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ABSTRACT

The lottery ticket hypothesis suggests that dense networks contain sparse subnet-
works that can be trained in isolation to match full-model performance. Existing
approaches—iterative pruning, dynamic sparse training, and pruning at initializa-
tion—either incur heavy retraining costs or assume the target density is fixed in
advance. We introduce Path Weight Magnitude Product-biased Random growth
(PWMPR), a constructive sparse-to-dense training paradigm that grows networks
rather than pruning them, while automatically discovering their operating density.
Starting from a sparse seed, PWMPR adds edges guided by path-kernel-inspired
scores, mitigates bottlenecks via randomization, and stops when a logistic-fit rule
detects plateauing accuracy. Experiments on CIFAR, TinyImageNet, and Ima-
geNet show that PWMPR approaches the performance of IMP-derived lottery
tickets—though at higher density—at substantially lower cost ( 1.5x dense vs. 3-
4x for IMP). These results establish growth-based density discovery as a promis-
ing paradigm that complements pruning and dynamic sparsity.

1 INTRODUCTION

Artificial neural networks (ANNs) power state-of-the-art systems in vision, language, and many
other domains. Their success has largely been driven by scaling: larger and denser models trained
on larger datasets consistently improve performance (Kaplan et al., 2020). Yet this progress comes
at immense computational cost, motivating the search for sparse alternatives that retain dense-level
accuracy with reduced training and inference requirements.

The lottery ticket hypothesis (LTH) (Frankle & Carbin, 2018) crystallized this challenge: dense
networks contain sparse subnetworks (“winning tickets”) that can be trained in isolation to match
the full model’s accuracy. Iterative Magnitude Pruning (IMP) demonstrates such subnetworks, but at
prohibitive cost—often 3-4x more than dense training. This sparked extensive research into pruning-
at-initialization (Lee et al., 2018; Tanaka et al., 2020), dynamic sparse training (Mocanu et al., 2018;
Evci et al., 2020), and reparameterization methods (Mostafa & Wang, 2019; Kusupati et al., 2020).

Despite their diversity, these approaches share a critical limitation: they assume the density is known
or fixed in advance. PaI methods require the user to set a target density from the start; DST maintains
a predetermined sparsity budget throughout training; Reparameterization methods control target
density either directly(Mostafa & Wang, 2019) or through proxy hyperparameters(Kusupati et al.,
2020). Yet in practice, the relationship between density and accuracy is unknown, and this assump-
tion constrains both scientific understanding and practical deployment.

We argue that the ability to discover the density automatically is not a side problem but a central open
question in sparse learning. To address it, we propose a shift in paradigm: rather than destructively
pruning or preserving a fixed density, we explore constructive sparse-to-dense growth.

Our method, Path Weight Magnitude Product-biased Random growth (PWMPR), embodies this
paradigm. Starting from a sparse seed network, PWMPR grows new connections during training,
guided by a topological score rooted in path kernel analysis. Randomization mitigates bottlenecks,
and a lightweight logistic-fit rule stops growth once accuracy gains plateau. In this way, PWMPR
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Figure 1: Conceptual comparison of strategies for identifying sparse neural networks that match
dense network performance. Blue: Iterative Magnitude Pruning (IMP) removes low-magnitude
weights after repeated full training cycles. Orange: Dynamic Sparse Training (DST) starts from a
random sparse topology and alternates pruning and regrowth at a fixed target density. Green: Our
iterative growth method begins with a sparse network and progressively adds connections during
training. The performance-density and cost-density sketches highlight the contrasting trade-offs
between pruning and growth.

constructs subnetworks and discovers their density simultaneously, without requiring dense pretrain-
ing or preset sparsity.

As illustrated in Figure 1, this growth-based view complements pruning and DST. While PWMPR
typically reaches higher densities than IMP-derived tickets, it does so at much lower training cost
( 1.5x dense vs. 3-4x for IMP-C), producing subnetworks that approach lottery-ticket performance
efficiently. We see this as a first step in establishing growth-based density discovery as a new
paradigm in sparse neural network training, with implications for hybrid grow-prune algorithms,
transformer-specific growth rules, and broader theoretical analysis.

2 PROBLEM STATEMENT

Training sparse neural networks efficiently requires balancing three factors: how small the network
is (its density), how well it performs on the task, and how much training it costs. IMP starts from a
dense model, repeatedly trains it to convergence, prunes the lowest-magnitude weights, and retrains.
This process yields a sparse network that often matches the dense model’s accuracy, but at the
expense of several times the training cost. We instead ask: can we begin with a sparse network and
grow it just enough to match IMP’s accuracy, but with far less total training?

To formalize this, let T denote a learning task (e.g., image classification) and G a dense neural
network with parameter θ ∈ Rn. A sparse subnetwork G′ of G is defined by a binary mask m ∈
{0, 1}n with effective weights θ′ = m⊙θ. Its density is ρ(G′) = ||m||0

n where ||m||0 counts nonzero
entries in m.

