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Abstract

In this paper, we investigate the capability of
large language models (LLMs) to represent
texts in multilingual contexts. Our findings re-
veal that sentence representations derived from
LLMs exhibit a high degree of isomorphism
across languages. This existing isomorphism
facilitates representational alignments in few-
shot or even zero-shot settings. Specifically, by
applying a contrastive objective at the repre-
sentation level with only a small number (e.g.,
100) of translation pairs, we significantly im-
prove models’ performance on Semantic Tex-
tual Similarity (STS) tasks across languages.
This representation-level approach proves to be
more efficient and effective for semantic align-
ment than continued pretraining or instruction
tuning. Interestingly, we also observe substan-
tial STS improvements within individual lan-
guages, even without a monolingual objective
specifically designed for this purpose.’

1 Introduction

Large Language Models (LLMs) demonstrate sig-
nificant potential in solving multilingual tasks, e.g.,
machine translation (Kocmi et al., 2023) and mul-
tilingual QA (Agrawal et al., 2023). Notably, they
exhibit strong few-show capacities (Xu et al., 2023;
Lai et al., 2024), where a small number of samples
can lead to substantial performance improvements.

Representational isomorphism has been identi-
fied as one key source of few shot capabilities in the
context of word translation (Lample et al., 2017;
S@gaard et al., 2018). In this paper, we analyze
the multilingual sentence representation of LLMs
from the perspective of isomorphism. We start by
examining the geometric properties of representa-
tions derived from pairs of translation sentences.
Using several widely used methods to extract em-
bedding from LLMs, we show that although the
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resulting embeddings are not well clustered in a
common space for different languages, they exhibit
high isomorphism — projecting them through an
orthogonal matrix allows the sentence representa-
tions to be effectively aligned across languages.
Moreover, it also explains the previous success of
combining a non-English input with an English
prompt (Etxaniz et al., 2023; Huang et al., 2023).

Building on this observation, we further inves-
tigate the potential of multilingual semantic align-
ment upon LLMs. We show that by using a small
number (e.g., 100) of English-centric translation
samples equipped with contrastive losses (Gao
et al., 2021) across language pairs, the represen-
tation spaces well converge and align effectively.
This alignment largely enhances the performance
on cross-lingual Semantic Textual Similarity (STS,
Cer et al., 2017) tasks, proving to be more effi-
cient and effective than continued language mod-
eling training with multilingual samples. Interest-
ingly, such progress also results in significant STS
gains within each language, even in the absence of
a monolingual objective specifically designed for
this purpose. Given its high efficiency and effec-
tiveness, we advocate for exploring representation-
level alignment in the future.

2 Representational Analysis

2.1 Representation Extraction

Using prompts to extract sentence embeddings
has been shown by Jiang et al. (2022) to yield
strong performance on mask language models, e.g.,
BERT (Devlin et al., 2019). PromptEOL (Jiang
et al., 2023) extends this method to causal lan-
guage models, e.g., OPT (Zhang et al., 2023) or
LLaMA (Touvron et al., 2023), by employing a
prompting template as follows:

This sentence : “[TEXT]” means in one word.: “

where the last layer’s hidden vector for the last to-
ken “*” is extracted as the sentence representation.
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Precision@5 EN AR ZH JP RU DE ES Into X
EN -/- 0.33/0.67 0.61/097 0.03/0.82 0.36/096 0.82/0.96 0.76/0.99 | 0.49/0.90
AR 0.12/0.23 -/- 0.18/0.44 0.01/0.37 0.07/045 0.08/0.34 0.14/0.53 | 0.10/0.39
ZH 0.22/0.73 0.08/0.55 -/- 0.14/0.71 0.31/0.88 0.18/0.74 0.40/0.93 | 0.22/0.76
JP 0.04/0.33 0.02/0.34 0.21/0.59 -/- 0.17/0.56 0.03/0.56 0.06/0.62 | 0.09/0.50
RU 0.20/0.73 0.19/0.61 0.56/0.86 0.05/0.71 -/- 0.24/0.85 0.60/0.95 | 0.31/0.79
DE 0.67/0.88 0.09/0.62 0.37/0.89 0.01/0.80 0.36/0.92 -/- 0.83/0.96 | 0.39/0.85
ES 0.12/0.75 0.08/0.60 0.18/0.87 0.00/0.67 0.20/0.92 0.48/0.85 -/- 0.18/0.78
From X 0.23/0.61 0.13/0.57 0.35/0.77 0.04/0.68 024/0.78 0.3/0.72 0.47/0.83 | 0.25/0.71

Table 1: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection. The
embeddings in each language are derived from the LLaMA2-7B model using the prompting method as described in
§2.1. “From X” and “Into X’ denote the average results for each column and row, respectively. The Procurstes
projection W for each translation direction is trained on NTREX, while the Precision@5 is tested based on the
translation sentences from Flores. We report results derived from LLaMA2-13B in Appendix A.4.

