
Under review as a conference paper at ICLR 2021

VISUAL IMITATION WITH REINFORCEMENT LEARN-
ING USING RECURRENT SIAMESE NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

It would be desirable for a reinforcement learning (RL)-based agent to learn be-
haviour by merely watching a demonstration. However, defining rewards that
facilitate this goal within the RL paradigm remains a challenge. Here we ad-
dress this problem with Siamese networks, trained to compute distances between
observed behaviours and an agent’s behaviours. We use a recurrent neural net-
work (RNN)-based comparator model to learn such distances in space and time be-
tween motion clips while training an RL policy to minimize this distance. Through
experimentation, we have also found that the inclusion of multi-task data and an
additional image encoding loss helps enforce temporal consistency and improve
policy learning. These two components appear to balance reward for matching
a specific instance of a behaviour versus that behaviour in general. Furthermore,
we focus here on a particularly challenging form of this problem where only a
single expert demonstration is provided for a given task. We demonstrate our
approach on simulated humanoid, dog and raptor agents in 2D and a 3D quadruped
and humanoid. In these environments, we show that our method outperforms the
state-of-the-art, Generative Adversarial Imitation from Observation (GAIfO) (i.e.
Generative Adversarial Imitation Learning (GAIL) without access to actions) and
Time-Contrastive Network (TCN).

1 INTRODUCTION

In nature, many intelligent beings (agents) can imitate their peers (experts) by watching them. In order
to learn from observation alone, the agent must compare its own behavior to the expert’s, mimicking
their movements (Blakemore & Decety, 2001). While this process seems to come as second nature to
humans and many animals, formulating a framework and metrics that can measure how different a
expert’s demonstration is from an agent’s reenactment in this setting is challenging. While robots
have access to their state information, humans and animals simply observe others performing tasks
relying only upon visual perceptions of demonstrations, creating a mental representation of the target
motion. In this work we ask: Can agents learn these representations in order to learn imitative policies
from a single demonstration?

One of the core problems of imitation learning is how to align a demonstration in space and time
with the agent’s own state. To address this, the imitation framework has to learn a distance function
between agent and expert. The distance function in our work makes use of positive and negative
examples, including types of adversarial examples, similar to GAIL (Ho & Ermon, 2016) and
GAIfO (Torabi et al., 2018b). These works require expert policies to generate large amount of
demonstration data and GAIL need action information as well. These works train a discriminator to
recognize in-distribution examples. In this work, we extend these techniques by learning distances
between motions, using noisy visual data without action information, and using the distance function
as reward signal to train RL policies. In Figure 1b an outline of our method for visual imitation
is given. As we show in the paper, this new formulation can be extended to assist in training the
distance function using multi-task data, which improves the model’s accuracy and enables its reuse on
different tasks. Additionally, while previous methods have focused on computing distances between
single states, we construct a cost function that takes into account the demonstration ordering as well
as the state using a recurrent Siamese network to learn smoother distances between motions.

1

Under review as a conference paper at ICLR 2021

(a) Losses for training the encoders/decoders (b) Reward generation for the agent

Figure 1: Overview of our method: We aim to learn a distance function (1a) and then use that distance
function as a reward function for RL (1b). At the current timestep, observations (o) of the reference
motion and the agent are encoded (e) and fed into LSTMs (leading to hidden states h). Fig. 1a shows
how the reward model is trained using both Siamese and AE losses. There are: VAE reconstruction
losses on static images (LV AEI), sequence-to-sequence AE losses (LRAES), one for the reference
and one for the agent (which we do not show in pink to simplify the figure). There is a Siamese loss
between encoded images (LSNI) and a Siamese loss that is computed between encoded states over
time (LSNS). Fig. 1b shows how the reward is calculated at every timestep. Reward for the agent at
every timestep consists of the distance between encoded images and encoded LSTM hidden states.

Our contribution, Visual Imitation with RL (VIRL), consists of proposing and exploring these forms
of recurrent Siamese networks as a way to address a critical problem in defining the reward structure
for imitation learning from video for deep RL agents. We accomplish this using simulated humanoid
robots inhabiting a physics simulation environment and for the challenging setting of imitation
learning from a single expert demonstration. Our approach enables us to train agents that can imitate
many types of behaviours that include walking, running and jumping. We perform experiments for
multiple simulated robots in both 2D and 3D, including recent Sim2Real quadruped robots and a
humanoid with 38 degrees of freedom (DoF), which is a particularly challenging problem domain.

2 PRELIMINARIES

Here we provide a very brief review of some fundamental methods that are related to the new approach
we present here. Reinforcement Learning (RL) is frequently formulated within the framework of
Markov decision process (MDP) where at every time step t, the world (including the agent) exists
in a state st ∈ S, where the agent is able to perform actions at ∈ A and where states and actions
are discrete. The action to take is determined according to a policy π(at|st) which results in
a new state st+1 ∈ S and reward rt = R(st, at, st+1) according to the transition probability
function T (rt, st+1|st, at). The policy is optimized to maximize the future discounted reward
Er0,...,rT

[∑T
t=0 γ

trt

]
, where T is the max time horizon, and γ is the discount factor, indicating the

planning horizon length. The formulation above generalizes to continuous states and actions, which
is the situation for the agents we consider in our work.

Imitation Learning is typically cast as the process of training a new policy to reproduce the behaviour
of some expert policy. Behavioral cloning is a fundamental method for imitation learning. Given an
expert policy πE possibly represented as a collection of trajectories τ = 〈(s0, a0), . . . , (sT , aT)〉 a
new policy π can be learned to match this trajectory using supervised learning and maximizing the
expectation EπE

[∑T
t=0 log π(at|st, θπ)

]
. While this simple method can work well, it often suffers

from distribution mismatch issues leading to compounding errors as the learned policy deviates
from the expert’s behaviour (Ross et al., 2011b). Inverse reinforcement learning avoids this issue by
extracting a reward function from observed optimal behaviour (Ng et al., 2000). In our approach, we
learn a distance function that allows an agent to compare an observed behavior to its own current
behavior to define its reward rt at a given time step. Our comparison is performed with respect
to a reference activity but the comparison network can be trained across a collection of different
behaviours. Further, we do not assume the example data to be optimal. See Appendix 7.2 for further
discussion of the connections of our work to inverse reinforcement learning.

2

Under review as a conference paper at ICLR 2021

VAEs are a popular approach for learning lower-dimensional representations of a distribution (Kingma
& Welling, 2014). A VAE consists of two parts, an encoder qφ, with parameters φ and a decoder
pψ with parameters ψ. The encoder maps inputs x, to a latent encoding z and in turn the decoder
transforms z back to the input space pψ(x||z). The model parameters for both φ and ψ are trained
jointly to maximize

LV AE(s, φ, ψ) = −DKL(qφ(z||x)||p(z)) + Eqφ(z||x)[log pψ(x||z)], (1)

where DKL is the Kullback-Leibler divergence, p(z) is a prior distribution over the latent space.
The encoder qφ, or inference model takes the form of a diagonal covariance multivariate Gaussian
distribution qφ = N (µφ(x), σ2(x)), where the mean, µφ(x) is typically given by a deep neural
network.

