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Abstract

Proteins are complex biomolecules that perform a variety of crucial functions
within living organisms. Designing and generating novel proteins can pave the
way for many future synthetic biology applications, including drug discovery.
However, it remains a challenging computational task due to the large modeling
space of protein structures. In this study, we propose a latent diffusion model
that can reduce the complexity of protein modeling while flexibly capturing the
distribution of natural protein structures in a condensed latent space. Specifically,
we propose an equivariant protein autoencoder that embeds proteins into a latent
space and then uses an equivariant diffusion model to learn the distribution of
the latent protein representations. Experimental results demonstrate that our
method can effectively generate novel protein backbone structures with high
designability and efficiency. The code will be made publicly available at https:
//github.com/divelab/AIRS/tree/main/OpenProt/LatentDiff.

1 Introduction

Artificial intelligence has emerged as a promising approach that significantly enhances scientific
research across various fields [1], such as physical simulation [2, 3], quantum mechanics [4, 5],
materials [6, 7], and biology [8—13]. The discovery of novel proteins [14—19] is crucial in bio-
medicine. Recently, instead of generating novel protein sequences [20—27] and then predicting their
corresponding structures, Trippe et al. [28] and Wu et al. [29] propose to directly generate protein
structures using diffusion models, due to the impressive modeling power and generation quality of
diffusion models [30-34] for images and small molecules. However, generating 3D protein structures
is a more challenging task because of their complex geometric structures and vast exploration space.
Additionally, as the modeling space increases, the cost of time and computational resources required
to train and sample from diffusion models also increases significantly.

There are attempts to reduce the modeling space in the image and small molecule domain for diffusion
models. Stable Diffusion [34] combines a pretrained image autoencoder and a latent diffusion model
to reduce the modeling space for large images. However, there are currently no robust and powerful
3D graph autoencoders and latent diffusion models for 3D protein structures. Torsional Diffusion [33]
only focuses on torsional angles and employs RDKit [35] predictions for bond lengths and bond
angles, as the distributions of bond angles and lengths are highly confined in small molecules. But
this assumption does not hold for protein structures.

In this paper, we reduce the diffusion modeling space of complex 3D protein structures by integrating
a 3D graph autoencoder and a latent 3D diffusion model. To achieve this, the following challenges are
addressed: (1) ensuring rotation equivariance in the autoencoder design, (2) accurately reconstructing
intricate connection information in 3D graphs during decoding, and (3) developing a specialized
latent diffusion process for 3D protein latent representations, including position and node latent
representations. In the following sections, we first recap the background and related works for
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protein backbone structure generation and diffusion models in Sec. 2, and then show in detail how we
address the above challenges in Sec. 3. The efficiency and ability to generate novel protein backbone
structures of our proposed method are demonstrated in Sec. 4.

2 Background and Related Work
2.1 Protein Backbone Structure Generation

Protein backbone generation aims to generate novel protein backbone structures by learning from real
data distributions. To this end, a mapping between known distributions, such as a Gaussian, and the
real data distribution, which is high dimensional and sparse, needs to be constructed. Since protein
global geometric structures are mainly determined by backbones, the generation of protein structures
can be simplified to the generation of backbones consisting of a sequence of amino acids and their
corresponding positions. Following ProtDiff [28], we use the positions of alpha carbons to represent
amino acid positions. The protein backbone structure is then represented by

S ={(mi, i) iy, @)

where x; € R? denotes the 3D position of alpha carbon in the i-th amino acid, and a; € {k|1 < k <
20, k € Z} denotes the corresponding amino acid type.

Instead of modeling amino acid types and alpha carbon positions together, previous studies [28] have
shown that it is better to decompose the whole generation process into two stages as p(X,a) =
p(a| X)p(X), where X = [x1, o, , @], and @ = [a1, as,- - ,a,]T. Specifically, the positions
of alpha carbons are first generated, and the corresponding amino acid types are predicted using
pretrained inverse folding models such as ProteinMPNN [36].

2.2 Denoising Diffusion Probabilistic Models

As a powerful class of generative models [37-39], denoising diffusion probabilistic models
(DDPM) [30] solve the Bayesian inverse problem of deriving the underlying data distribution pg,, (2)
by establishing a bijective mapping between given prior distributions and pga,(z). We review the
background of DDPM here following the adopted conventions of ScoreSDE [31]. To enable faithful
generation based on pyy, () by sampling simpler prior distributions, a discrete Markov chain is em-
ployed to gradually diffuse inputs as a map from given training data into random noise, for example,
following multivariate normal (Gaussian) distributions. For every training sample zg ~ pgaa(2),
DDPMs consider a sequence of variance values 0 < (1, 82,...,8n < 1 and construct a discrete
Markov chain {2, 21, ..., 25}, where p(2;|2z;_1) = N(2i;v/1 — Bizi—1, 5;1). Based on this, we
obtain p(z;|z0) = N (z; /@20, (1 — a;)I), where a; = [],_,(1 — ;). Hence, a sequence of
noise scales can be predefined such that o — 0 and zy is approximately distributed according to

N(0,1I). For the reverse mapping from N(0,I) to pgaa(2), a reverse Markov chain is parameter-
ized as py(z;—1|z;) = N(z;; po(2i,1), 5;I), where pg(z;,1) = 11—6- (z — \/1/5104- so(z;,1)). The
reverse diffusion model sy is trained with a re-weighted evidence lower bound (ELBO) as below