Precision@5 EN AR ZH JP RU DE ES Into X
EN -/- 0.78/0.73 093/094 095/0.93 0.76/0.94 0.96/0.96 0.97/0.97 | 0.89/0.91
AR 0.67/0.67 -/- 0.83/0.76 0.84/0.74 0.59/0.76 0.82/0.78 0.83/0.79 | 0.76/0.75
ZH 0.85/093 0.86/0.79 -/- 0.99/098 0.84/0.95 097/0.95 0.96/096 | 0.91/0.93
JP 0.88/092 0.86/0.78 1.0/0.97 -/- 0.83/0.95 0.96/095 0.95/0.95| 0.91/0.92
RU 0.75/096 0.83/0.81 0.97/096 0.97/0.96 -/- 0.97/097 096/0.97 | 0.91/0.94
DE 0.9/096 0.68/0.79 091/094 0.89/0.94 0.75/0.96 -/- 0.99/0.97 | 0.85/0.93
ES 0.89/096 0.65/0.77 0.87/094 0.85/094 0.65/0.95 0.98/0.96 -/- 0.82/0.92
From X 0.82/09 0.78/0.78 092/0.92 091/092 0.74/092 094/0.93 0.94/0.93 | 0.86/0.90

Table 2: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection.
Note that all embeddings are derived from the prompting template in English, instead of the same language with
input sentences. We report results derived from LLaMA2-13B in Appendix A.4.

This method achieves competitive performance on
semantic representation tasks (Agirre et al., 2015,
2016). Moreover, it provides an effective way to
investigate the representations of LLMs.
Although some studies (Springer et al., 2024;
Lei et al., 2024) have achieved more advanced per-
formance using prompting, we adopt PromptEOL
in this paper for its simplicity and generalizability.
To adapt PromptEOL to a multilingual setting, we
translate the English template mentioned above into
other corresponding languages, e.g., a template,

Dieser Satz: “ [TEXT] ” bedeutet in einem Wort: “

is used for German. In the following sections, we
derive representations of LLMs across languages
by applying this method.

2.2 Cross-lingual Structural Analysis

We leverage Procrustes analysis (Schonemann,
1966) to measure the structural similarity of rep-
resentations across languages. This method finds
the optimal rotation and/or reflection (i.e., orthogo-
nal linear transformation) to match points in a set
of shapes, which ensures that the shape remains
unchanged. Therefore, the precision in matching
reflects the degree of isomorphism across spaces.

Formally, let’s assume there are two sets of em-
beddings, A and B, derived from LLMSs using sen-
tence pairs in two different languages. Procrustes
analysis learns an orthogonal linear projection W
to map A into a shared space with B, by solv-
ing min |[WA — B|| subject to WIW = 1. A
closed-form solution W = UV' can be advanta-
geously obtained from the singular value decompo-
sition (SVD) of BAT.

In this paper, we conduct experiments on seven
languages, namely EN, AR, ZH, JP, RU, DE, and
ES, which encompass both similar and different lan-
guage families and writing scripts. We investigate
the structure similarity across all possible transla-
tion directions by training W on the corresponding
translation samples built from NTREX (Federmann
et al., 2022) and then testing on Flores (Goyal et al.,
2022)?. Note that NTREX mainly focuses on the
News domain while Flores is built from Wikipedia.
Such out-of-domain testing helps to assess the ro-
bustness and generalization capabilities and pro-
vides a more realistic measure of how LLMs can
handle diverse and unexpected inputs.

NTREX and Flores are both multi-parallel. So it is easy
to build translation data in each involved direction. Here, we
merge all bitext in dev and test set for NTREX and Flores,
resulting in 1,997 and 2,009 samples, respectively.



