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Abstract
In multimodal conversation analysis, annotating social sig-

nals such as speakers’ communication skills is inherently subjec-
tive and prone to individual annotator bias, which is annotator’s
tendency to assign labels based on their values. These biases can
contribute to label distributions biased towards specific speakers
and classes that match annotators’ values, leading to degraded
classification performance for minority classes and speakers.
Existing methods for addressing class imbalance and dataset
bias often overlook the variable biases introduced by multiple
annotators, which can lead to overfitting to the majority. Thus,
we propose a novel two-stage debiasing method, MAD-LM, that
first learns the typical label distribution for each annotator and
then promotes the learning of untypical labels. MAD-LM effec-
tively mitigates performance degradation for the minority in a
multimodal conversation dataset with multiple annotator labels,
while maintaining the performance for the majority.
Index Terms: Multimodal Conversation, Annotator Bias, Debias

1. Introduction
Understanding social signals, such as emotion, attitudes, and
skills, from verbal and non-verbal information in multimodal
conversation is an essential research area for developing human-
machine interaction systems [1, 2]. Many datasets have been
constructed for multimodal conversation understanding, where
conversation videos are annotated by human annotators [3–7].

Annotating social signals [1] in multi-modal conversation
tends to involve subjective processes [8], which are susceptible
to annotator bias, i.e., annotators often assign labels to speak-
ers based on their values (e.g., confirmation bias [9], stereo-
types [10], and various cognitive biases [11]). Existing datasets
often only provide the result of “majority voting” to aggregates
multiple annotators’ labels because they often disagree due to
annotators’ own values and biases.

In this study, we conjecture that biases unique to each an-
notator, which were ignored in majority voting, can contribute
to label distributions biased towards speakers and classes that
match annotators’ values in multimodal conversation datasets.
See Figure 1 for example. Different annotators assign different
distributions of labels across classes and speakers in a recently
proposed multimodal conversation dataset [12], which provides
multiple annotators’ labels. This label imbalance across classes
and speakers results in degraded performance in both the minor-
ity classes and speakers as shown in Figure 3.

For class imbalance, various methods have been proposed
[13]. However, these methods have not considered multiple
annotator biases or speaker imbalance as seen in multimodal
conversation datasets. On the other hand, existing methods for
addressing dataset bias [14], such as ensemble-based debiasing

(a) Annotator 1 (b) Annotator 2

(c) Annotator 3 (d) Annotator 4

Figure 1: Distributions of labels annotated by four different
annotators in the training set of a dataset for estimating multiple
classes of communication skills [12]. These figures indicate that
there is a significant variation among different annotators in the
label distribution over classes and speakers.

illustrated in Figure 2 (b), have mainly focused on mitigating
over-reliance on a single modality [15, 16]. These methods have
not taken into account multiple annotator biases either, which
can lead to overfitting to annotator biases.

Therefore, we propose a novel two-stage debiasing approach
designed to mitigate the risk of overfitting to biased labels pro-
vided by multiple annotators. We tailor ensemble-based debi-
asing [17–19] to multiple annotator biases in multimodal con-
versation. In our method, we first train a bias-only model to
learn a solution that performs well on typical labels provided by
each annotator but fails on untypical ones. Namely, the model
intentionally takes only shallow features and annotator IDs as
input and predicts labels annotated by the respective annotator.
Then, a robust model is trained in an ensemble with the bias-only
model to learn untypical labels from multiple annotators that the
bias-only model fails to predict.

We conduct experiments on praise estimation, a recently pro-
posed task for estimating speaker’s communication skills using
speech and video modalities [12]. To the best of our knowledge,
this is the only multimodal conversation dataset that provides
labels from multiple annotators on each instance, while others
provide only the results of majority voting [3–7]. Our experi-
ments show that the proposed method successfully mitigates the
performance degradation for the minority classes and speakers.
Moreover, our method maintains the performance in the majority
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Figure 2: Overview of the following methods: (a) Baseline [12], (b) LearnedMixin [17], and (c) MAD-LM (Ours). Models with fire
marks are trainable and those with snow marks are frozen when training robust models.

classes and speakers. Comparison to conventional methods for
class imbalance, label noise, dataset bias, and ablation study
supports the utility of our method. Given the effectiveness of
our approach, we suggest that future multimodal conversation
datasets should provide multiple annotators’ labels to achieve
robust classifier performance.

In summary, our contributions are as follows:
• We propose a novel two-stage debiasing approach to prevent

the learning of multiple annotator biases, based on our hypoth-
esis that these biases are responsible for data imbalance and
performance degradation in the minority classes and speakers.

