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Abstract

Task-oriented Dialogue (ToD) agents are001
mostly limited to a few widely-spoken lan-002
guages, mainly due to the high cost of acquir-003
ing training data for each language. Existing004
low-cost approaches that rely on cross-lingual005
embeddings or naive machine translation sac-006
rifice a lot of accuracy for data efficiency, and007
largely fail in creating a usable dialogue agent.008
We propose automatic methods that use ToD009
training data in a source language to build a010
high-quality functioning dialogue agent in an-011
other target language that has no training data012
(i.e. zero-shot) or a small training set (i.e. few-013
shot). Unlike most prior work in cross-lingual014
ToD that only focus on Dialogue State Track-015
ing (DST), we build an end-to-end agent.016

We show that our approach closes the accu-017
racy gap between few-shot and existing full-018
shot methods for ToD agents. We achieve019
this by (1) improving the dialogue data repre-020
sentation, (2) improving entity-aware machine021
translation, and (3) automatic filtering of noisy022
translations.023

We evaluate our approach on the recent bilin-024
gual dialogue dataset BiToD. In Chinese to025
English transfer, in the zero-shot setting, our026
method achieves 46.7% and 22.0% in Task027
Success Rate (TSR) and Dialogue Success028
Rate (DSR) respectively. In the few-shot set-029
ting where 10% of the data in the target lan-030
guage is used, we improve the state-of-the-art031
by 15.2% and 14.0%, coming within 5% of032
full-shot training.1033

1 Introduction034

While dialogue agents in various forms have be-035

come commonplace in parts of the world, their036

lack of support for most human languages has pre-037

vented access to the benefits they provide for much038

of the world. Commercial virtual assistants for039

example, only support a handful of languages, as040

1We will release our code and data upon publication.

extending their functionality to each new language 041

is extremely costly, partially due to the need for 042

collecting new annotated training data in that lan- 043

guage. 044

In recent years, several non-English task- 045

oriented dialogue (ToD) datasets have been created; 046

they are either collected from scratch (Quan et al., 047

2020; Zhu et al., 2020), paraphrased from synthetic 048

sentences by crowdworkers (Lin et al., 2021), or 049

manually translated from another language (Li 050

et al., 2021b). All of these approaches are labor- 051

intensive, expensive, and time-consuming; such 052

investment is unlikely to be made for less widely 053

spoken languages. 054

Cross-lingual transfer, i.e. using training data 055

from other languages to build a dialogue agent for a 056

specific language, seems especially appealing. An 057

emerging line of work has employed machine trans- 058

lation of training data, and multilingual pre-trained 059

neural networks to tackle this task (Sherborne et al., 060

2020; Li et al., 2021a; Moradshahi et al., 2021). 061

However, work in ToD cross-lingual transfer has 062

for the most part, focused on understanding the user 063

input, namely Dialogue State Tracking (DST) and 064

Natural Language Understanding (NLU). Other 065

necessary parts of a dialogue agent like policy and 066

response generation have mostly remained unex- 067

plored. 068

In this paper, we present a methodology for 069

building a fully functional dialogue agent for a 070

new language (e.g. English), by using training data 071

in another language (e.g. Chinese) with little to no 072

additional manual dataset creation effort. We found 073

that despite prior efforts to improve modeling for 074

existing ToD datasets, the dialogue representation 075

used as input to these models, e.g. full dialogue 076

history in natural language (Hosseini-Asl et al., 077

2020), is sub-optimal, especially when the training 078

data is either scarce or created automatically us- 079

ing noisy machine translation. We propose a new 080

Distilled representation to fix the shortcomings of 081
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current representations. We also found that previ-082

