

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GROWING WINNING SUBNETWORKS, NOT PRUNING THEM: A PARADIGM FOR DENSITY DISCOVERY IN SPARSE NEURAL NETWORKS

Anonymous authors

Paper under double-blind review

ABSTRACT

The lottery ticket hypothesis suggests that dense networks contain sparse subnetworks that can be trained in isolation to match full-model performance. Existing approaches—iterative pruning, dynamic sparse training, and pruning at initialization—either incur heavy retraining costs or assume the target density is fixed in advance. We introduce Path Weight Magnitude Product-biased Random growth (PWMPR), a constructive sparse-to-dense training paradigm that grows networks rather than pruning them, while automatically discovering their operating density. Starting from a sparse seed, PWMPR adds edges guided by path-kernel-inspired scores, mitigates bottlenecks via randomization, and stops when a logistic-fit rule detects plateauing accuracy. Experiments on CIFAR, TinyImageNet, and ImageNet show that PWMPR approaches the performance of IMP-derived lottery tickets—though at higher density—at substantially lower cost (1.5x dense vs. 3-4x for IMP). These results establish growth-based density discovery as a promising paradigm that complements pruning and dynamic sparsity.

1 INTRODUCTION

Artificial neural networks (ANNs) power state-of-the-art systems in vision, language, and many other domains. Their success has largely been driven by scaling: larger and denser models trained on larger datasets consistently improve performance (Kaplan et al., 2020). Yet this progress comes at immense computational cost, motivating the search for sparse alternatives that retain dense-level accuracy with reduced training and inference requirements.

The lottery ticket hypothesis (LTH) (Frankle & Carbin, 2018) crystallized this challenge: dense networks contain sparse subnetworks (“winning tickets”) that can be trained in isolation to match the full model’s accuracy. Iterative Magnitude Pruning (IMP) demonstrates such subnetworks, but at prohibitive cost—often 3-4x more than dense training. This sparked extensive research into pruning-at-initialization (Lee et al., 2018; Tanaka et al., 2020), dynamic sparse training (Mocanu et al., 2018; Evci et al., 2020), and reparameterization methods (Mostafa & Wang, 2019; Kusupati et al., 2020).

Despite their diversity, these approaches share a critical limitation: they assume the density is known or fixed in advance. Pal methods require the user to set a target density from the start; DST maintains a predetermined sparsity budget throughout training; Reparameterization methods control target density either directly(Mostafa & Wang, 2019) or through proxy hyperparameters(Kusupati et al., 2020). Yet in practice, the relationship between density and accuracy is unknown, and this assumption constrains both scientific understanding and practical deployment.

We argue that the ability to discover the density automatically is not a side problem but a central open question in sparse learning. To address it, we propose a shift in paradigm: rather than *destructively pruning or preserving* a fixed density, we explore constructive sparse-to-dense growth.

Our method, *Path Weight Magnitude Product-biased Random growth (PWMPR)*, embodies this paradigm. Starting from a sparse seed network, PWMPR grows new connections during training, guided by a topological score rooted in path kernel analysis. Randomization mitigates bottlenecks, and a lightweight logistic-fit rule stops growth once accuracy gains plateau. In this way, PWMPR

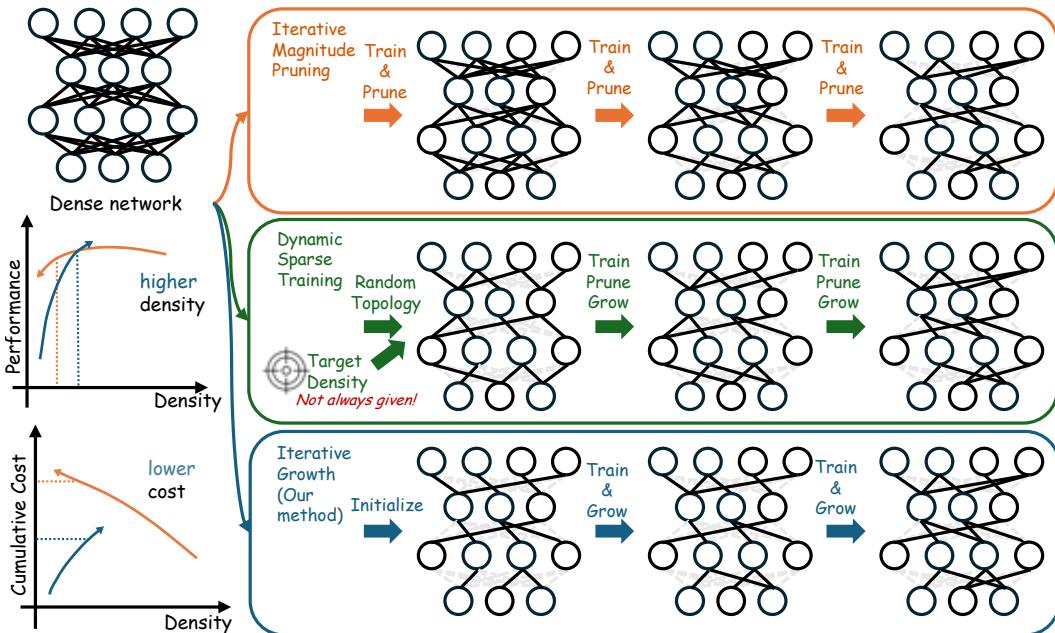


Figure 1: Conceptual comparison of strategies for identifying sparse neural networks that match dense network performance. **Blue:** Iterative Magnitude Pruning (IMP) removes low-magnitude weights after repeated full training cycles. **Orange:** Dynamic Sparse Training (DST) starts from a random sparse topology and alternates pruning and regrowth at a fixed target density. **Green:** Our iterative growth method begins with a sparse network and progressively adds connections during training. The performance-density and cost-density sketches highlight the contrasting trade-offs between pruning and growth.

constructs subnetworks and discovers their density simultaneously, without requiring dense pretraining or preset sparsity.

As illustrated in Figure 1, this growth-based view complements pruning and DST. While PWMPR typically reaches higher densities than IMP-derived tickets, it does so at much lower training cost (1.5x dense vs. 3-4x for IMP-C), producing subnetworks that approach lottery-ticket performance efficiently. We see this as a first step in establishing growth-based density discovery as a new paradigm in sparse neural network training, with implications for hybrid grow-prune algorithms, transformer-specific growth rules, and broader theoretical analysis.

2 PROBLEM STATEMENT

Training sparse neural networks efficiently requires balancing three factors: how small the network is (its density), how well it performs on the task, and how much training it costs. IMP starts from a dense model, repeatedly trains it to convergence, prunes the lowest-magnitude weights, and retrains. This process yields a sparse network that often matches the dense model’s accuracy, but at the expense of several times the training cost. We instead ask: can we begin with a sparse network and grow it just enough to match IMP’s accuracy, but with far less total training?

To formalize this, let T denote a learning task (e.g., image classification) and G a dense neural network with parameter $\theta \in \mathbb{R}^n$. A sparse subnetwork G' of G is defined by a binary mask $m \in \{0, 1\}^n$ with effective weights $\theta' = m \odot \theta$. Its density is $\rho(G') = \frac{\|m\|_0}{n}$ where $\|m\|_0$ counts nonzero entries in m .

IMP produces a final sparse network G^{IMP} of density ρ_{IMP} that performs nearly as well as G . Our goal is to construct, starting from an initially sparse network G'_0 , a grown network G' with smallest possible density ρ^* such that $P(G') \geq P(G^{\text{IMP}}) - \delta$ for a small tolerance δ , while ensuring that its total training cost $C_{\text{total}}(G') \ll C_{\text{total}}(G^{\text{IMP}})$.

108

3 RELATED WORKS

110 **Pruning after Training and the Lottery Ticket Hypothesis** A common approach to sparsity is
 111 pruning after training: train a dense model to convergence, remove low-magnitude weights, and
 112 optionally fine-tune (Hoeffler et al., 2021). While effective for inference, retraining from scratch
 113 with the same mask often underperforms, as pruned connections may have been useful during learning
 114 (Li et al., 2016). The Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2018) reframed
 115 this by positing that certain subnetworks (“winning tickets”) exist within the initial dense network
 116 that, when trained from their original initialization, can match dense accuracy. Iterative Magnitude
 117 Pruning (IMP) provided empirical evidence for this claim (Frankle & Carbin, 2018).