6* = argmingE, -, o[[lo — se(v/arz0 + V1 — v, 1)[|?], (@)

where o ~ A (0,T). After sy is trained, the reverse sampling process is conducted by first sampling
from zp ~ N(0,I) and then updating from time N to time 0 by the estimated reverse Markov chain

1 (20 — Bt
VI=B ! 11—y

Zt—1 =

so(z,t)) + \/Ecr. 3)

2.3 Related Work

Diffusion Models for Protein Structure Generation. Recent research [28, 29, 40—45] has been
exploring the use of diffusion models to generate novel protein structures, building on the successes
of diffusion models in other areas such as images [30, 31] and small molecules [32, 33, 46]. Among
them, ProtDiff [28] focuses on generating protein backbone structures by determining the positions of
alpha carbons, while FoldingDiff [29] represents protein backbone structures using bond and torsion
angles and applies a sequence diffusion model to generate new backbone structures. Anand and
Achim [40] attempts to generate the entire protein structure by using three separate diffusion models
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Figure 1: Autoencoder network structure for proteins. Step A, B, and C denote the Encoder network.
A. Augmented input protein structure (white) with padding (red node), similar to image padding. B.
(1) Edge building: create a fully connected graph (limited edges shown for simplicity) on the padded
structure; (2) Graph Expansion: introduce new nodes (black) with specific connections according to
the 1D-CNN convention. C. Compressed structure (in latent space). Steps D, E, and F denote the
Decoder network. D. Padding latent structure for upsampling (similar to padding operation in image
transpose convolution). E. Edge building and Graph Expansion are similar to B. F. Reconstructed
protein chain.

to generate alpha carbon positions, amino acid types, and side chain rotation angles sequentially, but
the joint modeling performance is relatively low. Additionally, Lee and Kim [41] proposes to diffuse
2D pairwise distances and angle matrices for amino acid residues, but further optimization using
Rosseta minimization [47] is needed.

It is worth noting that, concurrent with the development of our method, several other works have
emerged, capable of generating high-quality proteins. RFdiffusion [42] takes advantage of the
powerful protein structure prediction model, RoseTTAFold [48], to achieve remarkable results on
many generation tasks. RFdiffusion pretrains RoseTTAFold on the protein structure prediction
task and then finetunes on generative tasks. But RFdiffusion only demonstrates the effectiveness
of generating proteins when using pretrained weights. Chroma [43] uses a correlated diffusion
process to transform protein structures into random collapsed polymers and encode the chain and
radius of gyration constraints by a designed covariance model. In this way, Chroma can model the
target distribution more efficiently by preserving some basic structures in proteins. Genie [44] and
FrameDiff [45] adopt oriented reference frames to model residues. Genie only considers alpha carbon
atoms so diffusion only needs to be applied to atom positions. FrameDiff generates full backbone
atoms so diffusion on both frame position and orientation needs to be considered.

Despite the success of protein backbone structure generation [28, 29, 40—45], the modeling space
of diffusion models is still vast, necessitating significant time and computational resources for both
training and sampling from diffusion models.

Decreasing Modeling Space for Protein Structure. The modeling space for protein structure
generation is reduced in several ways. ProtDiff [28] only considers the positions of alpha carbons,
while FoldingDiff [29] represents protein backbone structures using bond and torsion angles and
omits bond lengths to decrease the modeling space. Torsional Diffusion [33] uses RDKit-generated
bond lengths and angles and only diffuses the torsional angles for the conformer generation of small
molecules, but it is not applicable for protein structures.

Recently, the impressive generative capability of Stable Diffusion [34] in the image domain has
attracted significant attention. By integrating a pre-trained image autoencoder with latent diffusion
models, Stable Diffusion reduces the modeling space of large images and improves the generative
power of image diffusion models. However, 3D geometric graphs for protein structures are different
from images, no robust 3D equivariant protein autoencoders and 3D latent diffusion models for
protein structures have been proposed yet.

3 Method

In this section, we introduce our LatentDiff for generating protein backbone structures. We describe
the design of our equivariant protein autoencoder in Section 3.1, and next the latent space diffusion
model in Section 3.2.
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3.1 Equivariant Protein Autoencoder

We first introduce our equivariant autoencoder that helps reduce the protein design space. To design
such an autoencoder, we identify some constraints and the uniqueness of protein backbones. First, C,
atoms in protein backbones have a fixed order due to the sequential nature of amino acid sequences.
In general, downsampling or upsampling of sequence data can be achieved by 1D convolutional
neural networks (CNNs). Also, since C,, atoms form a chain structure that could be preserved
during upsampling, we don’t need to reconstruct edge connections like traditional graph autoencoder.
Second, despite the sequence representation of protein backbones, they also possess 3D geometries,
which require equivariance during the downsampling and upsampling stages. Traditional CNN cannot
meet this equivariant requirement, but graph neural networks (GNNSs) are capable of dealing with
this challenge. Based on these observations, we propose a novel equivariant protein autoencoder that
considers both the amino acid sequence and 3D graph information of protein backbones.