Specifically, we calculate Precision@k by using
embeddings in W A to retrieve those in B and de-
termine whether their counterparts are within the
k-nearest neighbors based on cosine similarity. We
use the precision after rotation to indicate the struc-
tural similarity within each translation direction.

2.3 Representation Discrepancy and
Isomorphism

We begin our investigation by using sentence em-
beddings derived from prompting methods as men-
tioned in §2.1. Table 1 shows the success rate of the
resulting embeddings in cross-lingual retrieval be-
fore/after applying Procrustes projection (§2.2). It
is evident that 1) the initial representation discrep-
ancies are generally substantial across languages,
such as EN—JP (0.01), except for a few language
pairs that are closer or use the same scripts, e.g.,
EN-DE (0.82). 2) However, after properly rotating
(applying W), representations in most of the direc-
tions are well aligned, leading to clear gains from
an average of 0.25 to 0.71. We also apply another
representation extraction method that takes the last
token’s output embedding without prompting as
representations (last token pooling). The results
shown in Appendix A.3 demonstrate this method
performs significantly worse than prompting-based
methods. The results obtained from the LLaMA2-
13B model are provided in Appendix A.4.

Overall, we argue that although representations
from LLMs vary significantly across languages,
they exhibit a high degree of isomorphism — prop-
erly rotating and/or reflecting the representation
space can effectively align them.

2.4 Multilingual Representation via English
Prompts

Previous studies show decent improvements can be
achieved by simply adjusting/filling non-English
instructions into English-centric prompting tem-
plates in the inference stage (Etxaniz et al., 2023;
Huang et al., 2023). To explain the success, we in-
vestigate how the representations of LLMs change
when using the prompting template in the predom-
inant language, English, for different languages,
rather than the same ones mentioned in §2.1.
Table 2 shows the success rate within the same
data setting in §2.3. Notably, the initial represen-
tations’ degree of alignment is much higher than
that in Table 1 (0.86 v.s., 0.25), resulting in a sim-
ilar alignment level with the latter after rotation.
Also, the gain from applying Procrustes projection

is marginal in this setting. We interpret the degen-
eration of the rotation gain as that English prompts,
to some extent, have taken on the role of the cor-
responding spatial transformation, i.e., mapping
representations into a shared English space.

In the following sections, we refer to using these
English prompts (en-prompts) with non-English
sentences as zero-shot representation alignment
and conduct experiments based on this setting.

3 Semantic Analysis

3.1 Semantic Textual Similarity

In this section, we examine the multilingualism of
LLM representations through the lens of Seman-
tic Textual Similarity (STS) (Agirre et al., 2015,
2016). Each sentence pair in STS datasets is an-
notated from O to 5 indicating the pairwise seman-
tic similarity. The Spearman correlation between
the model-predicted and human-annotated simi-
larity scores is used as the metric. The STS-17
shared task (Camacho-Collados et al., 2017) ex-
tends English-centric STS evaluation to multilin-
gual settings. In this paper, we conduct experiments
based on STS-17, which encompasses 3 monolin-
gual STS (EN, AR, and ES) and 3 cross-lingual
STS (AR-EN, ES-EN, and TR-EN) tasks.

Given the structure similarity of representations
across languages, we test the few-shot capacity of
aligning cross-lingual semantics within LLMs in
the following sections.

3.2 Cross-lingual Contrastive Learning

Contrastive learning (Hadsell et al., 2006) learns
effective representation by pulling semantically
close neighbors together and pushing apart non-
neighbors. Formally, given a set of paired examples
D = {(x;,x])}™,, where z; and x; are seman-
tically related, following Chen et al. (2020), a
cross-entropy loss ¢; with in-batch negatives can
be defined as follows:

esim(hi,h;r)/r

- YA
Zszl 6szm(hz,hj )/T

i = —log )]

where h; is the representation of x;, 7 is a tempera-
ture hyperparameter, and sim(h;, h;) is the cosine
similarity. In this paper, we directly extend the ob-

jective (Eq. 1) into a cross-lingual setting, where
x; and x:r refer to the ¢-th possible translation pair.