Sequence to sequence models can be used to learn the conditional probability of one sequence given
another p(y0, . . . , yT ′ |x0, . . . , xT), where x = x0, . . . , xT and y = y0, . . . , yT ′ are sequences. Here
we will use extensions of encoder-decoder structured, autoencoding recurrent neural networks which
learn a latent representation h that compresses the information in x0, . . . , xT . Our model for decoding
the sequence y can then be written as

p(y) = p(y0|h)
T∏
t=1

p(yt|{y0, . . . , yt−1},h). (2)

This method has been used for learning compressed representations for transfer learning (Zhu et al.,
2016) and 3D shape retrieval (Zhuang et al., 2015). In our case this type of autoencoding can help
regularize our model, which has a primary goal of computing distances between sequences using a
Siamese structured autoencoding RNN.

3 VISUAL IMITATION WITH REINFORCEMENT LEARNING

High-level Overview Our method is similar to other Imitation Learning frameworks like GAIfO
in that we train a system to give the agent a reward depending on how closely it is imitating the
expert. We interleave training between refining the reward generator with rollouts and using the
reward generator to train the policy and gather more rollouts. The reward generator consists of
several components and losses that are described in the following section but coarsely, observations
of both the expert and agent are encoded with VAEs and LSTMs, to be later decoded in inverse
order. Contrastive loss (”Siamese Network triplet loss”) is used to maximize similarity between
the encoding of similar frames/sequences and dissimilarity between incorrect frames and shuffled
sequences1(Hadsell et al., 2006). Once this system has been initialized, at every timestep a reward
for the agent’s policy is calculated as difference between the current encoded observation and also
the difference of the sequence so far between expert and agent. In the following section, we first
discuss how the encoder/decoder networks are trained, then how they generate reward for the agent,
and finally which data augmentation techniques we used to make the system more robust.

The Sequence Encoder/Decoder Networks Figure 1a shows an outline of the system. A single
convolutional network Conve is used to transform observations (images) at time t of the expert
demonstration oet to an encoding vector eet . After the sequence of observations was passed through
Conve there is an encoded sequence 〈ee0, . . . , eet 〉, this sequence is fed into the RNN LSTMe until
a final encoding is produced het . This same process is performed for a copy of the RNN LSTMa

producing hat for the agent oa. The final encoding of the expert is fed into a separate RNN LSTMê

which generates a series of decoded latent representations 〈eê0, . . . , eêt 〉 which are then decoded back
to images with a deconvolutional network Deconvê. The same applied to the agent with RNN
LSTMâ, latent representations 〈eâ0 , . . . , eât 〉, and deconvolutional network Deconvâ, respectively.

Loss Terms The encoding of a single observation of either agent or expert at a given timestep is
trained using the VAE loss LV AE from Eq.1. A full sequence of observations of either agent or
expert is encoded and then decoded back, and the LSTMs are trained with the loss LRAES from
Eq.2. We found these frame- and sequence-autoencoders to improve latent space conditioning. A

1which is different from existing methods like GAIfO in that we enforce similarity over sequences, not just
individual state transitions. This allows us to temporally align the demonstration with the agent.

3

Under review as a conference paper at ICLR 2021

frame-by-frame Siamese loss between eet of the expert and eat of the agent enforces individual frames
to be encoded similarly. This Siamese Network image loss LSNI is defined below in Eq.3. Lastly
and primarily, a Siamese loss between a full encoded sequence of the expert het and a sequence of the
agent hat forces not just individual frames but the representation of whole sequences to match up if
they are alike. This Siamese Network sequence loss LSNS is also defined in Eq.3 since it uses the
same formula, just expects a sequences instead of frames as input. The Siamese Network loss (both
for images and sequences) is defined as:

LSNX(oi, op, y;φ) = y∗||f(oi;φ)−f(op;φ)||+((1−y)∗(max(ρ−(||f(oi;φ)−f(on;φ)||), 0))),
(3)

where y ∈ [0, 1] is the indicator for positive/negative samples. When y = 1, the sample is positive
and the distance between current observation oi to positive sample op should be minimal. When
y = 0, the sample is negative and the distance between oi and negative example on should be
maximal. This loss is computed over batches of data that are half positive examples and half negative.
The margin ρ is used as an attractor or anchor to pull the negative example output away from oi
and push values towards a [0, 1] range. f(·) computes the output from the underlying network
(i.e. Conv or LSTM). The data used to train the Siamese network is a combination of observation
trajectories O = 〈o0, . . . , oT 〉 generated from simulating the agent in the environment and the expert
demonstration. For our recurrent model the observations Op,On,Oi are sequences. This combination
of image-based and sequence-based losses assists in compressing the representation while ensuring
intermediate representations remain informative. The combined loss to train the model on a positive
pair of sequences (y = 1) is:

LV IRL(Oi,Op, y;φ, ψ, ω, ρ) =λ1LSNS(Oi, Op, y;φ, ω)︸ ︷︷ ︸
Contrastive sequence loss

+λ2

[1
T

T∑
t=0

LSNI(Oi,t,Op,t, y;φ)
]

︸ ︷︷ ︸
Contrastive frame loss

+

λ3[LRAES(Oi;φ, ψ, ω, ρ) + LRAES(Op;φ, ψ, ω, ρ)]︸ ︷︷ ︸
Recurrent autoencoder loss (full sequence)

+

λ4

[1
T

T∑
t=0

[
LV AEI(Oi,t;φ, ψ) + LV AEI(Op,t;φ, ψ)

]]
.︸ ︷︷ ︸

Variational autoencoder loss (individual frames)

(4)

Where the relative weights of the different terms are λ1:4 = {0.7, 0.1, 0.1, 0.1}, the image encoder
convnet is φ, the image decoder ψ, the recurrent encoder ω, and the recurrent decoder ρ.

Reward Calculation The model trained using the method described above is used to calculate the
distance between two sequences of observations seen thus far up to time t as d(Oe,Oa;φ, ω) =
||ω(oe0:t;φ)− ω(oa0:t;φ)|| and the reward as r(oe0:t, oa0:t) = −d(O

e,Oa;φ, ω). This means at every
timestep, the reward is computed as rt = ||het − hat || + ||eet − eat ||. This can be expanded to
rt = ||LSTMe(CONVe(oe0:t))−LSTMa(CONVa(oa0:t))||+ ||Conve(oet)−Conva(oat)|| and is shown
in Figure 1b. During RL training, we compute a distance given the sequence observed so far in the
episode. This method allows us to train a distance function in the observations space where all we
need to provide is labels that denote if two observations or sequences are similar or not.

Training the Model Details of the algorithm used to train the distance metric and policy are outlined
in Algorithm 1. We consider a variation on the typical RL environment that produces 3 different
outputs, two for the agent and 1 for the demonstration and no reward. The first is the internal robot
pose, which we shall refer to as the state st. The second and third representation is the agent’s
rendered view, or observation oat and the demonstration oet , shown in Figure 1b. The rendered views
are used with the distance metric to compute the similarity between the agent and the demonstration.
We learn the policy of our agents using RL and the Trust-Region Policy Optimization (TRPO)
algorithm (Schulman et al., 2015) with a reward signal that is learned as discussed below.

