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ABSTRACT

Interactive point-based image editing serves as a controllable editor, enabling pre-
cise and flexible manipulation of image content. However, most drag-based meth-
ods operate primarily on the 2D pixel plane with limited use of 3D cues. As a re-
sult, they often produce imprecise and inconsistent edits, particularly in geometry-
intensive scenarios such as rotations and perspective transformations. To address
these limitations, we propose a novel geometry-guided drag-based image edit-
ing method—GeoDrag, which addresses three key challenges: 1) incorporating
3D geometric cues into pixel-level editing, 2) mitigating discontinuities caused
by geometry-only guidance, and 3) resolving conflicts arising from multi-point
dragging. Built upon a unified displacement field that jointly encodes 3D geome-
try and 2D spatial priors, GeoDrag enables coherent, high-fidelity, and structure-
consistent editing in a single forward pass. In addition, a conflict-free partitioning
strategy is introduced to isolate editing regions, effectively preventing interference
and ensuring consistency. Extensive experiments across various editing scenarios
validate the effectiveness of our method, showing superior precision, structural
consistency, and reliable multi-point editability. Our code and models will be re-
leased publicly. Project page: https://geodrag-site.github.io.

1 INTRODUCTION

Image editing (Cho et al., 2024; Mokady et al., 2022; Shi et al., 2024) has seen remarkable progress
in recent years, largely driven by the emergence of powerful generative models (Hertz et al., 2022;
Kawar et al., 2023; Mokady et al., 2022; Yang et al., 2024b; Zhou et al., 2025). Among these,
text-guided image editing (Ruiz et al., 2023; Huberman-Spiegelglas et al., 2024; Zhou et al., 2025;
Nguyen et al., 2024) has become a widely adopted paradigm, allowing users to modify images
using natural language prompts. While expressive and flexible, this approach often falls short in
providing fine-grained spatial control—especially when precise, localized, or geometry-sensitive
edits are required (Pan et al., 2023; Shi et al., 2024; Liu et al., 2024; Ling et al., 2024; Hou et al.,
2024; Zhang et al., 2025; Chen et al., 2024).

To overcome these limitations, point-based image editing (Pan et al., 2023; Shi et al., 2024; Liu
et al., 2024; Ling et al., 2024; Hou et al., 2024; Zhang et al., 2025; Chen et al., 2024) has emerged
as a powerful alternative, gaining traction for its user-friendly, precise manipulation. By enabling
users to specify handle-to-target point pairs, methods such as DragGAN (Pan et al., 2023) and its
successors (Shi et al., 2024; Liu et al., 2024; Ling et al., 2024; Hou et al., 2024; Zhang et al., 2025;
Chen et al., 2024; Shin et al., 2024) offer intuitive and precise image manipulation. They often
adopt a two-step pipeline: (1) motion supervision, dragging the handle point toward the target, and
(2) point tracking, monitoring the handle’s updated position during editing.

Motivation. Despite their success, existing point-based methods often rely on iterative gradient-
based optimization, which is computationally intensive and impractical for real-time use. To im-
prove efficiency, recent approaches like FastDrag (Zhao et al., 2024) and RegionDrag (Lu et al.,
2024) propose one-step editing via latent relocation based on dense displacement fields constructed
over user-specified regions. However, these methods operate purely in the 2D pixel plane, and ignore
the underlying 3D scene geometry. This becomes a critical limitation for complex transformation
or geometry-intensive edits—like rotations or perspective shifts—where 2D-only reasoning leads
to structural artifacts, unnatural deformations, and spatial misalignment. For example, plane-aware
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Figure 1: (a) Displacement fields. Left: Plane-based estimation (e.g., FastDrag (Zhao et al., 2024))
lacks geometric awareness and introduces structural inconsistencies under geometry-intensive edits
like rotation. Right: Our geometry-aware GeoDrag aligns with 3D structure—near pixels move
more, far pixels less. (b) Relying solely on 3D geometry can produce discontinuous displacements
near object boundaries. (c) Two nearby handle-target pairs with opposing directions (e.g., leftward
and rightward drags) may conflict, causing displacement cancellation and editing failure. The color
legend (Shift/Distance/Depth) is provided in Appendix H.

strategy decays displacement strength based solely on pixel distance, and ignores 3D geometry,
resulting in perceptual distortions of human’s face as shown in Fig. 1(a, left).

To improve the realism and semantic consistency of image editing, incorporating 3D geometric in-
formation is essential, as it offers richer structural cues beyond the 2D pixel plane. However, this
introduces three key challenges. 1) How can geometry be integrated into pixel-level editing?
While 3D cues (e.g., depth maps) are informative, they do not align directly with pixel-wise oper-
ations. For example, a drag defined in the image plane may become ambiguous in 3D due to per-
spective and depth variation—highlighting the need for a mechanism to incorporate geometry into
2D editing pipelines. 2) Is geometry alone sufficient for high-quality editing? Although helpful
for preserving global structure, geometry alone may cause issues. Displacement fields based solely
on 3D geometry (e.g., depth) often become discontinuous near object boundaries (see Sec. 3.1),
disrupting the diffusion process and causing semantic artifacts as shown in Fig. 1(b). 3) How to
reconcile guidance from multiple handle-target pairs? In real scenarios, users often specify mul-
tiple drag points. If their displacement fields overlap—especially with opposing directions—they
can destructively interfere, even with distance-based weighting as in FastDrag (Zhao et al., 2024).
This leads to displacement cancellation and failed edits as illustrated by Fig. 1(c). These challenges
call for a unified framework that integrates 3D geometry and 2D cues while resolving conflicts for
precise and coherent manipulation.

Contributions. To tackle these challenges, we propose GeoDrag—a drag-based image editing
framework that is both geometry-aware and plane-aware, ensuring coherent, high-fidelity, and fast
one-step image manipulation. Built upon the latent consistency model (LCM) (Luo et al., 2023),
GeoDrag predicts a dense displacement field directly in the noisy latent space at a specific diffusion
timestep—circumventing iterative optimization and enabling fast and efficient editing. GeoDrag
introduces three key innovations to resolve the above three challenges, respectively. 1) Geometry-
aware field modeling: To resolve the mismatch between 3D geometry and 2D editing, GeoDrag
introduces a novel influence function that modulates displacement strength based on 3D geometric
relationships. By leveraging depth contrast, it ensures that nearby regions undergo stronger pro-
jective motion, while distant areas move more subtly—preserving 3D structure (see the well-edited
human face in Fig. 1(a, right)). 2) Spatial plane modulation: Addressing the limitations of using
3D geometry alone, GeoDrag incorporates a spatial influence function based on 2D pixel plane. This
improves local structure preservation and editing precision, especially in flat or geometry-ambiguous
regions. 3) Conflict-Free Partitioning: To mitigate conflicts in multi-point editing, GeoDrag seg-
ments the editing mask into non-overlapping sub-regions, each associated with its nearest handle
point. Independent displacement fields are computed per region, avoiding destructive interference
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User Drag GeoDrag User Drag GeoDrag

(a) Visual Quality  (b) Quantitative Results 

1.1×

1.4×

(c) Time and GPU Memory

Figure 2: Experimental Comparison. (a) Representative edits across diverse scenarios. (b) Quanti-
tative results on DragBench: lower MD and DAI indicate more accurate editing. (c) Runtime and
memory comparison across our GeoDrag and previous SoTAs.

and ensuring coherent multi-point manipulation. Together, these contributions allow GeoDrag to
perform fast, high-quality, and semantically consistent edits in a single step—advancing the state of
controllable, geometry-aware image manipulation.