Training Setting. We select 1,000 multi-parallel
samples from NTREX as the training set and



Model Settings EN AR ES | AR-EN ES-EN TR-EN | Avg
LLaMA2-7B | sel f-prompts 072 024 028 | 0.17 0.11 0.09 | 0.27
LLaMA2-7B | en-prompts 0.72 046 046 | 036 0.27 0.12 | 0.40
LLaMA2-7B | en-prompts (+100) | 0.76 0.62 0.73 | 0.52 0.64 042 | 0.62
LLaMA2-7B | en-prompts (+1000) | 0.82 0.62 0.80 | 0.54 0.75 0.55 | 0.68
Tower-7B | self-prompts | 0.69 025 041 0.14 0.5 008 |0.29
Tower-7B en-prompts 069 045 070| 0.26 0.35 0.11 0.43
Tower-7B en-prompts (+100) | 0.73 0.57 0.67 | 0.50 0.60 041 | 0.58
Tower-7B en-prompts (+1000) | 0.76  0.60 0.65 | 0.54 0.62 0.47 | 0.61

Table 3: The multilingual and cross-lingual STS results in different settings. sel f-prompts and en-prompts denote
using prompting methods in §2.1 and §2.4, respectively. Tower continues to pre-train LLaM A2 with large amounts
of multilingual data but fails to align semantics. However, aligning LLaMA?2 at the representation level using a few
translation samples from NTREX (e.g., 100), results in clear improvements from 0.40 to 0.68. We provide results

derived from other sizes of LLMs in Appendix A.5.

construct pair-wise samples covering EN—AR,
AR-EN, EN-ES, and ES-EN?. Meanwhile, we
leave TR-involved data empty to investigate the
potential impact on unseen languages. We apply
the in-batch cross-entropy loss as the objective and
fine-tune LLMs with LoRA (Hu et al., 2021). De-
tailed hyperparameters are in Appendix A.1.

We compare cross-lingual STS under varying
settings, including 1) Zero-shot prompting using
self-language for the template, see §2.1, 2) Zero-
shot prompting using English templates, see §2.4,
3) Using Tower (Alves et al., 2024) as the backbone,
a multilingual LLM extensively trained on multi-
lingual data based on LLaMA2, and 4) Applying
cross-lingual contrastive objective. The summa-
rized results can be found in Table 3.

3.3 Results and Discussion

Semantic Alignment across Languages. In Ta-
ble 3, we show that the initial semantic represen-
tation (sel f-prompts) is poor while applying en-
prompts leads to relatively higher performance,
which is in line with the representational analy-
sis in §2.4. Applying contrastive objectives at the
representation level, even with just 100 samples, re-
sults in strong overall STS improvements from 0.40
to 0.62. Further gain can be achieved by extending
the training size from 100 to 1,000 samples.
Interestingly, although the training objectives
(see §3.2) are designed from a cross-lingual per-
spective — aligning representations from other lan-
guages to English — the monolingual STS perfor-
mances (EN, AR, ES) also show clear improve-
ments. Notably, even the performance of the pre-
dominant language, English, improves significantly.

3We cover both directions for each language pair to ensure
all involved languages have a chance to be treated as negative
samples in a batch.

We preliminarily interpret this phenomenon as rep-
resentation alignment leads to better grounding
across languages, however, we leave in-depth ex-
plorations for the future.

Sample- and Representation-Level Alignments.
We observe that current studies (Xu et al., 2023;
Alves et al., 2024; Lai et al., 2024; Gao et al., 2024)
about the multilingualism of LLMs are mainly fo-
cusing on sample-level alignments, i.e., extend-
ing training or fine-tuning samples beyond English.
E.g., Tower further pre-trained on a multilingual
dataset encompassing 20 billion tokens based on
LLaMAZ2. In Table 3, we clearly show that, despite
extensive sample-level alignments, Tower’s seman-
tic representation still fails to effectively general-
ize across languages, resulting in marginal gains
over the base model, LLaMA2. Also, Gao et al.
(2024) demonstrate that neither multilingual pre-
training nor instruction tuning can substantially
improve cross-lingual knowledge conductivity. To
this end, we advocate for exploring representation-
level alignment in the future given its high effi-
ciency and effectiveness in semantic alignments.

4 Conclusion

In this paper, we investigate the representation of
LLMs from the perspectives of both geometric and
semantic similarity. We show that LLMs’ represen-
tations exhibit a high degree of isomorphism across
languages, which explains their cross-lingual zero-
shot or few-shot capabilities in a multilingual con-
text. For example, we show that the semantics
representation of LLMs can be easily enhanced
across languages by alignment at the representa-
tion level using as few as 100 translation samples,
which is much more efficient and effective than
sample-level pretraining or instruction tuning.