Overview. In the equivariant protein autoencoder, we first downsample proteins to smaller sizes
and upsample the latent graph to reconstruct the original protein. There are four steps within each
downsampling and upsampling layer, namely structure padding, edge building, graph expansion,
and equivariant message passing. The first three steps are used to construct a graph that contains
the input nodes and initialized downsampling or upsampling nodes in the current layer. After the
message passing, only updated downsampling or upsampling nodes will be kept as input in the next
layer for further downsampling or upsampling operation. In the following, we describe the network
input and details of one downsampling layer. The upsampling layer shares the exact same steps
except for structure padding, which we will also introduce in the structure padding section.

Network Input. For a protein backbone structure S, we move the structure to the zero centroid in
order to make the model avoid capturing translational equivariance. Then we will augment the protein
to a fixed length m to simplify the remaining operations in the network. So m is the maximum
protein length that we can generate, and we choose m as 128 in this work. The augmented protein
is shown as the white part in Figure 1.A. Specifically, we append m — n extra nodes to the end of
the protein structure. Each extra node is assigned a zero position and the same node type. And we
denote the augmented protein structure as S,,, = (X, H), where X € R**"™ and H ¢ RX™ are
node positions and node feature vectors respectively. For X, the first n columns {x;}?_; denote
the positions of all C,, atoms in the original protein and the last m — n columns {a; };”, ., denote

the zero positions of extra nodes. Each node feature vector h; € R? in H is a d-dimensional type
embedding indicating the corresponding node type. Then the preprocessed S, is the input to the
first downsampling layer.

Structure Padding. Similar to padding in image convolution, within each layer, we first need to pad
the augmented protein structure S, before downsampling or upsampling the structure in order to
obtain an output with the desired size. Let’s assume that we have k nodes after structure padding.
Denote the padded structure as S, = (X, H_ ), where X . € R3** and H i € RI¥E As
pa pad’ " pa pa pa
shown in Figure 1.A and D, red nodes are padding nodes. For the downsampling, we pad the input
structure on the boundary by adding nodes with the same node position and node features as the
boundary node. For example, in Figure 1.A, the red node is the duplicate of the last white node. For
the upsampling, we need both boundary padding and internal padding, similar to image padding in
transpose convolution. The boundary padding is the same as that of downsampling. For an internal
padding node, such as the second red node in Figure 1.D, it is initialized with the average value of the

position and node features of its two nearest nodes on both sides.

Edge Building. After structure padding, we perform an edge-building step to construct a graph
from a padded protein structure Spa 4+ We could adopt fully connected graphs in order to capture

interactions between all atom pairs. As shown in Figure 1.B, the edges in the constructed complete
graph are in red. For simplicity, we only show the edge connections for one node. Note that ways of
edge connections can be flexible in this step. Empirically we find that constructing a complete graph
only over the non-padded structure during downsampling gives better reconstruction performance.

Graph Expansion. Then, for the graph expansion step, we need to first initialize downsampled nodes
and connect them to the graph constructed in the edge-building step. We denote the expanded graph as
gexp = (Xexpa Hexp; A )» where Xexp = [Xpach Xdown] S R3X(k+?)a Hexp = [Hpada Hdown] €

m

R&*(k+2) and Aep € R(F+3)x(k+3) - Specifically, we create a set of new nodes with positions

exp
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Xgown € R3*Z and node feature vectors Hgown € R?*% which represent the downsampled
structure. The edge connections between downsampled structure and the augmented protein structure
are created in a 1D CNN convention. Specifically, only nodes within a kernel-sized window will be
connected to a new node. For example, as shown in Figure 1.B, the green area denotes a kernel of
size 3, and the first black node connects to the first three white nodes in the green area. And each new
node is initialized as the average of its connected nodes for both position and node feature.

SE(3) Equivariant Message Passing. Proteins only contain right-handed alpha helices, so the
network should not be equivariant to reflection. Thus, we use a SE(3) equivariant graph neural
network to perform message passing on the expanded graph G, to update downsample nodes. We
adapt the network architecture from Schneuing et al. [49], in which they modify the E(n) equivariant
graph neural network (EGNN) [50] by adding an additional cross-product term in the coordinate
update step. In this way, the network can be sensitive to reflection. Formally,

chpa I:Iexp = EGNNSE(B) [Xexpa HCXp]7 (4)

where X oxp = [X , X down) and H oxp = [fI JH down)- EGNNgp(s) contains L equivariant convo-

lution layers (EGCL). Each layer performs a position and feature update, such that wé“, hﬁ“ =

EGCLIx!, hl], which is defined below:

m; = ¢6(hé7h§'7d?jvaij)y 5)
Wt = gn(hl, Y &m;), ©)
i
Il I T
G wl —al ) (2} —7') x (a} — =) o ;
z; wz+§7d“ ) P (mij) + [l —@) x (&) —@)|| + 1‘%5:,: (mij) )

l

where d;; = Hml — mé” 9 denotes the Euclidean distance between nodes i and j, and a;; =

MLP([h!, hé]) is the edge feature for edge (i, j). @ denotes the center of mass of all nodes. d;;+1 can
be optionally used to normalize the node distance to improve numerical stability. Following Hooge-
boom et al. [46], we use an attention mechanism €;; = ¢;,,¢(m;;) to infer a soft estimation of
edges.

Then after the message passing, we will only keep the updated downsampled structure (X down s H down)
as the input of next layer, as shown in Figure 1.C. During the upsampling stage in the decoder, we
perform the same four steps as introduced above. After upsampling to the original size of the input
augmented protein, we obtain a reconstructed structure with position and node embedding for each
node. Then we use an MLP to process the final node embedding and predict whether a reconstructed
node belongs to the augmented node type, as we describe in the following training loss section. We
then use another MLP to predict the amino acid type of each node.