118 **Pruning at Initialization** Pruning at Initialization aims to bypass the expense of training a dense
 119 model by deciding which parameters to keep before training begins. Methods such as SNIP (Lee
 120 et al., 2018), GraSP (Wang et al., 2020), SynFlow (Tanaka et al., 2020), and PHEW (Patil & Dovro-
 121 lis, 2021) evaluate the saliency of each connection at initialization using criteria based on gradients,
 122 Hessian approximations, or topological measures. The user pre-specifies the density, and the method
 123 immediately prunes to that target.

125 **Dynamic Sparse Training** Dynamic Sparse Training keeps the network sparse throughout training
 126 but periodically rewrites connections to improve learning capacity. Typical DST methods alternate
 127 between pruning unimportant weights and adding new ones, guided either by random selection
 128 (Mocanu et al., 2018; Mostafa & Wang, 2019) or by data-driven criteria such as gradient
 129 magnitude (Liu et al., 2020; Evcı et al., 2020), momentum (Dettmers & Zettlemoyer, 2019), or a
 130 combination thereof (Heddes et al., 2024). These approaches have also been extended to structured
 131 sparsity (Lasby et al., 2024) and have demonstrated robustness against image corruptions (Wu et al.,
 132 2025). The target density is fixed from the start — the rewiring steps are designed to maintain this
 133 constant sparsity while improving topology over time.

134 **Optimization-based Sparsification** Optimization-based sparsification integrates the sparsity
 135 mask into the training process, making it a learnable parameter alongside the network weights.
 136 Starting from STR (Kusupati et al., 2020), new methods are being proposed to optimize structured
 137 sparsity (Yuan et al., 2021), enabling more efficient mask updates (Zhang et al., 2022; Yuan et al.,
 138 2021; Zhou et al., 2021). Another thread of work fixes the edge weights to be randomly initialized
 139 and only optimizes the binary mask (Ramanujan et al., 2020; Wortsman et al., 2020). Like DST,
 140 these methods adapt topology over time, but they either specify target density explicitly in advance
 141 or incorporate it into the optimization objective (Kusupati et al., 2020; Yuan et al., 2021).

142 Unlike pruning or DST, PWMMP does not require a preset density: it discovers the density automatically
 143 during growth, stopping once accuracy gains plateau

145

4 METHOD

147 We propose an iterative framework that begins with a sparse network, and iteratively trains and
 148 grows the network, until the performance plateaus. Designing this iterative training-and-growth
 149 scheme requires answering several methodological questions, such as how to initialize the sparse
 150 network, when and where to grow new connections, how many connections to add, how to initialize
 151 their weights, and when to stop the process. Among these questions, the most critical is *where*
 152 to grow new connections, as it directly determines the network’s ability to learn and generalize
 153 effectively.

155

4.1 WHERE TO GROW? GROW HIGH WEIGHT PATHS AND AVOID BOTTLENECKS

157 **Create High-weight Paths for Faster Convergence** Consider a feed-forward network $f(\cdot, \theta)$
 158 trained by (stochastic) gradient descent. One update step is given by

$$f_{t+1} = f_t - \eta \Theta_t \nabla_f \mathcal{L}, \quad \Theta_t = \nabla_\theta f_t \nabla_\theta f_t^\top, \quad (1)$$

160 with η the learning rate, Θ_t the *Neural Tangent Kernel* (NTK), and \mathcal{L} the empirical loss function.
 161 Directions whose NTK eigenvalues are large lead to faster convergence (Arora et al., 2019). Gebhart

et al. (2021) express the network output at node k as a sum over paths

$$f^k(x, \theta) = \sum_s \sum_{p \in \mathcal{P}_{s \rightarrow k}} \pi_p(\theta) a_p(x, \theta) x_s, \quad (2)$$

where $\mathcal{P}_{s \rightarrow k}$ is the set of paths from input s to k , $\pi_p(\theta) = \prod_{(i,j) \in p} \theta_{ij}$ is the path's weight product, and a_p is an activation indicator. Using the chain rule they factor the NTK into a data term and the *Path Kernel* $\Pi_\theta = \nabla_\theta \pi(\theta) \nabla_\theta \pi(\theta)^\top$ which depends only on weights and topology. Maximizing the trace of the path kernel accelerates convergence as it governs NTK eigenvalues. With a newly added zero-weight-initialized connection (i, j) , the path kernel trace increases by

$$\Delta \text{Tr}(\Pi_\theta)_{(i,j)} = \sum_{p \mid (i,j) \in p} \left(\prod_{(u,v) \in p'_{(i,j)}} \theta_{uv} \right)^2. \quad (3)$$

where $p'_{(i,j)} := p \setminus \{(i,j)\}$. So, adding connections with high $\Delta \text{Tr}(\Pi_\theta)_{(i,j)}$ is expected to speed up convergence. $\Delta \text{Tr}(\Pi_\theta)_{(i,j)}$ is expensive to compute, as it requires enumerating all paths in the network. In this study, we propose a L_1 surrogate scoring metric to guide growth.

$$S(i, j) = \sum_{p \mid (i,j) \in p} \prod_{(u,v) \in p'_{(i,j)}} |\theta_{uv}| \quad (4)$$

which we term it the *Path Weight Magnitude Product* (PWMP) score. The PWMP score is cheaper to compute for all potential connections at once, and it also has a clear interpretation: it measures the contribution to total weight magnitude product gained by adding per unit of weight to the connection (i, j) .

Avoid Bottlenecks for Better Generalization While maximizing path kernel trace can speed up convergence, it does not guarantee good generalization. Prior work (Patil & Dovrolis, 2021) shows that sparse networks that maximize trace under a fixed density tend to collapse into narrow hidden layers, or bottlenecks. Such bottlenecks restrict the diversity of input-output paths and lead to worse generalization compared to broader, more evenly distributed structures.

Layer width alone does not capture bottlenecks, since connections can concentrate on a few nodes. We use the τ -core measure (Batta et al., 2021) to quantify concentration. The idea is to measure how concentrated the network's paths are. For each node v , we define its path centrality as the total weight magnitude product of all paths that pass through it:

$$C(v) = \sum_{p: v \in p} \prod_{(i,j) \in p} |\theta_{ij}| \quad (5)$$

The weighted τ -core is then the smallest set of nodes that together account for at least a fraction τ (e.g., 90%) of the total path centrality. A small τ -core indicates that only a few nodes dominate the flow of information — a bottleneck — whereas a larger τ -core reflects more balanced path distribution.

Algorithm: PWMP-biased Random Growth (PWMPR) Based on the above insights, we propose a probabilistic growth algorithm, which we call PWMP-biased random growth (PWMPR). As illustrated in Figure 2, we first compute the PWMP score $S(i, j)$ for every potential connection (i, j) , and then sample new connections to add with probability proportional to $S(i, j)$. PWMPR avoids bottlenecks by sampling edges in proportion to PWMP, balancing convergence speed with structural diversity.

$S(i, j)$ can be computed efficiently using a single forward and backward pass on a network where we convert every weight to its absolute value. In the forward pass, we feed an all-ones input into the network. The activation of each node v is equal to the total PWMP for all paths from input to v , referred to as the complexity of v . In the backward pass, we compute the gradient of the output with respect to node v 's pre-activation, which is equal to total PWMP for all paths from v to output, referred to as the generality of v . With these quantities, the PWMP gain $S(i, j)$ for a potential edge (i, j) is computed as the product of the complexity of node i and the generality of node j . Both passes operate in $\mathcal{O}(E)$ time, where E is the existing edge count.