Extensive experiments verify the effectiveness and efficiency of GeoDrag. As shown in Fig. 2,
we provide a three-part visualization: (a) Visual Quality – GeoDrag delivers high-quality edits
across challenging scenarios, including multi-point editing (e.g., bulb), structure-preserving defor-
mation (e.g., mountain), localized manipulation (e.g., lion’s mouth), and geometry-aware tasks (e.g.,
face rotation); (b) Quantitative Results – GeoDrag achieves superior alignment accuracy, improving
runner-up’s dragging accuracy index metric (DAI) by 1.4x and mean distance metric (MD) by 1.1x;
(c) Efficiency – GeoDrag offers a favorable trade-off between speed and memory. While its runtime
gain is modest, it remains lightweight and highly competitive due to its strong editing performance.

2 RELATED WORK

Text-Based Image Editing. Text-based image editing manipulates images via natural language
prompts. Gal et al. (2023) utilize textual inversion for personalized generation by embedding user-
specific concepts. DiffusionCLIP (Kim et al., 2022) fine-tunes diffusion models with CLIP super-
vision, while Prompt-to-Prompt (Hertz et al., 2022) achieves train-free editing by modifying cross-
attention maps. Null-text inversion (Mokady et al., 2022) optimizes unconditional text embeddings
for faithful reconstruction of real images. Imagic (Kawar et al., 2023) interpolates between text and
image-specific embeddings but requires per-task tuning. Other approaches like CycleDiffusion (Wu
& la Torre, 2023) and DDPM inversion (Huberman-Spiegelglas et al., 2024) explore latent spaces to
support high-quality editing. InstructPix2Pix (Brooks et al., 2023) trains on instruction-image pairs,
enabling direct prompt-driven editing. RPG (Yang et al., 2024b) introduces a multimodal LLM
for reasoning and planning editing. Despite their flexibility, text-based methods often lack spatial
precision and fine-grained control, limiting their applicability for detailed editing tasks.

Interactive Point-Based Image Editing. Point-based methods enable precise manipulation by
directly dragging image elements. DragGAN (Pan et al., 2023) introduced this paradigm with
GANs, later improved by diffusion-based approaches (Ho et al., 2020; Rombach et al., 2022; Luo
et al., 2023) like DragDiffusion (Shi et al., 2024), which integrates motion supervision and identity-
preserving fine-tuning. Extensions enhance usability (EasyDrag (Hou et al., 2024)), stability (Free-
Drag (Ling et al., 2024)), semantic control (DragNoise (Liu et al., 2024)), or robustness (Good-
Drag (Zhang et al., 2025), StableDrag (Cui et al., 2024)). To boost efficiency, FastDrag (Zhao et al.,
2024), RegionDrag (Lu et al., 2024), and SDEDrag (Nie et al., 2024) use lightweight latent manip-
ulations, while DragonDiffusion (Mou et al., 2024b), DiffEditor (Mou et al., 2024a), and Instant-
Drag (Shin et al., 2024) introduce energy-based or real-time formulations. Despite progress, they
remain limited to 2D pixel reasoning, restricting realism in geometry-sensitive edits. We address
this with GeoDrag for controllable, structure-preserving, and efficient image editing. In parallel,
FlowDrag (Koo et al., 2025) uses mesh reconstruction and iterative deformation to improve editing
quality, but at a higher computational cost, that limits its responsiveness. By contrast, GeoDrag
achieves geometry-consistent control while remaining responsive for interactive editing.
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Figure 3: Overall framework of GeoDrag. In drag pipeline, the mask is split into sub-regions,
each with a pair of drag points. For each sub-region, the geometry- and plane-aware displacement
fields are independently calculated (see Sec. 3.1 and Sec. 3.2). Subsequently, these fused fields
are aggregated without conflict (see Sec. 3.3). The final field enables one-step editing via latent
relocation and interpolation, with reference guidance to preserve semantics.

3 METHODOLOGY

We begin by formalizing the task of interest. Given an image and a set of k point pairs {(hi, ti)}ki=1,
where each hi is a handle point and ti its corresponding target, the goal is to move each hi to-
ward ti while preserving semantic consistency and visual realism. Recent efficient methods such
as FastDrag (Zhao et al., 2024) and RegionDrag (Lu et al., 2024) enable a fast one-step editing by
computing a displacement field f ∈ RH×W×2, which warps the latent zT at timestep T via forward
mapping:

z∗
T (i+fi,j,1,j+fi,j,0)

= zT (i,j). (1)

Each fi,j = (fi,j,1, fi,j,0) defines how much the latent feature at spatial location (i, j) should be
shifted along the x and y axes in the image. Next, the modified latent z∗

T is then passed into a
well-trained diffusion model to generate the edited image.

Existing methods (Zhao et al., 2024; Lu et al., 2024; Nie et al., 2024) construct f using only 2D
pixel-plane heuristics, ignoring the underlying 3D structure. This estimated f often leads to un-
realistic deformations, semantic breaks, and perspective issues—especially in geometry-sensitive
edits like rotations or viewpoint shifts (see Fig. 1 (a)). Additionally, multiple handle-target pairs can
create overlapping and conflicting displacement fields, causing inconsistent guidance and editing
failures (see Fig. 1 (c)).