Unsupervised Data labelling To construct positive and negative pairs for training, we make use of
time information in a similar fashion to (Sermanet et al., 2017) and adversarial information similar
to GAIL. Timing information is used where observations at similar times in the same sequence are
often correlated, and observations at different times will likely have little similarity. We compute

4

Under review as a conference paper at ICLR 2021

these sequence pairs by altering one sequence and comparing this modified version to its original.
Positive pairs are created by adding Gaussian noise with σ = 0.05 to the images in the sequence or
swapping or duplicating random frames of the sequences. Negative pairs are created by shuffling,
cropping or reversing one sequence. Additionally, we include adversarial pairs where positive pairs
come from the same distribution, for example, two motions for the agent or two from the expert.
Negative pairs then include one from the expert and one from the agent. More details are available in
the supplementary document.

Algorithm 1 Learning Algorithm
1: Initialize parameters θπ , θd, D ← {}
2: while not done do
3: for i ∈ {0, . . . , N} do
4: {st, oet , oat } ← env.reset(), τ i ← {}
5: for t ∈ {0, . . . , T} do
6: at ← π(·|st, θπ)
7: {st+1, oet+1, oat+1} ← env.step(at)
8: τ it ← {st, oet , oat , at}
9: {st, oet , oat } ← {st+1, oet+1, oat+1}

10: end for
11: ri0:t ← −d(oe0:t+1, oa0:t+1|θd)
12: end for
13: D ← D

⋃
{τ0, . . . , τN , }

14: Update d(·) parameters θd using D
15: Update θπ with {{τ0, r0}, . . . , {τN , rN}}
16: end while

Data Augmentation We apply several data
augmentation methods to produce additional
data for training the distance metric. Using
methods analogous to the cropping and warping
methods popular in computer vision (He et al.,
2015) we randomly crop sequences and ran-
domly warp the demonstration timing. The crop-
ping is performed by both initializing the agent
to random poses from the demonstration motion
and terminating episodes when the agent’s head,
hands or torso contact the ground. As the agent
improves, the average length of each episode
increases, and so to will the average length of
the cropped window. The motion warping is
done by replaying the demonstration motion at
different speeds. Two additional methods influ-
ence the data distribution. The first method is
Reference State Initialization (RSI) (Peng et al.,
2018a), where the initial state of the agent and expert is randomly selected from the expert demon-
stration. With this property, the environment can also be thought of as a form of memory replay.
The environment allows the agent to go back to random points in the demonstration as if replaying
a remembered demonstration. The second is Early Episode Sequence Priority (EESP) where the
probability a sequence x is cropped ending at i is p(i) = len(x)−i∑

i , increasing the likelihood of starting
earlier in the episode.

4 RELATED WORK

For the purposes of this work, we group existing imitation learning methods based on the type and
quantity of data needed to learn. In the first tier, there is GAIL (Ho & Ermon, 2016) and related
methods, which require access to expert policies, states and actions and require large quantities of
expert data. In the second tier, the need for expert actions is relaxed in methods like GAIfO (Torabi
et al., 2018b). In the third tier, the need for ground truth states is relaxed in favor of images which
are easier to obtain in methods like T-REX and D-REX(Brown et al., 2019; 2020). These methods
still require many examples of data from a policy trained on the agent in the same simulation with
the same dynamics. Lastly, in the fourth tier, the need for multiple demonstrations and matching
dynamics is relaxed in methods like TCN (Sermanet et al., 2018) and ours.

Methods that require access to expert states and actions. Generative Adversarial Imitation Learn-
ing or GAIL (Ho & Ermon, 2016), uses the well known Generative Adversarial Network (GAN)
framework applied to learning an RL policy (Goodfellow et al., 2014). In GAIL, the GAN’s discrimi-
nator is trained with positive examples from expert trajectories and negative examples from the current
policy. However, using a discriminator is only one possible way of judging the distance between
expert and agent and searching for good distance functions between states is an active research
area (Abbeel & Ng, 2004; Argall et al., 2009; Finn et al., 2016; Brown et al., 2019). Given some
vector of features, the goal of distance-based imitation learning is to find an optimal transformation of
these features, such that in this transformed space, there exists a more meaningful distance between
expert demonstrations and agent trajectories. Previous work has explored the area of state-based
distance functions, but most rely on the availability of an expert policy to sample data (Ho & Ermon,
2016; Merel et al., 2017). In the section hereafter we demonstrate how VIRL learns a more stable
distance-based reward over sequences of images (as opposed to states) and without access to actions
or expert policies.

5

Under review as a conference paper at ICLR 2021

Methods that don’t require access to actions. For learning from demonstrations (LfD) problems,
the goal is to replicate the behaviour of an expert πE . GAIfO (Torabi et al., 2018b) has been
proposed as extension of GAIL that does not require actions. This and other recent works in this area
require access to an expert policy to sample more states (Sun et al., 2019; Yang et al., 2019) . By
comparison, our method only needs a single fixed demonstration. Other recent work uses behavioural
cloning (BC) to learn an inverse dynamics model to estimate the actions used via maximum-likelihood
estimation (Torabi et al., 2018a). Still, BC often needs many expert examples and tends to suffer
from state distribution mismatch issues between the expert policy and student (Ross et al., 2011a).

Additional works learn implicit models of distance (Yu et al., 2018; Finn et al., 2017; Sermanet
et al., 2017; Merel et al., 2017; Edwards et al., 2019; Sharma et al., 2019) they require large
amounts of demonstration data and none of these explicitly learn a sequential model considering the
demonstration timing. The work in (Wang et al., 2017; Li et al., 2017; Peng et al., 2018b) includes a
more robust GAIL framework along with a new model to encode motions for few-shot imitation but
they need access to an expert policy to sample data from. In this work, we train recurrent Siamese
networks (Chopra et al., 2005) to learn more meaningful distances between videos. Other work
uses state-only demonstration ranking to out-perform the demonstration data but requires many
demonstrations and ranking information (Brown et al., 2019; 2020). We show results on more
complex 3D tasks and additionally model distance in time, i.e. due to the embedding of the full
sequence, our model can compute meaningful distances between agent and demonstration even if
they are out of sync.

Methods that work on images instead of states Some works like Sermanet et al. (2017); Finn et al.
(2017); Liu et al. (2017); Dwibedi et al. (2018), use image-based inputs instead of states but require
many demonstrations. Further, these models only address spacial alignment (i.e. matching joint
positions/orientations) but not temporal alignment (i.e. getting the sequence of motion correct rather
than just the individual frames) between expert demonstration and agent motion like our recurrent
sequence model does. Other works that perform imitation from only image-based information
like (Pathak et al., 2018) do so between goal states.