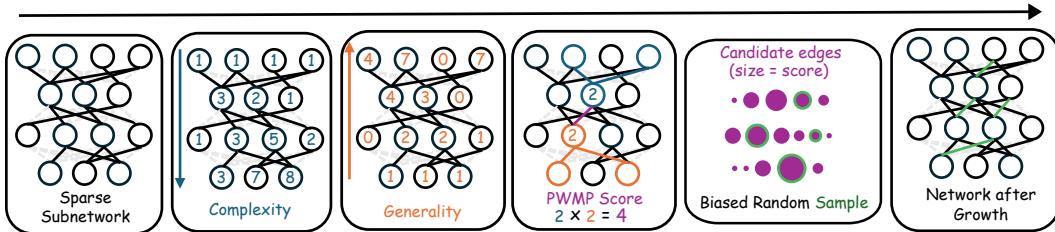


Figure 2: Illustration of the PWMP random growth algorithm, including computation of PWMP scores through forward/backward passes and sampling new connections based on the scores. This illustration uses a simplified network where all edge weights equal to 1.

4.2 OTHER METHODOLOGICAL DESIGN CHOICES

Where do we start? Initialize with PHEW We initialize the sparse network using PHEW (Patil & Dovrolis, 2021), which provides a performant starting point at low density. We choose the initial density ρ_{init} to be low enough to allow thorough exploration of the density range, but high enough to avoid disconnected nodes (i.e. nodes with no incoming or outgoing connections). More details on initialization are provided in Appendix A.4.

When to Grow? Grow Early in the Training Process Frankle & Carbin (2018) performs pruning after a number of epochs long enough for the dense network to fully converge (i.e., “extensive training”), to remove weights unimportant for the final learned function. For iterative growth scenarios, however, we hypothesize that growth decisions made only after a few epochs can be as good as those made after extensive training. This hypothesis is motivated by observations that early in training, gradients are stronger, more coherent, and better aligned across updates, providing reliable signals for selecting connections (Jastrzebski et al., 2020; Wang et al., 2020; Dettmers & Zettlemoyer, 2019). As training nears convergence, gradient magnitudes shrink and become noisier (Jastrzebski et al., 2020), reducing their usefulness for guiding new connections. Thus, we adopt a training-and-growth strategy in which growth occurs after only a fraction ω of the total dense-network training budget, which reduces the cumulative training cost of the iterative process.

When to Stop? Stop when Early Training Performance Plateaus A natural strategy for determining when to stop iterative training and growth is to monitor performance improvements and halt once further increases in density yield diminishing returns. However, our method does not involve extensive training at every density level, so whether the performance after extensive training has plateaued is not directly observable. We hypothesize that performance-density curve during iterative growth process can serve as a proxy for selecting a suitable stopping point.

Different from previous works (Adriaensen et al., 2023; Egele et al., 2024) that focuses on determining stopping point based on a running trajectory with many datapoints, here we need to estimate the plateau point on a complete but sparse set of datapoints. Thus, propose a simple logistic fit of the performance-density curve to capture the diminishing-return effect and estimate the plateau onset:

$$P(G_k) = P_0 + A (1 - e^{-\beta \rho_k})$$

where ρ_k denotes network density, $P(G_k)$ is the observed performance. We estimate parameters \hat{P}_0 , \hat{A} , and $\hat{\beta}$ by minimizing the mean squared error between the model and empirical observations. The plateau onset $\hat{\rho}_k$ is then defined as the smallest density at which the predicted performance reaches 95% of its asymptotic value.

How Much to Grow? Two-stage Exponential Growth At each iteration, we increase density by a fraction of the current density:

$$\Delta \rho(m_k) = \gamma \cdot \rho(m_k),$$

where γ is a growth ratio. This proportional strategy results in exponential growth, facilitating efficient exploration of the density-performance landscape. We use $\gamma = 25\%$ in our experiments, matching the pruning ratio of 20% used in IMP (Frankle & Carbin, 2018).

270 **How to Initialize New Connection? Zero Weights** Following Evci et al. (2020), we initialize
 271 the weights of newly added connections to zero. This avoids introducing noise or interference from
 272 random initializations and allows the network to learn appropriate values through gradient descent.
 273 Zero initialization also maintains stability in the functional behavior of the current network.
 274

275 5 EXPERIMENTS

276 **Dataset and Architectures** We evaluate our method on standard image classification tasks using
 277 *CIFAR* (Krizhevsky et al., 2009), *TinyImageNet* (Le & Yang, 2015) and *ImageNet* (Russakovsky
 278 et al., 2015) to assess performance from small- to large-scale settings. The corresponding network
 279 architectures include *ResNet* (He et al., 2015) and Vision Transformer (*ViT*) (Dosovitskiy et al.,
 280 2021). For *ViT*, we adopt scaled-down versions, following prior practices for training transformers
 281 on smaller datasets (Lee et al., 2021).
 282

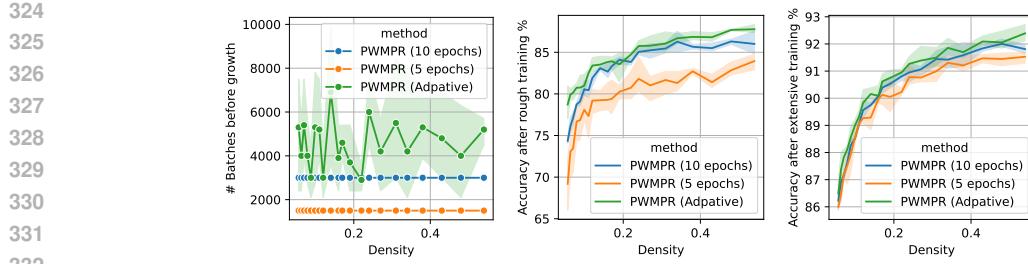
283 **Pruning Scope** For *ResNet*, we follow the setup in Frankle & Carbin (2018), leaving the final
 284 linear layer and shortcut connections unpruned. For *ViT*, we follow the common practice of keeping
 285 the embedding layer and classification head dense, and additionally avoid pruning the query and key
 286 projection matrices in the attention modules. Because path-kernel signals do not correlate well with
 287 Q/K weights, we keep those dense and defer attention-specific growth to future work.
 288

289 **Baseline Methods** We have identified three categories of baseline methods for comparison, each
 290 serving a distinct purpose in evaluating our approach. First, we compare against iterative magnitude
 291 pruning (IMP) (Frankle & Carbin, 2018) in terms of performance, density and training cost. We
 292 use the continued training variant (IMP-C) as our primary benchmark, since it produces stronger
 293 sparse networks by relaxing the requirement of retraining from scratch. Second, we evaluate alter-
 294 native growth strategies, including random growth (Mocanu et al., 2018) (RG) and gradient-based
 295 growth (Evci et al., 2020) (GG), to test the effectiveness of our method. Third, we include meth-
 296 ods that find good sparse networks given target densities, such as PHEW (Patil & Dovrolis, 2021),
 297 RigL (Evci et al., 2020), DSR (Mostafa & Wang, 2019), SparseMomentum (Dettmers & Zettle-
 298 moyer, 2019) and GSE (Heddes et al., 2024). While these methods do not directly address our
 299 problem of density discovery, we compare performance of networks found at different density lev-
 300 els. Under our iterative training-growth scheme, the total training (in terms of parameter updates)
 301 naturally increases with density. To ensure fairness, we scale the number of epochs for PHEW and
 302 RigL at each density so that their total training matches our scheme.
 303

304 6 RESULTS

305 **Early Growth Creates Networks As Good As Growth After Convergence** How does the tim-
 306 ing of growth decisions affect final performance? We study this on *CIFAR-10* and *ResNet-32*. In
 307 each iteration of our training-and-growth framework, we apply PWMPR, then perform a short pe-
 308 riod of training—“rough training”—before the next growth step. We test rough training schedules
 309 of 5 epochs, 10 epochs, and an adaptive early-stopping rule that halts if validation loss fails to im-
 310 prove for 3 epochs. After each density increment, we apply an “extensive training” phase to assess
 311 the resulting topology. Figure 3 shows the results. As expected, longer rough training improves
 312 intermediate accuracy. However, after extensive training, performance differences become very
 313 small, especially between 10 epochs and the adaptive rule. Thus, early growth—made after only a
 314 fraction ω of full training—can produce topologies as effective as those grown after convergence.
 315 Repeating this experiment with GG yields the same conclusion (Appendix ??).
 316

317 **PWMPR Outperforms or Matches Other Growth Methods** Can PWMPR effectively identify
 318 strong sparse topologies? We first compare it with gradient-based growth (GG) and random growth
 319 (RG), as shown in Figure 4. On *CIFAR* benchmarks, PWMPR matches or exceeds both baselines.
 320 Its advantage becomes clearer on *TinyImageNet* / *ResNet-18*. For *TinyImageNet* / *ViT*, PWMPR is
 321 slightly weaker than GG below 40% density, but outperforms it at higher densities. A key advantage
 322 of PWMPR is efficiency: GG estimates gradients of missing connections by temporarily treating
 323 the network as fully connected and processing a batch of examples, incurring high overhead, while
 PWMPR is purely topological and requires only one forward-backward pass on the sparse network.