To address these issues, we propose GeoDrag which jointly leverages 3D geometry and 2D spa-
tial priors to produce accurate and coherent displacement fields. As illustrated in Fig. 3, GeoDrag
consists of three components: (1) a geometry-aware field modeling module that adjusts motion
strength using depth cues; (2) a spatial plane modulation that combines 3D and 2D guidance; and
(3) a conflict-free partitioning that decomposes the editing mask to resolve conflicting drag signals.
These components respectively resolve three fundamental challenges associated with geometry-
aware drag-based editing, and they together enable high-quality and geometry-consistent image
edits in a single step. Moreover, to avoid the over-smoothing often introduced by interpolation,
we further refine the interpolated latents with a masked stochastic DDIM update, which injects ran-
domness only inside the interpolated region while keeping the rest deterministic. Formally, given a
binary mask M indicating the interpolated area, the sample step is

z∗
t−1 =

√
ᾱt−1ẑ∗

0 +
√

1− ᾱt−1 − σ2
t ⊙M ϵθ(z

∗
t , t) + σt (ϵ⊙M). (2)

This post-interpolation refinement preserves global coherence, effectively alleviating blur without
incurring extra sampling overhead. Below, we elaborate on these three components and their re-
solved challenges in turn. Specifically, we focus on the case of a single handle-target pair in Sec. 3.1
and Sec. 3.2, and extend the approach to multi-point editing in Sec. 3.3.
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3.1 GEOMETRY-AWARE FIELD MODELING

Incorporating 3D geometry into 2D image editing poses a key challenge: pixel-level operations on
the image plane do not directly correspond to transformations in 3D space. For instance, applying
the same 3D displacement to different points can lead to inconsistent 2D motions due to perspective
distortion and depth variation. To bridge this gap, our core idea is to project 3D displacements into
the image plane while preserving 3D structure information. Accordingly, we design a geometry-
aware influence function that converts 3D drag displacements into pixel plane by incorporating
relative depth between pixels and the handle point. This strategy ensures that pixels respond to the
displacement in a depth-consistent manner: pixels with lower depth to handle point are influenced
more, while those at larger depths move less. By aligning the 2D displacement strength with 3D
proximity, the method preserves the consistency of the 3D structure during 2D “dragging”, avoiding
spatial tearing or inconsistent deformation on the image plane.

Specifically, consider a drag operation applied to 3D space (x, y, z) with a 3D displacement vec-
tor (δx, δy, δz). Given a camera intrinsic K which in unknown in this work, the corresponding
projected 2D coordinate (u, v) on the image plane can be computed as follows:

z

[
u
v
1

]
= K

[
x
y
z

]
=

[
fx 0 cx
0 fy cy
0 0 1

][
x
y
z

]
. (3)

Applying a small 3D displacement (δx, δy, δz), its projected 2D shift (δu, δv) becomes:

δu = fx

(
x+ δx

z + δz
− x

z

)
, δv = fy

(
y + δy

z + δz
− y

z

)
, (4)

where fx and fy are the focal lengths of the camera. Since the drag operations are defined on the
2D image plane (in our task), the motion along the optical axis (i.e., the z-axis) can be reasonably
neglected. Thus, Eq. (4) can be simplified as:

δu = fx(δx/z), δv = fy(δy/z). (5)

Furthermore, consider another arbitrary 3D point (x′, y′, z′) which is subjected to the same dis-
placement vector (δx, δy, δz). We can also compute its corresponding 2D displacement (δu′, δv′)

as δu′ = fx
δx
z′ and δv′ = fy

δy
z′ . In this way, combining Eq. (5) yields

δu′ = (z/z′)δu, δv′ = (z/z′)δv. (6)

Eq. (6) implies that (u′, v′) with a smaller depth (closer to the camera) exhibit a greater pixel-plane
displacement due to the inverse proportionality between displacement and depth. Based on this
observation, the geometry-aware field can be constructed as follows:

fd = (ζh/ζ)
α · d = (ζh/ζ)

α · (t− h), (7)

where ζ denotes the depth map within mask, and ζh is the depth of handle point h. The scalar
α serves as a modulation factor, controlling the sensitivity of displacement scaling to depth vari-
ations. d is the drag direction from handle h to target t. The geometry-aware influence function
(i.e., Eq. (7)) calculates the geometry-aware displacement field (as shown in the central blue-shaded
region of Fig. 3) based on the underlying 3D structure. By incorporating depth-dependent modula-
tion, GeoDrag brings 3D geometric information into 2D drag editing, enabling structure-preserving
manipulations. Our strategy resolves the challenge by maintaining geometric consistency between
the perceived 2D deformation and the actual 3D transformation.

3.2 SPATIAL PLANE MODULATION

While geometry-aware displacement field provides structural consistency by incorporating 3D depth
information, it alone is insufficient for producing high-quality edits—particularly in regions with fine
details or near object boundaries. This limitation arises because geometry-aware motion distributes
influence uniformly in 3D space, making it less responsive to subtle and local deformations in the
2D image plane (see Fig. 1(b)). This is the second major challenge discussed in Sec. 1. To over-
come this, we propose a spatial plane modulation strategy that complements the global structure-
preserving behavior of the geometry-aware field with local and pixel-level controllability. This
hybrid approach enables precise and sharp edits while retaining geometric coherence.

5
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Our fusion mechanism draws inspiration from elastic force propagation: deformation peaks at the
force point and decays with distance. Mimicking this behavior, we define a plane-aware field that
decays spatially from the handle point. This formulation allows localized and responsive editing,
especially near fine structural features. While this idea is conceptually similar to the influence decay
used in FastDrag (Zhao et al., 2024), our method avoids plane geometric constructions like similar
triangles and instead adopts a simpler, vectorized formulation that is more computationally efficient
and easier to integrate.

𝑃

𝒉𝒕 𝐿

𝑟
𝑶

𝒒

Figure 4: Illustration of L in the
plane-aware field. O and r are
the center of the outer circle and
radius, respectively.

Given a handle point h and its target point t, the drag vector is
d = t − h. The displacement at each pixel is then computed by
modulating the displacement vector d according to its spatial dis-
tance to h, following the spatial influence function:

fp =
(
1− (P /L)

β
)
· d, (8)

where 1 ∈ Rh×w denotes a matrix with all elements as one, P ∈
Rh×w denotes the Euclidean distance from each pixel to the handle
point h, L ∈ Rh×w is the maximum propagation distance along the
ray from h to each pixel, and β controls how sharply the influence falls off with distance.

The propagation is restricted within a circular region enclosing the editing mask, ensuring the influ-
ence fades smoothly near the mask boundary. As shown in Fig. 4, to compute L, we solve for the
ray-circle intersection:

|h+ tv −O|2 = r2 ⇒ t = −v · (O − h) +
√
(v · (O − h))2 − (|O − h|2 − r2), (9)

where v = q−h
|q−h| is the unit direction vector from h to pixel q, and L = |h+tv| gives the maximum

extent of influence.