Methods that require few visual observations and allow for a different source environment
Time-Contrastive Networks (TCNs) (Sermanet et al., 2018) were proposed as a way to use a metric
learning loss to embed simultaneous viewpoints of the same object. They use TCN embeddings as
features in the system state which are provided to a reinforcement learning algorithm, specifically,
PILQR (Chebotar et al., 2017) which combines model-based learning, linear time varying dynamics
and model-free corrections. In contrast, our Siamese network-based approach is used to learn the
reward for an arbitrary subsequent RL algorithm. Our method does not rely on multiple views and we
use an RNN-based autoencoding approach to regularize the distance computations used for rewards
generated by our models.

In summary, all existing methods either (a) require ground truth states and actions, (b) require access
to states as opposed to images, (c) require large amounts of training data or require the expert to be
trained in the same environment under the same dynamics, or (d) require the expert motion to be
learned from spacial alignment alone, as opposed to spatiotemporal alignment. Our method requires
none of these and therefore aims to provide a more generic solution.

5 RESULTS AND ANALYSIS

We use a collection of different simulation environments to validate VIRL’s ability to train imitative
agents. In these simulated robotics environment, the agent is learning to imitate a given reference
demonstration. Each of these simulation environment provides a hard-coded reward function based
on the robot’s pose that is used to evaluate the policy quality independently. The demonstration M
the agent is learning to imitate is produced from a clip of mocap data. The mocap data is used to
animate, kinematically, a second robot in the simulation. Frames from the simulation are captured
and used as video input to train the distance metric. The images captured from the simulation are
converted to grey-scale with 48× 48 pixels. The policy instead received the state data, often as link
distances and velocities relative to the robot’s centre of mass (COM). These simulation environments
are new and have all been updated to take motion capture data and produce view video data that
can be used for training RL agents or generating data for computer vision tasks. The environment

6

Under review as a conference paper at ICLR 2021

includes challenging and dynamic tasks for humanoid, dog and raptor robots. Some example tasks
are imitating running, jumping, trotting, and walking, shown in Figure 2 and Figure 3.

Figure 2: Frames from the humanoid2d, dog2d and
raptor2d environments in our experiments.

2D Video Imitation Results Our first experiments
evaluate the method’s ability to learn a complex
cyclic motion for a simulated robots given a single
motion demonstration, similar to (Peng & van de
Panne, 2017), but instead using video. For each
of these simulated robots VIRL is able to learn a
robust gate even though it is only given noisy partial
observations of a demonstration. Results for these
environments can be found in Figure 2 (humanoid2d) and in Figure ?? (dog2d and raptor2d).

3D Robot Video Imitation We train imitation policies from videos over a number of environments
including two quadrupedal robots simulators used for Sim2Real research, the Laikago (Peng et al.,
2020) and Pupper (Kau et al.). In these two quadruped simulators the environment is altered to
produce additional video from a recorded demonstration of the robot performing a task. Additionally,
we use environments with a simulated humanoid robot, the agent is learning to imitate a given
reference motion of a walk, run, jump or zombie motion. A single motion demonstration is provided
by the simulation environment as a cyclic motion. During learning, we can include additional data
from all other tasks for the walking task this would be: walking-dynamic-speed, running, jogging,
front-flips, back-flips, dancing, jumping, punching and kicking) that are only used to train the distance
metric. We also include data from a modified version of the task that has a randomly generated
speed modifier ω ∈ [0.5, 2.0] walking-dynamic-speed, which warps the demonstration timing. This
additional data is used to provide a richer understanding of distances in space and time to the distance
metric. The method is capable of learning policies that produce similar behaviour to the expert across
a diverse set of tasks. We show example trajectories from the learned policies in Figure 3 and in the
supplemental Video. It takes 5− 7 days to train each policy in these results on a 16 core machine
with an Nvidia GTX1080 GPU.

Figure 3: Rasterized frames of the agent’s motion after
training on humanoid3d walking and running. Addition-
ally, a zombie walk and jumping policy can be found on
the project website: https://sites.google.com/view/virl1.
Also see Appendix Fig. 7.

Algorithm Analysis and Comparison In Fig-
ure 4a we show an evaluation of the learning ca-
pabilities and improvements of VIRL compared
with two other methods that learn a distance
function in state space, GAIfO (Torabi et al.,
2018b) and a VAE trained to encode agent and
reference observations and compute distances
between those encodings, similar to Nair et al.
(2018) and TCNs. We find that the VAE alone
does not appear to model distances between
states in a way that helps with RL, possibly
due to the decoding complexity. Similarly, the
GAIfO baseline produces very jerky motion or stands still, both of which are contained in the imita-
tion distribution. Our full VIRL method considers the temporal structure of the data, learns faster and
produces higher value policies.

In Figure 4b we compare the importance of adding the spatial VAE ||eat − ebt ||2 and temporal LSTM
||hat −hbt ||2 components of VIRL. Using the recurrent representation alone allows learning to progress
quickly but can lead to difficulties informing the policy of how to best match the desired example.
On the other hand, using only the encoding between single frames as is done with TCNs slows
learning due to limited reward when the agent quickly becomes out-of-sync with the demonstration
behaviour. We achieved the best results by combining the representations from these two models.
This is shown for a completely different agent type (a 2d walking dog) and across many humanoid
tasks in Figure 4(c-g). The use of multi-task data is not necessary but provides an improvement and
was only used for the Walking task. Note that we experimented with using visual features as the state
input for the policy as well; however, this resulted in poor policy quality.

Ablation Analysis We conduct ablation studies for learning policies for 3D humanoid control in Fig-
ure 5a and 5b. We compare the effects of data augmentation methods, network models and the use of
additional data from other tasks (24 additional tasks like back-flips, see appendix 7.4). We compared
using different length sequences for training, shorter (where the probability of the length decays

7

https://sites.google.com/view/virl1
https://sites.google.com/view/virl1

Under review as a conference paper at ICLR 2021

VIRL (ours)

GAILfO
VAE

(a) humanoid2d walk

VIRL (ours)

TCN
VIRL (LSTM)

(b) humanoid2d walk

TCN
VIRL

GAIfO

(c) dog2d

TCN
VIRL

GAIfO

(d) raptor2d

TCN
VIRL

(e) Walking

TCN
VIRL

(f) ZombieWalk

TCN
VIRL

(g) Running

TCN
VIRL

(h) Jumping

Figure 4: (a) Comparisons between VIRL, a simple VAE and GAIfO for the humanoid walking task.
(b) Comparing our model with both an image VAE and and LSTM autoencoder (VIRL) with a model
only having the LSTM autoencoder, versus a TCN. (c) Comparisons of VIRL with a TCN. In these
plots, the large solid lines are the average performance of a collection of policy training simulations.