ously proposed entity-aware translation technique083

Moradshahi et al. (2021) to be inadequate. Our pro-084

posed technique effectively combines entity-aware085

neural machine translation with text similarity clas-086

sifiers to automatically create high-quality training087

data for a new language. This paper explains all the088

ingredients we found useful, and motivates their089

use by performing extensive ablation studies.090

The contributions of this paper are:091

1. A new state-of-the-art result for the BiToD092

dataset in both few-shot and full-shot settings093

according to all of our 6 automatic metrics, in-094

cluding an improvement of 14.0% and 2.9%095

respectively in Dialogue Success Rate (DSR).096

In fact, using our Distilled representation, our097

few-shot model trained on only 10% of the train-098

ing data, achieves similar results to the previous099

SOTA model trained on 100% training data.100

2. The first dialogue agent created in the zero-shot101

cross-lingual transfer setting, i.e. starting from102

no training data in the target language. Our103

agent achieves 71%, 62%, 40%, and 47% of104

the performance of a full-shot agent in terms of105

Joint Goal Accuracy (JGA), Task Success Rate106

(TSR), DSR, and BLEU score, respectively.107

3. A concise dialogue representation designed108

for cross-lingual ToD agents. The Distilled109

dialogue representation works well with our110

new decomposition of agent’s subtasks, mak-111

ing these significant improvements possible.112

4. An improved methodology for high-quality au-113

tomatic translation of ToD training data. We114

adapt and improve an existing entity-aware ma-115

chine translation system that localizes entities116

(Moradshahi et al., 2021), extend it to agent re-117

sponse generation, and equip it with a filtering118

step that increases the quality of the resulting119

translations.120

2 Related Work121

2.1 Multilingual Dialogue Datasets122

MultiWOZ (Budzianowski et al., 2018; Ramadan123

et al., 2018; Eric et al., 2019) and CrossWOZ (Zhu124

et al., 2020) are two monolingual Wizard-Of-Oz125

dialogue datasets that cover several domains, suit-126

able for building travel dialogue agents in En-127

glish and Chinese respectively. For the 9th Dia-128

log System Technology Challenge (DSTC-9) (Gu-129

nasekara et al., 2020), they were translated to Chi-130

nese and English using Google Translate. Glob-131

alWOZ (Ding et al., 2021) is another translation 132

of MultiWOZ to Spanish, Chinese and Indone- 133

sian, with human translators post-editing machine 134

translated dialogue templates, and filling them with 135

newly collected local entities. 136

Different from these translation approaches, Lin 137

et al. (2021) introduced BiToD, the first bilingual 138

dataset for end-to-end ToD modeling. BiToD uses 139

a dialogue simulator to generate dialogues in 5 140

tourism domains in English and Chinese, then uses 141

crowdsourcing to paraphrase entire dialogues to be 142

more natural. Unlike WOZ-style datasets which 143

usually suffer from poor annotation quality due to 144

human errors (Moradshahi et al., 2021), BiToD is 145

automatically annotated during synthesis. Since 146

neither manual nor machine translation is used in 147

the creation of BiToD, it does not contain transla- 148

tionese (Eetemadi and Toutanova, 2014) or other 149

artifacts of translated text (Clark et al., 2020), and 150

provides a realistic testbed for cross-lingual trans- 151

fer of task-oriented dialogue agents. 152

2.2 Multilingual Dialogue State Tracking 153

Mrkšić et al. (2017) proposed using cross-lingual 154

word embeddings for zero-shot cross-lingual trans- 155

fer of DST models. With the advent of large lan- 156

guage models, contextual embeddings obtained 157

from pre-trained multilingual language models (De- 158

vlin et al., 2018; Xue et al., 2021; Liu et al., 2020) 159

have been used to enable cross-lingual transfer in 160

many natural language tasks, including DST. 161

Chen et al. (2018) used knowledge distilla- 162

tion (Hinton et al., 2015) to transfer DST capa- 163

bilities from a teacher DST model in the source 164

language to a student model in the target language. 165

Schuster et al. (2019) used contextual cross- 166

lingual representations obtained from machine 167

translation models and reported that it performs bet- 168

ter than training with machine translated training 169

data for single-turn commands. Moradshahi et al. 170

(2021) proposed an entity-aware machine transla- 171

tion method to improve the quality of translated 172

DST data. 173

3 Distilled ToD Agent 174

Our methodology includes a dialogue task decom- 175

position and a Distilled dialogue representation that 176

are tailored to cross-lingual ToD agents. In this sec- 177

tion we describe these two components. 178

We follow the end-to-end task-oriented dialogue 179

(ToD) setting (Hosseini-Asl et al., 2020) where a 180
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API Call Detection (ACD)

Dialogue State Tracking (DST) 

(hotels search) price_level = "cheap"

(hotels search) 
rating  = "don’t 
care", stars >="5"

(hotels search) available_options "4"  , 
name "Royal Plaza Hotel" , rating "9" , 
stars "5"

(hotels search) offer available_options = "4" , 
offer name = "Royal Plaza Hotel" , offer rating =  "9"

Response Generation (RG)

Dialogue Act Generation (DAG) 

“Okay. I found 4 hotels. 
I recommend the Royal Plaza 
Hotel, which has a 9 rating.”

“I’m looking for a 
cheap hotel.”

(hotels search) request rating 
(hotels search) request price_level

(hotels search) 
NoResult

Figure 1: Inference-time flow diagram for our dialogue
agent. DST, API, DA, and RG share the same neural
model. ⊗ indicates text concatenation. ⊕ refers to the
update rule in Equation 1.

user converses freely with an agent over several181

turns to accomplish his/her goal with all of its con-182

straints (e.g. “book a restaurant that is rated at183

least 3.”). In each turn, the agent must access its184

database if needed to find the requested information185

(e.g. find a restaurant that satisfies user constraints),186

decide on an action (e.g. to present the information187

to the user or to ask for additional information)188

and finally respond to the user in natural language189

based on the action it selects.190

3.1 Preliminaries191

Formally, a dialogue D = {U1, A1, ..., UT , AT }192

is a set of alternating user utterances Ut and agent193

responses At for a number of turns T .194

A belief state at turn t, Bt, consists of195

a list of 〈domain, intent〉 tuples and a set of196

〈slot, relation, value〉 tuples. Intent is the user in-197

tent, either search or book. Relation is a compar-198

ison or membership operator. Value can be one199

or more entity names or strings from the ontology,200

or a literal. To see all possible domains, slots and201

values please refer to Table 4 in Lin et al. (2021).202

Levenshtein belief state (Lin et al., 2020) is203

the difference between belief states in consecutive204

turns, i.e. ∆Bt = Bt −Bt−1. It captures only the205

relations and values that have changed in the last206

user utterance, or tuples that have been added or 207

removed. 208

Agent dialogue acts at turn t, Ct, are a 209

list of 〈domain, intent〉 tuples and a set of 210

〈dialogue_act_name, slot, value〉 tuples indicating 211

the action the agent takes and the information of- 212

fered to the user, if any. 213

3.2 Task Decomposition 214

The task of dialogue agents is usually broken down 215

to several subtasks, which may be performed by a 216

pipelined system (Gao et al., 2018) or by a single 217

neural network (Hosseini-Asl et al., 2020; Lei et al., 218

2018). Here we describe our subtasks and their 219

inputs and outputs (Figure 1). 220

After the user speaks at turn t, the agent has 221

access to the belief state up to the previous 222

turn (Bt−1), the history of agent dialogue acts 223

(C1, ..., Ct−1), and the history of agent and user 224

utterances so far (A1, ..., At−1 and U1, ..., Ut). Our 225

agent performs the following four subtasks: 226

1. Dialogue State Tracking (DST): Generate ∆Bt, 227

the Levenshtein belief state, for the current turn 228

based on the previous belief state, the last two 229

agent dialogue acts, and the current user utter- 230

ance. ∆Bt is combined with Bt−1 to produce 231

the current belief state. 232

∆Bt = DST(Bt−1, Ct−2, Ct−1, Ut)

