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Abstract
This work tackles the critical challenge of mitigating “hardware noise” in deep
analog neural networks, a major obstacle in advancing analog signal processing
devices. We propose a comprehensive, hardware-agnostic solution to address both
correlated and uncorrelated noise affecting the activation layers of deep neural
models. The novelty of our approach lies in its ability to demystify the “black
box” nature of noise-resilient networks by revealing the underlying mechanisms
that reduce sensitivity to noise. In doing so, we introduce a new explainable reg-
ularization framework that harnesses these mechanisms to significantly enhance
noise robustness in deep neural architectures, obtaining over 53% accuracy im-
provement in noisy environments, when compared to models with standard train-
ing.

1 Introduction
As the applications of artificial intelligence (AI) continue to surge, the computational power required
to sustain this growth is leading to increasingly high energy consumption and a corresponding sig-
nificant carbon footprint [1, 2]. This escalating environmental impact necessitates the exploration of
innovative solutions to enhance computational efficiency [3]. Among these emerging approaches,
analog neural networks have gained attention due to their potential to offer faster processing speeds
with lower energy requirements, thereby addressing the critical need for sustainable AI development
[4, 5].

However, analog circuits have a major drawback: they are naturally much more sensitive to noise
compared to their digital counterparts. Noise in neural networks is not a particularly new topic of
study, and extensive solutions have been proposed to overcome noisy inputs [6] and noisy labels
[7],[8]. However, since the majority of networks in literature run on digital devices, these types of
noise are external to the network itself, failing to address a type of noise that greatly affects analog
networks in particular: hardware noise.

While it is well-recognized that hardware noise is a significant source of uncertainty in analog net-
works [9], it remains a relatively underexplored central topic. Ref [10] offers a broad analysis
of noise effects across various architectures. However, the proposed solutions involve architec-
tural modifications that result in increased hardware complexity. In contrast, [11] provides valuable
insights into hardware noise but focuses on device-level solutions, which limit their general appli-
cability. Ref. [12] demonstrates promising results by employing a device-agnostic approach during
training. Nonetheless, that study lacks detailed explanations regarding the mechanisms behind the
observed improvements.

In this work, we examine the impact of additive noise on feed-forward networks, along with the
underlying mechanisms that contribute to the effectiveness of noise-aware training. In parallel, we
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introduce a novel regularization strategy that enhances the network’s robustness to correlated and
uncorrelated hardware noise. This strategy not only offers a mathematically supported explanation,
but it is also empirically validated through probability density function (PDF) analysis, providing
strong justification for its effectiveness. We believe that the analysis of PDF evolution in neural net-
works introduced and applied here is a useful and important technique for designing and optimising
their performance.

2 Noise in Neural Network Models
Building upon the classification proposed by Ref. [10], we categorize noise as either correlated or
uncorrelated in this work. Noise is considered correlated when all neurons within a layer experience
the same perturbation simultaneously, typically arising from variations in shared physical compo-
nents, such as temperature, supply voltages, or laser sources. Conversely, uncorrelated noise refers
to unique perturbations affecting each neuron independently, though these perturbations are drawn
from the same underlying probability distribution. Consistent with other works in the literature, we
model noise as being drawn from a zero-mean Gaussian distribution, with variance determined by
the specific hardware characteristics.

(a) (b)

Correlated Noise Uncorrelated Noise

Temperature variations, power supply fluctua-
tions, electromagnetic (EM) interference

Shot noise, component tolerance

Crosstalk between closely spaced intercon-
nects

Flicker noise, random telegraph noise

Mechanical vibrations affecting multiple
components simultaneously

Johnson-Nyquist noise

Substrate coupling in photonic circuits Dark current noise in photodetectors

(c)

Figure 1: Feed-forward network under (a) correlated and (b) uncorrelated noise. (c) Examples of
such noise sources in analog NNs.

In this study, we focus on noise introduced after the activation functions (Figure 1) rather than within
the weights. This is motivated by the fact that analog activation functions are in general more com-
plex than passive connections and more likely to introduce noise. When noise is injected into a
network trained to achieve high accuracy, a significant drop in performance is expected. This high-
lights the disparity between simulated and actual performance when these networks are deployed on
noisy physical devices.

Among the solutions discussed in the literature, noise-aware training [12] assumes that neural net-
works can develop resilience to noise if trained with exposure to it. For that purpose, noise similar
to what is expected during inference is injected during training, resulting in enhanced robustness.
This method has shown promising results, leading to nearly a four-fold improvement in forecasting
accuracy for a time-series prediction task. However, there is still a lack of understanding regarding
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the mechanisms that drive these improvements. Specifically, it remains unclear how neural networks
adjust to mitigate both correlated and uncorrelated additive noise so effectively. In the following sec-
tions, we present, to the best of our knowledge, for the first time, an analytical and mathematically
explainable regularization strategy to achieve comparable noise mitigation results. Without loss of
generality, we apply our approach to a fully connected multi-layer perceptron (MLP) with 2 hidden
layers of 300 neurons each, with sigmoid as the activation function.

