks, it may impose memory burdens in resource-constrained environments.

In future work, more flexible or compression-aware embedding strategies may be explored to enhance
the scalability and deployability of MINI.

6 Conclusion

In this paper, we propose MINI (Minimalistic Incremental Network for Image Restoration), a novel
and lightweight framework designed for task-incremental learning across multiple image restoration
tasks. Unlike traditional all-in-one models that suffer from parameter conflict, MINI adopts a
hard parameter isolation strategy through the introduction of a simple yet effective module called
MINIconv. By leveraging embedding pools instead of dynamic meta-networks, MINIconv achieves
task-level parameter decoupling without introducing additional computational overhead. Importantly,
MINI is a plug-and-play design that can be seamlessly integrated into a wide range of existing image
restoration backbones (e.g., NAFNet, Restormer), enabling them to acquire incremental learning
capabilities with minimal modification. Moreover, MINI consistently improves the overall multi-task
performance of these baselines, while preserving strong performance on each individual task. To
further support robust task adaptation, we introduce a lightweight degradation query module and an
embedding-consistency regularization (ECR) strategy, which together enhance MINI’s fault tolerance
and reliability. Extensive experiments across five diverse image restoration tasks demonstrate
that MINI achieves strong task-incremental performance with minimal forgetting, significantly
outperforming existing generic continual learning methods. Notably, MINI also retains competitive
performance compared to fully joint training baselines, while offering the flexibility of sequential
task adaptation. We believe that MINI provides a practical and generalizable solution for continual
learning in low-level vision. Future work may explore more dynamic embedding mechanisms, better
task discovery under unknown settings, and extensions to transformer-based architectures.

References
[1] Boyun Li, Xiao Liu, Peng Hu, Zhongqin Wu, Jiancheng Lv, and Xi Peng. All-in-one image

restoration for unknown corruption. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 17452–17462, 2022.

[2] Vaishnav Potlapalli, Syed Waqas Zamir, Salman H Khan, and Fahad Shahbaz Khan. Promptir:
Prompting for all-in-one image restoration. Advances in Neural Information Processing Systems,
36, 2024.

[3] Jiaqi Ma, Tianheng Cheng, Guoli Wang, Xinggang Wang, Qian Zhang, and Lefei Zhang. Prores:
Exploring degradation-aware visual prompt for universal image restoration. arXiv preprint
arXiv:2306.13653, 2023.

[4] Zilong Li, Yiming Lei, Chenglong Ma, Junping Zhang, and Hongming Shan. Prompt-in-prompt
learning for universal image restoration. arXiv preprint arXiv:2312.05038, 2023.

10



[5] Xingyu Jiang, Xiuhui Zhang, Ning Gao, and Yue Deng. When fast fourier transform meets
transformer for image restoration. In European Conference on Computer Vision, pages 381–402.
Springer, 2024.

[6] Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Controlling
vision-language models for multi-task image restoration. In International Conference on
Learning Representations, 2024.

[7] Jun Cheng, Dong Liang, and Shan Tan. Transfer clip for generalizable image denoising. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
25974–25984, 2024.

[8] Xiaogang Xu, Shu Kong, Tao Hu, Zhe Liu, and Hujun Bao. Boosting image restoration via
priors from pre-trained models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2900–2909, 2024.

[9] Yuhao Liu, Zhanghan Ke, Fang Liu, Nanxuan Zhao, and Rynson WH Lau. Diff-plugin:
Revitalizing details for diffusion-based low-level tasks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4197–4208, 2024.

[10] Yuang Ai, Huaibo Huang, Xiaoqiang Zhou, Jiexiang Wang, and Ran He. Multimodal prompt
perceiver: Empower adaptiveness generalizability and fidelity for all-in-one image restoration.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 25432–25444, 2024.

[11] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

[12] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In International conference on machine learning, pages 3987–3995. PMLR, 2017.

[13] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

[14] Jingkai Zhou, Varun Jampani, Zhixiong Pi, Qiong Liu, and Ming-Hsuan Yang. Decoupled
dynamic filter networks. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 6647–6656, 2021.

[15] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan Ngiam. Condconv: Conditionally
parameterized convolutions for efficient inference. Advances in neural information processing
systems, 32, 2019.

[16] Ningning Ma, Xiangyu Zhang, Jiawei Huang, and Jian Sun. Weightnet: Revisiting the design
space of weight networks. In European Conference on Computer Vision, pages 776–792.
Springer, 2020.

[17] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106,
2016.

[18] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. Dynamic filter networks.
Advances in neural information processing systems, 29, 2016.

[19] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu.
Dynamic convolution: Attention over convolution kernels. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 11030–11039, 2020.

[20] Jae Woong Soh, Sunwoo Cho, and Nam Ik Cho. Meta-transfer learning for zero-shot super-
resolution. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 3516–3525, 2020.

[21] Sebastian Flennerhag, Andrei A Rusu, Razvan Pascanu, Francesco Visin, Hujun Yin, and Raia
Hadsell. Meta-learning with warped gradient descent. arXiv preprint arXiv:1909.00025, 2019.

11



[22] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-
laars. Memory aware synapses: Learning what (not) to forget. In Proceedings of the European
conference on computer vision (ECCV), pages 139–154, 2018.

[23] Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and
Yinxiao Li. Maxim: Multi-axis mlp for image processing. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 5769–5780, 2022.