333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 3: Effect of growth timing on *CIFAR-10* with *ResNet-32*. We compare three schedules: 5 epochs, 10 epochs, and an adaptive early-stopping criterion at each sparsity level. (a) Number of batches before each growth decision. (b) Accuracy after rough training. (c) Accuracy after extensive training.

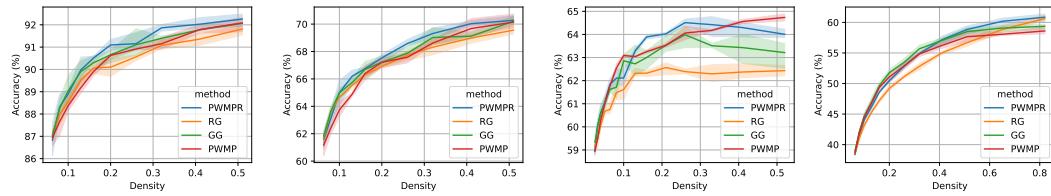


Figure 4: Performance-density relationship of PWMPR compared with other growth mechanisms (RG and GG) and the ablated version (PWMP). (a) *CIFAR-10 / ResNet-32*. (b) *CIFAR-100 / ResNet-56*. (c) *TinyImageNet / ResNet-18*. (d) *TinyImageNet / ViT*. All experiments use the same iterative training-and-growth framework, and thus share the same training budget.

We also assess an ablated variant, PWMP, which deterministically adds connections that maximize total PWMP. PWMP generally underperforms PWMPR, supporting the importance of avoiding bottlenecks.

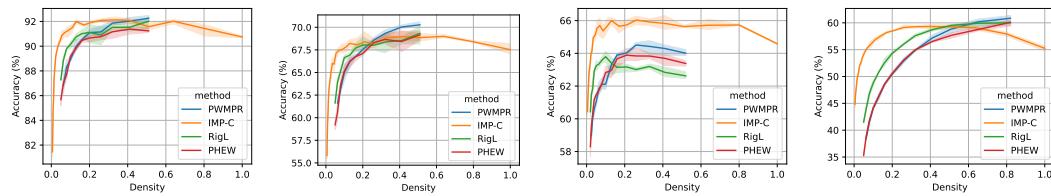
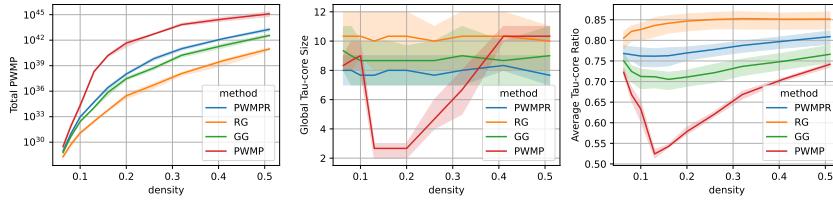


Figure 5: Performance-density relationship of PWMPR compared with other sparsity strategies (IMP-C, RigL, and PHEW). (a) *CIFAR-10 / ResNet-32*. (b) *CIFAR-100 / ResNet-56*. (c) *TinyImageNet / ResNet-18*. (d) *TinyImageNet / ViT*. For IMP-C, we evaluated performance over densities from 100% down to 1%. For PWMPR, PHEW, and RigL, results were collected up to approximately 50% density, for the sake of computational cost. For PHEW and RigL, we scale the number of training epochs at each density to match the cumulative training cost of PWMPR.

PWMPR Finds Competitive Sparse Topology Having established PWMPR as a strong growth-based method, we now examine its ability to identify high-performing sparse topologies. Figure 5 shows performance-density tradeoffs across methods. On *CIFAR* benchmarks, PWMPR finds sub-networks that match or exceed IMP-C performance at densities of roughly 40% and 30%, respectively. These densities are higher than those at which IMP-C retains near-optimal accuracy ($\sim 15\%$ and 20%), reflecting IMP-C’s advantage of pruning from a fully trained dense model, which provides richer importance signals. On *TinyImageNet / ViT*, it achieves parity but at around 50% density—likely because the chosen *ViT* architecture (Heo et al., 2021; Lee et al., 2021) is designed for small datasets and has substantially fewer parameters than *ResNet-18*. Figure 5 also compares PWMPR with PHEW and RigL under matched training budgets. PWMPR consistently outperforms

378 Table 1: Top-1 accuracy on *ImageNet* / *ResNet-50*; PWMPR results averaged over 3 runs.
379

380 Method	381 10% Density	382 20% Density
383 DSR (Mostafa & Wang, 2019)	384 71.6	385 73.3
386 Sparse Momentum (Dettmers & Zettlemoyer, 2019)	387 72.3	388 73.8
389 RigL (Evci et al., 2020)	390 73.0 ± 0.04	391 75.1 ± 0.05
392 GSE (Heddes et al., 2024)	393 73.2 ± 0.07	394 N/A
395 Iterative Growth	396 71.0 ± 0.04	397 73.2 ± 0.13

398 Figure 6: Evolution of topological metrics during iterative growth on *CIFAR-10* / *ResNet-32*, comparing different growth mechanisms (PWMPR, RG, GG and PWMP). Left: Total PWMP. Middle: τ -core size ($\tau = 0.9$). Right: Average τ -core ratio (higher = fewer bottlenecks).399 PHEW, highlighting the benefit of iterative growth over one-shot pruning at initialization. RigL is
400 competitive at lower densities, but PWMPR surpasses it as density increases.
401402 Finally, we evaluate PWMPR on the large-scale *ImageNet* dataset with *ResNet-50*, comparing
403 against dynamic sparsification methods. Given the high computational cost, we restrict comparisons
404 to reported results at 10% and 20% density. PWMPR begins from a PHEW-initialized network at
405 2% density and grows with a ratio of $\gamma = 25\%$ until just below the target density, followed by a
406 smaller one-step growth to match the target. Table 1 summarizes the results: On ImageNet, PWMPR
407 lags recent dynamic methods by 2%, reflecting the advantage of connection reallocation, but shows
408 that growth-only density discovery remains viable at scale.409 **PWMPR Balances High Path Weight Magnitude Product and Low Bottlenecks** Do networks
410 discovered by PWMPR exhibit the topological properties it is designed to encourage? We evaluate
411 two targeted metrics: the total PWMP and the τ -core (with $\tau = 0.9$). Given the layered structure of
412 neural networks, we measure the *average τ -core ratio* (layerwise τ -core size normalized by width,
413 then averaged) in addition to the global τ -core size. We analyze these metrics on *CIFAR-10* with
414 *ResNet-32* as a representative case.415 Figure 6 shows how these topological metrics evolve during growth under different strategies. GG
416 achieves a total PWMP comparable to PWMPR, suggesting that high-gradient connections also raise
417 PWMP, but yields much lower average τ -core ratios, indicating bottlenecks. This may explain why
418 PWMPR surpasses GG at higher densities, where generalization is critical. RG yields the highest
419 average τ -core ratio, theoretically favoring generalization, but its low total PWMP—implying
420 slow convergence—leads to worse performance. Removing randomness from PWMPR boosts total
421 PWMP but sharply lowers the average τ -core ratio at low densities; beyond 13%, the ratio recovers,
422 likely because high-PWMP connections are already added and remaining edges distribute more
423 evenly.424 A final observation is that global τ -core size is inversely correlated with performance, in contrast
425 to the average τ -core ratio. We attribute this to residual connections in modern architectures such
426 as *ResNet*, which preserve effective pathways even when most connections in a block are pruned.
427 Thus, strong performance can persist despite a small global τ -core, as long as some of the layers are
428 still wide and remain accessible through residual links.
429430 **Iterative Growth is More Efficient than Iterative Pruning** Does the iterative growth frame-
431 work enable us to more efficiently identify sparse networks than iterative pruning? We compare the
432 performance and cumulative cost of PWMPR at the stopping point, with the performance and cost