3 Designing Explainable Regularizers

Consider activations a(l−1)
j of jth neuron in layer l − 1 are corrupted by noise n̂

(l−1)
j ∼ N (0, σ2

n).

In this scenario, these activations interact with weights w(l)
ij and biases b(l)i to form pre-activations
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The last term corresponds to the total noise contribution on pre-activation z
(l)
i , or the error factor. If

noise is correlated, then n̂j = n̂ for all j, so the error factor becomes:∑
j
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∑
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This means that the error factor can be effectively eliminated if we make
∑

j w
(l)
ij = 0. In other

words, correlated noise can be mitigated by ensuring that each row of the weight matrices sums to
zero. This allows us to formulate the first explainable regularizer for additive correlated noise, which
enforces this mathematical condition. By introducing a regularization term into the loss function
during training, we can effectively impose this constraint, leading to improved noise robustness.
The modified loss function becomes:

Lossθ = L(ypred, yexp) +

L∑
l=2

λl

∑
i

∣∣∣∑
j

w
(l)
ij

∣∣∣. (4)

(a)

(b)

Figure 2: Per-row visualization of each weight matrix in a network with (a) standard training and (b)
proposed regularization method. Regularization manages to push rows means toward zero to meet

correlated noise mitigation strategy.

For visual inspection, Fig. 2 illustrates the effects of regularization on the distribution of weights per
row, compared to the original neural network model trained without noise. The graphs depict the
mean (solid line) and standard deviation (shaded areas) of each row within the weight matrices, with
layers ordered by ascending mean values. As predicted by Eq. 4, all rows—except those of the input
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weight matrix—have their mean values driven toward zero. This exception arises because noise
only affects activations, meaning the input weights do not directly interact with it. In the following
section, we will present evidence demonstrating the improvement in accuracy achieved through this
straightforward regularization strategy.

For uncorrelated noise, canceling the error factor becomes more complex. Instead of attempting
to eliminate it entirely, we aim to mitigate its propagation to subsequent layers. Given that all
individual noise contributions within layer l − 1 have zero mean Gaussian PDF, the error factor
is also Gaussian with zero mean. Furthermore, since for a known a

(l−1)
j the first two terms of

equation 2 are deterministic, the pre-activation z
(l)
i can be interpreted as a random Gaussian variable

ẑ
(l)
i ∼ N (µ

(l)
ij , σ

2
n), whose mean is:

µ
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From the known pdf pz(z) of ẑ(l)i , and given that f(·) is monotonic, one can derive the PDF pa(a)

of a(l)i = f(ẑ
(l)
i ) from [13] as:

pa(a) =
pz[f

−1(a)]

|dadz |
, (6)

where f−1(·) is the inverse of activation function.

Fig. 3 a) shows the PDF pa(a), where f(·) is the sigmoid function, and given ẑ
(l)
i ∼ N (µ

(l)
ij , 0.2) for

different values of µ(l)
ij . It’s observed that input distributions centered further from the origin lead

to output distributions of much-reduced variance. Intuitively, this occurs because noise fluctuations
in the saturated regions of the activation function (where the derivative is close to zero) are largely
suppressed and not transmitted to the output. Thus, in analog neural networks, if a set of weights and
biases can shift the operating point of pre-activations toward these saturated regions, noise-induced
perturbations are less likely to propagate to subsequent layers. This mechanism effectively reduces
the impact of uncorrelated noise, enhancing the network’s robustness to such perturbations. This
also can give some design ideas for the activation function shape when this freedom is available.

It is important to point out that, in the output layer, no additional nonlinearities are available to coun-
teract noise contributions, which will inevitably affect the readout values. However, we found that
this impact can be mitigated by reducing the magnitude of the output weights. In typical scenarios,
reducing weights alone does not enhance noise performance, as both the signal and noise are attenu-
ated equally, resulting in no real improvement in the SNR. However, if the intermediate layers meet
the condition where pre-activations operate predominantly in saturated regions, the activation values
will also be highly saturated. In our case, which uses the sigmoid activation function, this implies
that the majority of activation values will be either 0 or 1. In such a distribution, reducing the output
weights does not lead to information loss for activations that are zero—these values constitute a
significant portion of the activations in the saturated regime. Thus, noise contributions are reduced
without loss of information from the zero-valued activations.

Moreover, for non-zero activations, which are at the maximum possible value (1 in the case of sig-
moid), the output remains resilient to noise. This dual effect—noise suppression for zero activations
and noise insensitivity for saturated ones—explains how reducing output weights, when combined
with saturated intermediate layers, can mitigate the impact of noise on the final output. We can incor-
porate these conditions into our training by including new regularizer terms into our loss function,
which becomes:

Lossθ = L(ypred, yexp) + λ1

∑
i

f ′(z
(2)
i ) +

∑
l=2,3

λl

∑
i

∑
j

(w
(l)
ij )

2 (7)

in which f ′(zi) is the activation function’s derivative at zi and λi are tunable hyperparameters.