IMP produces a final sparse network GIMP of density ρIMP that performs nearly as well as G. Our
goal is to construct, starting from an initially sparse network G′

0, a grown network G′ with smallest
possible density ρ∗ such that P (G′) ≥ P (GIMP)− δ for a small tolerance δ, while ensuring that its
total training cost Ctotal(G

′)≪ Ctotal(G
IMP).
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3 RELATED WORKS

Pruning after Training and the Lottery Ticket Hypothesis A common approach to sparsity is
pruning after training: train a dense model to convergence, remove low-magnitude weights, and
optionally fine-tune (Hoefler et al., 2021). While effective for inference, retraining from scratch
with the same mask often underperforms, as pruned connections may have been useful during learn-
ing (Li et al., 2016). The Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2018) reframed
this by positing that certain subnetworks (“winning tickets”) exist within the initial dense network
that, when trained from their original initialization, can match dense accuracy. Iterative Magnitude
Pruning (IMP) provided empirical evidence for this claim (Frankle & Carbin, 2018).

Pruning at Initialization Pruning at Initialization aims to bypass the expense of training a dense
model by deciding which parameters to keep before training begins. Methods such as SNIP (Lee
et al., 2018), GraSP (Wang et al., 2020), SynFlow (Tanaka et al., 2020), and PHEW (Patil & Dovro-
lis, 2021) evaluate the saliency of each connection at initialization using criteria based on gradients,
Hessian approximations, or topological measures. The user pre-specifies the density, and the method
immediately prunes to that target.

Dynamic Sparse Training Dynamic Sparse Training keeps the network sparse throughout train-
ing but periodically rewires connections to improve learning capacity. Typical DST methods al-
ternate between pruning unimportant weights and adding new ones, guided either by random se-
lection (Mocanu et al., 2018; Mostafa & Wang, 2019) or by data-driven criteria such as gradient
magnitude (Liu et al., 2020; Evci et al., 2020), momentum (Dettmers & Zettlemoyer, 2019), or a
combination thereof (Heddes et al., 2024). These approaches have also been extended to structured
sparsity (Lasby et al., 2024) and have demonstrated robustness against image corruptions (Wu et al.,
2025). The target density is fixed from the start — the rewiring steps are designed to maintain this
constant sparsity while improving topology over time.

Optimization-based Sparsification Optimization-based sparsification integrates the sparsity
mask into the training process, making it a learnable parameter alongside the network weights.
Starting from STR (Kusupati et al., 2020), new methods are being proposed to optimize structured
sparsity (Yuan et al., 2021), enable more efficient mask updates (Zhang et al., 2022; Yuan et al.,
2021; Zhou et al., 2021). Another thread of work fixes the edge weights to be randomly initialized
and only optimizes the binary mask (Ramanujan et al., 2020; Wortsman et al., 2020). Like DST,
these methods adapt topology over time, but they either specify target density explicitly in advance
or incorporate it into the optimization objective (Kusupati et al., 2020; Yuan et al., 2021).

Unlike pruning or DST, PWMPR does not require a preset density: it discovers the density automat-
ically during growth, stopping once accuracy gains plateau

4 METHOD

We propose an iterative framework that begins with a sparse network, and iteratively trains and
grows the network, until the performance plateaus. Designing this iterative training-and-growth
scheme requires answering several methodological questions, such as how to initialize the sparse
network, when and where to grow new connections, how many connections to add, how to initialize
their weights, and when to stop the process. Among these questions, the most critical is where
to grow new connections, as it directly determines the network’s ability to learn and generalize
effectively.

4.1 WHERE TO GROW? GROW HIGH WEIGHT PATHS AND AVOID BOTTLENECKS

Create High-weight Paths for Faster Convergence Consider a feed-forward network f(·, θ)
trained by (stochastic) gradient descent. One update step is given by

ft+1 = ft − ηΘt∇fL, Θt = ∇θft∇θf
⊤
t , (1)

with η the learning rate, Θt the Neural Tangent Kernel (NTK), and L the empirical loss function.
Directions whose NTK eigenvalues are large lead to faster convergence (Arora et al., 2019). Gebhart
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et al. (2021) express the network output at node k as a sum over paths

fk(x, θ) =
∑
s

∑
p∈Ps→k

πp(θ) ap(x, θ)xs, (2)

where Ps→k is the set of paths from input s to k, πp(θ) =
∏

(i,j)∈p θij is the path’s weight product,
and ap is an activation indicator. Using the chain rule they factor the NTK into a data term and the
Path Kernel Πθ = ∇θπ(θ)∇θπ(θ)

⊤ which depends only on weights and topology. Maximizing the
trace of the path kernel accelerates convergence as it governs NTK eigenvalues. With a newly added
zero-weight-initialized connection (i, j), the path kernel trace increases by

∆Tr(Πθ)(i,j) =
∑

p|(i,j)∈p

( ∏
(u,v)∈p′

(i,j)

θuv

)2
. (3)

where p′(i,j) := p \ {(i, j)}. So, adding connections with high ∆Tr(Πθ)(i,j) is expected to speed
up convergence. ∆Tr(Πθ)(i,j) is expensive to compute, as it requires enumerating all paths in the
network. In this study, we propose a L1 surrogate scoring metric to guide growth.

S(i, j) =
∑

p|(i,j)∈p

∏
(u,v)∈p′

(i,j)

|θu,v| (4)

which we term it the Path Weight Magnitude Product (PWMP) score. The PWMP score is cheaper
to compute for all potential connections at once, and it also has a clear interpretation: it measures the
contribution to total weight magnitude product gained by adding per unit of weight to the connection
(i, j).