Bt ← Bt−1 + ∆Bt
(1) 233

2342. API Call Detection(ACD): Call an API to query 235

the database, if needed. 236

qt = ACD(Bt, Ct−2, Ct−1, Ut, Rt−1) (2) 237

238
Rt ← qt? KB(Bt) : ∅ (3) 239

240In turn t, ACD determines if an API call is nec- 241

essary. If so, the result Rt is the top entity in the 242

knowledge base KB, based on some determinis- 243

tic ranking, that matches the API call constraints 244

in Bt, and is empty otherwise. If no entities 245

match the constraint, we set Rt to the special 246

value NORESULT. 247

3. Dialogue Act Generation (DAG): Generate Ct, 248

the agent dialogue act for the current turn based 249

on the current belief state, the last two agent 250

dialogue acts, the user utterance, and the result 251

from the API call. 252

Ct = DAG(Bt, Ct−2, Ct−1, Ut, Rt) (4) 253

2544. Response Generation (RG): Convert the agent 255

dialogue act Ct to the new agent utterance At. 256
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Note that Ct contains all the necessary informa-257

tion for this subtask. However, providing Ut258

improves response fluency and choice of words,259

translating to a higher BLEU score, partly due260

to mirroring (Kale and Rastogi, 2020).261

At = RG(Ut, Ct) (5)262

263
3.3 The Distilled Dialogue Representation264

The design of Distilled is based on the following265

principles:266

1. For cross-lingual agents, it is important to re-267

duce the impact of translation errors. The rep-268

resentation should make minimal use of natural269

language, and use formal representation where270

possible.271

2. Dialogues can get long, but the representation272

should be succinct, containing only the neces-273

sary information, so the neural network need not274

learn to ignore unnecessary information from275

copious data. This improves data efficiency as276

well as training/ inference speed of neural mod-277

els.278

We note that BiToD’s original representa-279

tion (Lin et al., 2021) follows neither of these prin-280

ciples 2. It makes extended use of natural language:281

all previous user and agent natural language utter-282

ances are included in the input of all subtasks. It has283

many redundancies: for each subtask, it inputs the284

concatenation of all previous subtask’s inputs and285

outputs. In the following, we highlight the changes286

we made to the (Lin et al., 2021) representation.287

Replace agent utterances with formal agent di-288

alogue acts. Since agent responses are automat-289

ically generated, it is possible to capture all infor-290

mation useful to the different subtasks with formal291

agent dialogue acts. This way, the neural network292

needs not to interpret previous natural language293

utterances.294

We take two steps to generate the agent re-295

sponses: DA (Dialogue Act) first produces the for-296

mal act, Ct, which is then fed into RG to generate297

the natural language response At. RG is not part of298

the dialogue loop, in the sense that At only serves299

to communicate to the user; the Ct from DA is used300

as input to all the subtasks instead. In contrast, Lin301

et al. (2021) generates the agent response directly302

from API results. Hosseini-Asl et al. (2020) also303

2We found this to be true for several previously-proposed
popular representations of MultiWOZ as well (Lei et al., 2018;
Chen et al., 2019).

separates response generation into two steps, but 304

they use At instead of Ct as input for the next turn. 305

Note that the agent dialogue acts are language- 306

independent - this is beneficial to cross-lingual 307

agents as it can learn easier from data available 308

in other languages. Furthermore, DA can be vali- 309

dated on whether the output dialogue acts match 310

the gold answers exactly. This is not possible with 311

natural language results, whose quality is typically 312

estimated with BLEU score. 313

Shorten user utterance history. Since the be- 314

lief state formally summarizes what the user 315

has said, we remove previous user utterances 316

U1, ..., Ut−1 from input to all subtasks, relying on 317

belief state Bt−1 instead. 318

Untangle API Call Detection from Response 319

Generation. After DST is done, depending on 320

whether or not an API call is needed. Lin et al. 321

(2021) either directly generates the agent response, 322

or makes the API call and then generates the re- 323

sponse in two steps. Our design is to always take 324

two steps: (1) generate the API call or indicate that 325

there is none, and (2) generate the agent response. 326

4 Automatic Dialogue Data Translation 327

Given a training dataset for one language, we au- 328

tomatically generate a training set in the target lan- 329

guage we are interested in. This problem has been 330

studied in the context of NLU for questions (Morad- 331

shahi et al., 2020) and for dialogues (Moradshahi 332

et al., 2021). One challenge is that the translated 333

dataset should refer to entities in the target lan- 334

guage. Thus, Moradshahi et al. (2020) proposed 335

to first use cross-attention weights of the neural 336

translation model to align entities in the original 337

and translated sentences, then replace entities in 338

the translated sentences with local entities from a 339

target language knowledge base. Our initial experi- 340

ments showed that applying this approach directly 341

to end-to-end dialogue datesets does not yield good 342

performance. Thus, we adapted and improved this 343

approach for dialogues as discussed in the follow- 344

ing sections. 345

4.1 Alignment for Dialogues 346

First, we found that while translation with align- 347

ment works for NLU, it does not work well for 348

RG. Machine translation introduces two kinds of 349

error: (1) Translated sentences can be ungrammat- 350

ical, incorrect, or introduce spurious information. 351
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(2) The alignment for entities may be erroneous,352