• Our proposed method effectively mitigates the performance
degradation for the minority while maintaining the perfor-
mance for the majority. Comparison to existing approaches to
data imbalance that do not consider multiple annotator biases
also supports our hypothesis.

2. Method
In this section, we describe our novel two-stage approach for
multiple annotator biases, named Multiple-Annotator Debiasing
(MAD). Our MAD first 1) trains a bias-only model (§2.2) and
then 2) trains a robust model in an ensemble with the bias-only
model (§2.3). We propose and compare two variants of MAD,
MAD-PoE and MAD-LM, as explained in §2.3. The overview
of training a robust model in MAD-LM is given in Figure 2.

2.1. Notation

Let b be a bias-only model and p be a robust model. Let x be
the input to a robust model p, which includes a speaker’s speech,
speaker’s video, and listener’s video following [12]. Let lka ∈
{0, 1} be a binary label annotated by annotator a ∈ {1, ..., A}
for class k ∈ {1, ...,K}, where A and K is the number of
annotators and classes, respectively. The ground-truth label
lk ∈ {0, 1} for class k is defined as the logical sum of multiple
annotator labels, lk1 ∨ ...∨ lkA, following [12]. Let s ∈ {1, ..., S}
be the speaker identifier for input x, where S denotes the number
of speakers.

2.2. Building a Bias-Only Model

We first train a bias-only model to learn prototypical distributions
of labels assigned to speaker s by annotator a. Namely, the bias-

Figure 3: Frequency of positive utterances in the training set
(3,632 utterances in total) and F1 score on the test set for each
speaker and class in the praise estimation dataset [12].

only model learns who (annotator) labels whom (speaker) in
what class. To this end, the model takes only annotator ID
a and speaker ID s as input and predicts the corresponding
annotator’s labels la = {lka}Kk=1. The output of the bias-only
model is denoted as b(a, s) = {bk(a, s)}Kk=1, where bk(a, s) is
the predicted probability for class k.

Note that, in existing ensemble-based debiasing methods
[17], partial inputs such as only question in visual question
answering were taken as input for training a bias-only model.
To promote our bias-only model learning the biases on who
annotates whom with what class, we originally design the inputs
to the bias-only model. We also examined the usefulness of
superficial features other than speaker IDs, including word per
second, speech duration, speaker’s gender, words in utterances,
but these failed to improve the performance of the robust model.

2.3. Building a Robust Model

After a bias-only model b is built, we train a robust model by
minimizing a binary cross-entropy loss calculated with an en-
semble of the two models. We describe two variants of our meth-
ods, MAD-PoE and MAD-LM, which are inspired by ensemble-
based debiasing methods [17], Product-of-Experts (PoE) and
LearnedMixin (LM).

Namely, MAD-PoE is formulated as:

p̂k = sigmoid(log pk(x) + (logmaxab
k(a, s))), (1)
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and MAD-LM is formulated as:

p̂k = sigmoid(log pk(x) + gk(x)(logmaxab
k(a, s))). (2)

The difference between the two is the learnable function g(≥ 0).
Intuitively, function g balances how much the predictions of
the bias-only model should be considered to train the robust
model. The predictions of the bias-only model given multiple
annotator IDs are aggregated by taking the maximum in Eq. (1)
and (2) because the ground-truth labels are also determined by
the logical sum of multiple annotator labels as described in §2.1.
The loss for training a robust model is defined as follows:

L =
∑
k

−lk log p̂k − (1− lk) log(1− p̂k) (3)

The parameters of the bias-only model are frozen when minimiz-
ing L to train the robust model. The robust model, which takes
speech and video as input, makes predictions during evaluation.
Note that neither annotator nor speaker IDs are used for testing.

3. Experiments
3.1. Experimental Setups

Dataset: We used the praise estimation dataset constructed in the
recent study [12]1 because it provides multiple annotator labels.
To the best of our knowledge, there are no other multimodal
conversation datasets that provide multiple annotators’ labels
and annotator identifiers. The praise estimation dataset contains
multimodal conversations of business negotiation in Japanese
for four topics (chat tools, insurance, TVs, and cell phones). The
recorded videos were segmented with a voice activity detection
method to obtain the speakers’ utterances, which are used as
inputs to the robust model as described in §2.1. The dataset
contains eight speakers, four of which were women and others
were men. Eight classes of preferable behaviors are defined as
described in Table 1.