Limitations

We conduct experiments exclusively on two fami-
lies of LLMs, namely LLaMA?2 and Tower. There-
fore, the generalizability of our findings to other
LLMs remains uncertain. Additionally, due to the
limited language coverage in the STS17 task, our
semantic analysis is restricted to a few languages.
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A Appendix

A.1 Fine-tuning Hyperparameters

We set the same hyperparameters for all experi-
ments. The LoRA is applied to all linear layers.
The LoRA rank is 64, alpha is 16, and dropout is
0.05. The batch size is set to 32 and the gradient
is accumulated for 4 steps, resulting in an actual
batch size of 128. The learning rate is set to Se-4.
For experiments of fine-tuning with 100 and 1,000
samples, we trained with 10 and 3 epochs.

A.2 Representation Isomorphism with
Additional Metrics

We present the results of Precision@1 and Pre-
cision@10 on representation isomorphism with
LLaMA-7B in Table 4, 5, 6, and 7.

A.3 Representation Isomorphism with Last
Token Pooling-Derived Representations

Table 8 shows the results on representation isomor-
phism with last token pooling-derived representa-
tions of the LLaMA2-7B model.

A.4 Representation Isomorphism with
LLaMA-13B

Table 9 and 10 show the results on representation

isomorphism with the LLaMA2-13B model.

A.5 Semantic Alignment across Languages

Table 11 shows the multilingual cross-lingual STS
results in different settings upon 13B LLMs.
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Precision@1 EN AR ZH JP RU DE ES Into X
EN -/- 0.20/047 044/088 0.01/0.63 0.19/0.87 0.65/0.88 0.54/0.93 | 0.34/0.78
AR 0.06/0.09 -/- 0.10/0.26 0.00/0.2 0.03/026 0.02/0.21 0.06/0.33 | 0.05/0.23
ZH 0.07/0.52 0.02/0.36 -/- 0.07/0.50 0.12/0.71 0.07/0.57 0.11/0.79 | 0.08/0.57
JP 0.01/0.15 0.00/0.19 0.10/0.38 -/- 0.08/0.35 0.01/0.38 0.02/0.40 | 0.04/0.31
RU 0.01/0.52 0.01/043 0.38/0.72 0.02/0.54 -/- 0.09/0.73 0.36/0.86 | 0.14/0.63
DE 0.40/0.72 0.01/042 0.02/0.73 0.00/0.63 0.21/0.83 -/- 0.62/0.88 | 0.21/0.70
ES 0.02/0.55 0.04/041 0.09/0.72 0.00/0.49 0.11/0.80 0.26/0.73 -/- 0.09/0.62
From X 0.10/042 0.05/0.38 0.19/0.62 0.02/0.50 0.12/0.64 0.18/0.58 0.28/0.70 | 0.14/0.55

Table 4: The success rate (Precision@ 1) for cross-lingual retrieval before/after applying Procrustes projection with
the LLaMAZ2-7B model. The embeddings in each language are derived from the LLaMA2-7B model using the
prompting method as described in §2.1.

Precision@10 EN AR ZH JP RU DE ES Into X
EN -/- 0.40/0.73 0.67/0.98 0.05/0.88 0.44/0.98 0.86/097 0.82/0.99 | 0.54/0.92
AR 0.16/0.31 -/ - 0.24/0.51 0.02/045 0.12/0.54 0.12/041 0.19/0.62 | 0.14/0.47
ZH 0.30/0.80 0.16/0.62 -/- 0.20/0.77 0.40/091 0.28/0.80 0.53/0.95 | 0.31/0.81
JP 0.06/0.41 0.06/042 0.28/0.69 -/- 0.23/0.64 0.06/0.65 0.13/0.70 | 0.14/0.58
RU 0.27/0.80 0.27/0.68 0.63/0.90 0.08/0.76 -/ - 0.34/0.89 0.69/0.97 | 0.38/0.83
DE 0.78/0.92 0.16/0.69 0.46/0.92 0.04/0.84 0.43/0.95 -/- 0.88/0.97 | 0.46/0.88
ES 0.24/0.82 0.10/0.67 024/090 0.02/0.73 0.27/094 0.56/0.89 -/- 0.24/0.83
From X 0.30/0.68 0.19/0.64 0.42/0.82 0.07/0.74 0.32/0.83 0.37/0.77 0.54/0.87 | 0.32/0.76

Table 5: The success rate (Precision@10) for cross-lingual retrieval before/after applying Procrustes projection
with the LLaMA2-7B model. The embeddings in each language are derived from the LLaMA2-7B model using the
prompting method as described in §2.1.