Avoid Bottlenecks for Better Generalization While maximizing path kernel trace can speed up
convergence, it does not guarantee good generalization. Prior work (Patil & Dovrolis, 2021) shows
that sparse networks that maximize trace under a fixed density tend to collapse into narrow hidden
layers, or bottlenecks. Such bottlenecks restrict the diversity of input-output paths and lead to worse
generalization compared to broader, more evenly distributed structures.

Layer width alone does not capture bottlenecks, since connections can concentrate on a few nodes.
We use the τ -core measure (Batta et al., 2021) to quantify concentration. The idea is to measure
how concentrated the network’s paths are. For each node v, we define its path centrality as the total
weight magnitude product of all paths that pass through it:

C(v) =
∑
p:v∈p

∏
(i,j)∈p

|θi,j | (5)

The weighted τ -core is then the smallest set of nodes that together account for at least a fraction
τ (e.g., 90%) of the total path centrality. A small τ -core indicates that only a few nodes dominate
the flow of information — a bottleneck — whereas a larger τ -core reflects more balanced path
distribution.

Algorithm: PWMP-biased Random Growth (PWMPR) Based on the above insights, we pro-
pose a probabilistic growth algorithm, which we call PWMP-biased random growth (PWMPR). As
illustrated in Figure 2, we first compute the PWMP score S(i, j) for every potential connection
(i, j), and then sample new connections to add with probability proportional to S(i, j). PWMPR
avoids bottlenecks by sampling edges in proportion to PWMP, balancing convergence speed with
structural diversity.

S(i, j) can be computed efficiently using a single forward and backward pass on a network where
we convert every weight to its absolute value. In the forward pass, we feed an all-ones input into
the network. The activation of each node v is equal to the total PWMP for all paths from input to
v, referred to as the complexity of v. In the backward pass, we compute the gradient of the output
with respect to node v’s pre-activation, which is equal to total PWMP for all paths from v to output,
referred to as the generality of v. With these quantities, the PWMP gain S(i, j) for a potential edge
(i, j) is computed as the product of the complexity of node i and the generality of node j. Both
passes operate in O(E) time, where E is the existing edge count.

4
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Figure 2: Illustration of the PWMP random growth algorithm, including computation of PWMP
scores through forward/backward passes and sampling new connections based on the scores. This
illustration uses a simplified network where all edge weights equal to 1.

4.2 OTHER METHODOLOGICAL DESIGN CHOICES

Where do we start? Initialize with PHEW We initialize the sparse network using PHEW (Patil
& Dovrolis, 2021), which provides a performant starting point at low density. We choose the initial
density ρinit to be low enough to allow thorough exploration of the density range, but high enough
to avoid disconnected nodes (i.e. nodes with no incoming or outgoing connections). More details
on initialization are provided in Appendix A.4.

When to Grow? Grow Early in the Training Process Frankle & Carbin (2018) performs prun-
ing after a number of epochs long enough for the dense network to fully converge (i.e., “extensive
training”), to remove weights unimportant for the final learned function. For iterative growth scenar-
ios, however, we hypothesize that growth decisions made only after a few epochs can be as good as
those made after extensive training. This hypothesis is motivated by observations that early in train-
ing, gradients are stronger, more coherent, and better aligned across updates, providing reliable sig-
nals for selecting connections (Jastrzebski et al., 2020; Wang et al., 2020; Dettmers & Zettlemoyer,
2019). As training nears convergence, gradient magnitudes shrink and become noisier (Jastrzebski
et al., 2020), reducing their usefulness for guiding new connections. Thus, we adopt a training-and-
growth strategy in which growth occurs after only a fraction ω of the total dense-network training
budget, which reduces the cumulative training cost of the iterative process.

When to Stop? Stop when Early Training Performance Plateaus A natural strategy for de-
termining when to stop iterative training and growth is to monitor performance improvements and
halt once further increases in density yield diminishing returns. However, our method does not in-
volve extensive training at every density level, so whether the performance after extensive training
has plateaued is not directly observable. We hypothesize that performance-density curve during
iterative growth process can serve as a proxy for selecting a suitable stopping point.

Different from previous works (Adriaensen et al., 2023; Egele et al., 2024) that focuses on deter-
mining stopping point based on a running trajectory with many datapoints, here we need to estimate
the plateau point on a complete but sparse set of datapoints. Thus, prpose a simple logistic fit of the
performance-density curve to capture the diminishing-return effect and estimate the plateau onset:

P (Gk) = P0 +A
(
1− e−βρk

)
where ρk denotes network density, P (Gk) is the observed performance. We estimate parameters P̂0,
Â, and β̂ by minimizing the mean squared error between the model and empirical observations. The
plateau onset ρ̂k is then defined as the smallest density at which the predicted performance reaches
95% of its asymptotic value.

How Much to Grow? Two-stage Exponential Growth At each iteration, we increase density by
a fraction of the current density:

∆ρ(mk) = γ · ρ(mk),

where γ is a growth ratio. This proportional strategy results in exponential growth, facilitating
efficient exploration of the density-performance landscape. We use γ = 25% in our experiments,
matching the pruning ratio of 20% used in IMP (Frankle & Carbin, 2018).
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How to Initialize New Connection? Zero Weights Following Evci et al. (2020), we initialize
the weights of newly added connections to zero. This avoids introducing noise or interference from
random initializations and allows the network to learn appropriate values through gradient descent.
Zero initialization also maintains stability in the functional behavior of the current network.