We split the dataset so that the eight speakers’ speeches are
contained in training, validation, and test sets, while the test
set includes only unseen conversations. We did that because
our motivation is to see if the performance degradation in the
minority classes and speakers (Figure 3) is mitigated by our
proposed method. In addition, we showed that the standard
training baseline failed to perform well in minority speakers even
seen during training. Thus, mitigating the speaker imbalance
issue for seen speakers was regarded as the first step in this study.
The sizes of the training, validation, and test sets were 3632,
1070, and 2090, respectively. We ensured that there were 458
instances evenly for the eight speakers in the training set.
Model Architecture: For the bias-only model, speaker and an-
notator IDs were fed to embedding layers to get d-dimensional
vectors. For the robust model, the raw inputs (speaker’s speech,
speaker’s video, and listener’s video) were fed to modality-
specific pretrained encoders to obtain a set of d-dimensional
vectors as many as the corresponding time lengths. d was set
to 256. The obtained vectors were concatenated across time
axis and fed to a 1-layer multi-modal transformer [20] with four
attention heads, and then to an attention-pooling layer. The
output vector h was of length d. The output probability pk or
bk was computed by applying a fully connected layer and sig-
moid function to h for each class k. For the robust model, the
learnable function gk was computed as softplus(FCk(h))

1This dataset is not publicly available because the participants did
not consent to publicly publish the recorded videos.

Table 1: Class IDs and their descriptions in the praise estimation
dataset [12]. For each class, one binary label is annotated to
each utterance by ten annotators.

Class ID Description

1 Good consideration for relationship
2 Good ice break
3 Good topic development
4 Good change of topic to suit the customer
5 Good use of honorifics
6 Sufficient nods
7 Sufficient expression of sympathy
8 Sufficient persuasion efforts

where FCk was also a fully connected layer for class k, and
softplus(z) = log(1 + ez). For pretrained encoders and
preprocessing of raw inputs, we followed the settings in [12].
Training Details: We trained each model for ten epochs. The
batch size was 100.2 We used Adam [27] for optimization with
the initial learning rate set to 0.001. We trained each model for
five random seeds and reported the average.
Evaluation Metrics: For evaluation metrics, we first compute
the F1 score for each pair of speakers and classes and then aver-
age the scores to obtain the overall score. This metric weights
all the pairs equally, thereby reflecting the robustness to the mi-
nority. We split the classes and speakers into three groups based
on the number of positive instances in the training set.3 We also
report the averaged F1 scores on the groups to see the effect of
our method on the majority and minority.
Baselines: We used the following baselines for comparison:
(1) Empirical risk minimization (ERM): standard training with
empirical risk minimization on the whole training set [12]. (2)
Re-weighting (RW): We used weights that were inversely pro-
portional to the square root of class frequency. (3) focal loss [21]:
We used α = 0.25 and γ = 2.0 following the original paper. (4)
Class-Balanced (CB) loss [22]: class-level re-weighting consider-
ing frequencies of positive instances. (5) CB-focal [22]: CB with
focal loss. (6) Class-aware sampling (CAS) [23]: This method
samples a fixed number of samples equally from each class.
We sampled 321 positive instances from each class for a fair
comparison to other methods in terms of the training steps. (7)
Rebalanced-BCE (R-BCE) [24]: After applying CAS, R-BCE
re-weights training losses by considering the co-occurences of
labels. (8) Distribution Balanced (DB) loss [24]: After applying
R-BCE, DB loss introduces penalty terms to avoid overfitting
to negative instances. (9) DB-focal [24]: DB with focal loss.
(10) Co-teaching [25] and (11) Co-teaching+ [26]: These were
initially introduced to handle label noise, applied to multimodal
conversation tasks by [8]. (12) Product-of-Experts (PoE) [17]
and (13) LearnedMixin (LM) [17]: Existing methods for miti-
gating dataset biases proposed in vision and language tasks. In
these methods, uni-modal inputs such as text are used to train
bias-only models. We directly applied PoE and LM to multi-
modal conversation by constructing two variants of uni-modal
inputs: speech-only and video-only.
Ablation Study: We conducted an ablation study with regard to
bias-only models. We tested two additional variants of bias-only
models that take as inputs only speaker or annotator ID. The

2We used a gradient accumulation technique to increase the batch
size because a larger batch size achieved better performance.

3Class IDs are grouped into Head (1, 4, 7), Mid (3, 6, 8), and Tail (2,
5). Speaker IDs are grouped into Head (1, 5), Mid(3, 4, 7), and Tail (2,
6, 8).
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Table 2: Experimental results. Macro F1 scores averaged over five random seeds are reported. See §3.1 for the setup.