which can seriously hurt the factual correctness353

of the responses. As shown in Moradshahi et al.354

(2021), these errors are tolerable in NLU since (1)355

sentences are seen by machines, not shown to users,356

(2) pre-trained models like mBART are somewhat357

robust to noisy inputs, since they are pre-trained358

on perturbed data. However, training with such359

low-quality data is not acceptable for RG, since the360

learned responses are shown directly to the user.361

Second, we found alignment recall to be par-362

ticularly low for an important category: entities363

that are mostly quantitative. Dates, times, and364

prices can be easily mapped between different lan-365

guages using rules. We propose to first try to trans-366

late such entities with dictionaries such as those367

available in dateparser (Scrapinghub, 2015) and368

num2words (faire Linux, 2017) and to match them369

in the translated text. Only if no such match is370

found, do we resort to using neural alignment.371

4.2 Filtering Translation Noise for RG372

To reduce translation noise for RG, we automati-373

cally filter the translated data based on the semantic374

textual similarity between the source and translated375

sentences. For this purpose, we use LaBSE (Feng376

et al., 2020), a multilingual neural sentence encoder377

based on multilingual BERT (Devlin et al., 2018),378

trained on translation pairs in various languages379

with a loss function that encourages encoding pairs380

to similar vectors. To score a pair of sentences,381

the model first calculates an embedding for each382

sentence and computes the cosine distance between383

those vectors. The lower the distance is, the more384

semantically similar the sentences are according to385

the model.386

In creating the RG training set, we first translate387

the source agent utterances to the target language388

and use LaBSE to remove pairs whose similarity389

score is below a threshold. We found a threshold390

of 0.8 to work best empirically. Higher thresholds391

would inadvertently filter correctly translated ut-392

terances. We construct the final training data by393

pairing aligned translated utterances that pass the394

filter with their corresponding translated agent dia-395

logue acts.396

5 Experiment Setting397

5.1 Base Dataset398

We perform our experiments on BiToD, a large-399

scale high-quality bilingual dataset created using400

the Machine-to-Machine (M2M) approach. It is a 401

multi-domain dataset, including restaurants, hotels, 402

attractions, metro, and weather domains. It has a 403

total of 7,232 dialogues (3,689 dialogues in English 404

and 3,543 dialogues in Chinese) with 144,798 utter- 405

ances in total. The data is split into 5,787 dialogues 406

for training, 542 for validation, and 902 for testing. 407

The training data is from the same distribution as 408

validation and test data. 409

5.2 Evaluation Metrics 410

We use the following metrics to compare different 411

models. Scores are averaged over all turns unless 412

specified otherwise. 413

• Joint Goal Accuracy (JGA) (Budzianowski 414

et al., 2018): Is the standard metric for evalu- 415

ating DST. JGA for a dialogue turn is 1 if all 416

slot-relation-value triplets in the generated belief 417

state match the gold annotation, and is 0 other- 418

wise. 419

• Task Success Rate (TSR) (Lin et al., 2021): A 420

task, defined as a pair of domain and intent, is 421

completed successfully if the agent correctly pro- 422

vides all the user-requested information and sat- 423

isfies the user’s initial goal for that task. TSR is 424

reported as an average over all tasks. 425

• Dialogue Success Rate (DSR) (Lin et al., 2021): 426

DSR is 1 for a dialogue if all user requests are 427

completed successfully, and 0 otherwise. DSR is 428

reported as an average over all dialogues. We use 429

this as the main metric to compare models, since 430

the agent needs to complete all dialogue subtasks 431

correctly to obtain a full score on DSR. 432

• API (Lin et al., 2021): For a dialogue turn, is 1 433

if the model correctly predicts to make an API 434

call, and all the constraints provided for the call 435

match the gold. It is 0 otherwise. 436

• BLEU (Papineni et al., 2002): Measures the nat- 437

ural language response fluency based on n-gram 438

matching with the human-written gold response. 439

BLUE is calculated at the corpus level. 440

• Slot Error Rate (SER) (Wen et al., 2015): It 441

complements BLEU as it measures the factual 442

correctness of natural language responses. For 443

each turn, it is 1 if the response contains all enti- 444

ties present in the gold response, and is 0 other- 445

wise. 446

6 Results and Discussion 447

We first show how our Distilled representation af- 448

fects the performance of an agent in a full-shot 449
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Representation JGA ↑ TSR ↑ DSR ↑ API ↑ BLEU ↑ SER ↓
Original (Lin et al., 2021) 69.19 69.13 47.51 67.92 38.48 14.93
Distilled (ours) 76.79 75.64 53.39 76.33 42.54 10.61
• Generate full state 74.30 74.19 50.90 73.93 41.90 11.38
• Natural agent response 75.62 73.41 49.10 73.93 40.94 11.90
• Only last agent turn 73.97 74.19 52.71 74.27 41.83 11.81
• Prev. user utterance as state 71.75 61.66 33.94 67.67 39.72 15.97
• Remove state 70.84 51.89 24.43 66.47 37.10 19.61

Table 1: Full-shot English monolingual training with ablation. All results are reported on the English test set of
BiToD using the same evaluation script. The best result is in bold.

setting. We then evaluate our proposed techniques450

on cross-lingual settings with varying amounts of451

available training data.452

6.1 Evaluation of Distilled Representation453

To understand how our design of Distilled represen-454

tation affects the performance of ToD agents in gen-455

eral, we train an English agent using all the English456

training data and perform an ablation study (Table457

1). We observe that even though the Distilled repre-458

sentation removes a lot of natural language inputs,459

it improves the best previous English-only results460

on JGA, TSR, DSR, API, BLEU and SER by 7.6%,461

6.5%, 5.9%, 8.4%, 4.1%, and 4.7% respectively.462

This suggests that natural language utterances carry463

a lot of redundant information, and the verbosity464

may even hurt the performance. Note that the im-465

provement in BLEU is also accompanied by an466

improvement of factuality measured by SER.467

Furthermore, using the Distilled representation468

reduces training time by a factor of 3. See Sec-469

tion A.1 for more details.470

Generate full state. Our first ablation study con-471

firms that the proposal by Lin et al. (2020) to472

predict ∆Bt is indeed better than Bt. Note that the473

training time per gradient step is more than twice474

as long in this ablation since the outputs are longer.475

Natural agent response. Here we use natural476

language agent responses as input instead of477

agent dialogue acts, replacing Ct−1, Ct−2 with478

At−1, At−2. The drop in TSR and DSR shows479

this is an important design choice - distilling natu-480

ral language into a concise formal representation481

improves model ability to understand the important482

information in the sentence.483

Only last agent turn. When we remove Ct−2484

from the input and only use Ct−1, we observe a485

drop across all metrics. This is because some turns486

in BiToD refer to the agent’s states from two turns487

ago. We experimented with carrying three turns,488

but there was no improvement.489

Previous user utterance as state. To investigate 490

how much information the previous user utterance 491

Ut−1 contains, we use it instead of Bt in subtask 492

inputs. Compared to all previous ablations, accu- 493

racy drastically decreases across all metrics, espe- 494

cially JGA. This is expected since dialogues con- 495

tain long-range dependencies and some entities are 496

referenced from earlier turns. This shows that the 497

dataset is highly contextual and therefore a sum- 498

mary of conversation history is necessary. 499

Remove state. We remove Bt without adding 500

back the previous user utterance Ut−1. Compared 501

to the previous ablation, TSR and DSR drop by 502

10.5% and 5.2% respectively. This difference 503

shows Ut−1 does contain part of the information 504

captured in Bt. 505

6.2 Evaluation of Cross-Lingual Transfer 506

The goal of this experiment is to create an agent 507

in a target language, given full training data in a 508

source language (Dsrc), and a varying amount of 509

training data in a target language (Dtgt). We also 510

assume that valuation and test data are available 511

in both source and target languages. We chose 512

Chinese as the source language and English as the 513

target language so we can perform error analysis, 514

and model outputs are understandable for a wider 515

audience. 516

6.2.1 Varying Target Training Data 517

Full-Shot. In the full-shot experiments, all of 518

Dtgt is available for training. We train two models 519

on two data sets: (1) on a shuffled mix of Dsrc and 520

Dtgt. (2) on Dtgt alone. The ablation “-Mixed” in 521

Table 2 refers to the latter. 522

Zero-Shot. In our zero-shot experiments, Dtgt 523

is not available. Instead, we automatically create 524

training data from Dsrc as follows: 525

Canonicalization: We translate domain names, 526

slot names, agent dialogue acts, and API names in 527

Dsrc to the target language to match those in the 528

validation and test data of the experiment. BiToD 529
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Setting JGA ↑ TSR ↑ DSR ↑ API ↑ BLEU ↑ SER ↓
Full-Shot