Training Loss. Reconstruction loss of autoencoder consists of six parts. First, we have a cross-entropy
loss L, on a binary classification task to determine whether each reconstructed node is an augmented
node that does not belong to the original protein. Next, we use another cross-entropy loss £,, on the
amino acid type prediction for each node. And then, we calculate the mean absolute error (MAE)
of the position for each non-augmented node between the reconstructed protein and ground truth,
and we denote it as L,0s. Apart from these three losses, to further consider the secondary structure
reconstruction for proteins, we also include edge distance loss Lg and torsion angle loss L,
calculated across the non-augmented nodes. Specifically, edge distance is calculated as the Euclidean
distance between every two consecutive C,, atoms, and the torsion angle is the angle between two
planes formed by four consecutive C\, atoms. To avoid latent node embeddings having an arbitrarily
high variance, we use slight KL divergence loss L, to regularize latent node embeddings, which is
similar to a variational autoencoder. So the total loss is the weighted sum of these individual losses.
Formally,

Lol = ['aug + Laa + »Cpos +wy * Lyt + wa * Lior + w3 * »Crega (8)

where w1, ws, and w3 are relative weights to control the edge distance loss, torsion angle loss, and
regularization loss, respectively. We want the network to optimize the absolute position of each node
first and adjust edge distance and torsion angle later, so we set w; and w- as 0.5. Also, we want the
autoencoder to have good reconstruction performance, so we only use very small regularization, and
we set ws equal to le™4,
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Figure 2: Pipeline of LatentDiff. Encoder £ and decoder D are pretrained via equivariant protein
autoencoder introduced in Section 3.1, and their parameters are fixed during training the latent
diffusion. Protein structures are encoded into latent representations via the encoder £. And latent
representations are gradually perturbed into Gaussian noise. During generation, we first sample
Gaussian noise and use the learned denoising network to generate protein representations in the latent
space. And then, the decoder D decodes latent representations to protein structures.

3.2 Latent Diffusion

Modeling the extracted latent representations (X, H, ) of protein backbone structures poses
unique challenges due to the fact that they consist of 3D Euclidean positions, which differ from
images and texts. In this section, we first explain the desired distribution SE(3) invariance property
and then provide a detailed description of the latent diffusion process that satisfies this property for
the task of protein backbone generation. In this section, p, . p, .- and pg denote the underlying
data distribution, the output distribution of the whole model framework, and the latent distribution

from the latent diffusion model, respectively.

Distribution SE(3) Invariance. For a given protein backbone structure (X, H ), we would like the
learned data distribution to be SE(3) invariant: pga (X, H) = paana(RX +b, H) as the geometric 3D
structure remains unchanged after SE(3) transformations, where R € R3*3, |R| = 1 describing only
the rotation transformations and b € R? for translation in 3D space. Because our protein autoencoder
is translation invariant as described in Sec. 3.1, pmodel (X ; H) = Pmodel (X + b, H) holds naturally.
Hence, distribution rotation invariance pmodel (X, H) = Pmodel (RX , H) needs to be satisfied for the
latent diffusion process.

In our approach, we propose to decompose the generation of protein backbone struc-
tures into two stages, including (1) protein latent representation generation and (2) la-

tent representation decoding. The model distribution can be defined as p del(X JH) =
Paecoder X0 H X s H o )P0 (X youns Hyown) Given that the decoding process is SE(3) equiv-

ariant and deterministic, if the latent diffusion model sy satisfies py (X down s H. down) =pe(RX down T
b,H, ), the distribution SE(3) invariance p X, H)=p (RX + b, H) can be satisfied.
The challenge of po(X, ,H, ) =pe(RX, +b H, ) canbeaddressedby (1) modeling
zero-mean geometric distribution for X, (2) using a high-dimensional Gaussian distribution as
the prior distribution, and (3) employing rotation equivariant reverse diffusion process [32, 46].
Specifically, the influence of translation transformations in 3D space is omitted by reducing the
central position of X . Additionally, by using an isotropic high dimensional Gaussian prior, we have
po(Xr, Hr) = pg(RX T, Hr). The rotation equivariant reverse diffusion process further guarantees
that pg (X, Hy) = pe(RX,, H}) for any time ¢ and the proof is provided in Appendix. A.1.

model ( model

Rotational Distribution Invariant Latent Diffusion. Due to the aforementioned considera-
tions, we propose the rotation distribution invariant latent forward and reverse diffusion pro-
cesses for the extracted protein backbone latent features (X, ,H, ). The implementation
is based on EDM [46] with adjustments to support the latent diffusion process. Specifically,
we generate latent 3D points with position and latent node features, so we do not need to de-
code the node type at the last step of reverse diffusion. Additionally, since protein structures
possess natural order, we add sinusoidal positional encoding features to provide sequence order
information. Most importantly, similar to Section 3.1, we also modified the message passing
in EDM to be SE(3) equivariant. The pipeline of our protein latent diffusion is shown in Fig-

ure 2. During the forward process, the input latent representations (X down® H, down) are diffused
slowly into random noise by a sequence of noise scales 0 < (1,f2,...,8n < 1 as follows
X =+1-pXi1+piox, © H;,=\/1-3H; 1+ +/Biou, (10)
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where o ~ N(0,1), and o x is first sampled from N'(0,I) and then reduced based on the corre-
sponding central position following Hoogeboom et al. [46]. And the closed-form forward process
can be written as