Class Speaker

Method Head Mid Tail Head Mid Tail ALL

ERM [12] 0.4455 0.2816 0.1513 0.3923 0.2719 0.2945 0.3105

Existing Methods for Class Imbalance

RW 0.4533 0.3941 0.2085 0.4282 0.3502 0.3507 0.3699
focal [21] 0.4027 0.2934 0.2073 0.3541 0.3066 0.2916 0.3129
CB [22] 0.4594 0.3595 0.2112 0.4199 0.3345 0.3453 0.3599
CB-focal [22] 0.4052 0.3308 0.2079 0.3870 0.3107 0.3060 0.3280
CAS [23] 0.4528 0.4221 0.2187 0.4493 0.3718 0.3494 0.3827
R-BCE [24] 0.4542 0.4254 0.2148 0.4473 0.3713 0.3534 0.3836
DB [24] 0.4486 0.3984 0.2310 0.4430 0.3675 0.3382 0.3754
DB-focal [24] 0.3534 0.3167 0.2344 0.3449 0.3069 0.2894 0.3099

Existing Methods for Label Noise

Co-teaching [25] 0.4463 0.3877 0.2187 0.4157 0.3548 0.3478 0.3674
Co-teaching+ [26] 0.4176 0.3864 0.0639 0.3688 0.3119 0.2888 0.3175

Existing Methods for Dataset Bias

PoE (speech-only) [17] 0.3321 0.2392 0.0670 0.3032 0.2114 0.2025 0.2310
PoE (video-only) [17] 0.3387 0.3009 0.0576 0.3267 0.2375 0.2227 0.2543
LM (speech-only) [17] 0.3389 0.2813 0.1811 0.3622 0.2560 0.2434 0.2779
LM (video-only) [17] 0.3668 0.3434 0.1886 0.3885 0.2943 0.2826 0.3135

Proposed Method

MAD-PoE 0.4353 0.4200 0.2277 0.4510 0.3613 0.3452 0.3777
MAD-LM 0.4633 0.4393 0.2311 0.4726 0.3754 0.3662 0.3962

Ablation
Study

MAD-LM w/o Annotator ID 0.3887 0.3846 0.2024 0.4228 0.3242 0.3022 0.3406
MAD-LM w/o Speaker ID 0.4519 0.4398 0.2159 0.4625 0.3697 0.3576 0.3884

former predicted la while the latter predicted l because the input
to the latter is annotator-independent.

3.2. Results

The results are given in Table 2. Our MAD-LM achieved the best
scores (ALL), especially for the minority classes and speakers
(Tail). Moreover, MAD-LM maintained or even improved the
scores for the majority (Head and Mid) compared to existing
methods. MAD-PoE slightly underperformed MAD-LM, show-
ing the effectiveness of learnable function g in Eq. (2). This
tendency is consistent with previous studies in NLP [28, 29].
The ablation study supports the utility of speaker and especially
annotator awareness when constructing the bias-only model.

In addition, our method significantly outperformed exist-
ing methods, particularly in enhancing performance for both
minority classes and speakers. The existing methods for class
imbalance improved the performance for the minority classes
(Mid and Tail) but struggled to improve scores on the minority
speakers (Tail) compared to our method. This may be because
methods for class imbalance do not consider speaker imbalance
or annotator biases. The existing methods for label noise and
dataset bias also lagged behind our methods in most cases.

4. Analysis of Attention Scores
To gain insights into the effect of our method, we analyzed the
attention scores in the multi-modal transformer as in [30]. We
computed the attention scores softmax(QKT /

√
d) averaged

over the heads and the test set and then split them according to
the input modalities, speech and video. We reported the intra-
and inter-modality attention scores for ERM, LM (speech-only)
and Ours (MAD-LM).

Table 3: Intra- and inter-modality attention scores.

K
speech video

ERM LM Ours ERM LM Ours

Q speech .91 .90 .87 .09 .10 .13
video .56 .47 .52 .44 .53 .48

As shown in Table 3, models trained with ERM may rely on
the speech modality to make predictions because the attention
scores from speech to speech were larger than others. For LM,
attention from video to speech was decreased compared to ERM.
Meanwhile, ours reduced the reliance on the speech modality
and promoted models to pay attention from speech to video
compared to ERM and LM. This analysis suggests that our
method improved model robustness by implicitly mitigating
the over-reliance on a single modality, referred to as uni-modal
biases [15, 16], and enhancing the cross-modal interaction.

5. Conclusion
We proposed a novel two-stage debiasing method that explicitly
learned multiple annotators’ biased labels for each speaker and
class, and then used the information to promote a model to learn
a more robust solution. Our experiments showed the utility
of multiple annotators’ labels to improve the robustness to the
minority classes and speakers. Our analysis of attention scores
implied that our method enhanced the cross-modal interaction
between speech and video to improve the robustness. Future
work includes exploring the mechanism behind annotator bias to
improve our method.
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