5 EXPERIMENTS

Dataset and Architectures We evaluate our method on standard image classification tasks using
CIFAR (Krizhevsky et al., 2009), TinyImageNet (Le & Yang, 2015) and ImageNet (Russakovsky
et al., 2015) to assess performance from small- to large-scale settings. The corresponding network
architectures include ResNet (He et al., 2015) and Vision Transformer (ViT) (Dosovitskiy et al.,
2021). For ViT, we adopt scaled-down versions, following prior practices for training transformers
on smaller datasets (Lee et al., 2021).

Pruning Scope For ResNet, we follow the setup in Frankle & Carbin (2018), leaving the final
linear layer and shortcut connections unpruned. For ViT, we follow the common practice of keeping
the embedding layer and classification head dense, and additionally avoid pruning the query and key
projection matrices in the attention modules. Because path-kernel signals do not correlate well with
Q/K weights, we keep those dense and defer attention-specific growth to future work.

Baseline Methods We have identified three categories of baseline methods for comparison, each
serving a distinct purpose in evaluating our approach. First, we compare against iterative magnitude
pruning (IMP) (Frankle & Carbin, 2018) in terms of performance, density and training cost. We
use the continued training variant (IMP-C) as our primary benchmark, since it produces stronger
sparse networks by relaxing the requirement of retraining from scratch. Second, we evaluate alter-
native growth strategies, including random growth (Mocanu et al., 2018) (RG) and gradient-based
growth (Evci et al., 2020) (GG), to test the effectiveness of our method. Third, we include meth-
ods that find good sparse networks given target densities, such as PHEW (Patil & Dovrolis, 2021),
RigL (Evci et al., 2020), DSR (Mostafa & Wang, 2019), SparseMomentum (Dettmers & Zettle-
moyer, 2019) and GSE (Heddes et al., 2024). While these methods do not directly address our
problem of density discovery, we compare performance of networks found at different density lev-
els. Under our iterative training-growth scheme, the total training (in terms of parameter updates)
naturally increases with density. To ensure fairness, we scale the number of epochs for PHEW and
RigL at each density so that their total training matches our scheme.

6 RESULTS

Early Growth Creates Networks As Good As Growth After Convergence How does the tim-
ing of growth decisions affect final performance? We study this on CIFAR-10 and ResNet-32. In
each iteration of our training-and-growth framework, we apply PWMPR, then perform a short pe-
riod of training—“rough training”—before the next growth step. We test rough training schedules
of 5 epochs, 10 epochs, and an adaptive early-stopping rule that halts if validation loss fails to im-
prove for 3 epochs. After each density increment, we apply an “extensive training” phase to assess
the resulting topology. Figure 3 shows the results. As expected, longer rough training improves
intermediate accuracy. However, after extensive training, performance differences become very
small, especially between 10 epochs and the adaptive rule. Thus, early growth—made after only a
fraction ω of full training—can produce topologies as effective as those grown after convergence.
Repeating this experiment with GG yields the same conclusion (Appendix ??).

PWMPR Outperforms or Matches Other Growth Methods Can PWMPR effectively identify
strong sparse topologies? We first compare it with gradient-based growth (GG) and random growth
(RG), as shown in Figure 4. On CIFAR benchmarks, PWMPR matches or exceeds both baselines.
Its advantage becomes clearer on TinyImageNet / ResNet-18. For TinyImageNet / ViT, PWMPR is
slightly weaker than GG below 40% density, but outperforms it at higher densities. A key advantage
of PWMPR is efficiency: GG estimates gradients of missing connections by temporarily treating
the network as fully connected and processing a batch of examples, incurring high overhead, while
PWMPR is purely topological and requires only one forward-backward pass on the sparse network.
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Figure 3: Effect of growth timing on CIFAR-10 with ResNet-32. We compare three schedules: 5
epochs, 10 epochs, and an adaptive early-stopping criterion at each sparsity level. (a) Number of
batches before each growth decision. (b) Accuracy after rough training. (c) Accuracy after extensive
training.
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Figure 4: Performance-density relationship of PWMPR compared with other growth mechanisms
(RG and GG) and the ablated version (PWMP). (a) CIFAR-10 / ResNet-32. (b) CIFAR-100 / ResNet-
56. (c) TinyImageNet / ResNet-18. (d) TinyImageNet / ViT. All experiments use the same iterative
training-and-growth framework, and thus share the same training budget.

We also assess an ablated variant, PWMP, which deterministically adds connections that maximize
total PWMP. PWMP generally underperforms PWMPR, supporting the importance of avoiding bot-
tlenecks.
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Figure 5: Performance-density relationship of PWMPR compared with other sparsity strategies
(IMP-C, RigL, and PHEW). (a) CIFAR-10 / ResNet-32. (b) CIFAR-100 / ResNet-56. (c) TinyIm-
ageNet / ResNet-18. (d) TinyImageNet / ViT. For IMP-C, we evaluated performance over densities
from 100% down to 1%. For PWMPR, PHEW, and RigL, results were collected up to approximately
50% density, for the sake of computational cost. For PHEW and RigL, we scale the number of train-
ing epochs at each density to match the cumulative training cost of PWMPR.