X, = Vi Xy, +VI—oox, (11
Ht = \/OTtHdOWn—i_Vl_ato-H’ (12)

where o = ngo(l — B;). Since o is a scalar value, we have p.(X;, H;) =
P(X jouns Hiown )P(Ox, 0rr) Where p, is the data distribution at time ¢ and p(ox,om) =
p(ox)p(om) denotes the corresponding multivariate Gaussian distributions. It can
be seen that p.(X;, H;) = p(RX;, H) because p(X, H, Ip(ox,0H) =
p(RX H, )p(ox,om). Hence, the forward diffusion process satisfies rotation distribution

L “down’ ~ " down
nvariance.

For the reverse diffusion process, a reverse Markov chain is formed as below

1
(X1, Hi—1) = Nieyadl VBilox,om), (13)
pe = (X4, Hy) — LSG(Xth,t), (14)

V11— (e77
where sy is a rotation equivariant network implemented based on the SE(3) version of EGNN [49, 50].

Training Loss. The reverse diffusion model sg is trained with a re-weighted evidence lower bound
(ELBO) following ProtDiff [28] and DDPM [30] as below

0" = argmineEtv(Xdown’Hdown)va'[H(SHQ]’ (15)
0 = 0 — so(v/as(Xdown, Haown) + V1 — a0, t), (16)

where o0 = (ox,0H).

4 Experiments

We empirically demonstrate the effectiveness and efficiency of our method for generating protein
backbone structures. The overall generation process can be found in Appendix A.4. In Section 4.1,
we first introduce the dataset we curated from existing protein databases and the baseline models.
In Section 4.2—Section 4.4, we show the reconstruction performance of the pre-trained autoencoder,
the designability of generated proteins, and the parallel sampling efficiency of LatentDiff. We
also provide additional experiments about secondary structures, diversity, structural distribution of
generated proteins, and structure-sequence co-design in Appendix A.5, A.6, A.9, and Appendix A.8,
respectively. In Appendix A.3, we describe the training details of the autoencoder and latent diffusion
model.

4.1 Experimental Setting

Dataset. We curate the dataset from Protein Data Bank (PDB) and Swiss-Prot data in AlphaFold
Protein Structure Database (AlphaFold DB) [51, 52]. Details of the dataset can be found in Ap-
pendix A.2.

Baselines. To evaluate our proposed methods, we compare with three protein generation methods,
ProtDiff [28], FoldingDiff [29], and FrameDiff [45]. The first two works appeared before we started
developing our methods whereas FrameDiff is a more recent method of protein backbone generation.

4.2 Autoencoder Reconstruction

In this section, we show the reconstruction performance of the protein autoencoder. We compare
autoencoders with different downsampling factors f = {2, 4,8}, which we denote as auto — f.

Metrics. First, we evaluate the classification accuracy of augmented and non-augmented nodes
(Augment Acc), and the accuracy of amino acid type classification (Residue Acc). And we have
the following three geometric evaluations. We use root mean square deviation (RMSD) to compare
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Table 1: Performance of autoencoder with different downsampling factors. 1 (J.) represents that a
higher (lower) value indicates better performance.

Factor RMSD (A)*  Augment Acc (%) Residue Acc (%)" Edge Stable (%)"  Torsion MAE (rad)*

2 0.5280 100 99 95.29 0.4361
4 1.2755 100 98 70.99 0.8951
8 22772 100 45 59.97 1.1903

the absolute position error between reconstructed C,, atoms and ground truth. Additionally, we
measure edge stability, which counts the proportion of C, — C,, distance that resides with range
[3.65A, 3.95A]. The reason for choosing this range is that 99% C., — C., distances in ground truth
are within this range. We also calculate the mean absolute error (MAE) of the torsion angle. Note that
all the geometric evaluations are performed on the original protein backbones without considering
augmented nodes.

In Table 1, we summarize the results with respect to these five metrics for protein autoencoders with
different downsampling factors. In order to reduce the modeling space of proteins and make it easier
for the diffusion model to learn the latent distribution, larger downsampling factors are preferred;
but meanwhile, it will become more difficult to achieve good reconstruction results. We can see that
auto — 8 has the worst reconstruction performance because the autoencoder compresses information
too much. Although auto — 2 performs the best among the three settings, the number of nodes in
the latent space is still relatively large. So in order to achieve a balance between computation and
reconstruction performance, we finally choose auto — 4 as the pre-trained model for generating latent
space data and decoding protein backbones.

4.3 In-silico Evaluation

For generated protein structures, we need to evaluate the des-
ignability, which means whether we can build amino acid se-
quences that can fold into desired backbone structures. The
most faithful and desirable evaluation is to check through a
wet-lab experiment, but this is often resource demanding and
not feasible. Here we use in silico evaluations as an alternative.