To achieve both structural consistency and local flexibility, we fuse the geometry-aware field fd and
the plane-aware field fp into a single displacement field f :

f = (1− λ) · fp + λ · fd. (10)

Here, λ is a spatially adaptive fusion weight based on the distance from each pixel to handle point,
formulated as λ = P /(P + γ). Where γ ≥ 0 is a hyperparameter controlling the balance between
global geometry-aware and local plane-aware influence. A smaller γ favors geometric consistency,
while a larger γ increases responsiveness to localized changes. As shown in the rightmost part
of Fig. 3, the fused field integrates 3D geometric priors and 2D plane cues to enable semantically
coherent and structure-preserving displacements. Since the ideal fusion scale varies across different
object sizes and editing regions, we define γ as a scalar multiple of the diameter of the enclosing
mask circle, making the fusion strategy adaptive to the editing context.

3.3 CONFLICT-FREE PARTITIONING

When multiple handle-target pairs are involved in drag-based editing, directly aggregating their
displacement fields can lead to destructive interference—particularly when nearby handles induce
conflicting motion directions. This is the third major challenge outlined in Sec. 1. Such interference
often results in weakened motion strength, ambiguous displacement patterns, and ultimately, failed
or unintuitive edits. Naive approaches like distance-based weighting are insufficient in these scenar-
ios since they cannot fully decouple the influence of closely spaced or competing drag handles (see
Fig. 6). To resolve this, we introduce a conflict-free partitioning that enforces local independence
by spatially partitioning the editing mask into multiple sub-regions. Each sub-region is exclusively
influenced by a single handle point, ensuring that conflicting displacements are isolated and han-
dled separately. This strategy significantly improves editing precision and prevents cross-handle
interference.

Given an editing mask M , we divides it into disjoint sub-regions Si via Eq. (11), where each pixel
q ∈ M is assigned to the nearest handle point hi.

Si =
{
q ∈ M

∣∣ i = argminj∈{1,...,N} ∥q − hj∥2
}
. (11)

This Voronoi-like partition ensures that each sub-region Si is controlled only by its corresponding
handle point hi, effectively decoupling the influence zones and eliminating destructive overlap.

6
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User Drag DragDiffusion DragNoise FreeDrag FastDrag Ours

Figure 5: Qualitative comparisons with the state-of-the-art interactive point-based methods. See
Appendix D for extended qualitative comparisons, including additional visualizations in Fig. 23. In
addition, see Appendix G for details on how mask selection influences editing behavior. Red points
mark handles, and blue points mark targets; the same applies to the following figures.

Once the partitioning is established, we compute the displacement field fi independently for each
sub-region Si using the hybrid geometry- and plane-aware formulation from the previous section.
The final displacement field f is constructed by assigning the corresponding sub-field to each pixel:

f(q) = fi(q), for q ∈ Si. (12)

This region-wise aggregation ensures that each pixel is influenced by only one handle, avoiding
directional conflicts and enabling precise and localized edits—even when multiple drags are applied.
Despite being a hard partition, our ablations (see Fig. 6) show it performs better than soft partitioning
(Directly Add, Pixel Distance, and Drag Magnitude).

4 EXPERIMENTS

4.1 QUALITATIVE EVALUATION

We conduct qualitative comparisons against existing state-of-the-art drag-based image editing meth-
ods, including DragDiffusion (Shi et al., 2024), DragNoise (Liu et al., 2024), FreeDrag (Ling et al.,
2024), and FastDrag (Zhao et al., 2024). As shown in Fig. 5, GeoDrag achieves superior perfor-
mance and high image quality. For instance, in the first row of Fig. 5, GeoDrag accurately drags
the handle points toward the target points, preserving both structural integrity and semantic coher-
ence, while other methods, such as FastDrag and FreeDrag, fail to maintain precise alignment. In

7
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Table 1: Quantitative results on DRAGBENCH. Lower MD and DAI indicate higher editing pre-
cision, and higher IF reflects greater similarity between original and edited images. Time is the
average editing time per point, and Mem is the peak GPU memory (GB).

Approach MD ↓ DAI1 ↓ DAI10 ↓ DAI20 ↓ IF ↑ Preparation Time (s) Mem

DragDiffusion (Shi et al., 2024) 34.57 0.181 0.170 0.160 0.871 ∼1 min (LoRA) 22.46 18.63
FreeDrag (Ling et al., 2024) 30.80 0.183 0.166 0.151 0.845 ∼1 min (LoRA) 42.90 18.90
CLIPDrag (Jiang et al., 2024) 34.62 0.195 0.174 0.158 0.891 ∼1 min (LoRA) 38.21 22.72
AdaptiveDrag (Chen et al., 2024) 32.38 0.180 0.154 0.146 0.830 ∼1 min (LoRA) 46.30 7.71
DragNoise (Liu et al., 2024) 33.84 0.179 0.169 0.158 0.861 ∼1 min (LoRA) 21.12 18.36
FastDrag (Zhao et al., 2024) 32.10 0.131 0.123 0.115 0.850 ✗ 3.23 5.85

GeoDrag (Ours) 29.24 0.128 0.120 0.111 0.847 ✗ 3.95 5.44

User Drag RAD Directly Add Pixel Distance Drag Magnitude

Figure 6: Ablation study on multi-point drag strategies. See quantitative results in Appendix C.1.

multi-point editing (e.g., the second, fourth, and fifth rows of Fig. 5), GeoDrag successfully reshapes
the wings, adjusts postures in alignment with the user-specified editing intention. In contrast, due
to conflicts among multiple drag points, other methods struggle to generate coherent deformations.
Observation from the last three rows of Fig. 5, GeoDrag produces 3D structure-coherent manipula-
tion. These advantages are derived from the integration of geometric information, which provides a
displacement field toward 3D structure alignment, enabling structurally consistent editing.

4.2 QUANTITATIVE EVALUATION

Here we conduct quantitative evaluations to validate GeoDrag where its modulation factors α, β, and
γ are set to 1.0. Apart from (Shi et al., 2024; Liu et al., 2024; Ling et al., 2024; Zhao et al., 2024),
CLIPDrag (Jiang et al., 2024) and AdaptiveDrag (Chen et al., 2024) are included for comparison.
DRAGBENCH dataset (Shi et al., 2024) is used as the benchmark, while Mean Distance (MD) (Pan
et al., 2023) and Image Fidelity (IF) (Kawar et al., 2023) are metrics for evaluating the editing pre-
cision and similarity between edited and original images. Dragging Accuracy Index (DAI) (Zhang
et al., 2025) measures consistency in the dragged region, with DAIr evaluating a radius-r patch. We
also report average editing time per point and peak GPU memory.