PWMPR Finds Competitive Sparse Topology Having established PWMPR as a strong growth-
based method, we now examine its ability to identify high-performing sparse topologies. Figure 5
shows performance-density tradeoffs across methods. On CIFAR benchmarks, PWMPR finds sub-
networks that match or exceed IMP-C performance at densities of roughly 40% and 30%, respec-
tively. These densities are higher than those at which IMP-C retains near-optimal accuracy (∼15%
and 20%), reflecting IMP-C’s advantage of pruning from a fully trained dense model, which pro-
vides richer importance signals. On TinyImageNet / ViT, it achieves parity but at around 50% den-
sity—likely because the chosen ViT architecture (Heo et al., 2021; Lee et al., 2021) is designed
for small datasets and has substantially fewer parameters than ResNet-18. Figure 5 also compares
PWMPR with PHEW and RigL under matched training budgets. PWMPR consistently outperforms
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Table 1: Top-1 accuracy on ImageNet / ResNet-50; PWMPR results averaged over 3 runs.

Method 10% Density 20% Density

DSR (Mostafa & Wang, 2019) 71.6 73.3
Sparse Momentum (Dettmers & Zettlemoyer, 2019) 72.3 73.8
RigL (Evci et al., 2020) 73.0 ± 0.04 75.1 ± 0.05
GSE (Heddes et al., 2024) 73.2 ± 0.07 N/A
Iterative Growth 71.0 ± 0.04 73.2 ± 0.13
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Figure 6: Evolution of topological metrics during iterative growth on CIFAR-10 / ResNet-32, com-
paring different growth mechanisms (PWMPR, RG, GG and PWMP). Left: Total PWMP. Middle:
τ -core size (τ = 0.9). Right: Average τ -core ratio (higher = fewer bottlenecks).

PHEW, highlighting the benefit of iterative growth over one-shot pruning at initialization. RigL is
competitive at lower densities, but PWMPR surpasses it as density increases.

Finally, we evaluate PWMPR on the large-scale ImageNet dataset with ResNet-50, comparing
against dynamic sparsification methods. Given the high computational cost, we restrict comparisons
to reported results at 10% and 20% density. PWMPR begins from a PHEW-initialized network at
2% density and grows with a ratio of γ = 25% until just below the target density, followed by a
smaller one-step growth to match the target. Table 1 summarizes the results: On ImageNet, PWMPR
lags recent dynamic methods by 2%, reflecting the advantage of connection reallocation, but shows
that growth-only density discovery remains viable at scale.

PWMPR Balances High Path Weight Magnitude Product and Low Bottlenecks Do networks
discovered by PWMPR exhibit the topological properties it is designed to encourage? We evaluate
two targeted metrics: the total PWMP and the τ -core (with τ = 0.9). Given the layered structure of
neural networks, we measure the average τ -core ratio (layerwise τ -core size normalized by width,
then averaged) in addition to the global τ -core size. We analyze these metrics on CIFAR-10 with
ResNet-32 as a representative case.

Figure 6 shows how these topological metrics evolve during growth under different strategies. GG
achieves a total PWMP comparable to PWMPR, suggesting that high-gradient connections also raise
PWMP, but yields much lower average τ -core ratios, indicating bottlenecks. This may explain why
PWMPR surpasses GG at higher densities, where generalization is critical. RG yields the high-
est average τ -core ratio, theoretically favoring generalization, but its low total PWMP—implying
slow convergence—leads to worse performance. Removing randomness from PWMPR boosts total
PWMP but sharply lowers the average τ -core ratio at low densities; beyond 13%, the ratio recov-
ers, likely because high-PWMP connections are already added and remaining edges distribute more
evenly.

A final observation is that global τ -core size is inversely correlated with performance, in contrast
to the average τ -core ratio. We attribute this to residual connections in modern architectures such
as ResNet, which preserve effective pathways even when most connections in a block are pruned.
Thus, strong performance can persist despite a small global τ -core, as long as some of the layers are
still wide and remain accessible through residual links.

Iterative Growth is More Efficient than Iterative Pruning Does the iterative growth frame-
work enable us to more efficiently identify sparse networks than iterative pruning? We compare the
performance and cumulative cost of PWMPR at the stopping point, with the performance and cost

8
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Figure 7: Performance and normalized cumulative cost of PWMPR vs. IMP-C. Each column shows
results for a dataset-architecture pair. Top: Accuracy; Bottom: Relative FLOPs (normalized by
extensive-dense training FLOPs). IMP-C curves represent results across all intermediate densities.
PWMPR is shown in orange dots with each dot representing one of three random seeds.

IMP-C achieves at all intermediate densities, as shown in Figure 7. On both CIFAR benchmarks,
PWMPR matches IMP-C’s performance while requiring only about 1.5× the cost of training a dense
model - less than half of the cost of IMP-C. On TinyImageNet / ResNet-18, PWMPR again reduces
cost by more than half, though with a slight drop in accuracy relative to IMP-C. On TinyImageNet /
ViT, the efficiency gain is smaller, likely because we use a compact ViT tailored for small datasets
and the stopping density is higher (∼58Overall, these results indicate that PWMPR efficiently dis-
covers sparse networks whose performance is competitive with IMP-derived lottery tickets, but at
substantially lower training cost.