Table 2: Percentage of generated
proteins with scTM score > 0.5.
Following FoldingDiff and ProtD-
iff, results are shown within short
(50-70) and long (70-128) cate-
Specifically, for a generated backbone structure, we first use gories.

an inverse folding model, ProteinMPNN [36], to predict eight
amino acid sequences that could possibly fold into that back- i

bone structure. OmegaFold [53] is then used to predict fold- g(‘)‘l’g?lé%iff giZZ g:ZZZ } igf/z
ing structures for each amino acid sequence. Next, we adopt  pFrameDiff  86.6% 87.7%  87.4%
TMalign [54] to compute the similarity between the generated = LatentDiff ~ 64.7% 82.8%  66.9%
backbone structure and each OmegaFold-predicted backbone

structure and calculate a TM score to quantify the similarity.

The maximum TM-score among these eight scores is referred to as the self-consistency TM-score
(scTM). If a scTM score is larger than 0.5, two backbone structures are considered with the same
fold and that generated backbone structure is designable.

Method 50-70 70-128 50-128

Similar to previous works [28, 29], we generate 780 backbone structures with various lengths between
50 and 128 and evaluate them by the scTM score, for which the sampling temperature in ProteinMPNN
is 0.1. The comparison with FoldingDiff, ProtDiff, and FrameDiff is shown in Table 2. Following
ProtDiff, generated proteins are further split into short (50-70) and long (70-128) categories. For our
LatentDiff, 66.9% generated structures have their scTM scores > 0.5, which is significantly better
than FoldingDiff (14.2%) and ProtDiff (11.8%). Compared with more recent work such as FrameDiff,
even though LatentDiff has worse performance in designability, our sampling efficiency is still an
advantage, as shown in Table 3. Details about efficiency comparison can be found in Section 4.4.
We also visualize some exemplar backbones and OmegaFold-predicted backbone structures using
PyMOL [55] in Figure 3.

4.4 Parallel Sampling Efficiency Comparison

In this section, we demonstrate the parallel sampling efficiency of our method. Diffusion mod-
els usually need to perform thousands of reverse steps to generate a single data point, and the
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Table 3: Sampling efficiency comparison between diffusion models in latent and protein space.!

LatentDiff-P denotes that no protein autoencoder is used and diffusion is performed directly in the
protein space. 1000 proteins are sampled to calculate sampling time.

Method Parameters  Protein Length Latent Nodes Diffusion Steps  Time (hrs) Speed (sec/sample)
ProtDiff 1.9M 128 N/A 1000 1.9 6.85
FrameDiff 17.4M 128 N/A 500 16.6 60
RFdiffusion 59.8M 128 N/A 200 46.6 168
LatentDiff-P 2.9M 128 N/A 1000 3.9 14.15
LatentDiff 2.9M 128 32 1000 0.25 0.93
LatentDiff 2.9M 128 32 2000 0.51 1.84
LatentDiff 2.9M 256 64 1000 0.95 3.42

data size must be the same during every reverse step. So the generation process is very time-
consuming and computationally expensive, especially when the modeling space of diffusion mod-
els is large. So this prohibits efficient parallel sampling with limited computing resources.

Generation in latent space can reduce memory
usage and computational complexity as the la-
tent space is much smaller than the protein space,
thereby improving the generation throughput.
The reason we compare efficiency in terms of
parallel sampling is that a large number of pro-
teins need to be sampled in the screening proce-
dure and high throughput sampling is desired. In
this sense, sampling in latent space demonstrates
significant efficiency improvement. For the effi-
ciency comparison, we sample 1000 proteins on
a single NVIDIA 2080Ti GPU and summarize
the result in Table 3. To rule out factors other
than different modeling spaces, we also compare  Figure 3: Some samples of generated structures
with LatentDiff without downsampling (named  with scTM > 0.5. The top row shows our gen-
LatentDiff-P). For our model, the processing erated backbones and the second row shows the

time of the decoder is orders of magnitude less  backbone structures predicted by the OmegaFold
than that of our latent diffusion model, so we do from the predicted amino acid sequences.

not take the decoder time into account. From

the result, we can see that the generation time

of 1000 protein structures in the protein space is

about 3.9 hours, while it only takes about 15 minutes to generate in the latent space and then map
to the protein space. Additionally, we also compare the efficiency with FrameDiff and RFdiffusion
and we can achieve about 64 x and 180x faster generation speed, respectively.! Even though the
performance still needs to be further improved to compare with recent state-of-the-art methods, the
idea of performing diffusion on reduced modeling space already demonstrates potential usefulness in
practice. The sampling time of LatentDiff scales linearly with the number of diffusion steps because
diffusion steps are performed sequentially. Moreover, since we use a fully connected graph for the
diffusion model, increasing latent nodes will quadratically increase memory consumption and com-
putational complexity. Consequently, the sampling throughput will decrease and is contingent upon
the GPU memory and computational capacity, with the throughput being constrained by whichever
resource reaches its limit first.

OmegaFold Predictions Generated Proteins

5 Conclusions

In this work, we have proposed LatentDiff, a 3D latent diffusion framework for protein backbone
structure generation. To reduce the modeling space of protein structures, LatentDiff uses a pre-trained
equivariant 3D autoencoder to transform protein backbones into a more compact latent space, and
models the latent distribution with an equivariant latent diffusion model. LatentDiff is shown to
be effective and efficient in generating designable protein backbone structures by comprehensive
experimental results.