As reported in Table 1, GeoDrag achieves the best editing precision with the lowest MD and DAI,
while maintaining competitive perceptual quality reflected by IF metric. Despite not requiring any
preparation overhead, such as LoRA tuning, GeoDrag outperforms all baselines. GeoDrag edits
each point in 3.95 seconds on average—faster than most diffusion-based methods—and consumes
little GPU memory, making it suitable for responsive applications. More results on scalability w.r.t.
the number of drag points are in Appendix F. We also conduct a user study using 10 randomly
selected images, each edited by FreeDrag (Ling et al., 2024), FastDrag (Zhao et al., 2024), and our
GeoDrag. 60 Participants are asked to rank the edited results (1 for best, 3 for worst). As shown in
Fig. 7, GeoDrag is superior to other methods.

4.3 ABLATION STUDY

Displacement Field. We conduct ablation studies to investigate the contribution of each component
in our hybrid displacement field. Specifically, w/o Depth removes the depth-aware field, while
w/o Plane removes the plane-aware field. As shown in Fig. 8, removing the depth-aware field
leads to inaccurate editing (e.g., failure to rotate the car). Removing plane-aware field leads to
insufficient editing. The results highlight the complementary roles of 3D geometry and 2D plane
prior in achieving structure-preserving and semantically coherent editing.
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Figure 7: User study ranking
on editing quality.

User Drag GeoDrag w/o Depth w/o Plane

Figure 8: Ablation on displacement field. More results in Ap-
pendix C.1.
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Figure 9: Hyperparameter sensitivity study. Left: Visual comparisons under different perceptual
region γ. Right: Quantitative comparisons with varying modulation factors α and β. See more
results in Appendix C.2 and Appendix C.3.

Conflict-Free Partitioning. We evaluate the proposed conflict-free partitioning strategy with direct
summation (Directly Add), pixel-distance weighting (Pixel Distance), and drag-magnitude weight-
ing (Drag Magnitude). As shown in Fig. 6, directly adding displacement fields leads to conflict and
cancellation when directions oppose; Pixel Distance and Drag Magnitude cannot effectively separate
influence regions, producing duplicated and unsatisfactory results; Our method avoids interference
among multiple drag points, yielding accurate results.

Hyperparameters. We visually analyze the influence of γ. As shown in Fig. 9(left), setting γ in the
range of 0.5 to 1.5 achieves a good balance between geometry-aware consistency and local editabil-
ity. We analyze the impact of α and β in Fig. 9(right). The lower α indicates a smoother scale (see
Eq. (7)), weakening the influence of depth contrast. This results in larger overall deformation and
improved alignment. Larger α increases depth sensitivity, causing sharper displacement changes.
This allows for finer-grained control in regions with significant depth changes. For plane-aware
field, a higher β enforces more localized and sharper deformations (see Eq. (8)), thereby better
aligning the edits with user intention and resulting in lower MD. Additional ablation results on the
noise-scaling term σt in Eq. 2 are provided in Appendix C.5.

5 CONCLUSION

In this paper, we propose GeoDrag, a novel interactive editing framework that integrates 3D geomet-
ric priors with 2D spatial cues. GeoDrag achieves geometry-consistent and semantically coherent
image manipulation by constructing a hybrid displacement field. A geometry-aware influence func-
tion leverages depth to model 3D-consistent displacements, while a complementary plane-aware
function improves the controllability of editing. To resolve multi-point conflicts, a region-aware de-
composition strategy ensures conflict-free aggregation. This work offers a new perspective on how
3D geometric priors can be beneficial for precision, coherence, and controllability of 2D interactive
image editing.

Limitations. Although GeoDrag supports one-step editing, computing multiple displacement fields
introduces additional computational overhead compared to lightweight 2D-only baselines such as
FastDrag (Zhao et al., 2024). But GeoDrag often yields much more geometry-consistent and high-
quality image edits, e.g., 9% and 7% improvements in terms of MD and GPU memory than FastDrag
as shown in Table 1.

9
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ETHICS STATEMENT

Image editing model may contain biases or occasionally produce sensitive or offensive outputs. Our
models are presented strictly for academic and scientific research purposes. Any generated content
does not reflect the personal views of the authors. Our work remains guided by a commitment to
advancing AI technologies in ways that uphold ethical standards and resonate with societal values.

REPRODUCIBILITY STATEMENT

We detail the main framework of our work in Sec. 3, and provided the implementation details in
Appendix B.
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A BROADER IMPACT

GeoDrag is developed to improve the controllability and fidelity of interactive point-based image
editing, enabling precise user-driven visual manipulation. The framework applies to a wide range
of scenarios, including digital content creation, artistic editing, and AR/VR-based scene editing. By
improving the structural consistency and semantic fidelity, GeoDrag allows users—especially non-
experts—to produce high-quality and visually coherent results with minimal effort, potentially de-
mocratizing advanced visual editing workflows. However, the increased realism and control enabled
by GeoDrag may raise negative societal impacts. In particular, malicious actors could leverage the
system to generate visually convincing but deceptive content, contributing to disinformation, digital
impersonation, or reputational harm. In addition, advancements in image editing tools increase the
risk of fake imagery, potentially undermining public trust. Unethical use may also raise concerns
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related to individual consent and personal privacy. To address these risks, we advocate for respon-
sible deployment, transparent provenance of generated content, and further research into detection
and authentication techniques.

B IMPLEMENTATION DETAILS

GeoDrag is implemented based on a pretrained latent diffusion model (Stable Diffusion 1.5 (Rom-
bach et al., 2022)), and incorporates an LCM-accelerated U-Net (Luo et al., 2023) to enable efficient
low-step inference. We set the number of sampling steps to 10 and use an inversion strength of 0.7.
The depth prediction model used in geometry-aware field modeling (Sec. 3.1) is Depth Anything
V2 (Yang et al., 2024a). Following prior drag-based editing methods (Shi et al., 2024; Ling et al.,
2024; Liu et al., 2024), we disable classifier-free guidance. For fair comparison, all baseline meth-
ods are evaluated using their default hyperparameter settings as specified in the original papers or
official open-source implementations. Experiments are conducted on an RTX 4090 GPU with 24G
memory.

C SUPPLEMENTARY ABLATION STUDY

C.1 QUANTITATIVE ABLATIONS ON DISPLACEMENT FIELD AND MULTI-POINT DRAGGING
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(a) Displacement field variants (cf. Fig. 8).
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(b) Multi-point drag strategies (cf. Fig. 6).

Figure 10: Quantitative results of ablation study.

We present additional quantitative results to validate the effectiveness of our hybrid displacement
field and conflict-free partitioning strategy. As shown in Fig. 10(a), GeoDrag with geometry- and
plane-aware displacement field achieves the best performance. Removing the geometry prior (w/o
Depth) or the plane modulation (w/o Plane) leads to degradation across all metrics.