7 DISCUSSION AND LIMITATIONS

We introduced Path Weight Magnitude Product-biased Random growth (PWMPR), a growth-based
method for training sparse neural networks that simultaneously constructs subnetworks and discov-
ers their operating density. Unlike pruning approaches that destructively remove connections or
dynamic sparse training methods that maintain a fixed sparsity level, PWMPR adopts a construc-
tive sparse-to-dense paradigm: starting from a sparse seed, it selectively grows edges guided by
path-weight signals, mitigates bottlenecks through randomized sampling, and stops when accuracy
gains plateau. This shift reframes sparse learning not only as an optimization problem but also as an
exploration of how networks can grow into high-performing subnetworks.

Our results on CIFAR, TinyImageNet, and ImageNet demonstrate that PWMPR achieves perfor-
mance close to IMP-derived lottery tickets, though at higher densities, and does so at substantially
lower cost ( 1.5x dense training vs. 3-4x for IMP-C). These findings establish growth-based density
discovery as a credible alternative to pruning-based strategies and a complementary paradigm in
sparse training.

Limitations Despite these contributions, our work has several limitations. First, growth-only
methods cannot reach the extreme sparsity levels of pruning, since low-importance connections are
never explicitly removed. This explains why PWMPR requires higher density than IMP-C to match
accuracy. Second, the PWMP heuristic is tailored to feed-forward and convolutional structures; it
does not naturally extend to query-key matrices in attention, where magnitudes decouple from func-
tional importance. Third, our stopping rule, based on logistic-fit extrapolation, is a simple heuristic
compared to more sophisticated learning-curve extrapolation techniques. Finally, our experiments
are limited to vision benchmarks with relatively modest-scale transformers; validation in large-scale
NLP or speech domains remains an important direction for future work.

Taken together, these limitations point to natural extensions: hybrid grow-prune methods to combine
the benefits of constructive and destructive updates; attention-specific growth rules informed by
synaptic diversity or head-level importance; and broader domain validation. More broadly, we view
PWMPR not only as a method but as the foundation of a growth-based research agenda for sparse
learning — one that complements pruning and DST, and expands the conceptual landscape of how
efficient subnetworks can be discovered.
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A METHOD DETAILS

A.1 MATHEMATICAL DERIVATION OF PWMP SCORE

Consider a feed-forward network f(·, θ) trained by (stochastic) gradient descent. One update step is
given by

ft+1 = ft − ηΘt∇fL, Θt = ∇θft∇θf
⊤
t , (6)

with η the learning rate, Θt the Neural Tangent Kernel (NTK), and L the empirical loss function.
Directions whose NTK eigenvalues are large lead to faster convergence (Arora et al., 2019). Gebhart
et al. (2021) express the network output at node k as a sum over paths

fk(x, θ) =
∑
s

∑
p∈Ps→k

πp(θ) ap(x, θ)xs, (7)

where Ps→k is the set of paths from input s to k, πp(θ) =
∏

(i,j)∈p θij is the path’s weight product,
and ap is an activation indicator. Using the chain rule they factor the NTK into a data term and the
Path Kernel

Πθ = ∇θπ(θ)∇θπ(θ)
⊤ (8)

which depends only on weights and topology. The trace of the path kernel can be computed as

Tr(Πθ) =
∑
p

∑
(i,j)∈p

(πp(θ)
θij

)2
, (9)

Maximizing the path kernel trace accelerates convergence, because it corresponds to the sum
of squared path derivatives, which govern NTK eigenvalues. With a newly added zero-weight-
initialized connection (i, j), the path kernel trace increases by

∆Tr(Πθ)(i,j) =
∑

p|(i,j)∈p

( ∏
(u,v)∈p′

(i,j)

θuv

)2
. (10)
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where p′(i,j) := p \ {(i, j)}. So, adding connections with high ∆Tr(Πθ)(i,j) is expected to speed
up convergence. ∆Tr(Πθ)(i,j) is expensive to compute, as it requires enumerating all paths in the
network. In this study, we propose a L1 surrogate scoring metric to guide growth.

S(i, j) =
∑

p|(i,j)∈p

∏
(u,v)∈p′

(i,j)

|θu,v| (11)

which we term it the Path Weight Magnitude Product (PWMP) score.

A.2 PWMPR ALGORITHM PSEUDOCODE

Algorithm 1 PWMPR: Growing New Connections via Single-Pass PWMP Scoring

Require: Sparse network Gk = (V,Ek) with weights θ, growth budget ∆ρ(mk), number of layers
L

Ensure: Updated network Gk+1 with n ·∆ρ(mk) new edges
1: n← |θ|, M ← ⌊n ·∆ρ(mk)⌋ ▷ number of edges to add
2: θ̃ ← |θ| ▷ use absolute weights for PWMP computations
3: Forward pass (complexity). Feed an all-ones input and propagate through the sparse network

using θ̃ to obtain, at every pre-activation node v, its complexity ϕ(v), i.e., the sum of absolute
path-weight products from inputs to v.