MinTL(mT5) 72.16 71.18 51.13 71.87 40.71 13.75
- Mixed 69.19 69.13 47.51 67.92 38.48 14.93
MinTL(mBART) 69.37 42.45 17.87 65.35 28.76 –
- Mixed 67.36 56.00 33.71 57.03 35.34 –
Ours 77.52 75.04 54.07 74.44 41.46 11.17
- Mixed 76.79 75.64 53.39 76.33 42.54 10.61

Zero-Shot
Ours 55.33 46.74 21.95 63.04 20.01 20.52
- Filtering 54.83 45.03 19.68 60.81 19.11 20.86
- Alignment 47.21 4.72 1.13 52.74 8.26 39.20
- Translation 14.73 3.52 1.58 6.26 0.69 41.30
- Canonicalization 2.13 1.20 0.00 0.26 0.25 42.39

Few-Shot (1%)
Ours 64.60 57.89 34.16 62.09 28.15 17.94
- Filtering 63.88 57.80 32.35 59.95 28.00 18.57
- Alignment 58.86 51.89 23.76 57.12 26.84 21.56
- Translation 49.58 41.34 19.68 46.05 22.73 24.86
- Canonicalization 44.56 42.97 20.36 46.23 23.08 24.77
- Pre-training 25.08 24.61 11.09 23.67 18.71 32.62

Few-Shot (10%)
MinTL(mT5) 58.85 56.43 34.16 57.54 31.20 –
- Translation 48.77 44.94 24.66 47.60 29.53 19.75
- Pre-training 19.86 6.78 1.36 17.75 10.35 –
MinTL(mBART) 37.50 21.61 10.18 27.44 17.86 –
- Translation 42.84 36.19 16.06 41.51 22.50 –
- Pre-training 4.64 1.11 0.23 0.60 3.17 –
Ours 72.70 71.61 48.19 72.56 36.02 12.71
- Filtering 72.45 69.55 44.57 69.55 34.67 13.62
- Alignment 68.40 63.38 38.24 63.38 32.99 16.63
- Translation 67.13 63.12 41.40 63.64 32.86 16.40
- Canonicalization 64.51 63.64 40.27 62.69 32.71 16.63
- Pre-training 57.18 54.80 28.73 55.66 29.61 19.66

Table 2: All results are reported on the original English test set of BiToD using the same evaluation script. The best
result in each section is in bold. Each “-” removes one additional component from the previous row. All MinTL
results are from Lin et al. (2021). SER numbers are computed only for models that were available.