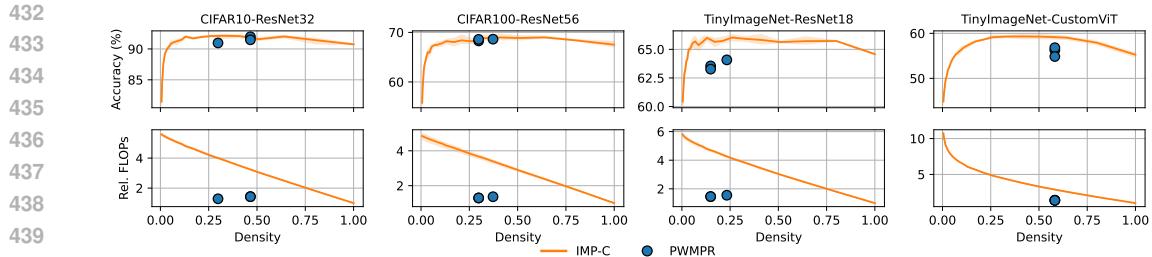


Figure 7: Performance and normalized cumulative cost of PWMPR vs. IMP-C. Each column shows results for a dataset-architecture pair. Top: Accuracy; Bottom: Relative FLOPs (normalized by extensive-dense training FLOPs). IMP-C curves represent results across all intermediate densities. PWMPR is shown in orange dots with each dot representing one of three random seeds.

IMP-C achieves at all intermediate densities, as shown in Figure 7. On both *CIFAR* benchmarks, PWMPR matches IMP-C’s performance while requiring only about $1.5 \times$ the cost of training a dense model - less than half of the cost of IMP-C. On *TinyImageNet / ResNet-18*, PWMPR again reduces cost by more than half, though with a slight drop in accuracy relative to IMP-C. On *TinyImageNet / ViT*, the efficiency gain is smaller, likely because we use a compact ViT tailored for small datasets and the stopping density is higher ($\sim 58\%$ overall), these results indicate that PWMPR efficiently discovers sparse networks whose performance is competitive with IMP-derived lottery tickets, but at substantially lower training cost.

7 DISCUSSION AND LIMITATIONS

We introduced Path Weight Magnitude Product-biased Random growth (PWMPR), a growth-based method for training sparse neural networks that simultaneously constructs subnetworks and discovers their operating density. Unlike pruning approaches that destructively remove connections or dynamic sparse training methods that maintain a fixed sparsity level, PWMPR adopts a constructive sparse-to-dense paradigm: starting from a sparse seed, it selectively grows edges guided by path-weight signals, mitigates bottlenecks through randomized sampling, and stops when accuracy gains plateau. This shift reframes sparse learning not only as an optimization problem but also as an exploration of how networks can grow into high-performing subnetworks.

Our results on CIFAR, TinyImageNet, and ImageNet demonstrate that PWMPR achieves performance close to IMP-derived lottery tickets, though at higher densities, and does so at substantially lower cost (1.5x dense training vs. 3-4x for IMP-C). These findings establish growth-based density discovery as a credible alternative to pruning-based strategies and a complementary paradigm in sparse training.

Limitations Despite these contributions, our work has several limitations. First, growth-only methods cannot reach the extreme sparsity levels of pruning, since low-importance connections are never explicitly removed. This explains why PWMPR requires higher density than IMP-C to match accuracy. Second, the PWMPR heuristic is tailored to feed-forward and convolutional structures; it does not naturally extend to query-key matrices in attention, where magnitudes decouple from functional importance. Third, our stopping rule, based on logistic-fit extrapolation, is a simple heuristic compared to more sophisticated learning-curve extrapolation techniques. Finally, our experiments are limited to vision benchmarks with relatively modest-scale transformers; validation in large-scale NLP or speech domains remains an important direction for future work.

Taken together, these limitations point to natural extensions: hybrid grow-prune methods to combine the benefits of constructive and destructive updates; attention-specific growth rules informed by synaptic diversity or head-level importance; and broader domain validation. More broadly, we view PWMPR not only as a method but as the foundation of a growth-based research agenda for sparse learning — one that complements pruning and DST, and expands the conceptual landscape of how efficient subnetworks can be discovered.

486 REFERENCES
487

488 Steven Adriaensen, Herilalaina Rakotoarison, Samuel Müller, and Frank Hutter. Efficient bayesian
489 learning curve extrapolation using prior-data fitted networks. *Advances in Neural Information
490 Processing Systems*, 36:19858–19886, 2023.

491 Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
492 timization and generalization for overparameterized two-layer neural networks. In *International
493 conference on machine learning*, pp. 322–332. PMLR, 2019.

494 Ishaan Batta, Qihang Yao, Kaeser M Sabrin, and Constantine Dovrolis. A weighted network analysis
495 framework for the hourglass effect—and its application in the *c. elegans* connectome. *Plos one*,
496 16(10):e0249846, 2021.

497 Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
498 performance. *arXiv preprint arXiv:1907.04840*, 2019.

499 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
500 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
501 Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, June 2021. URL <http://arxiv.org/abs/2010.11929>. arXiv:2010.11929 [cs].

502 Romain Egele, Felix Mohr, Tom Viering, and Prasanna Balaprakash. The unreasonable effectiveness
503 of early discarding after one epoch in neural network hyperparameter optimization. *Neurocom-
504 puting*, 597:127964, 2024.

505 Utuk Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
506 Making all tickets winners. In *International conference on machine learning*, pp. 2943–2952.
507 PMLR, 2020.

508 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
509 networks. *arXiv preprint arXiv:1803.03635*, 2018.

510 Sagar Gandhi and Vishal Gandhi. Crisp attention: Regularizing transformers via structured sparsity.
511 *arXiv preprint arXiv:2508.06016*, 2025.

512 Hanan Gani, Muzammal Naseer, and Mohammad Yaqub. How to train vision transformer on small-
513 scale datasets? In *33rd British Machine Vision Conference Proceedings, BMVC 2022*, 2022.

514 Thomas Gebhart, Udit Saxena, and Paul Schrater. A unified paths perspective for pruning at initial-
515 ization. *arXiv preprint arXiv:2101.10552*, 2021.

516 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for
517 Image Recognition, December 2015. URL <http://arxiv.org/abs/1512.03385>.
518 arXiv:1512.03385 [cs].

519 Mike Hedges, Narayan Srinivasa, Tony Givargis, and Alexandru Nicolau. Always-sparse training
520 by growing connections with guided stochastic exploration. *arXiv preprint arXiv:2401.06898*,
521 2024.

522 Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, and Seong Joon
523 Oh. Rethinking spatial dimensions of vision transformers. In *Proceedings of the IEEE/CVF
524 international conference on computer vision*, pp. 11936–11945, 2021.

525 Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
526 learning: Pruning and growth for efficient inference and training in neural networks. *Journal of
527 Machine Learning Research*, 22(241):1–124, 2021.

528 Ghadeer Jaradat, Mohammed Tolba, Ghada Alsuhli, Hani Saleh, Mahmoud Al-Qutayri, Thanos
529 Stouraitis, and Baker Mohammad. Hybrid dynamic pruning: A pathway to efficient transformer
530 inference. *arXiv preprint arXiv:2407.12893*, 2024.

531 Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Tabor, Kyunghyun
532 Cho, and Krzysztof Geras. The break-even point on optimization trajectories of deep neural
533 networks. *arXiv preprint arXiv:2002.09572*, 2020.

540 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 541 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 542 models. *arXiv preprint arXiv:2001.08361*, 2020.

543

544 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 545 2009.

546

547 Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
 548 Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In
 549 *International conference on machine learning*, pp. 5544–5555. PMLR, 2020.