The quantitative results of different multi-point dragging strategies are shown in Fig. 10(b). GeoDrag
outperforms alternative strategies on all metrics, demonstrating the effectiveness of the conflict-free
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partitioning. The mathematical formulations of alternative strategies are provided below:

Directly Add: f =

k∑
i=1

fi, (13)

Pixel Distance: f =

k∑
i=1

1/Pi∑k
i=1 1/Pi

fi, (14)

Drag Magnitude: f =

k∑
i=1

|di|∑k
i=1 |di|

fi, (15)

where Pi is the pixel-wise distance map to handle point hi, and |di| denotes the drag magnitude of
hi.

C.2 VISUAL RESULTS OF MODULATION FACTORS

Moreover, we present the visual results of different combinations of α and β in Fig. 22. It is evi-
dent that GeoDrag well aligns with user-specified drag points, demonstrating its robustness across
parameter variations. We observe that increasing α enhances the influence of geometric guidance
during editing. As illustrated in the fourth row of Fig. 22, when α = 2, the result exhibits a more
plausible 3D transformation: the mushroom cap appears lifted along a realistic vertical trajectory,
consistent with a bottom-up viewpoint. This demonstrates the role of geometric priors in maintain-
ing a consistent 3D perspective during editing.

C.3 QUANTITATIVE RESULTS OF DIFFERENT γ

The quantitative results of different perceptual region γ are presented in Fig. 11. As γ increases, MD
consistently decreases, while IF exhibits a non-monotonic trend—first increasing, then decreasing.
Notably, γ = 1 offers a favorable balance between editing accuracy and image fidelity, and is thus
selected as the default setting in our experiments.

C.4 ABLATION STUDY ON INVERSION STEPS

We experiment with t ∈ {4, 7, 10, 13, 20, 35, 50} to examine the number of inversion steps in diffu-
sion inversion. The qualitative and quantitative results are given in Fig. 13 and Fig. 12, respectively.
We observe that GeoDrag achieves more precise and faithful edits when the number of inversion
steps t ≤ 10. In contrast, when t > 10, the editing quality degrades. For a fair comparison with
FastDrag (Zhao et al., 2024), and to balance editing performance with fidelity to the original image,
we adopt 10 as the default setting for inversion steps throughout all experiments in the paper.

C.5 ABLATION ON THE NOISE-SCALING TERM σt

We conduct an ablation study on the noise-scaling term σt in Eq. (2), which is controlled by the
stochasticity parameter η:

σt = η ·
√

1− ᾱt−1

1− ᾱt
·
√

1− ᾱt

ᾱt−1
. (16)

Recall that σt sets the magnitude of the random noise injected by the masked stochastic DDIM
step (Eq. 2). As shown in Fig. 14, setting η = 0 leads to a fully deterministic update, which often
produces over-smoothed results after interpolation and thus blurs in the background. Increasing
η injects stronger randomness inside the interpolated region, encouraging the diffusion model to
better infer local details there. These results highlight the importance of controlled noise injection:
moderate stochasticity yields sharper and more faithful refinements without incurring additional
sampling overhead.

D MORE VISUALIZATION COMPARISON

We present additional qualitative comparisons between our method and other state-of-the-art in-
teractive point-based editing methods. As shown in Fig. 23, these results further demonstrate the
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Figure 11: Ablation study on γ in terms of quan-
titative metrics.
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Figure 12: Quantitative evaluation of the effect
of varying inversion steps in diffusion inversion.

User Drag 4 steps 7 steps 10 steps 13 steps 20 steps 35 steps 50 steps

User Drag 4 steps 7 steps 10 steps 13 steps 20 steps 35 steps 50 steps

Figure 13: Ablation study on the number of inversion steps

User Drag 𝜼 = 𝟎Original Image 𝜼 = 𝟎. 𝟐 𝜼 = 𝟎. 𝟒 𝜼 = 𝟎. 𝟔 𝜼 = 𝟎. 𝟖 𝜼 = 𝟏

Figure 14: Ablation study on the noise-scaling term σt controlled by η. We vary η from 0 (deter-
ministic) to 1 (stochastic).

advantages of GeoDrag across various scenarios, including rotation (e.g., dog, car), scale manipula-
tion (e.g., the avocado and burger), stretching (e.g., the bench), and geometry-consistent movement
(e.g., the mailbox and car). Compared to other methods, GeoDrag better preserves object struc-
ture while producing edits that better conform to the user input. In challenging cases involving
perspective shifts (e.g., the last row), GeoDrag generates geometry-consistent results that maintain
alignment with the user-specified drag. These results demonstrate GeoDrag’s ability to preserve
visual coherence under complex editing operations.
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E EFFECT OF LORA FINETUNING ON GEODRAG

Table 2: Quantitative comparison of GeoDrag with and without LoRA finetuning.

Method MD ↓ DAI1 ↓ DAI10 ↓ DAI20 ↓ IF ↑
w/o LoRA 29.24 0.128 0.120 0.111 0.848
w/ LoRA 30.91 0.186 0.163 0.146 0.851

To further investigate the generalization ability of GeoDrag, we evaluate GeoDrag under two con-
figurations: with and without LoRA (Hu et al., 2022) finetuning. Both versions share the same
backbone and inference hyperparameters; the only difference is whether LoRA finetuning is ap-
plied. As shown in visual examples (see Fig. 24), GeoDrag consistently produces high-quality,
geometry-consistent edits even without any finetuning. Nevertheless, LoRA finetuning can enhance
local detail and fidelity in some cases (e.g., the fourth row of Fig. 24).

The quantitative results are reported in Table 2. The model without LoRA achieves lower MD and
DAI, indicating better alignment with editing guidance. Meanwhile, LoRA finetuning improves
visual similarity between the original and edited images (higher IF).

F SCALABILITY WITH THE NUMBER OF DRAG POINTS

To evaluate scalability as the number of drag points increases, we conduct a dedicated experiment:
10 representative images are selected and applied 1–8 drag points, yielding a total of 80 edited
samples. We measured the average per-image editing time for each point count. As reported in
Table 3, the number of drag points has minimal impact on editing time, supporting the practicality
of GeoDrag for interactive workflows.

Table 3: Average editing time (in seconds) for different numbers of drag points.

Number of points 1 2 3 4 5 6 7 8
Time (seconds) 12.71s 11.63s 11.74s 11.23s 12.27s 12.86s 12.03s 12.93s

G EFFECT OF MASKS

Mask selection is crucial for controlling the scope and locality of edits. Fig. 16 illustrates the impact
of different masks when edit a same object. Applying a full-object mask to the avocado enlarges
the entire object (Fig. 16(a)) and the shape of the seed is changed. In contrast, masking only the
avocado’s edges confines the effect to the boundary (Fig. 16(b)), preserving the shape of seed.

(a) Color wheel used for displacement field visu-
alization.