dataset has a one-to-one mapping for most of those530

parameters; we added the missing items.531

Translation: We use machine translation to con-532

vert the user and agent utterances and slot values in533

Dsrc to create a training set for the target language.534

Alignment: After translating the data, we use535

alignment (Section 4) to localize entities while536

ensuring the entities in translated utterances still537

match the values specified in annotations.538

In Table 2, Ours refer to our main approach,539

which combines all three techniques. Each ablation540

incrementally takes away one of the techniques.541

Note that any performance we get from training on542

a dataset with just using canonicalization is from543

the power of cross-lingual embeddings of mBART544

model.545

Few-Shot. In the few-shot setting, we start with546

our pre-trained zero-shot models (with various ab-547

lations) and further fine-tune it on 1% and 10% of548

Dtgt, which include 29 and 284 dialogues respec-549

tively. Lin et al. (2021) reported the results only550

for the 10% setting. We use their few-shot data551

split in that case to be directly comparable. We 552

add one more ablation study where we eliminate 553

pre-training altogether to measure the pure effect 554

of the Distilled representation. 555

6.2.2 Baseline 556

We compare our results to the best previously re- 557

ported result on BiToD from Lin et al. (2021). This 558

SOTA result was obtained using MinTL (Lin et al., 559

2020) and using a single mT5-small model to per- 560

form all dialogue subtasks. 561

Contrary to what Lin et al. (2021) reported, we 562

found that mBART-large model outperforms mT5- 563

small in all settings. Nevertheless, we have in- 564

cluded all the results including MinTL(mBART) in 565

Table 2 for comparison. 566

6.2.3 Results 567

The results for our cross-lingual experiment are 568

reported in Table 2. Overall, in the full-shot setting, 569

when training on both source and target language 570

data, we improve the SOTA in JGA by 5.3%, TSR 571

by 3.8%, DSR by 2.9%, API by 2.6%, BLEU by 572

7



0.8%, and SER by 2.6%.573

Our zero-shot agent achieves 71%, 62%, 40%,574

and 47% of the performance of a full-shot agent575

in terms of JGA, TSR, DSR, and BLEU score,576

respectively. In the 10% few-shot setting, our ap-577

proach establishes a new SOTA by increasing JGA,578

TSR, DSR, API, BLEU, and SER absolutely by579

13.9%, 9.1%, 3.9%, 2.2%, 0.4%, and 5.1% respec-580

tively. Prominently, training with just 10% of the581

data beats the full-shot baseline which is trained on582

100% of the training data, on all metrics except for583

DSR and BLEU. It also comes within 5% of full584

training using the Distilled representation confirm-585

ing building high-quality conversational systems586

for a new language is possible using translated data587

alongside a few native training samples.588

Our Distilled representation improves the per-589

formance, especially in few-shot. Comparing our590

results with that of Lin et al. (2021), in the full-shot591

monolingual setting (MinTL(mT5) “-Mixed” vs.592

Ours “-Mixed”), models trained on data with our593

representation outperform the baseline on all met-594

rics. In the pure few-shot (10%) setting (comparing595

MinTL(mT5) “-Pre-train” vs Ours “-Pre-train”),596

our model significantly outperforms the baseline597

in all metrics. This suggests that our Distilled rep-598

resentation is much more effective in low-data set-599

tings.600

Canonicalization is useful. Comparing “-601

Translation” with “-Canonicalization”, we see that602

in all settings, training on data with domain names,603

slot names, and dialogue acts are translated to the604

target language significantly improves the results in605

the zero-shot setting. This is intuitive since canoni-606

calization makes training data closer in vocabulary607

to the test data in the target language. This improve-608

ment comes at almost no cost since translation is609

done automatically using a dictionary.610

Automatic translation of the training set works611

in zero-shot. By looking at how much performance612

is lost when we do not use translated data at all613

(going from “- Alignment” to “- Translation”), we614

find out the difference between cross-lingual pre-615

training and translating the train set. The naive616

translation approach completely fails in the zero-617

shot setting by achieving only 4.7% in TSR, and618

1.1% in DSR, as translated entities might no longer619

match with ones in the annotation. However, com-620

pared to “- Canonicalization”, JGA improves by621

32.5% as the entities are in English after translation.622

Adding few-shot data helps significantly as the gap623

closes between “- Alignment” and “- Translation” 624

ablations. 625

Alignment improves translation quality in all 626

settings and metrics. With alignment, the transla- 627

tion approach performs much better in all settings, 628

establishing a new state-of-the-art in zero and few- 629

shot settings according to almost all metrics. As a 630

general trend, the lower data settings benefit more 631

from alignment. In fact, the combination of transla- 632

tion and alignment performs so well that our zero- 633

shot with translated data is better than 1% pure 634

few-shot (without pre-training) on all metrics. We 635

additionally performed an experiment using the 636

alignment proposed by (Moradshahi et al., 2021). 637

There is a 4.0% drop in TSR and 4.5% in DSR, 638

confirming the benefit of our improved alignment. 639

Filtering noise for RG improves fluency. We 640

perform an ablation by training separate models on 641

filtered and unfiltered translated agent utterances. 642

The filtering process is descried in section 4.2. In 643

10% fewshot setting, both BLEU and SER improve 644

by 1.4% confirming that automatically removing 645

poor translations from training data improves the 646

agent response quality. 647

7 Conclusion 648

In this work, we show how, given a dialogue dataset 649

in one language, we can build a fully functioning 650

dialogue agent in a new language automatically 651

using entity-aware machine translation and our new 652

Distilled dialogue representation. 653

The performance can be further improved if a 654

few training examples in the target language are 655

available, and we show that our approach outper- 656

forms existing ones in this setting as well. Our 657

method achieves 4.5% and 2.9% improvement in 658

TSR and DSR respectively over the previous SOTA 659

in the full-shot setting, and 15.2% and 14.0% in 660

a few-shot setting, showing the effectiveness of a 661

concise data representation in low-resource cross- 662

lingual settings. More importantly, training on 663

translated data and only 10% of original training 664

data comes within 5% of full training, showing 665

building high quality fully functional conversation 666

systems is possible via translation. 667

We have implemented our methodology as a 668

toolkit for developing multilingual dialogue agents, 669

which will be released open-source upon publica- 670

tion. Our proposed methodology can significantly 671

reduce the cost and time associated with data ac- 672

quisition for task-oriented dialogue agents. 673
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8 Ethical Considerations674

We do not foresee any harmful or malicious mis-675

uses of the technology developed in this work. The676

data used to train models is about seeking infor-677

mation about domains like restaurants, hotels and678

tourist attractions, does not contain any offensive679

content, and is not unfair or biased against any680

demographic. This work does focus on two widely-681

spoken languages, English and Chinese, but we682

think the cross-lingual approach we proposed can683

improve future dialogue language technologies for684

a wider range of languages.685

We fine-tune multiple medium-sized (several686

hundred million parameters) neural networks for687

our experiments. We took several measures to688

avoid wasted computation, like performing one689

run instead of averaging multiple runs (since the690

numerical difference between different models is691

large enough), and improving batching and repre-692

sentation that improved training speed, and reduced693

needed GPU time. Please refer to Appendix A.1694

for more details about the amount of computation695

used in this paper.696
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A Appendix926