Precision@1 EN AR ZH JP RU DE ES Into X
EN -/- 0.59/0.52 0.83/0.81 0.83/0.80 0.57/0.82 0.87/0.88 0.87/0.90 | 0.76/0.79
AR 0.50/0.44 -/- 0.68/0.56 0.69/0.56 0.41/0.58 0.63/0.61 0.65/0.63 | 0.59/0.56
ZH 0.70/0.79 0.67/0.60 -/- 096/092 0.68/0.86 0.89/0.87 0.80/0.88 | 0.78/0.82
JP 0.74/0.77 0.69/0.59 0.97/0.91 -/- 0.67/0.85 0.87/0.85 0.81/0.86 | 0.79/0.81
RU 0.51/0.84 0.63/0.64 0.91/0.88 0.88/0.87 -/- 0.88/093 0.86/0.91 | 0.78/0.85
DE 0.80/0.87 0.51/0.61 0.80/0.85 0.78/0.85 0.57/0.89 -/- 0.95/0.92 | 0.73/0.83
ES 0.76/0.87 0.45/0.58 0.73/0.83 0.69/0.82 0.46/0.87 0.94/0.91 -/- 0.67/0.81
From X 0.67/0.76 0.59/0.59 0.82/0.81 0.81/0.80 0.56/0.81 0.85/0.84 0.82/0.85 | 0.73/0.78

Table 6: The success rate (Precision@ 1) for cross-lingual retrieval before/after applying Procrustes projection with
the LLaMA2-7B model. Note that all embeddings are derived from the prompting template in English as described
in §2.4, instead of the same language with input sentences.

Precision@10 EN AR ZH JP RU DE ES Into X
EN -/- 0.83/0.80 0.95/0.96 097/095 0.80/0.96 0.98/097 0.98/0.98 | 0.92/0.94
AR 0.73/0.75 -/ - 0.88/0.81 0.89/0.80 0.66/0.82 0.87/0.84 0.87/0.84 | 0.82/0.81
ZH 0.89/0.95 0.90/0.84 -/- 1.00/0.98 0.89/097 0987097 0.98/0.97 | 0.94/0.95
JP 091/0.94 090/0.83 1.00/0.98 -/- 0.88/0.97 0.98/0.97 0.98/0.97 | 0.94/0.94
RU 0.80/0.97 0.88/0.86 0.98/0.97 0.98/0.97 -/- 0.98/0.98 0.98/0.98 | 0.93/0.96
DE 0.93/097 0.74/0.84 094/096 0.92/0.96 0.79/0.97 -/- 0.99/0.98 | 0.89/0.95
ES 0927097 0.71/0.82 090/0.96 0.88/0.96 0.72/0.96 0.99/0.97 -/- 0.85/0.94
From X 0.86/0.92 0.83/0.83 094/094 094/094 0.79/094 0.96/0.95 0.96/0.95 | 0.90/0.93

Table 7: The success rate (Precision@10) for cross-lingual retrieval before/after applying Procrustes projection
with the LLaMAZ2-7B model. Note that all embeddings are derived from the prompting template in English as
described in §2.4, instead of the same language with input sentences.



Precision@5 EN AR ZH JP RU DE ES Into X
EN -/- 0.05/0.23 0.04/0.51 0.08/0.41 0.13/0.54 0.09/0.57 0.08/0.70 | 0.08/0.49
AR 0.03/0.07 -/ - 0.02/0.13 0.02/0.08 0.03/0.13 0.01/0.12 0.02/0.16 | 0.02/0.12
ZH 0.19/0.24 0.08/0.18 -/- 046/0.34 0.15/0.37 0.19/0.40 0.11/0.44 | 0.20/0.33
JP 0.11/0.12 0.06/0.09 0.35/0.25 -/- 0.05/0.17 0.08/0.13 0.06/0.17 | 0.12/0.15
RU 0.15/0.23 0.05/0.12 0.08/0.30 0.06/0.15 -/ - 0.19/0.36 0.18/0.45 | 0.12/0.27
DE 0.06/0.20 0.02/0.10 0.03/0.28 0.04/0.11 0.09/0.38 -/- 0.18/0.45 | 0.07/0.25
ES 0.07/0.28 0.02/0.14 0.02/0.33 0.02/0.15 0.08/0.45 0.13/0.43 -/- 0.06/0.30
From X 0.10/0.19 0.05/0.14 0.09/030 0.11/0.21 0.09/0.34 0.12/0.33 0.10/0.40 | 0.10/0.27

Table 8: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection with
the LLaMAZ2-7B model. The embeddings are derived by taking the output hidden vector of the last token without
prompting (last token pooling).