4: Backward pass (generality). Define a scalar readout by summing the final-layer pre-activations
and backpropagate a unit signal through the sparse network with θ̃ to obtain, for each node v,
its generality ψ(v), i.e., the sum of absolute path-weight products from v to outputs.

5: for l = 1 to L do
6: for each non-existent edge (i, j) between layer-l input node i and output node j do
7: S(i, j)← ϕ(i) · ψ(j) ▷ PWMP gain estimate for adding (i, j)

8: Normalize scores over all missing edges to probabilities P (i, j) ∝ S(i, j).
9: Sample M edges without replacement from the set of missing edges according to P (i, j).

10: Add sampled edges to Ek to obtain Ek+1 and initialize all new weights to zero.
11: return Gk+1 = (V,Ek+1)

A.3 ADAPTING PWMPR TO CONVOLUTION AND ATTENTION

Thus far, we have introduced PWMP in the context of MLP networks. We extend the concept to
convolutional and attention layers, explaining how to quantify each parameter’s contribution to the
overall PWMP.

Convolutional Layers In many vision tasks, the input or output of a convolutional layer is shaped
(H,W,C), where H and W are the spatial dimensions and C is the number of channels. For each
output pixel at spatial location (i, j) in the k-th output channel, the convolution is computed as
follows:

yi,j,k =

Kh−1∑
m=0

Kw−1∑
n=0

Cin−1∑
c=0

θm,n,c,k · xi+m,j+n,c + bk (12)

where Kh and Kw are the kernels’ height and width, and Cin and Cout are the number of input
and output channels. This equation illustrates how each weight θm,n,c,k participates in all paths that
originate at input, pass through xi+m,j+n,c, θm,n,c,k, yi,j,k, to the network’s output. Since θm,n,c,k

is repeatedly used at every spatial location, its PWMP contribution is computed by summing its
involvement across all (i, j) positions.

Attention Layers Consider an input X ∈ Rt×d, where t is the number of tokens and d is the
embedding dimension. A self-attention module is formulated as:

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (13)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

10 3 10 2 10 1

Density

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n 
of

 is
ol

at
ed

 n
od

es architecture
ResNet32
ResNet56
ResNet18
CustomViT

(a)

0.2 0.4 0.6 0.8
density

0.76

0.78

0.80

0.82

0.84

0.86

ac
cu

ra
cy

data logistic fit 95% asymptote  d=0.42

(b)

Figure 8: Illustration of the selection of starting point and stopping point of the iterative growth pro-
cess. (a) Selection of starting density based on isolated nodes. Fraction of isolated nodes at different
density levels. We apply PHEW (Patil & Dovrolis, 2021) to initialize sparse networks and report the
proportion of nodes (feature maps in CNNs) that lack both incoming and outgoing connections. (b)
Identification of stopping density based on performance-density curves from iterative rough training
and growth with CIFAR-10 / ResNet-32 (single seed). Blue dots: empirical performance; blue curve:
logistic fit; red vertical line: predicted stopping point (95% of asymptotic value).
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Figure 9: Illustration of the iterative rough training and growth (left to middle), followed by an
extensive training at the end (right).

where Q = XθQ, K = XθK , and V = XθV are the query, key, and value projections of the input,
and θQ, θK , and θV are learnable weight matrices.

This module establishes three distinct computational pathways from the input X to the output. The
pathway through V behaves similarly to the weighted sum operation in an MLP. Thus, when adding
connections to θV or other feed-forward layers, one can disregard the attention weights—much like
activation functions—and focus on identifying connections that maximize the PWMP through the
subsequent cascade of linear layers.

In contrast, the pathways through Q and K involve additional matrix multiplications followed by a
softmax operation. The softmax normalizes its input, making the resulting attention scores largely
insensitive to the absolute magnitudes of θQ and θK . As a result, the total PWMP of the network
becomes largely decoupled from the magnitudes of these matrices, limiting the proposed algorithm’s
effectiveness in guiding growth decisions for θQ and θK .

Previous work in neural architecture search (Zhou et al., 2022) has shown that different topologi-
cal metrics are predictive of network performance in attention modules and MLPs within ViT. For
MLPs, saliency was found to correlate strongly with performance, whereas for multi-head atten-
tion modules, a different metric—synaptic diversity (Zhou et al., 2022)—was more effective. To
maintain clarity and focus in this study, we keep θQ and θK fixed and defer integration with atten-
tion sparsification techniques—such as Jaradat et al. (2024); Lee et al. (2025); Gandhi & Gandhi
(2025)—to future work.
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Figure 10: Effect of growth ratio on CIFAR-10 with ResNet-32. We compare three values of γ:
6%, 12%, and 25%. Missing connections with the highest PWMP score are added (PWMPR). (a)
Number of batches before each growth decision. (b) Accuracy just before growth. (c) Accuracy
after applying the same extensive training to all models.
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Figure 11: Effect of growth timing on CIFAR-10 with ResNet-32. We compare three schedules: 5
epochs, 10 epochs, and an adaptive early-stopping criterion at each sparsity level. (a) Number of
batches before each growth decision. (b) Accuracy after rough training. (c) Accuracy after extensive
training.