A.1 Implementation details927

Our code is implemented in PyTorch (Paszke et al.,928

2019) using GenieNLP (Campagna et al., 2019)929

library for training and evaluation metrics. We ad-930

ditionally use BiToD’s code 3 for part of data pre-931

processing and evaluation. We use pre-trained mod-932

els available through HuggingFace’s Transformers933

library (Wolf et al., 2019). The following model934

names are from that library. We use mbart-large-50935

as the neural model for our agent in all our experi-936

ments. All models use a standard Seq2Seq architec-937

ture with a bidirectial encoder and left-to-right au-938

toregressive decoder. mBART is pre-trained to de-939

noise text in 50 languages, while mT5 is trained on940

101 languages. mBART uses sentence-piece (Kudo941

and Richardson, 2018) for tokenization.942

In each setting, all four subtasks of DST, API943

detection, dialogue act generation, and response944

generation are done in a single model, where we945

specify the task by prepending a special token to the946

input. We found mBART to be especially effective947

in zero-shot settings as the language of its outputs948

can be controlled by providing a language-specific949

token at the beginning of decoding. Additionally,950

its denoising pre-training objective improves its951

robustness to the remaining translation noise.952

For translation, we use the publicly available953

mbart-large-50-many-to-one-mmt (~611M param-954

eters) model which can directly translate text from955

any of the 50 supported languages to English. It956

is an mBART model additionally fine-tuned to do957

translation.958

We use greedy decoding and train our models959

using teacher-forcing and token-level cross-entropy960

loss. We used Adam (Kingma and Ba, 2014) as our961

optimizer with a start learning rate of 2× 10−5 and962

linear scheduling. These hyperparameters were963

chosen based on a very limited hyperparameter964

search on the validation set. For the numbers re-965

ported in the paper, due to cost, we performed only966

a single run for each experiment.967

Our models were trained on virtual machines968

with a single NVIDIA V100 (16GB memory) GPU969

on the AWS platform. For a fair comparison, all970

monolingual models were trained for the same num-971

ber of iterations of 60K, and bilingual models for972

120K. In the few-shot setting, we fine-tuned the973

model for 3K steps on 1% of the data and 6K steps974

3https://github.com/HLTCHKUST/BiToD

on 10% of the data. Sentences are batched based 975

on their input and approximate output token count 976

for better GPU utilization. We set the total number 977

of tokens per batch to 800 for mBART. Due to the 978

verbosity and redundancy of the original BiToD 979

representation, they used a batch size of 1 example 980

for training mbart-large. Using our Distilled rep- 981

resentation, however, we can fit up to 6 examples 982

in each batch, and still process each larger batch 983

3 times faster during training. Training and eval- 984

uating each model takes about 10 GPU-hours on 985

average. 986

During error analysis, we noticed that although 987

certain slots (max_temp and min_temp slots in 988

Metro domain, and time and price_range slots in 989

Weather domain) are present in the retrieved knowl- 990

edge base values, the model does not learn to output 991

them in the agent dialogue act generation subtask. 992

To mitigate this, during evaluation, we automati- 993

cally check if these slots are present in the input and 994

append them to the generated agent dialogue acts. 995

Additionally, we found that in dialogues that con- 996

tain the Metro domain, it helps to accumulate API 997

results from the previous turn to make the correct 998

prediction. Thus, in the data prepossessing step, 999

we do keep the API result history for the metro 1000

domain. 1001

At inference time, we use the predicted belief 1002

state as input to subsequent turns instead of ground 1003

truth. However, to avoid the conversation from di- 1004

verging from its original direction, we use ground- 1005

truth agent acts as input for the next turn. Similarly, 1006

Lin et al. (2021) use ground-truth natural language 1007

agent response as input for the next turn. We made 1008

sure the settings are equivalent for a fair compari- 1009

son. 1010

A.2 Limitations, Risks, and Future Work 1011

As discussed in Section 2.1, organic (i.e. with- 1012

out the use of translation) multilingual dialogue 1013

datasets are scarce, which has limited the scope 1014

of our experiments. Our guidelines to improve di- 1015

alogue representation mentioned in Section 4 are 1016

general and applicable to any Human-to-Human 1017

or Machine-to-Machine dialogues annotated with 1018

slot-values, but we would have liked to evaluate 1019

the generalization of our cross-lingual approach on 1020

multiple datasets and more languages. For instance, 1021

we partially rely on machine translation models for 1022

Chinese-to-English translation. Available transla- 1023

tion models for other language pairs, especially 1024
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from/to low-resource languages have much lower1025

quality, and it would be desirable to measure the1026

effect of that in our experiments.1027

Another limitation is the lack of human evalu-1028

ation for agent responses. BLEU score does not1029

correlate well with human judgment, and SER only1030

accounts for the factuality of the response but not1031

grammaticality or fluency. This problem is also1032

reported in many prior works (see Section 5). Al-1033

though finding native speaker evaluators for differ-1034

ent languages is a challenge (Pavlick et al., 2014),1035

in future work, we wish to address this by conduct-1036

ing human evaluations.1037

A.3 Dialogue Examples1038

We include the same example from BiToD’s En-1039

glish validation set both in our Distilled represen-1040

tation (Table 3) and in the original (Table 4) rep-1041

resentation, along with model predictions in the1042

full-shot setting. For brevity, only the first 3 turns1043

are shown.1044

In Table 4, we observe that the model fails to1045

ask for the hotel price-range in the second turn1046

and makes an API call instead. Since the API1047

call results are carried over between turns in this1048

representation, in the third turn, the model sees1049

those results in the input and falsely assumes it does1050

not need to make an API call anymore, ultimately1051

resulting in an incorrect response. Compare this1052

to our representation in Table 3. This example1053

shows the importance of separation between API1054

call detection and response generation.1055

Another phenomenon we often observe is that1056

the model asks for more information than it should1057

according to the gold agent dialogue act. As shown1058

in Table 3, in the second turn, the agent requests1059

user to provide the desired location for the hotel1060

as well as the price range. We believe the main1061

reason for this behavior is the randomness in the1062

agent policy of the BiToD’s dialogue simulator.1063

For example, if the agent needs to fill out two slots1064

to make an API call, it can do so by requesting1065

both in the same turn, or one turn at a time. This1066

behavior, though reasonable, is penalized during1067

evaluation, and predictions are considered incorrect1068

if they contain extraneous slots.1069
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Turn 1

DST
Input

DST: <state> null <endofstate> <history> USER: I’d like hotel recommendations.
<endofhistory>

Target ( hotels search )

Prediction ( hotels search )

API
Input

API: <knowledge> null <endofknowledge> <state> ( hotels search ) <endofstate>
<history> USER: I’d like hotel recommendations. <endofhistory>

Target no

Prediction no

DA
Input

ACTS: <knowledge> null <endofknowledge> <state> ( hotels search ) <endofstate>
<history> USER: I’d like hotel recommendations. <endofhistory>

Target ( hotels search ) request rating , request stars

Prediction ( hotels search ) request rating , request stars

RG

Input
RG: <actions> ( hotels search ) request rating , request stars <endofactions> <history>
USER: I’d like hotel recommendations. <endofhistory>

Target Certainly. Do you have any requirements for the hotel’s rating or the number of stars of
the hotel?

Prediction Do you have a preference on how many stars and what rating the hotel should have?

Turn 2

DST
Input

DST: <state> ( hotels search ) <endofstate> <history> AGENT_ACTS: ( hotels search )
request rating , request stars USER: The rating doesn’t matter, but should be at least 5
stars. <endofhistory>

Target ( hotels search ) rating equal_to " don’t care " , stars at_least " 5 "

Prediction ( hotels search ) rating equal_to " don’t care " , stars at_least " 5 "

API
Input

API: <knowledge> null <endofknowledge> <state> ( hotels search ) rating equal_to "
don’t care " , stars at_least " 5 " <endofstate> <history> AGENT_ACTS: ( hotels search
) request rating , request stars USER: The rating doesn’t matter, but should be at least 5
stars. <endofhistory>

Target no

Prediction no

DA

Input
ACTS: <knowledge> null <endofknowledge> <state> ( hotels search ) rating equal_to "
don’t care " , stars at_least " 5 " <endofstate> <history> AGENT_ACTS: ( hotels search
) request rating , request stars USER: The rating doesn’t matter, but should be at least 5
stars. <endofhistory>

Target ( hotels search ) request price_level

Prediction ( hotels search ) request location , request price_level

RG
Input

RG: <actions> ( hotels search ) request price_level <endofactions> <history> USER:
The rating doesn’t matter, but should be at least 5 stars. <endofhistory>

Target Do you have a price range for the hotel?