[24] Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image
restoration. In European conference on computer vision, pages 17–33. Springer, 2022.

[25] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and
Ming-Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
5728–5739, 2022.

[26] Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Image
restoration with mean-reverting stochastic differential equations. International Conference on
Machine Learning, 2023.

[27] Wenhan Yang, Robby T Tan, Jiashi Feng, Jiaying Liu, Zongming Guo, and Shuicheng Yan. Deep
joint rain detection and removal from a single image. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1357–1366, 2017.

[28] Boyi Li, Wenqi Ren, Dengpan Fu, Dacheng Tao, Dan Feng, Wenjun Zeng, and Zhangyang Wang.
Benchmarking single-image dehazing and beyond. IEEE Transactions on Image Processing,
28(1):492–505, 2019.

[29] Tae Hyun Kim, Seungjun Nah, and Kyoung Mu Lee. Deep multi-scale convolutional neural net-
work for dynamic scene deblurring. In Conference on Computer Vision and Pattern Recognition,
pages 1–21. IEEE, 2017.

[30] Rui Qian, Robby T Tan, Wenhan Yang, Jiajun Su, and Jiaying Liu. Attentive generative
adversarial network for raindrop removal from a single image. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2482–2491, 2018.

[31] Wenhan Yang, Wenjing Wang, Haofeng Huang, Shiqi Wang, and Jiaying Liu. Sparse gradient
regularized deep retinex network for robust low-light image enhancement. IEEE Transactions
on Image Processing, 30:2072–2086, 2021.

[32] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

[33] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586–595, 2018.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[35] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su,
Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
139–149, 2022.

[36] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi
Ren, Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In European conference on computer vision, pages 631–648.
Springer, 2022.

[37] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir:
Image restoration using swin transformer. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1833–1844, 2021.

12



A Potential societal impact

This work focuses on the development of a minimalistic and general framework for task-incremental
learning in image restoration. The proposed method can enhance the adaptability and longevity
of vision systems deployed in dynamic real-world environments, such as autonomous driving,
surveillance, and medical imaging, by enabling them to incrementally learn new restoration tasks
without forgetting previous ones. This contributes to more sustainable and upgradable AI systems.

Since the method is task-agnostic and does not rely on sensitive or personal data, we do not foresee
direct negative societal impacts. However, as with many vision enhancement technologies, poten-
tial misuse in image manipulation or surveillance scenarios should be considered. We encourage
responsible deployment aligned with ethical guidelines and privacy regulations.

B Fully embedded vs. Only MINI-conv

To further validate the conclusions discussed in the Discussion section, we compared the final
performance of “embedding all parameter components” and “embedding only the convolutional
layers” (i.e., MINI-conv). The results are shown in Table 6.

Table 6: Comparison between fully-embedded and only-MINIconv paradigm.
methods ave PSNR↑ ave SSIM↑ ave LPIPS↓

Fully embedded 28.844 0.915 0.0629
Only MINI-conv 28.754 0.911 0.632

It can be seen that, the average performance improvement was only around 0.1 dB in PSNR. We
believe this is because these parameters primarily perform affine and scaling transformations among
features, and such transformations tend to exhibit limited variation across tasks within the same
network architecture. Therefore, even without explicit parameter isolation, these components do not
lead to severe catastrophic forgetting.

C MINI-based transformer architecture

To preliminarily evaluate the performance of the MINI architecture on transformer-based models,
we conducted the same experimental tests on SwinIR[37], specifically, we embedded the parameter
components within each transformer block to replace the original parameter components. and the
results are shown in Table 7. The results indicate that our MINI architecture can also be applied to
transformer-based backbone networks to enhance incremental learning capability. However, it is
important to ensure that the parameter initialization of the embedding pool remains consistent with
that of the original parameter components.

Table 7: Final performance comparison of model-agnostic generic incremental learning methods
under SwinIR[37] backbone. The training task sequence is: rain → haze → blur → raindrop → low
light. The best results are highlighted in bold.

datasets R100H (rain) RESIDE-6k (haze) GoPro (blur) Raindrop (raindrop) LOLv2 (low light)
methods / metrics PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LwF[13] 14.01 0.601 0.636 19.21 0.598 0.263 23.96 0.623 0.189 27.04 0.816 0.095 22.05 0.873 0.105
EWC[11] 14.55 0.563 0.525 20.00 0.611 0.233 20.62 0.634 0.249 24.67 0.789 0.128 22.83 0.880 0.100

MINI 31.23 0.921 0.040 30.41 0.961 0.026 30.65 0.901 0.089 30.57 0.911 0.054 22.72 0.888 0.097
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paper’s contributions and scope?
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made in the paper.
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
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Question: Does the paper discuss the limitations of the work performed by the authors?
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
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should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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will be specifically instructed to not penalize honesty concerning limitations.
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Justification: Described in Section 3.1, 3.2 and 3.3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 4.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: Our code will be made publicly available after the camera-ready stage.
Guidelines:
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section 4.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Section 4.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We comply with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In Appendix A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: In Appendix A.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The methods and datasets mentioned in this paper are all publicly available
and open-source. They are properly cited in the article, and there is no plagiarism or misuse.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have provided a detailed description of how to use our code in and commit
to making our code publicly available on GitHub after the camera-ready stage.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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