A.4 OTHER METHODOLOGICAL DETAILS

Choosing the Starting Density A lower initial density ρinit allows a more thorough exploration
of the entire density range. However, a density that is too low lead to the presence of isolated
nodes—i.e., nodes with neither incoming nor outgoing connections. Isolated nodes are problematic,
as they cannot receive gradients or be reconnected during growth. Thus, we select initial densities
ρinit high enough to avoid formation of isolated nodes. In Figure 8a, we show the relationship
between density and isolated node fraction across different network architectures, which allows us
to pick a small ρinit with no isolated nodes. Table 2 lists the selected ρinit values.

Choosing the Growth Ratio Regarding the choice of growth ratio γ, we performed a sensitivity
analysis using CIFAR-10 / ResNet-32, as shown in Figure 10. We experimented with three values of
γ: 6%, 12%, and 25%. With each setting, we applied PWMPR to grow the network iteratively from
an initial density of 0.5% up to 50%. We found that a smaller γ leads to finer growth steps, which
lead to better performance of the network at each growth step, as shown in 10. Nevertheless, smaller
γ also leads to more growth steps, which increases the overall training cost.

Additional Experiment on Gradient-based Growth to Support Early Growth In addition to
the main experiments on growth timing, we conducted an additional experiment to evaluate the
performance of gradient-based growth (GG) with different growth timings. Under the same experi-
mental setup, similar observations were made that early growth (e.g., after 10 epochs) can produce
topologies that match the performance of those grown after full convergence, once fully trained.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Dataset Architecture Weights ρinit Iterations/Batch Optimizers

CIFAR-10 ResNet-32 460K 5% 30K / 128 SGD 0.1
CIFAR-100 ResNet-56 850K 5% 30K / 128 SGD 0.1
TinyImageNet ResNet-18 11.1M 2% 70K / 128 SGD 0.2
TinyImageNet ViT 2.8M 5% 70K / 256 AdamW 3e-3
ImageNet ResNet-50 25.6M 2% 500K / 256 SGD 0.1

Table 2: Datasets and architectures evaluated in this study. Learning hyperparameters for CIFAR-
10/100 are taken from (Frankle & Carbin, 2018), and for TinyImageNet from (Gani et al., 2022;
Patil & Dovrolis, 2021). For ResNet experiments, the learning rate is decayed by a factor of 10 at
20K and 25K training iterations. For ViT experiments, the learning rate follows a linear warmup
schedule until 70K iterations, followed by cosine annealing.

B EXPERIMENT DETAILS

Evaluation Metrics For the performance metric, given a network G we evaluate its performance
P (G) using classification accuracy. To estimate the cumulative training cost Ctotal, we compute the
number of floating-point operations (FLOPs) incurred during the iterative processes. This estimate
accounts for all multiplications and additions performed during inference, adjusted for the network’s
sparsity. We exclude the cost of non-linear operations such as activation functions and softmax, as
they contribute only a small fraction to the overall computational cost.

Training Hyperparameters All networks are trained from scratch in a supervised manner. The
learning hyperparameters used for each architecture-dataset pair are summarized in Figure 2. Fol-
lowing the protocol in (Frankle & Carbin, 2018), we reserve 10% of the training data for validation
and train the networks on the remaining 90%. For the ViT, we apply the same data augmentation
strategies as in (Lee et al., 2021) to improve training stability and performance on smaller datasets.

Baseline Methods Details Iterative magnitude pruning (IMP) alternates between training the net-
work and pruning a fraction of its weights. Specifically, in each pruning cycle, the network is trained
and then pruned by removing pimp of the lowest-magnitude weights. In the original lottery ticket hy-
pothesis setup (Frankle & Carbin, 2018), the surviving weights are reset to their initial values while
retaining the pruning mask. This procedure is designed to identify “lottery tickets”—subnetworks
that, when trained from their original initialization, can match the performance of the full dense net-
work. However, since our goal is to find sparse networks that achieve high performance regardless
of initialization, we include a variant of IMP that does not reset weights after pruning. We refer to
this variant as IMP-C (Iterative Magnitude Pruning with Continued training), which is also known
as Gradual Magnitude Pruning (GMP) in prior work (Lee et al., 2024).

Gradient-based growth (GG) and random growth (RG) are implemented as described in (Evci et al.,
2020) and (Mocanu et al., 2018), respectively. For computation of gradients in GG, we regard all
missing connections as connections with a weight of zero, and perform forward and backward passes
with one batch of training data.

RigL (Evci et al., 2020) is a dynamic sparse training method that alternates magnitude-based pruning
with gradient-guided growth. We follow the original setup, performing updates every 100 iterations
with a 20% growth ratio, and using the same ERK initialization, update schedule, and drop/grow
criteria.

PHEW (Patil & Dovrolis, 2021) prunes at initialization by constructing high-weight paths via biased
random walks. Starting from a randomly initialized dense network, it samples paths in both forward
and backward directions and retains the traversed connections, removing all others. While originally
designed for feed-forward networks, we adapt PHEW to ViT by applying it to the feed-forward
blocks and to the value and projection matrices in the attention modules.
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C DISCLOSURE OF USAGE OF LLM

In the preparation of this manuscript, we use GPT-5 to help polish the writing of the paper based on
our original draft. In addition, we use GPT-5 to enrich our discovery of the related works, on top of
our own knowledge and literature search. We have verified the correctness of all the content in the
paper.
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