550

551 Mike Lasby, Anna Golubeva, Utku Evci, Mihai Nica, and Yani Ioannou. Dynamic sparse training
 552 with structured sparsity. In *The Twelfth International Conference on Learning Representations*,
 553 2024. URL <https://openreview.net/forum?id=kOBkxFRKTA>.

554

555 Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

556

557 Heejun Lee, Geon Park, Youngwan Lee, Jaduk Suh, Jina Kim, Wonyong Jeong, Bumsik Kim,
 558 Hyemin Lee, Myeongjae Jeon, and Sung Ju Hwang. A training-free sub-quadratic cost trans-
 559 former model serving framework with hierarchically pruned attention. In *The Thirteenth Interna-
 560 tional Conference on Learning Representations*, 2025. URL [https://openreview.net/
 561 forum?id=PTcMzQgKmn](https://openreview.net/forum?id=PTcMzQgKmn).

562

563 Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
 564 based on connection sensitivity. *arXiv preprint arXiv:1810.02340*, 2018.

565

566 Saehyung Lee, Se Jung Kwon, Byeongwook Kim, and Sungroh Yoon. Revisiting the lottery ticket
 567 hypothesis for pre-trained networks. 2024. URL <https://openreview.net/forum?id=9ZUz4M55Up>.

568

569 Seung Hoon Lee, Seunghyun Lee, and Byung Cheol Song. Vision transformer for small-size
 570 datasets. *arXiv preprint arXiv:2112.13492*, 2021.

571

572 Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
 573 efficient convnets. *arXiv preprint arXiv:1608.08710*, 2016.

574

575 Junjie Liu, Zhe Xu, Runbin Shi, Ray CC Cheung, and Hayden KH So. Dynamic sparse train-
 576 ing: Find efficient sparse network from scratch with trainable masked layers. *arXiv preprint
 577 arXiv:2005.06870*, 2020.

578

579 Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
 580 and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
 581 tivity inspired by network science. *Nature communications*, 9(1):2383, 2018.

582

583 Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
 584 by dynamic sparse reparameterization. In *International Conference on Machine Learning*, pp.
 585 4646–4655. PMLR, 2019.

586

587 Shreyas Malakarjun Patil and Constantine Dovrolis. Phew: Constructing sparse networks that learn
 588 fast and generalize well without training data. In *International Conference on Machine Learning*,
 589 pp. 8432–8442. PMLR, 2021.

590

591 Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Raste-
 592 gari. What’s hidden in a randomly weighted neural network? In *Proceedings of the IEEE/CVF
 593 conference on computer vision and pattern recognition*, pp. 11893–11902, 2020.

594

595 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 596 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
 597 ImageNet Large Scale Visual Recognition Challenge. *International Journal of Computer Vision
 598 (IJCV)*, 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

599

600 Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
 601 without any data by iteratively conserving synaptic flow. *Advances in neural information pro-
 602 cessing systems*, 33:6377–6389, 2020.

594 Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
 595 preserving gradient flow. *arXiv preprint arXiv:2002.07376*, 2020.
 596

597 Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
 598 Jason Yosinski, and Ali Farhadi. Supermasks in superposition. *Advances in neural information*
 599 *processing systems*, 33:15173–15184, 2020.

600 Boqian Wu, Qiao Xiao, Shunxin Wang, Nicola Strisciuglio, Mykola Pechenizkiy, Maurice van
 601 Keulen, Decebal Constantin Mocanu, and Elena Mocanu. Dynamic sparse training versus dense
 602 training: The unexpected winner in image corruption robustness. In *The Thirteenth Interna-*
 603 *tional Conference on Learning Representations*, 2025. URL [https://openreview.net/](https://openreview.net/forum?id=daUQ7vmGap)
 604 [forum?id=daUQ7vmGap](https://openreview.net/forum?id=daUQ7vmGap).

605 Xin Yuan, Pedro Henrique Pamplona Savarese, and Michael Maire. Growing efficient deep networks
 606 by structured continuous sparsification. In *International Conference on Learning Representations*,
 607 2021. URL [https://openreview.net/](https://openreview.net/forum?id=wb3wxCObbRT)[forum?id=wb3wxCObbRT](https://openreview.net/forum?id=wb3wxCObbRT).

608 Yihua Zhang, Yuguang Yao, Parikshit Ram, Pu Zhao, Tianlong Chen, Mingyi Hong, Yanzhi Wang,
 609 and Sijia Liu. Advancing model pruning via bi-level optimization. *Advances in Neural Infor-*
 610 *mation Processing Systems*, 35:18309–18326, 2022.

611 Qinjin Zhou, Kekai Sheng, Xiawu Zheng, Ke Li, Xing Sun, Yonghong Tian, Jie Chen, and Ron-
 612 grong Ji. Training-free transformer architecture search. In *Proceedings of the IEEE/CVF Confer-*
 613 *ence on Computer Vision and Pattern Recognition*, pp. 10894–10903, 2022.

614 Xiao Zhou, Weizhong Zhang, Zonghao Chen, Shizhe Diao, and Tong Zhang. Efficient neural net-
 615 work training via forward and backward propagation sparsification. *Advances in neural informa-*
 616 *tion processing systems*, 34:15216–15229, 2021.

617 A METHOD DETAILS

618 A.1 MATHEMATICAL DERIVATION OF PWMP SCORE

619 Consider a feed-forward network $f(\cdot, \theta)$ trained by (stochastic) gradient descent. One update step is
 620 given by

$$621 f_{t+1} = f_t - \eta \Theta_t \nabla_f \mathcal{L}, \quad \Theta_t = \nabla_\theta f_t \nabla_\theta f_t^\top, \quad (6)$$

622 with η the learning rate, Θ_t the *Neural Tangent Kernel* (NTK), and \mathcal{L} the empirical loss function.
 623 Directions whose NTK eigenvalues are large lead to faster convergence (Arora et al., 2019). Gebhart
 624 et al. (2021) express the network output at node k as a sum over paths
 625

$$626 f^k(x, \theta) = \sum_s \sum_{p \in \mathcal{P}_{s \rightarrow k}} \pi_p(\theta) a_p(x, \theta) x_s, \quad (7)$$

627 where $\mathcal{P}_{s \rightarrow k}$ is the set of paths from input s to k , $\pi_p(\theta) = \prod_{(i,j) \in p} \theta_{ij}$ is the path's weight product,
 628 and a_p is an activation indicator. Using the chain rule they factor the NTK into a data term and the
 629 *Path Kernel*

$$630 \Pi_\theta = \nabla_\theta \pi(\theta) \nabla_\theta \pi(\theta)^\top \quad (8)$$

631 which depends only on weights and topology. The trace of the path kernel can be computed as

$$632 \text{Tr}(\Pi_\theta) = \sum_p \sum_{(i,j) \in p} \left(\frac{\pi_p(\theta)}{\theta_{ij}} \right)^2, \quad (9)$$

633 Maximizing the path kernel trace accelerates convergence, because it corresponds to the sum
 634 of squared path derivatives, which govern NTK eigenvalues. With a newly added zero-weight-
 635 initialized connection (i, j) , the path kernel trace increases by

$$636 \Delta \text{Tr}(\Pi_\theta)_{(i,j)} = \sum_{p|(i,j) \in p} \left(\prod_{(u,v) \in p'_{(i,j)}} \theta_{uv} \right)^2. \quad (10)$$

648 where $p'_{(i,j)} := p \setminus \{(i,j)\}$. So, adding connections with high $\Delta \text{Tr}(\Pi_\theta)_{(i,j)}$ is expected to speed
 649 up convergence. $\Delta \text{Tr}(\Pi_\theta)_{(i,j)}$ is expensive to compute, as it requires enumerating all paths in the
 650 network. In this study, we propose a L_1 surrogate scoring metric to guide growth.
 651

652
$$S(i,j) = \sum_{p|(i,j) \in p} \prod_{(u,v) \in p'_{(i,j)}} |\theta_{u,v}| \quad (11)$$