'Note that FrameDiff and RFdiffusion generate full backbone atoms whereas ProtDiff and LatentDiff generate
C, atoms.
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A Appendix
A.1 Distribution Rotation Invariant Reverse Diffusion Process

In this section, we provide proof that by (1) using a high-dimensional Gaussian distribution as the
prior distribution, and (2) employing rotation equivariant reverse diffusion model sg [32, 46, 49], the
challenge of py(X H, )=py(RX H, ) canbe addressed. The proof process borrows

down’ down down’’ dow

ideas from Xu et al. [32] and Hoogeboom et al. [46].

First, because pg(Xp,Hr) = N(0,I), and N (0,I) is isotropic, we have po(Xr, Hr) =
po(RXr, Hr), where R € R3*3, |R| = 1 describes the rotation transformations in 3D space.

Second, because sg is rotation equivariant for X, and rotation invariant for Hy, and

1 B

X 1= ﬁ(Xt - ﬁse(Xtht»t)X) + \/EUXv (17)
1
Ht—l == M(Ht - \/%SB(Xth?t)H) + \/EUHv (18)

where sg(X;, Hy,t)x and sg(X;, H;,t) g denote the network predictions to update X and H,
correspondingly. When we apply transformation R € R3*3, |R| = 1to X;_1, we will have

1
RX; 4 ZﬁR(Xt - \/%SG(Xt,Htat)X) + VB Rox (19)

1
:ﬁ(RXt — \/%RSQ(XD Ht,t)X) + \V ﬂtRa'X (20)

1
:ﬁ(RXt - \/lﬁtiatso(RXt; Hy,t)x)++/piRox, (2D

and we can have the following

pe(thlthfﬂXta Ht) = p@(Xtht)p(o-X7 O-H) = pG(RXtv Ht)p(RUX7 UH)

22
— po(RX,—1, Hy_\|[RX:, Hy). 22

Beyond this, for the reverse diffusion time ¢ € {7,7 —1,--- 1}, assume py(X;, H;) satisfies
po( Xy, Hy) = po(RX ¢, H;), where R € R3*3, |R| = 1 describes the rotation transformations in
3D space. Then we have:

po(RX iy, Hy_y) = / po(RX 1, Hy1| X, H)po( X, Hy)
(X¢,Hy)

:/( )pQ(RXt—hHt—l‘RRilxtvHt)pa(RRilxtht)
X, H;

- / po(Xo—1, Hy1|R X, Hy)po (R X,, Hy),
(X¢,Hy)
let X' = R~'X,, we have det R = 1 and

po(RX 1, Hyy) == /( (X1, Hy_1| X', Hy)po(X', Hy)wdet R = po(Xo_1, Hy_y),
X/,Ht)
23)

and pg(X;_1, H;_1) is invariant. By induction, pg(Xr_1, Hr_1), ..., pe(Xo, Hy) are all invariant
and the proof is complete.

A.2 Datasets

We curate the dataset from Protein Data Bank (PDB) and Swiss-Prot data in AlphaFold Protein
Structure Database (AlphaFold DB) [51, 52]. We filter all the single-chain protein data from PDB
with C,, — C,, distance less than 5A and sequence length between 40 and 128 residues, resulting
in 4460 protein sequences. We randomly split the data according to 80/10/10 train/validation/test
split. In order to include more training data, we further curate protein data from two resources and
add them to the current training set. The first part of augmented training data comes AlphaFold DB.
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Specifically, we filter single-chain proteins in Swiss-Prot with lengths between 40 and 128 and add
these proteins to the training data. The second part of augmented training data comes from PDB,
where we curate data from those single-chain proteins with C, — C,, distance larger than 5A and
sequence lengths longer than 40. Specifically, we split these proteins at the position where C,, — C,
distance is larger than 5A to obtain protein fragments. Then we add these fragments with lengths
between 50 and 128 to the training data. For these fragments with lengths longer than 256, we
uniformly cut them into lengths between 50 and 128, and add them to the training data. After this
data augmentation process, we can finally obtain about 100k training data.

A.3 Experimental Details

For training of the autoencoder, we have used all the available training data. We then use the trained
encoder to embed all the training protein data and use their latent representations to train the latent
diffusion model. We have trained the autoencoder for 200 epochs with batch size 128, by Adam
optimizer [56] with learning rate 1e=3, 8; = 0.9, B2 = 0.999, and weight delay 2¢~*. The latent
diffusion model has been trained for 16k epochs with batch size 2048, by Amsgrad optimizer [57]
with learning rate 5e =%, 31 = 0.9, 32 = 0.999, and weight delay 1e~2. We use 1000 diffusion
steps and the same noise scheduler used in Hoogeboom et al. [46]. We implement all the models in
PyTorch. The protein autoencoder was trained on a single NVIDIA A100 GPU for 6 days. The latent
diffusion model was trained on four NVIDIA A100 GPUs for 7 days.

A.4 Overall Generation Process

To generate a novel protein backbone structure, we first sample multivariate Gaussian noise and use
the learned latent diffusion model to generate 3D positions and node embeddings in the latent space.
We use low-temperature sampling [43] in the reverse process of the diffusion model. And then we
use the pre-trained decoder to generate backbone structures in the protein space. Note that the output
of the decoder has a pre-defined fixed size. In order to generate proteins of various lengths, each
node in the decoder output is predicted to be an augmented node or not. We simply find the first
node that is classified as an augmented node and drop the remaining nodes in the generated protein
backbone structure. Note that we do not use reconstructed amino acid types for the corresponding
node. Instead, we use the inverse folding model ProteinMPNN [36] to predict protein amino acid
sequences from generated backbone structures.