Precision@5 EN AR ZH JP RU DE ES Into X
EN -/- 0.26/0.72 0.66/090 0.66/0.88 0.22/096 0.56/0.85 0.30/0.83 | 0.44/0.86
AR 0.02/0.37 -/- 0.09/0.28 0.11/0.34 0.10/0.64 0.03/0.33 0.03/0.41 | 0.06/0.40
ZH 0.02/0.68 0.04/0.29 -/- 0.42/0.50 0.02/0.68 0.00/0.32 0.00/0.38 | 0.08/0.47
JP 0.02/0.62 0.05/0.40 0.74/0.54 -/- 0.05/0.86 0.01/0.57 0.01/0.53 | 0.15/0.59
RU 0.01/0.43 0.07/0.30 0.07/028 0.12/0.43 -/- 0.02/0.47 0.02/0.48 | 0.05/0.40
DE 0.47/0.84 024/0.61 0.19/0.57 0.52/0.79 0.20/0.95 -/- 0.41/0.80 | 0.34/0.76
ES 0.25/0.71 029/0.52 0.09/046 0.46/0.57 0.14/0.83 0.52/0.70 -/- 0.29/0.63
From X 0.13/0.61 0.16/047 0.31/0.51 0.38/0.58 0.12/0.82 0.19/0.54 0.13/0.57 | 0.20/0.59

Table 9: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection with
the LLaMA2-13B model. The embeddings in each language are derived from the LLaMA2-13B model using the
prompting method as described in §2.1.

Precision@5 EN AR ZH JP RU DE ES Into X
EN -/- 0.89/0.82 0.90/094 0.89/0.93 0.77/0.94 0.99/098 0.98/0.98 | 0.90/0.93
AR 0.81/0.80 -/- 0.82/0.86 0.86/0.85 0.78/0.85 0.94/0.88 0.94/0.88 | 0.86/0.85
ZH 0.59/0.95 0.89/0.88 -/- 1.00/0.98 0.88/097 097/097 0.99/0.98 | 0.89/0.96
JP 0.69/0.94 091/0.87 1.00/0.99 -/- 091/0.96 098/0.98 099/097 | 091/0.95
RU 0.44/095 094/0.89 0947098 0.95/0.97 -/- 0.98/0.99 0.98/0.98 | 0.87/0.96
DE 0.98/0.98 094/090 0947098 0.94/0.97 0.91/0.98 -/- 1.00/1.00 | 0.95/0.97
ES 0.95/0.97 0.93/0.88 090/097 091/096 0.86/0.97 0.99/0.98 -/- 0.92/0.96
From X 0.74/0.93 092/0.87 092/095 093/094 0.85/094 0.97/0.96 0.98/0.96 | 0.90/0.94

Table 10: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection
with the LLaMA2-13B model. Note that all embeddings are derived from the prompting template in English as
described in §2.4, instead of the same language with input sentences.

Table 11: The multilingual and cross-lingual STS results derived from LLaMA2-13B and Tower-13B in different

Model Settings EN AR ES | AR-EN ES-EN TR-EN | Avg
LLaMA2-13B | en-prompts 0.72 055 0.60 | 045 0.31 0.28 | 0.49
LLaMA2-13B | en-prompts (+100) | 0.74 0.57 0.63 | 0.57 0.66 052 |0.62
LLaMA2-13B | en-prompts (+1000) | 0.77 0.62 0.71 0.61 0.63 0.55 | 0.65
Tower-13B | en-prompts | 0.73 059 0.64 | 037 042 049 |0.54
Tower-13B en-prompts (+100) | 0.66 0.60 0.67 | 0.51 0.53 045 | 0.57
Tower-13B en-prompts (+1000) | 0.69 0.63 0.68 | 0.57 0.61 051 | 0.62

settings. sel f-prompts and en-prompts denote using prompting methods in §2.1 and §2.4, respectively.
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