(b) Color bar used to indicate depth or distance
maps.

Figure 15: Visualization legends.
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User Drag Edited Result

(a) Full-object mask (global edit).

User Drag Edited Result

(b) Edge-only mask (localized boundary edit).

Figure 16: Effect of mask selection on editing.

Table 4: Evaluation of GeoDrag under noisy depth maps

Noisy Level MD ↓ DAI1 ↓ DAI10 ↓ DAI20 ↓ IF ↑

Baseline 29.24 0.128 0.120 0.111 0.847
σ = 0.01 +0.66 +0.00 +0.00 +0.00 +0.00
σ = 0.05 +1.23 +0.002 +0.002 +0.001 +0.00
σ = 0.1 +2.85 +0.004 +0.003 +0.003 -0.002
σ = 0.5 +9.81 +0.007 +0.004 +0.004 -0.006

H VISUALIZATION OF DISPLACEMENT FIELDS

To provide a better understanding of how user-specified drags are propagated, we visualize the 2D
displacement fields (see Fig. 1 and Fig. 3). These displacement fields are color-coded using a consis-
tent scheme to indicate direction and magnitude, as shown in Fig. 15(a). Hue represents the direction
of displacement, with each color corresponding to a specific motion orientation (e.g., rightward in
red, upward in cyan). Brighter and more saturated regions correspond to larger displacement mag-
nitudes.

In addition, Fig. 15(b) shows the legend used for visualizing depth or distance maps. Warmer colors
indicate closer regions and cooler colors denote farther ones. This legend is used in visualizations
such as depth and distance maps in Fig. 1.

I DETAILS OF USER STUDY

Here, we provide additional details about the user study, including its design and aggregated ranking-
based evaluation results. Fig. 25 shows the selected input images, the corresponding editing results
from different methods, and the user-assigned rankings for each result. For each test case, users
were asked to rank the edited results from three different methods. The ranking is based on how
well each result aligns with the intended dragging operation while preserving the original visual
identity. A lower rank indicates better quality. Specifically, rank 1 denotes the best edit—i.e., the
one that best aligns with the drag intention and maintains high image fidelity—while rank 3 corre-
sponds to the least satisfactory result. Note that the anonymous labels (a), (b), and (c) correspond to
FastDrag (Zhao et al., 2024), FreeDrag (Ling et al., 2024), and GeoDrag, respectively.

J ROBUSTNESS TO DEPTH MAP

Fig. 17 presents a qualitative evaluation of our method under challenging depth-prediction condi-
tions, including transport-specular regions (first row), textureless regions (second row), and a strong
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User Drag Depth Map w/o Pane w Pane

Figure 17: Evaluation in specular, textureless, and strong-perspective scenes using geometry-only,
and combined displacement.

Original Image User Drag Edited Result Edited ResultUser DragOriginal Image

Figure 18: Failure cases of drag editing when generating previously unseen content. Left: overlap-
ping objects cause ambiguous interpolation and distorted regions. Right: large unseen areas lack
valid latent correspondence, leading to unrealistic synthesis.

perspective view (third row). For each scenario, we compare two variants: geometry-only and the
combined formulation employed in GeoDrag. As shown in the figure, the underlying depth maps in
these scenes exhibit distinct failure modes: (1) due to the transparent glass surface and strong specu-
lar reflections, the depth estimator can only separate foreground and background coarsely, producing
a flat and overly simplified depth map. When relying solely on depth cues, this leads to blurred de-
formation along object boundaries; (2) the edited object lies almost flush against a uniformly colored
wall, resulting in an extremely weak depth gradient. Geometry-only guidance, therefore, becomes
unreliable and introduces distortions; (3) the strong perspective foreshortening causes large depth
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Scale=0.5 Scale=1.0 Scale=1.25

Scale=1.275 Scale=1.35 Scale=1.4 Scale=1.5 Scale=2.0

Original User Drag

Figure 19: Effect of the scaling factor on handle–target alignment. Increasing the scale improves
point alignment, while overly large scales lead to structural distortion.

User Drag SDEDrag Ours User Drag SDEDrag Ours

User Drag GoodDrag Ours User Drag GoodDrag Ours

GoodDrag

Ours User Drag GoodDrag

GoodDrag

Figure 20: Qualitative comparison with SDEDrag (Nie et al., 2024) and GoodDrag (Zhang et al.,
2025).

discontinuities and makes it difficult for the estimator to recover the true geometry of the target
object (the train).

In all these scenarios, the failure of the depth map to provide reliable geometric cues renders
geometry-only guidance insufficient for stable deformation. However, the incorporation of Spatial
Plane Modulation effectively compensates for these deficiencies by supplying a depth-independent,
spatially smooth prior that preserves coherent structure even when depth information is severely
degraded. This design enables GeoDrag to maintain stable and plausible deformations.

Moreover, we conducted an additional perturbation study to evaluate the robustness of GeoDrag
under noisy monocular depth predictions. We injected controlled Gaussian noise into the predicted
depth maps, scaling the variance according to the depth range of each image:

D̃(x, y) = D(x, y) + ϵ(x, y), ϵ(x, y) ∼ N
(
0, (σ∆D)2

)
, (17)

where D(x, y) is the original depth, ∆D = Dmax − Dmin denotes the depth range, and σ is the
noise factor. This formulation ensures that the injected perturbation is proportional to the scene’s
depth variation. As reported in Table 4, GeoDrag exhibits strong robustness to depth prediction
noise. Under mild and moderate perturbations (e.g., σ ≤ 0.1), the performance remains largely
stable across all evaluation metrics, indicating that the model is not overly sensitive to small depth
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Table 5: Averaged per-stage execution time of GeoDrag over the full benchmark (in seconds).

Stage DDIM inversion DDIM sampling Interpolation Depth prediction

Time (s) 1.2721 1.2416 0.2247 0.0995

Stage Spatial plane modulation Latent relocation Partition Geometry-aware field modeling

Time (s) 0.0109 0.2714 0.0006 0.0003

Table 6: Comparison of dynamic (original) and static (optimized) interpolation in GeoDrag.

Model MD ↓ DAI1 ↓ DAI10 ↓ DAI20 ↓ IF ↑ Interpolation Time (s) Latent Relocation Time (s)
GeoDrag (original) 29.24 0.128 0.120 0.111 0.847 0.2247 0.2714
GeoDrag (optimized) 27.84 0.133 0.121 0.111 0.847 0.0014 0.0009

fluctuations. Even when the noise magnitude increases to σ = 0.5, the performance degradation
only becomes noticeable at this extreme level, suggesting that the method is capable of maintaining
reliable tracking quality under realistic sensor and prediction uncertainties. Overall, these results
demonstrate that GeoDrag preserves its effectiveness in challenging noisy-depth scenarios and does
not rely heavily on precise depth estimates to function correctly.