A.5 Secondary Structures

We use P-SEA [58] to count the number of two types of secondary structures in the generated proteins.
Specifically, we calculate the percentage of generated proteins that contain only a-helix, only 3-sheet,
and both a-helix and S-sheet, respectively. The results are shown in Table 4. As seen, more than
half of the generated proteins include a-helix, and a large portion of generated proteins contain
[-sheet. This proves that our method can successfully generate various secondary structures in natural
proteins.

Table 4: Percentage of generated proteins that contain only «-helix, only 3-sheet, and both a-helix
and (3-sheet, respectively.

a-helix only  S-sheet only a-helix + [3-sheet
73.4% 2.2% 23.8%

A.6 Diversity

We also evaluate the diversity of generated proteins with scTM > 0.5 (designable), as shown in Table 5.
Specifically, we calculate the TM scores with all other designable proteins for each designable protein
and choose the maximum TM score to measure its similarity with the generated proteins. Then, we
calculate the average of maximum TM scores over all designable proteins to assess the diversity of
the generated proteins (lower is better).
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Table 5: Diversity of generated designable proteins (scTM > 0.5). | represents that a lower value
indicates better performance.

Method Diversity*

ProtDiff 0.836+0.1648
FoldingDiff 0.58540.1276
FrameDiff  0.61140.1544
LatentDiff ~ 0.63440.0919

A.7 Latent Space Interpolation

Usually, it is natural to visualize the latent space and perform latent code interpolation to test if
the latent space is well-structured. However, a protein in our latent space is not represented by a
single latent feature vector, but rather, it is a set of nodes associated with 3D coordinates and node
features. As such, it is difficult to use dimension reduction techniques like t-SNE to visualize the
latent space. In addition, we did not add a KL-divergence loss on coordinates since it would break
equivariance. Even for invariant node features, we only add a minimal KL-divergence penalty to
control the variance of the latent space, as we aim to maintain high reconstruction accuracy for the
autoencoder. Therefore, in our case, the latent space does not necessarily need to be well-structured,
and arbitrary interpolation may not guarantee valid protein structures upon decoding.

To show this, we pick two generated proteins with scTM>0.5 (designable), and their corresponding

latent space data are (X2 . HS )and (X! . H! ). Then we interpolate these two latent space

data as (Xxmer printerey — (xs # (L= A)+ X0 A HEy x (L= A) + He, o+ A). We choose
different values of \ and decode the interpolated latent space data into proteins and calculate the
scTM score, as shown in Table 6. We can see that if A is close to 0 or 1, generated proteins are still

designable. However, if A is near 0.5, generated proteins are not valid, just as we analyzed above.

Table 6: The scTM score of proteins decoded from the interpolation of two latent protein repre-
sentations. A is the interpolation weights. TM-left means the TM score with the start protein, and
TM-right means the TM score with the end protein.

A 0 01 02 03 04 05 06 07 08 09 1

scT™M 086 061 049 048 032 033 027 030 035 062 0.78
TM-left 1.0 074 057 048 036 029 031 035 040 043 048
TM-right 049 0.51 046 041 037 036 032 039 056 075 1.0

A.8 Structure and Sequence Co-Design

Since the decoder of the protein autoencoder can predict amino acid types, LatentDiff also possesses
the capability to perform structure and sequence co-design, which is a key difference from other
protein generation methods. Specifically, we can use decoded sequences as the generated protein
sequences instead of predicting sequences from decoded structures using inverse folding methods.
The designability result is shown in Table 7. We can see that inverse folding predicted sequences have
better alignment with the generated structures than generated sequences. This is because conditionally
predicting sequences is easier than jointly generating both structures and sequences. However, even
using generated sequences, LatentDiff can achieve similar results with earlier protein generation
methods such as ProtDiff.

Table 7: Percentage of generated proteins with scTM score > 0.5. Results are shown within short
(50-70) and long (70-128) categories.

Method 50-70 70-128 50-128
ProtDiff (use inverse folding sequence) 171%  8.9% 11.8%
LatentDiff (use generated sequence) 147%  9.7% 14.1%

LatentDiff (use inverse folding sequence) 64.7% 82.8%  66.9%
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Figure 4: Distribution comparison between generated backbone structures and test set protein
backbones. (a) Edge distance between any two consecutive C, atoms along a protein chain. (b) Bond
angle formed by any three consecutive C', atoms along a protein chain. (c) Torsion angle formed by
any four consecutive C,, atoms along a protein chain.
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Figure 5: Distribution comparison between training data and generated samples in the latent space.
(a) Position of latent node in the x direction. (b) Edge distance between any two consecutive nodes in
the latent space. (c) First dimension of latent node embeddings.
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A.9 Structure Distribution Analysis

Besides showing the success of in silico tests, we illustrate the distributions of generated samples in
both the original protein space and the latent space. First, we show the edge distance, bond angle,
and torsion angle distributions of generated backbones and test set backbones. As shown in Figure 4,
the distributions of generated samples are similar to the test distributions. We further investigate
the distributions in the latent space. Specifically, we show the distributions of node positions, edge
distances, and node embeddings in the latent space. For simplicity, we only show the = coordinate of
the latent node position and the first dimension of latent node embeddings. As shown in Figure 5,
these distributions of generated latent samples almost recover the latent training data distributions.
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