The first regularization term penalizes pre-activations that fall within regions of high derivative in
the activation function, while the second term penalizes large weight magnitudes in all layers except
the input layer. The constraint on the hidden layer weights addresses a practical issue encountered
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during training. When we enforced pre-activations to move away from the origin, the network
initially complied by amplifying the weights in the hidden layers. Although this approach effectively
shifted the operating point toward the saturated region, it inadvertently amplified noise contributions.
This increased noise then ”leaked” into the linear region of the activation function, propagating
through subsequent layers and negating any performance improvement.

To prevent this, we apply a light constraint on the hidden layer weights, ensuring that the net-
work does not resort to this suboptimal strategy during training. Fig. 3 b), c), and d) illustrate the
distributions of the pre-activations, post-activations, and output weights in the original model, the
noise-aware trained model, and the regularized model. These visualizations confirm our hypothesis:
the regularized model exhibits a distribution similar to that of the noise-aware model, but with a
more pronounced shift toward the non-linear regions of the activation function.

Figure 3: (a) PDF of random variable ẑ ∼ N (µ, 0.2) after undergoing sigmoid transformation, for
different values of µ. (b) Pre-activations, (c) post-activations and (d) output weights distributions
for networks with different training methods. Blue: network with standard training; Red: network

with noise-aware training; Green: network with proposed regularization method.

4 Results and discussion
Having established the explainability of the proposed regularization, we now demonstrate that the
key features of noise-resilient networks are successfully incorporated by our regularization tech-
niques, yielding significant performance improvements. To validate these claims and assess the
overall performance, we evaluate the regularized network on three computer vision tasks, using the
MNIST [14], Fashion MNIST [15] and QuickDraw [16] datasets. The results highlight the efficacy
of the regularization in enhancing noise robustness while maintaining strong task performance. For
the sake of reproducibility, all code used in these experiments is available in [17] .

In all tasks, the application of regularization effectively eliminated the impact of correlated noise, as
shown in Fig. 4a)-(c), resulting in a flat accuracy curve with no observable performance degradation.
For uncorrelated noise, substantial improvements were also achieved. On the MNIST dataset, the
network experienced only a 4.77% drop in accuracy when subjected to hardware noise with vari-
ance as high as σ2 = 1.0, compared to its performance in a noiseless environment. By contrast, a
standard network trained without any noise-aware techniques showed a dramatic 41.52% accuracy
decline under the same conditions. Similarly, in the more challenging Fashion MNIST task, regular-
ization reduced the accuracy drop to 7.22%, compared to 53.86% for the standard trained network.
For QuickDraw, the accuracy drop went from 65.58% to 35.29%, when the proposed regulariza-
tion was in place. It’s worth mentioning that 20 classes were selected from the original QuickDraw
dataset – twice as many as MNIST and Fashion MNIST –, which reflect in the poorer performance
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(b) Fashion MNIST
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Figure 4: Performance comparison between models with standard training, noise-aware training and
the proposed regularized model, for MNIST, Fashion MNIST, and QuickDraw datasets.

comparatively. Nonetheless, these results demonstrate a significant enhancement in noise robust-
ness. However, this improvement comes with a slight penalty to the maximum achievable accuracy.
For MNIST, a network with standard training achieved 98.06% accuracy in a noise-free environ-
ment, while the regularized network reached 95.62% under the same conditions. Similarly, for
Fashion MNIST, the accuracy for the standard network was 87.78%, while the regularized network
achieved 85.37%. For QuickDraw, the figures are 78.11% and 75.12%. It is important to note that
this accuracy reduction is also observed in networks trained with noise exposure.

The promising results from the treatment of correlated noise indicate that the imposed weight con-
straint is relatively mild, allowing the network to assimilate it without compromising overall perfor-
mance. In contrast, the regularization designed for uncorrelated noise introduces a more stringent
constraint, which imposes a notable trade-off during training and can limit the maximum achievable
accuracy. Despite this, the overall performance improvements underscore the effectiveness of the
method. However, a key challenge of the proposed approach lies in the difficulty of optimizing the
training process. The custom regularization terms require a systematic and often repetitive search
for the optimal hyperparameters λi, typically through a trial-and-error process. This adds significant
complexity to the training pipeline, substantially increasing both the training time and computational
cost. Fine-tuning these regularization coefficients is critical for balancing the trade-offs between
noise suppression and accuracy, but it also represents a bottleneck in terms of scalability, especially
in larger models or more complex architectures.

5 Conclusion
In this work, we explored the fundamental mechanisms that allow a neural network to achieve re-
silience to hardware noise without introducing additional architectural complexity, relying solely on
optimized weight and bias distributions. Our novel approach, based on the analysis of the pdf evo-
lution throughout the network, offers a valuable design and optimization tool for improving noise
robustness. By presenting explainable regularization techniques, we demonstrated an over 53% im-
provement in accuracy under high levels of hardware noise, underscoring the effectiveness of the
method. Importantly, the proposed technique is device-agnostic, offering broad applicability across
various analog neural networks affected by additive noise. This generalizability, combined with the
simplicity of implementation, positions our approach as a significant advancement for the design of
high-performance, noise-resilient neural networks in real-world hardware applications.
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