(a) Walking Ablations

max sequence length
rand sequence length
shorter sequence length (EESP)
(EESP) + pretrain
(EESP) + multi-task data
(EESP) + multi-task data + AE/VAE (VIRL)

(b) Distance Metrics

No RAES
VIRL

(c) ZombieWalk, LSTM

VIRL
VIRL+MTD

(d) Running, MultiTask

Figure 5: (a) Ablation analysis of VIRL on the Walking Task showing the mean reward over of the number of
simulated actions. The legend is the same as (b) where we examine the impact on our loss under the different
distance metrics resulting from the ablation analysis. We find that including multi-task data (only available for
the humanoid3D) and both the VAE and recurrent AE losses provide the most performant models. (c) Ablating
the recurrent autoencoder from VIRL dramatically impairs the ability to learn how to walk like a Zombie. (d)
The use of multi-task training data helps learn better policies for running (away from Zombies if desired).

linearly), uniform random and max length available. For these more complex and challenging three
dimensional humanoid (humanoid3d) control problems, the data augmentation methods, including
EESP, increases average policy quality marginally. The use of multitask data Figure 5d and the
additional recurrent sequence autoencoder (RSAE) greatly improves the methods ability to learn
as observed in Figure 5c. As one can observe, our method performs better in this setting. Further
analysis is available in the Appendix including additional comparison with TCNs in Figure 11(a-b)
and using the 2D Raptor agent Figure 4d.

Figure 6: Pupper and Laikago Envs.

Sim2Real for Quadreped Robots We use VIRL to
train policies for two simulated quadrapeds in Fig-
ure 6, that have been used for Sim2Real transfer. With
these trained policies it is possible to transfer the
VIRL policies trained from a single demonstration, to
a real robot. The resultsing behaviours are availble
at: https://sites.google.com/view/virl1. We find that the Laikago environemnt is particularaly chal-
lenging to learn; however, we are able to learn good policies on the pupper in a day.

6 DISCUSSION AND CONCLUSION

In this work, we have created a new method for learning imitative policies from a single demonstration.
The method uses a Siamese recurrent network to learn a distance function in both space and time.
This distance function is trained on video data where the true state of the agent is noisily and partially
observed. We use this to learn a reward function for training an RL policy. Using data from other
motion styles and regularization terms, VIRL produces policies that demonstrate similar behaviour to
the demonstration.

8

https://sites.google.com/view/virl1

Under review as a conference paper at ICLR 2021

We believe VIRL will benefit from a more extensive collection of multi-task data and increased
variation of each task. Additionally, if the distance metric confidence is available, this information
could be used to reduce variance and overconfidence during policy optimization. We also believe
that it is likely that learning a reward function while training adds additional variance to the policy
gradient. This variance may indicate that the bias of off-policy methods could be preferred over the
added variance of on-policy methods used here. Another approach may be to use partially observable
RL that can learn a better value function model given a changing RNN-based reward function.
Training the distance metric could benefit from additional regularization, such as constraining the
kl-divergence between updates to reduce variance. Learning a sequence-based policy as well, given
that the rewards are now not dependent on a single state observation is another area for future research
that could improve performance.

We have compared our method to GAIfO, but we found GAIfO has limited temporal consistency.
GAIfO led to learning jerky and overactive policies. The use of a recurrent discriminator for GAIfO
may mitigate some of these issues and is left for future work. It is challenging to produce results
better than the carefully manually crafted reward functions used by the RL simulation environments
that include motion phase information in the observations (Peng et al., 2018a; 2017). However, we
have shown that our method can compute distances in space and time and has faster initial learning.
A combination of starting with our method and following with a manually crafted reward function, if
true state information is available, could potentially lead to faster learning of high-quality policies.
Still, as environments become increasingly more realistic and grow in complexity, we will need more
robust methods to describe the desired behaviour we want from the agent. One might expect that the
distance metric should be trained early and fast so that it quickly understands the difference between
a good and bad demonstration. However, we have found that in this setting, learning too quickly
can confuse the agent, as rewards can change, which can cause the agent to diverge off toward an
unrecoverable policy space. In this setting, slower is better, as the distance metric may not yet be
accurate. However, it may be locally or relatively reasonable, which is enough to learn a good policy.
As learning continues, these two optimizations can converge together.

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the Twenty-first International Conference on Machine Learning, ICML ’04, pp. 1–,
New York, NY, USA, 2004. ACM. ISBN 1-58113-838-5. doi: 10.1145/1015330.1015430. URL
http://doi.acm.org/10.1145/1015330.1015430.

Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and Autonomous Systems, 57(5):469 – 483, 2009. ISSN 0921-8890.
doi: https://doi.org/10.1016/j.robot.2008.10.024. URL http://www.sciencedirect.com/
science/article/pii/S0921889008001772.

Sarah-Jayne Blakemore and Jean Decety. From the perception of action to the understanding of
intention. Nature reviews neuroscience, 2(8):561–567, 2001.

Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
Conference on Machine Learning, 2019.

Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning via
automatically-ranked demonstrations. In Conference on Robot Learning, pp. 330–359, 2020.

Yevgen Chebotar, Karol Hausman, Marvin Zhang, Gaurav Sukhatme, Stefan Schaal, and Sergey
Levine. Combining model-based and model-free updates for trajectory-centric reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 703–711, 2017.

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively, with
application to face verification. In Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, volume 1, pp. 539–546. IEEE, 2005.

D. Dwibedi, J. Tompson, C. Lynch, and P. Sermanet. Learning Actionable Representations from
Visual Observations. ArXiv e-prints, August 2018.

9

http://doi.acm.org/10.1145/1015330.1015430
http://www.sciencedirect.com/science/article/pii/S0921889008001772
http://www.sciencedirect.com/science/article/pii/S0921889008001772

Under review as a conference paper at ICLR 2021

Ashley Edwards, Himanshu Sahni, Yannick Schroecker, and Charles Isbell. Imitating latent policies
from observation. In International Conference on Machine Learning, pp. 1755–1763, 2019.

Chelsea Finn, Tianhe Yu, Justin Fu, Pieter Abbeel, and Sergey Levine. Generalizing skills with semi-
supervised reinforcement learning. CoRR, abs/1612.00429, 2016. URL http://arxiv.org/
abs/1612.00429.

Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual imitation
learning via meta-learning. CoRR, abs/1709.04905, 2017. URL http://arxiv.org/abs/
1709.04905.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (eds.), Advances in Neural
Information Processing Systems 27, pp. 2672–2680. Curran Associates, Inc., 2014. URL
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pp. 1735–1742. IEEE, 2006.

K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks
for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9):
1904–1916, Sept 2015. ISSN 0162-8828. doi: 10.1109/TPAMI.2015.2389824.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 29, pp. 4565–4573. Curran Associates, Inc.,
2016. URL http://papers.nips.cc/paper/6391-generative-adversarial-
imitation-learning.pdf.

Nathan Kau, Aaron Schultz, Tarun Punnoose, Laura Lee, and Zac Manchester. Woofer and pupper:
Low-cost open-source quadrupeds for research and education.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. International Conference
onLearning Representations (ICLR), 2014.

Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from visual
demonstrations. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 30, pp. 3812–3822.
Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/6971-infogail-
interpretable-imitation-learning-from-visual-demonstrations.pdf.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. CoRR,
abs/1509.02971, 2015. URL http://arxiv.org/abs/1509.02971.

Yuxuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from observation:
Learning to imitate behaviors from raw video via context translation. CoRR, abs/1707.03374, 2017.
URL http://arxiv.org/abs/1707.03374.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg Wayne, and
Nicolas Heess. Learning human behaviors from motion capture by adversarial imitation. CoRR,
abs/1707.02201, 2017. URL http://arxiv.org/abs/1707.02201.

Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. CoRR, abs/1807.04742, 2018. URL http://
arxiv.org/abs/1807.04742.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Icml,
volume 1, pp. 2, 2000.

10

http://arxiv.org/abs/1612.00429
http://arxiv.org/abs/1612.00429
http://arxiv.org/abs/1709.04905
http://arxiv.org/abs/1709.04905
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/6391-generative-adversarial-imitation-learning.pdf
http://papers.nips.cc/paper/6391-generative-adversarial-imitation-learning.pdf
http://papers.nips.cc/paper/6971-infogail-interpretable-imitation-learning-from-visual-demonstrations.pdf
http://papers.nips.cc/paper/6971-infogail-interpretable-imitation-learning-from-visual-demonstrations.pdf
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1707.03374
http://arxiv.org/abs/1707.02201
http://arxiv.org/abs/1807.04742
http://arxiv.org/abs/1807.04742

Under review as a conference paper at ICLR 2021

Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu, Evan
Shelhamer, Jitendra Malik, Alexei A. Efros, and Trevor Darrell. Zero-shot visual imitation. CoRR,
abs/1804.08606, 2018. URL http://arxiv.org/abs/1804.08606.

Xue Bin Peng and Michiel van de Panne. Learning locomotion skills using deeprl: Does the choice
of action space matter? In Proceedings of the ACM SIGGRAPH / Eurographics Symposium
on Computer Animation, SCA ’17, pp. 12:1–12:13, New York, NY, USA, 2017. ACM. ISBN
978-1-4503-5091-4. doi: 10.1145/3099564.3099567. URL http://doi.acm.org/10.1145/
3099564.3099567.

Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne. Deeploco: Dynamic
locomotion skills using hierarchical deep reinforcement learning. ACM Trans. Graph., 36(4):
41:1–41:13, July 2017. ISSN 0730-0301. doi: 10.1145/3072959.3073602. URL http://
doi.acm.org/10.1145/3072959.3073602.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic: Example-
guided deep reinforcement learning of physics-based character skills. ACM Trans. Graph., 37
(4):143:1–143:14, July 2018a. ISSN 0730-0301. doi: 10.1145/3197517.3201311. URL http:
//doi.acm.org/10.1145/3197517.3201311.

Xue Bin Peng, Angjoo Kanazawa, Sam Toyer, Pieter Abbeel, and Sergey Levine. Variational
discriminator bottleneck: Improving imitation learning, inverse rl, and gans by constraining
information flow. arXiv preprint arXiv:1810.00821, 2018b.

Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Edward Lee, Jie Tan, and Sergey Levine.
Learning agile robotic locomotion skills by imitating animals. In Robotics: Science and Systems,
07 2020. doi: 10.15607/RSS.2020.XVI.064.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Geoffrey Gordon, David Dunson, and Miroslav
Dudk (eds.), Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, volume 15 of Proceedings of Machine Learning Research, pp. 627–635, Fort Laud-
erdale, FL, USA, 11–13 Apr 2011a. PMLR. URL http://proceedings.mlr.press/v15/
ross11a.html.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635, 2011b.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization
Algorithms. ArXiv e-prints, July 2017.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897, 2015.

Pierre Sermanet, Corey Lynch, Jasmine Hsu, and Sergey Levine. Time-contrastive networks: Self-
supervised learning from multi-view observation. CoRR, abs/1704.06888, 2017. URL http:
//arxiv.org/abs/1704.06888.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video. In
2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1134–1141. IEEE,
2018.

Pratyusha Sharma, Deepak Pathak, and Abhinav Gupta. Third-person visual imitation
learning via decoupled hierarchical controller. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. dÁlché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Informa-
tion Processing Systems 32, pp. 2597–2607. Curran Associates, Inc., 2019. URL
http://papers.nips.cc/paper/8528-third-person-visual-imitation-
learning-via-decoupled-hierarchical-controller.pdf.

11

http://arxiv.org/abs/1804.08606
http://doi.acm.org/10.1145/3099564.3099567
http://doi.acm.org/10.1145/3099564.3099567
http://doi.acm.org/10.1145/3072959.3073602
http://doi.acm.org/10.1145/3072959.3073602
http://doi.acm.org/10.1145/3197517.3201311
http://doi.acm.org/10.1145/3197517.3201311
http://proceedings.mlr.press/v15/ross11a.html
http://proceedings.mlr.press/v15/ross11a.html
http://arxiv.org/abs/1704.06888
http://arxiv.org/abs/1704.06888
http://papers.nips.cc/paper/8528-third-person-visual-imitation-learning-via-decoupled-hierarchical-controller.pdf
http://papers.nips.cc/paper/8528-third-person-visual-imitation-learning-via-decoupled-hierarchical-controller.pdf

Under review as a conference paper at ICLR 2021

Wen Sun, Anirudh Vemula, Byron Boots, and Drew Bagnell. Provably efficient imita-
tion learning from observation alone. In ICML, pp. 6036–6045, 2019. URL http://
proceedings.mlr.press/v97/sun19b.html.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral Cloning from Observation. (July), 2018a.
URL http://arxiv.org/abs/1805.01954.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation.
arXiv preprint arXiv:1807.06158, 2018b.

Hado Van Hasselt. Reinforcement learning in continuous state and action spaces. In Reinforcement
Learning, pp. 207–251. Springer, 2012.

Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and Nicolas Heess.
Robust imitation of diverse behaviors. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing
Systems 30, pp. 5320–5329. Curran Associates, Inc., 2017. URL http://papers.nips.cc/
paper/7116-robust-imitation-of-diverse-behaviors.pdf.

Chao Yang, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Huaping Liu, Junzhou Huang, and Chuang
Gan. Imitation learning from observations by minimizing inverse dynamics disagreement. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. dÁlché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems 32, pp. 239–249. Curran Associates, Inc.,
2019. URL http://papers.nips.cc/paper/8317-imitation-learning-from-
observations-by-minimizing-inverse-dynamics-disagreement.pdf.

Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter Abbeel, and Sergey
Levine. One-shot imitation from observing humans via domain-adaptive meta-learning. CoRR,
abs/1802.01557, 2018. URL http://arxiv.org/abs/1802.01557.

Zhuotun Zhu, Xinggang Wang, Song Bai, Cong Yao, and Xiang Bai. Deep learning representation
using autoencoder for 3d shape retrieval. Neurocomputing, 204:41–50, 2016.

Fuzhen Zhuang, Xiaohu Cheng, Ping Luo, Sinno Jialin Pan, and Qing He. Supervised representa-
tion learning: Transfer learning with deep autoencoders. In Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse
reinforcement learning. In Proceedings of the 23rd National Conference on Artificial Intelligence
- Volume 3, AAAI’08, pp. 1433–1438. AAAI Press, 2008. ISBN 978-1-57735-368-3. URL
http://dl.acm.org/citation.cfm?id=1620270.1620297.