Prediction And what about location? Do you have a price range for the hotel?
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Turn 3

DST
Input

DST: <state> ( hotels search ) rating equal_to " don’t care " , stars at_least " 5 "
<endofstate> <history> AGENT_ACTS_PREV: ( hotels search ) request rating , request
stars AGENT_ACTS: ( hotels search ) request price_level USER: cheap <endofhistory>

Target ( hotels search ) price_level equal_to " cheap "

Prediction ( hotels search ) price_level equal_to " cheap "

API
Input

API: <knowledge> null <endofknowledge> <state> ( hotels search ) price_level
equal_to " cheap " , rating equal_to " don’t care " , stars at_least " 5 " <endofs-
tate> <history> AGENT_ACTS_PREV: ( hotels search ) request rating , request stars
AGENT_ACTS: ( hotels search ) request price_level USER: cheap <endofhistory>

Target yes

Prediction yes

DA

Input

ACTS: <knowledge> ( hotels search ) available_options " 4 " , location " Mong Kok |
Kowloon | Yau Tsim Mong District " , name " Royal Plaza Hotel " , price_level " cheap
" , price_per_night " 793 HKD " , rating " 9 " , stars " 5 " <endofknowledge> <state>
( hotels search ) price_level equal_to " cheap " , rating equal_to " don’t care " , stars
at_least " 5 " <endofstate> <history> AGENT_ACTS_PREV: ( hotels search ) request
rating , request stars AGENT_ACTS: ( hotels search ) request price_level USER: cheap
<endofhistory>

Target ( hotels search ) offer available_options equal_to " 4 " , offer name equal_to " Royal
Plaza Hotel " , offer rating equal_to " 9 "

Prediction ( hotels search ) offer available_options equal_to " 4 " , offer name equal_to " Royal
Plaza Hotel " , offer rating equal_to " 9 "

RG

Input
RG: <actions> ( hotels search ) offer available_options equal_to " 4 " , offer name
equal_to " Royal Plaza Hotel " , offer rating equal_to " 9 " <endofactions> <history>
USER: cheap <endofhistory>

Target Okay. There are 4 hotels available. I recommend the Royal Plaza Hotel, which has a 9
rating.

Prediction There are 4 available hotels. I recommend Royal Plaza Hotel. Its rating is 9.

Table 3: An example from BiToD English validation set in Distilled representation, along with our mBART model
predictions. For brevity, only the first 3 turns are shown.
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Turn 1

DST
Input

Track Dialogue State:<knowledge><dialogue_state> <user> I’d like hotel
recommendations.

Target <API> hotels search

Prediction <API> hotels search

API/ Response
Input

Generate Response:<knowledge><dialogue_state> <API> hotels
search<user> I’d like hotel recommendations.

Target Certainly. Do you have any requirements for the hotel’s rating or the
number of stars of the hotel?

Prediction What rating would you like the hotel to have?

Turn 2

DST

Input
Track Dialogue State:<knowledge><dialogue_state> <API> hotels
search<user> I’d like hotel recommendations.<system> Certainly. Do
you have any requirements for the hotel’s rating or the number of stars of
the hotel?<user> The rating doesn’t matter, but should be at least 5 stars.

Target <API> hotels search<slot> rating<relation> equal_to<value> don’t
care<slot> stars<relation> at_least<value> 5

Prediction <API> hotels search<slot> rating<relation> equal_to<value> don’t
care<slot> stars<relation> at_least<value> 5

API/ Response

Input
Generate Response:<knowledge><dialogue_state> <API> hotels
search<slot> rating<relation> equal_to<value> don’t care<slot>
stars<relation> at_least<value> 5<user> I’d like hotel recommenda-
tions.<system> Certainly. Do you have any requirements for the hotel’s
rating or the number of stars of the hotel?<user> The rating doesn’t matter,
but should be at least 5 stars.

Target Do you have a price range for the hotel?

Prediction I found 43 hotels. I recommend Cordis, Hong Kong, which has a rating of
10.

Turn 3

DST
Input

Track Dialogue State:<knowledge><dialogue_state> <API> hotels
search<slot> rating<relation> equal_to<value> don’t care<slot>
stars<relation> at_least<value> 5<user> The rating doesn’t matter, but
should be at least 5 stars.<system> Do you have a price range for the
hotel?<user> cheap

Target <API> hotels search<slot> price_level<relation> equal_to<value> cheap

Prediction <API> hotels search<slot> price_level<relation> equal_to<value> cheap

API/ Response
Input

Generate Response:<knowledge><dialogue_state> <API> hotels
search<slot> rating<relation> equal_to<value> don’t care<slot>
stars<relation> at_least<value> 5<slot> price_level<relation>
equal_to<value> cheap<user> The rating doesn’t matter, but should be at
least 5 stars.<system> Do you have a price range for the hotel?<user>
cheap

Target <API> hotels search

Prediction –

API/ Response

Input

Generate Response:<knowledge> [hotels]<slot> name<value> Royal
Plaza Hotel<slot> location<value> Mong Kok<value> Kowloon<value>
Yau Tsim Mong District<slot> price_level<value> cheap<slot>
price_per_night<value> 793 HKD<slot> rating<value> 9<slot>
stars<value> 5<slot> available_options<value> 4<dialogue_state>
<API> hotels search<slot> rating<relation> equal_to<value> don’t
care<slot> stars<relation> at_least<value> 5<slot> price_level<relation>
equal_to<value> cheap<user> The rating doesn’t matter, but should be at
least 5 stars.<system> Do you have a price range for the hotel?<user>
cheap<API> hotels search

Target Okay. There are 4 hotels available. I recommend the Royal Plaza Hotel,
which has a 9 rating.

Prediction The hotel costs 839 HKD per night.

Table 4: Same example as in Table 3 but in the original representation from Lin et al. (2021), along with
MinTL(mT5) model predictions. For brevity, only the first 3 turns are shown.
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