 653
 654

655 which we term it the *Path Weight Magnitude Product* (PWMP) score.
 656

657 A.2 PWMPR ALGORITHM PSEUDOCODE

659 Algorithm 1 PWMPR: Growing New Connections via Single-Pass PWMP Scoring

660 **Require:** Sparse network $G_k = (V, E_k)$ with weights θ , growth budget $\Delta\rho(m_k)$, number of layers
 661 L
 662 **Ensure:** Updated network G_{k+1} with $n \cdot \Delta\rho(m_k)$ new edges
 663 1: $n \leftarrow |\theta|$, $M \leftarrow \lfloor n \cdot \Delta\rho(m_k) \rfloor$ ▷ number of edges to add
 664 2: $\tilde{\theta} \leftarrow |\theta|$ ▷ use absolute weights for PWMP computations
 665 3: **Forward pass (complexity).** Feed an all-ones input and propagate through the *sparse* network
 666 using $\tilde{\theta}$ to obtain, at every pre-activation node v , its *complexity* $\phi(v)$, i.e., the sum of absolute
 667 path-weight products from inputs to v .
 668 4: **Backward pass (generality).** Define a scalar readout by summing the final-layer pre-activations
 669 and backpropagate a unit signal through the *sparse* network with $\tilde{\theta}$ to obtain, for each node v ,
 670 its *generality* $\psi(v)$, i.e., the sum of absolute path-weight products from v to outputs.
 671 5: **for** $l = 1$ to L **do**
 672 6: **for** each non-existent edge (i, j) between layer- l input node i and output node j **do**
 673 7: $S(i,j) \leftarrow \phi(i) \cdot \psi(j)$ ▷ PWMP gain estimate for adding (i,j)
 674 8: Normalize scores over all missing edges to probabilities $P(i,j) \propto S(i,j)$.
 675 9: Sample M edges without replacement from the set of missing edges according to $P(i,j)$.
 676 10: Add sampled edges to E_k to obtain E_{k+1} and **initialize all new weights to zero**.
 677 11: **return** $G_{k+1} = (V, E_{k+1})$

680 A.3 ADAPTING PWMPR TO CONVOLUTION AND ATTENTION

681 Thus far, we have introduced PWMP in the context of MLP networks. We extend the concept to
 682 convolutional and attention layers, explaining how to quantify each parameter’s contribution to the
 683 overall PWMP.
 684

685 **Convolutional Layers** In many vision tasks, the input or output of a convolutional layer is shaped
 686 (H, W, C), where H and W are the spatial dimensions and C is the number of channels. For each
 687 output pixel at spatial location (i, j) in the k -th output channel, the convolution is computed as
 688 follows:
 689

$$y_{i,j,k} = \sum_{m=0}^{K_h-1} \sum_{n=0}^{K_w-1} \sum_{c=0}^{C_{in}-1} \theta_{m,n,c,k} \cdot x_{i+m,j+n,c} + b_k \quad (12)$$

690 where K_h and K_w are the kernels’ height and width, and C_{in} and C_{out} are the number of input
 691 and output channels. This equation illustrates how each weight $\theta_{m,n,c,k}$ participates in all paths that
 692 originate at input, pass through $x_{i+m,j+n,c}$, $\theta_{m,n,c,k}$, $y_{i,j,k}$, to the network’s output. Since $\theta_{m,n,c,k}$
 693 is repeatedly used at every spatial location, its PWMP contribution is computed by summing its
 694 involvement across all (i, j) positions.
 695

696 **Attention Layers** Consider an input $X \in \mathbb{R}^{t \times d}$, where t is the number of tokens and d is the
 697 embedding dimension. A self-attention module is formulated as:
 698

699
$$\text{Attention}(Q, K, V) = \text{softmax} \left(\frac{QK^\top}{\sqrt{d_k}} \right) V \quad (13)$$

 700

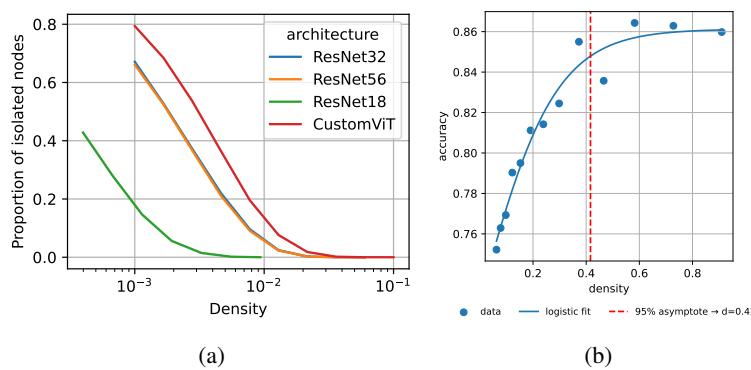


Figure 8: Illustration of the selection of starting point and stopping point of the iterative growth process. (a) Selection of starting density based on isolated nodes. Fraction of isolated nodes at different density levels. We apply PHEW (Patil & Dovrolis, 2021) to initialize sparse networks and report the proportion of nodes (feature maps in CNNs) that lack both incoming and outgoing connections. (b) Identification of stopping density based on performance-density curves from iterative rough training and growth with *CIFAR-10 / ResNet-32* (single seed). Blue dots: empirical performance; blue curve: logistic fit; red vertical line: predicted stopping point (95% of asymptotic value).

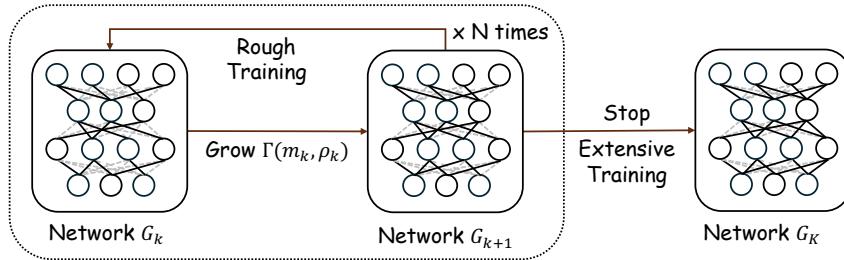


Figure 9: Illustration of the iterative rough training and growth (left to middle), followed by an extensive training at the end (right).

where $Q = X\theta^Q$, $K = X\theta^K$, and $V = X\theta^V$ are the query, key, and value projections of the input, and θ^Q , θ^K , and θ^V are learnable weight matrices.

This module establishes three distinct computational pathways from the input X to the output. The pathway through V behaves similarly to the weighted sum operation in an MLP. Thus, when adding connections to θ^V or other feed-forward layers, one can disregard the attention weights—much like activation functions—and focus on identifying connections that maximize the PWMP through the subsequent cascade of linear layers.

In contrast, the pathways through Q and K involve additional matrix multiplications followed by a softmax operation. The softmax normalizes its input, making the resulting attention scores largely insensitive to the absolute magnitudes of θ^Q and θ^K . As a result, the total PWMP of the network becomes largely decoupled from the magnitudes of these matrices, limiting the proposed algorithm's effectiveness in guiding growth decisions for θ^Q and θ^K .

Previous work in neural architecture search (Zhou et al., 2022) has shown that different topological metrics are predictive of network performance in attention modules and MLPs within ViT. For MLPs, saliency was found to correlate strongly with performance, whereas for multi-head attention modules, a different metric—synaptic diversity (Zhou et al., 2022)—was more effective. To maintain clarity and focus in this study, we keep θ^Q and θ^K fixed and defer integration with attention sparsification techniques—such as Jaradat et al. (2024); Lee et al. (2025); Gandhi & Gandhi (2025)—to future work.