12

http://proceedings.mlr.press/v97/sun19b.html
http://proceedings.mlr.press/v97/sun19b.html
http://arxiv.org/abs/1805.01954
http://papers.nips.cc/paper/7116-robust-imitation-of-diverse-behaviors.pdf
http://papers.nips.cc/paper/7116-robust-imitation-of-diverse-behaviors.pdf
http://papers.nips.cc/paper/8317-imitation-learning-from-observations-by-minimizing-inverse-dynamics-disagreement.pdf
http://papers.nips.cc/paper/8317-imitation-learning-from-observations-by-minimizing-inverse-dynamics-disagreement.pdf
http://arxiv.org/abs/1802.01557
http://dl.acm.org/citation.cfm?id=1620270.1620297

Under review as a conference paper at ICLR 2021

7 APPENDIX

This section includes additional details related to VIRL.

7.1 IMITATION LEARNING

Imitation learning is the process of training a new policy to reproduce the behaviour of some expert
policy. BC is a fundamental method for imitation learning. Given an expert policy πE possibly
represented as a collection of trajectories τ < (s0, a0), . . . , (sT , aT) > a new policy π can be learned
to match these trajectory using supervised learning.

max
θ

EπE [
T∑
t=0

log π(at|st, θπ)] (5)

While this simple method can work well, it often suffers from distribution mismatch issues leading to
compounding errors as the learned policy deviates from the expert’s behaviour during test time.

7.2 INVERSE REINFORCEMENT LEARNING

Similar to BC, Inverse Reinforcement Learning (inverse reinforcement learning (IRL)) also learns to
replicate some desired, potentially expert, behaviour. However, IRL uses the RL environment to learn
a reward function that learns to tell the difference between the agent’s behaviour and the example
data. Here we describe maximal entropy IRL (Ziebart et al., 2008). Given an expert trajectory
τ < (s0, a0), . . . , (sT , aT) > a policy π can be trained to produce similar trajectories by discovering
a distance metric between the expert trajectory and trajectories produced by the policy π.

max
c∈C

min
π

(Eπ[c(s, a)]−H(π))− EπE [c(s, a)] (6)

where c is some learned cost function and H(π) is a causal entropy term. πE is the expert policy that
is represented by a collection of trajectories. IRL is searching for a cost function c that is low for the
expert πE and high for other policies. Then, a policy can be optimized by maximizing the reward
function rt = −c(st, at).

7.3 PHASE-BASED IMITATION

If we consider a phase-based reward function r = R(s, a, φ) where φ indexes the time in the
demonstration and s and a is the agent state and action. As the demonstration timing φ, often
controlled by the environment, and agent diverge, the agent receives less reward, even if it is visiting
states that exist elsewhere in the demonstration. The issue of determining if an agent is displaying
out-of-phase behaviour can be understood as trying to find the φ that would result in the highest
reward φ′ = maxφR(s, a, φ) and the distance φ′ − φ is an indicator of how far away in time or
out-of-phase the agent is. This phase-independent form can be seen as a form of reward shaping.
However, this naive description ignores the ordered property of demonstrations. What is needed
is a metric that gives reward for behaviour that is in the proper order, independent of phase. This
ordering motivates the creation of a recurrent distance metric that is designed to understand the
context between two motions. For example, does this motion look like a walk, not, does this motion
look precisely like that walk.

To encourage the agent to match any part of the expert behaviour, VIRL can be understood as
decomposing the distance into two distances and learning Dynamic timme warping, by adding a type
of temporal distance shown in green. To compute a time-independent distance we can find the state
in the expert sequence that is closest to the agent’s current state argmin t̂∈T d(oet̂ , o

a
t) and use it in

the following distance measure

dT (oe, oa, t̂, t) = . . .+ d(oe
t̂−1, o

a
t−1) + d(oe

t̂
, oat) + d(oe

t̂+1
, oat+1) + . . . (7)

Using only a single state time-alignment may lead to the agent fixating on matching a particular
state in the expert demonstration. To avoid this alignment issue, the neighbouring states are added
to enforce sequential structure in the distance computation. This framework allows the agent to be
rewarded for exhibiting behaviour that matches any part of the expert’s demonstration. The better it

13

Under review as a conference paper at ICLR 2021

Figure 7: Rasterized frames of the imitation motions on humanoid3d walking (row 1), running (row 2), zombie
(row 3) and jumping(row 4). https://sites.google.com/view/virl1

Env

Active Data Collection

at ￩ 𝜋(st)

(ot, ot
e, st)

Siamese Net
Train RL

Sampled
transitions

{st, at}

1. {st, at, rt}
2. Update 𝜋(st)
3. Update V(st)

Sampled
sequences

{<o0, … ot>,
<o0

e, … ot
e>}

1. r ￩ -d(o, oe)
2. op ￩ createPositive(o)
3. on ￩ createNegative(o)
4. Update with {o, op, on}

<r0, … rt> 𝜋(st)

Figure 8: The flow of control for the learning system.

learns to match parts of the expert demonstration, the more reward it is given. The previous spatial
distance will then help the agent learn to sync up the timing with the demonstration. Next, we
describe how both distances can be learned together.

7.4 DATA

We are using the mocap data from the CMU Graphics Lab Motion Capture Database from 2002
(http://mocap.cs.cmu.edu/). To be thorough we provide the process at length. This data has been
preprocessed to map the mocap markers to a human skeleton. Each recording contains the positions
and orientations of the different joints of a human skeleton and can therefore directly be used to
animate a humanoid mesh. This is a standard approach that has been widely used in prior literature
like [Gleicher 1998, Rosales 2000, Lee 2002]. To be precise: at each mocap frame, the joints of
a humanoid mesh model are set to the positions and orientations of their respective values in the
recording. If a full humanoid mesh is not available, it is possible to add capsule mesh primitives
between each recorded joint. This 3D mesh model is then rendered to an image through a 3rd person
camera that follows the center of mass of the mesh at a fixed distance.

For the humanoid experiments, imitation data for 24 other tasks was used to help condition the
distance metric learning process. These include motion clips for running, backflips, frontflips,
dancing, punching, kicking and jumping along with the desired motion. The improvement due to
these additional unsupervised training data generation mechanisms are shown in Figure 5a.

7.5 TRAINING DETAILS

The learning simulations are trained using graphics processing unit (GPU)s. The simulation is not
only simulating the interaction physics of the world but also rendering the simulation scene to capture
video observations. On average, it takes 3 days to execute a single training simulation. The process of
rendering and copying the images from the GPU is one of the most expensive operations with VIRL.

14

https://sites.google.com/view/virl1

Under review as a conference paper at ICLR 2021

ea
t-1

t+1tt-1

lstma

co
n
v

a

hb
t-1 hb

t hb
t+1

ha
t+1ha

t-1

ea
t

eb
t-1 eb

t eb
t+1

ea
t+1

ha
t

lstma

co
n
v

a

ec
t-1

t+1 t t-1

de
co

nv
a

hd
t-1hd

thd
t+1

hc
t+1 hc

t-1

ec
t

ed
t-1ed

ted
t+1

ec
t+1

hc
t

lstmb

lstmb

de
co

nv
a

encode decode

Figure 9: We use a Siamese autoencoding network structure that can provide a reward signal at every step
to a reinforcement learning algorithm. For the Humanoid experiments here, the convolutional portion of our
network includes 2 convolution layers of 8 filters with size 6× 6 and stride 2× 2, 16 filters of size 4× 4 and
stride 2× 2. The features are then flattened and followed by two dense layers of 256 and 64 units. The majority
of the network uses ReLU activations except for the last layer that uses a sigmoid activation. Dropout is used
between convolutional layers. The RNN-based model uses a LSTM layer with 128 hidden units, followed by a
dense layer of 64 units. The decoder model has the same structure in reverse with deconvolution in place of
convolutional layers.