K FAILURE CASES

We present two representative failure cases in Fig. 18 to clarify the limitations of GeoDrag. Both
examples require generating previously unseen content rather than simply deforming the visible re-
gions. The example on the left additionally involves a complex scene with multiple overlapping ob-
jects. Although the editing direction is partially correct, the newly exposed regions exhibit distorted
and blurry structures. This occurs because our interpolation strategy reconstructs unseen content by
sampling nearby latent features; when multiple objects heavily overlap, the mixed semantic context
introduces feature ambiguity and leads to unstable reconstruction. The example on the right exposes
a large area that is completely invisible in the original image. In this case, the missing content has
no reliable correspondence within the existing latent featureslacks reliable correspondence within
the existing latent features, so interpolation-based completion cannot provide meaningful structural
cues, resulting inpainting-based latent completion module may alleviate this issue and is a promising
direction for future work.

L PER-STAGE RUNTIME ANALYSIS AND IMPROVEMENTS

To better characterize the efficiency of the proposed GeoDrag pipeline, we provide a full-stack
runtime breakdown across all modules, revealing where the computational budget is primarily spent
and how to further optimized. The pipeline can be decomposed into eight major stages: DDIM
inversion, DDIM sampling, partition, geometry-aware field modeling, spatial plane modulation,
interpolation, latent relocation, and depth prediction. The averaged per-stage execution times (in
seconds) over the Other Object subset of DRAGBENCH are reported in Table 5. The results show
that the diffusion-based components (inversion and sampling) dominate the total latency, whereas
the remaining geometric modules contribute negligibly to the runtime. Within the non-diffusion
stages, interpolation and latent relocation are most expensive component.

Therefore, we focuse our efficiency improvements specifically on these two modules: (1) we ob-
served that latent relocation can be fully vectorized, allowing us to remove unnecessary per-point
loops; and (2) we replace the dynamic BNNI update with a static four-neighbor interpolation rule,
enabling parallel computation and substantially faster execution. The quantitative comparison is
reported in Table 6. Surprisingly, this simplified interpolation not only reduces runtime but also
improves performance. We believe this is because removing the iterative BNNI updates prevents
error accumulation, while the static strategy still retains the essential semantic structure in the latent
space.
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M EFFECT OF THE SCALING FACTOR ON HANDLE–TARGET ALIGNMENT

During the drag operation, the displacement field is computed in the diffusion latent space rather
than directly on image pixels space. When converting drag points from the pixel domain (e.g.,
512× 512 pixels) to the latent domain (e.g., 64× 64 features), the coordinates must be downscaled
accordingly. This conversion inevitably reduces the effective displacement magnitude in the latent
space, leading to a small residual gap between the handle and target points after editing.

To compensate for this attenuation, we apply a scaling factor to rescale the displacement field after
converting coordinates to the latent space. This restores the motion magnitude lost during down-
sampling and improves handle–target alignment.

As shown in Fig. 19, the scaling factor significantly influences alignment and deformation quality.
A moderate value enhances correspondence between handle and target points, while an overly large
one leads to overcorrection and geometric distortion. In practice, a scale of 1.2–1.3 offers a good
balance between point-level accuracy and global consistency.

N ADDITIONAL VISUAL COMPARISONS WITH SDEDRAG AND GOODDRAG

We provide additional qualitative comparisons with SDEDrag (Nie et al., 2024) and Good-
Drag (Zhang et al., 2025) in Fig. 20. The results show that our method achieves comparable or
even better editing results. Compared with GoodDrag (Zhang et al., 2025), GeoDrag does not rely
on LoRA fine-tuning and multi-step optimization, making it significantly more efficient.

DECLARATION OF LLM USAGE

We used a large language model (GPT-5) solely for grammar and language refinement. All research
ideas, analyses, and conclusions are our own.
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Figure 21: Visual Results of Hyperparameter Analysis.
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Figure 22: Visual Results of Hyperparameter Analysis.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Original Image User Drag DragDiffusion DragNoise FreeDrag FastDrag GeoDrag(Ours)

Figure 23: More qualitative comparisons with state-of-the-art interactive point-based methods.
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Original Image User Drag w/o LoRA w/ LoRA Original Image User Drag w/o LoRA w/ LoRA

Figure 24: Visual comparison of GeoDrag with and without LoRA (Hu et al., 2022) finetuning. w/
LoRA and w/o LoRA denote our GeoDrag with and without finetuning, respectively.
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Original Image User Input (a) (b) (c)

Original Image User Input (a) (b) (c)

Original Image User Input (a) (b) (c)

Original Image User Input (a) (b) (c)

Original Image User Input (a) (b) (c)

Original Image User Input (a) (b) (c)

Original Image User Input (a) (b) (c)

Original Image User Input (a) (b) (c)

Original Image User Input (a) (b) (c)

Original Image User Input (a) (b) (c)

#Rank 1 votes #Rank 2 votes #Rank 3 votes

(a) 14 31 11

(b) 10 14 31

(c) 36 8 11

#Rank 1 votes #Rank 2 votes #Rank 3 votes

(a) 5 24 26

(b) 10 21 25

(c) 45 9 3

#Rank 1 votes #Rank 2 votes #Rank 3 votes

(a) 30 23 5

(b) 6 8 41

(c) 24 23 8

#Rank 1 votes #Rank 2 votes #Rank 3 votes

(a) 10 20 26

(b) 21 21 15

(c) 29 13 13

#Rank 1 votes #Rank 2 votes #Rank 3 votes

(a) 35 14 7

(b) 10 11 36

(c) 15 29 11

#Rank 1 votes #Rank 2 votes #Rank 3 votes

(a) 11 8 36

(b) 31 20 7

(c) 18 26 11

#Rank 1 votes #Rank 2 votes #Rank 3 votes

(a) 13 8 25

(b) 17 29 9

(c) 30 17 10

#Rank 1 votes #Rank 2 votes #Rank 3 votes

(a) 16 16 25

(b) 23 19 12

(c) 21 19 17

#Rank 1 votes #Rank 2 votes #Rank 3 votes

(a) 7 1 46

(b) 40 13 4

(c) 13 40 4

#Rank 1 votes #Rank 2 votes #Rank 3 votes

(a) 13 34 10

(b) 5 14 35

(c) 42 6 9

Figure 25: Examples and detailed user rankings for the user study. For each case, we show the
original image, the user input, and editing results from three anonymous methods labeled as (a),
(b), and (c). The number of Rank-1, Rank-2, and Rank-3 votes collected from all participants is
reported. A lower rank indicates better alignment with the intended manipulation and higher visual
fidelity.
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