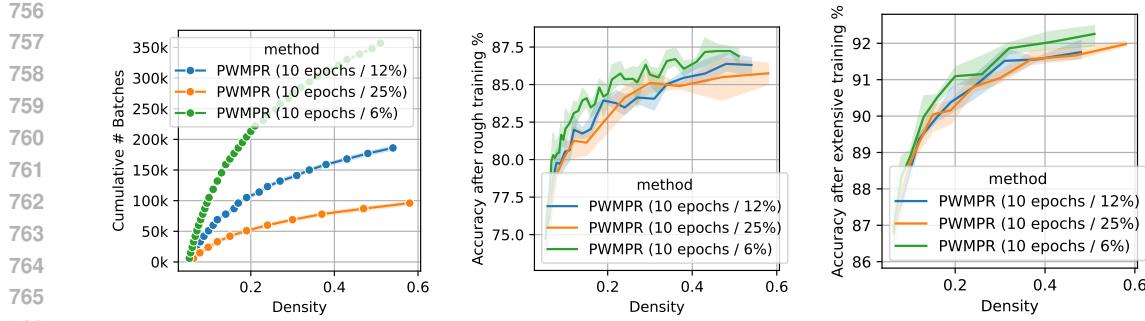


Figure 10: Effect of growth ratio on *CIFAR-10* with *ResNet-32*. We compare three values of γ : 6%, 12%, and 25%. Missing connections with the highest PWMP score are added (PWMPR). (a) Number of batches before each growth decision. (b) Accuracy just before growth. (c) Accuracy after applying the same extensive training to all models.

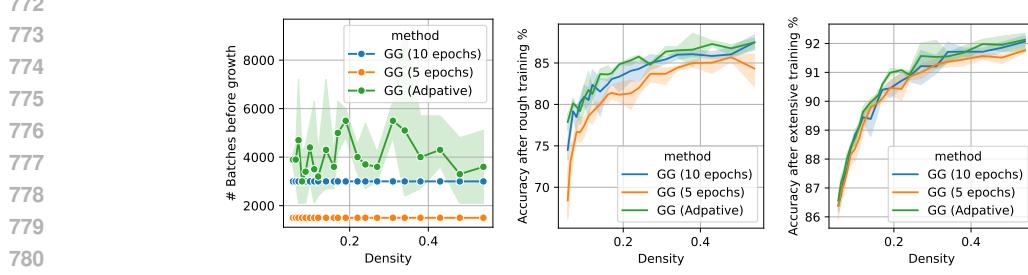


Figure 11: Effect of growth timing on *CIFAR-10* with *ResNet-32*. We compare three schedules: 5 epochs, 10 epochs, and an adaptive early-stopping criterion at each sparsity level. (a) Number of batches before each growth decision. (b) Accuracy after rough training. (c) Accuracy after extensive training.

88 A.4 OTHER METHODOLOGICAL DETAILS

90 **Choosing the Starting Density** A lower initial density ρ_{init} allows a more thorough exploration
 91 of the entire density range. However, a density that is too low lead to the presence of isolated
 92 nodes—i.e., nodes with neither incoming nor outgoing connections. Isolated nodes are problematic,
 93 as they cannot receive gradients or be reconnected during growth. Thus, we select initial densities
 94 ρ_{init} high enough to avoid formation of isolated nodes. In Figure 8a, we show the relationship
 95 between density and isolated node fraction across different network architectures, which allows us
 96 to pick a small ρ_{init} with no isolated nodes. Table 2 lists the selected ρ_{init} values.

98 **Choosing the Growth Ratio** Regarding the choice of growth ratio γ , we performed a sensitivity
 99 analysis using *CIFAR-10 / ResNet-32*, as shown in Figure 10. We experimented with three values of
 100 γ : 6%, 12%, and 25%. With each setting, we applied PWMPR to grow the network iteratively from
 101 an initial density of 0.5% up to 50%. We found that a smaller γ leads to finer growth steps, which
 102 lead to better performance of the network at each growth step, as shown in 10. Nevertheless, smaller
 103 γ also leads to more growth steps, which increases the overall training cost.

106 **Additional Experiment on Gradient-based Growth to Support Early Growth** In addition to
 107 the main experiments on growth timing, we conducted an additional experiment to evaluate the
 108 performance of gradient-based growth (GG) with different growth timings. Under the same experimen-
 109 tational setup, similar observations were made that early growth (e.g., after 10 epochs) can produce
 110 topologies that match the performance of those grown after full convergence, once fully trained.

810	Dataset	Architecture	Weights	ρ_{init}	Iterations/Batch	Optimizers
811	CIFAR-10	ResNet-32	460K	5%	30K / 128	SGD 0.1
812	CIFAR-100	ResNet-56	850K	5%	30K / 128	SGD 0.1
813	TinyImageNet	ResNet-18	11.1M	2%	70K / 128	SGD 0.2
814	TinyImageNet	ViT	2.8M	5%	70K / 256	AdamW 3e-3
815	ImageNet	ResNet-50	25.6M	2%	500K / 256	SGD 0.1
816						

817
 818 Table 2: Datasets and architectures evaluated in this study. Learning hyperparameters for *CIFAR-10/100*
 819 are taken from (Frankle & Carbin, 2018), and for TinyImageNet from (Gani et al., 2022;
 820 Patil & Dovrolis, 2021). For *ResNet* experiments, the learning rate is decayed by a factor of 10 at
 821 20K and 25K training iterations. For *ViT* experiments, the learning rate follows a linear warmup
 822 schedule until 70K iterations, followed by cosine annealing.
 823
 824

825 B EXPERIMENT DETAILS

826
 827 **Evaluation Metrics** For the performance metric, given a network G we evaluate its performance
 828 $P(G)$ using classification accuracy. To estimate the cumulative training cost C_{total} , we compute the
 829 number of floating-point operations (FLOPs) incurred during the iterative processes. This estimate
 830 accounts for all multiplications and additions performed during inference, adjusted for the network’s
 831 sparsity. We exclude the cost of non-linear operations such as activation functions and softmax, as
 832 they contribute only a small fraction to the overall computational cost.
 833
 834

835 **Training Hyperparameters** All networks are trained from scratch in a supervised manner. The
 836 learning hyperparameters used for each architecture-dataset pair are summarized in Figure 2. Fol-
 837 lowing the protocol in (Frankle & Carbin, 2018), we reserve 10% of the training data for validation
 838 and train the networks on the remaining 90%. For the *ViT*, we apply the same data augmentation
 839 strategies as in (Lee et al., 2021) to improve training stability and performance on smaller datasets.
 840
 841

842 **Baseline Methods Details** Iterative magnitude pruning (IMP) alternates between training the net-
 843 work and pruning a fraction of its weights. Specifically, in each pruning cycle, the network is trained
 844 and then pruned by removing p_{imp} of the lowest-magnitude weights. In the original lottery ticket hy-
 845 pothesis setup (Frankle & Carbin, 2018), the surviving weights are reset to their initial values while
 846 retaining the pruning mask. This procedure is designed to identify “lottery tickets”—subnetworks
 847 that, when trained from their original initialization, can match the performance of the full dense net-
 848 work. However, since our goal is to find sparse networks that achieve high performance regardless
 849 of initialization, we include a variant of IMP that does not reset weights after pruning. We refer to
 850 this variant as *IMP-C* (Iterative Magnitude Pruning with Continued training), which is also known
 851 as *Gradual Magnitude Pruning (GMP)* in prior work (Lee et al., 2024).
 852
 853

854 Gradient-based growth (GG) and random growth (RG) are implemented as described in (Evci et al.,
 855 2020) and (Mocanu et al., 2018), respectively. For computation of gradients in GG, we regard all
 856 missing connections as connections with a weight of zero, and perform forward and backward passes
 857 with one batch of training data.
 858

859 RigL (Evci et al., 2020) is a dynamic sparse training method that alternates magnitude-based pruning
 860 with gradient-guided growth. We follow the original setup, performing updates every 100 iterations
 861 with a 20% growth ratio, and using the same ERK initialization, update schedule, and drop/grow
 862 criteria.
 863

864 PHEW (Patil & Dovrolis, 2021) prunes at initialization by constructing high-weight paths via biased
 865 random walks. Starting from a randomly initialized dense network, it samples paths in both forward
 866 and backward directions and retains the traversed connections, removing all others. While originally
 867 designed for feed-forward networks, we adapt PHEW to *ViT* by applying it to the feed-forward
 868 blocks and to the value and projection matrices in the attention modules.
 869

864 **C DISCLOSURE OF USAGE OF LLM**
865

866 In the preparation of this manuscript, we use GPT-5 to help polish the writing of the paper based on
867 our original draft. In addition, we use GPT-5 to enrich our discovery of the related works, on top of
868 our own knowledge and literature search. We have verified the correctness of all the content in the
869 paper.

870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917