We collect 2048 samples between training rounds. The batch size for TRPO is 2048. The kl term is
0.5.

The simulation environment includes several different tasks that are represented by a collection of
motion capture clips to imitate. These tasks come from the tasks created in DeepMimic (Peng et al.,
2018a). We include all humanoid tasks in this dataset.

In Algorithm 1 we include an outline of the algorithm used for the method and a diagram in Figure 8.
The simulation environment produces three types of observations, st+1 the agent’s proprioceptive
pose, svt+1 the image observation of the agent and mt+1 the image-based observation of the expert
demonstration. The images are grayscale 64× 64.

7.6 DISTANCE FUNCTION TRAINING

In Figure 10a, the learning curve for the Siamese RNN is shown during a pretraining phase. We can
see the overfitting portion the occurs during RL training. This overfitting can lead to poor reward
prediction during the early phase of training. In Figure 10b, we show the training curve for the
recurrent Siamese network after starting training during RL. After an initial distribution adaptation,
the model learns smoothly, considering that the training data used is continually changing as the RL
agent explores.

(a) Siamese loss during pretraining (b) Siamese loss after pretraining

Figure 10: Training losses for the Siamese distance metric.
It can be challenging to train a sequenced based distance function. One particular challenge is training
the distance function to be accurate across the space of possible states. We found a good strategy was
to focus on the earlier parts of the episode. When the model is not accurate on states it earlier in the
episode, it may never learn how to get into good states later, even if the distance function understands
those better. Therefore, when constructing batches to train the RNN on, we give a higher probability
of starting earlier in episodes. We also give a higher probability of shorter sequences as a function of
the average episode length. As the agent gets better average episodes length increase, so to will the
randomly selected sequence windows.

15

Under review as a conference paper at ICLR 2021

7.7 DISTANCE FUNCTION USE

We find it helpful to normalize the distance metric outputs using r = exp(r2 ∗wd) where wd = −5.0
scales the filtering width. This normalization is a common method to convert distance-based rewards
to be positive, which makes it easier to handle episodes that terminate early (Peng et al., 2018a;b;
Peng & van de Panne, 2017). Early in training, the distance metric often produces large, noisy values.
The RL method regularly tracks reward scaling statistics; the initial high variance data reduces the
significance of better distance metric values produced later on by scaling them to small numbers. The
improvement of using this normalized reward is shown in Figure 11a. In Figure 11b we compare to a
few baseline methods. The manual version uses a carefully engineered reward function from (Peng
et al., 2017).

normalized
default

(a) Reward smoothing

ours multi-modal
ours
TCN
manual

(b) Comparisons with other reward
methods on humanoid2d

Figure 11: Ablation analysis of VIRL. We find that training RL policies is sensitive to the size and
distribution of rewards. We compare VIRL to a number of other simple baselines.

7.8 SEQUENCE ENCODING

Using the learned sequence encoder, we processed a collection of different motions to create a t-
distributed Stochastic Neighbor Embedding (t-SNE) embedding of the encodings (Maaten & Hinton,
2008). In Figure 12b we plot motions both generated from the learned policy π and the expert
trajectories πE . Overlaps in specific areas of the space for similar classes across learned π and expert
πE data indicate a well-formed distance metric that does not separate expert and agent examples.
There is also a separation between motion classes in the data, and the cyclic nature of the walking
cycle is visible. We also show how the choice in policy variance affects the RL jump task learning
process in Figure 12a.

policy variance = 0.3
policy variance = 0.2

(a) Variance Comparison, Jump

walk
run
backflip
frontflip

walk
run
backflip
frontflip

π

π

π

π

π
π

π

π

E
E

E

E

(b) t-SNE embedding (hu-
manoid3d)

Figure 12: Variance and t-SNE Visualization

7.9 POSITIVE AND NEGATIVE EXAMPLES

We use two methods to generate positive and negative examples. The first method is similar to TCN,
where we can assume that sequences that overlap more in time are more similar. For each episode,
two sequences are generated, one for the agent and one for the imitation motion. Here we list the
methods used to alter sequences for positive pairs.

1. Adding Gaussian noise to each state in the sequence (mean = 0 and variance = 0.02)
2. Out of sync versions where the first state is removed from the first and the last ones from the

second sequence
3. Duplicating the first state in either sequence
4. Duplicating the last state in either sequence

We alter sequences for negative pairs by

16

Under review as a conference paper at ICLR 2021

1. Reversing the ordering of the second sequence in the pair.
2. Randomly picking a state out of the second sequence and replicating it to be as long as the

first sequence.
3. Randomly shuffling one sequence.
4. Randomly shuffling both sequences.

The second method we use to create positive and negative examples is by including data for additional
classes of motion. These classes denote different task types. For the humanoid3d environment, we
generate data for walking-dynamic-speed, running, back-flipping and front-flipping. Pairs from the
same tasks are labelled as positive, and pairs from different classes are negative.

7.10 RL ALGORITHM ANALYSIS

It is not clear which RL algorithm may work best for this type of imitation problem. A num-
ber of RL algorithms were evaluated on the humanoid2d environment Figure 13a. Surprisingly,
TRPO (Schulman et al., 2015) did not work well in this framework, considering it has a controlled
policy gradient step, we thought it would reduce the overall variance. We found that Deep Deter-
ministic Policy Gradient (DDPG) (Lillicrap et al., 2015) worked rather well. This result could be
related to having a changing reward function, in that if the changing rewards are considered off-policy
data, it can be easier to learn. This can be seen in Figure 13b where DDPG is best at estimating
the future discounted rewards in the environment. We also tried Continuous Actor-Critic Learning-
Automaton (CACLA) (Van Hasselt, 2012) and Proximal Policy Optimization (PPO) (Schulman et al.,
2017); we found that PPO did not work particularly well on this task; this could also be related to
added variance.

PPO
TRPO
CACLA
DDPG

(a) Average Reward

PPO
TRPO
CACLA
DDPG

(b) Bellman Error

ours
TCN

(c) sequence-based comparison
DDPG

Figure 13: RL algorithm comparison on humanoid2d environment.

17

	Introduction
	Preliminaries
	Visual Imitation with Reinforcement Learning
	Related Work
	Results and Analysis
	Discussion and Conclusion
	Appendix
	Appendix
	Imitation Learning
	Inverse Reinforcement Learning
	Phase-Based Imitation
	Data
	Training Details
	Distance Function Training
	Distance Function Use
	Sequence Encoding
	Positive and Negative Examples
	RL Algorithm Analysis

