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ACCELERATE HIGH-QUALITY DIFFUSION MODELS
WITH INNER LOOP FEEDBACK
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Figure 1: PixArt-sigma 1024x1024 images, generated with 20 steps using DPM-Solver++ (top) vs.
PixArt-sigma with caching (middle) vs. PixArt-sigma with ILF (bottom). ILF produces high quality
images 1.8x faster, measured on H100 GPUs.

ABSTRACT

We propose Inner Loop Feedback (ILF), a novel approach to accelerate diffu-
sion models’ inference. ILF trains a lightweight module to predict future features
in the denoising process by leveraging the outputs from a chosen diffusion back-
bone block at a given time step. This approach exploits two key intuitions; (1)
the outputs of a given block at adjacent time steps are similar, and (2) performing
partial computations for a step imposes a lower burden on the model than skipping
the step entirely. Our method is highly flexible, since we find that the feedback
module itself can simply be a block from the diffusion backbone, with all set-
tings copied. Its influence on the diffusion forward can be tempered with a learn-
able scaling factor from zero initialization. We train this module using distillation
losses; however, unlike some prior work where a full diffusion backbone serves as
the student, our model freezes the backbone, training only the feedback module.
While many efforts to optimize diffusion models focus on achieving acceptable
image quality in extremely few steps (1-4 steps), our emphasis is on matching
best case results (typically achieved in 20 steps) while significantly reducing run-
time. ILF achieves this balance effectively, demonstrating strong performance
for both class-to-image generation with diffusion transformer (DiT) and text-to-
image generation with DiT-based PixArt-alpha and PixArt-sigma. The quality of
ILF’s 1.7x-1.8x speedups are confirmed by FID, CLIP score, CLIP Image Quality
Assessment, ImageReward, and qualitative comparisons.
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Feedback Module

Frozen, from pre-trained
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Key Idea: Powerful inner
loop within diffusion model
for high quality generation

with less steps.
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Figure 2: ILF uses a lightweight, learnable feedback module to create a powerful inner loop within
a diffusion model. Instead of computing a forward through all backbone blocks, in order, we choose
some block, feed its output features to the feedback, then feed those features back to some earlier
blocks in the model, modified by a learnable scaling term. The feedback’s objective is essentially to
predict features corresponding to some future diffusion time step, so the resulting noise prediction
is more reliable for the model’s current step.

1 INTRODUCTION

Since its introduction as an alternative to generative adversarial networks (GANs) Goodfellow et al.
(2014) for image synthesis Dhariwal & Nichol (2021), diffusion has been one of the most prominent
methods for generative tasks. These methods deliver stable training, high quality generations, and
easy alignment to a variety of conditions for generative tasks Yang et al. (2024). However, the actual
generation process is quite expensive. While GANs generate images in a single model forward pass,
diffusion models require many model forward passes to iteratively progress from random noise to
clean images. As a result, many researchers have focused on trying to improve the efficiency of
diffusion models, while retaining the quality. Some of these are training-free, focusing on caching
features for cheaper inference; others involve expensive distillation to dedicated-purpose few step
models.

We propose inner loop feedback (ILF) for diffusion models, seeking to achieve higher quality at
better efficiency than caching, as shown in Figure 1, without the training cost and inflexibility of
distillation-based approaches. With this approach, we can take any frozen pre-trained transformer-
based diffusion model, and make each of its steps more powerful by training a new block, the
feedback module, to take features from a block b at one step, t, and predict features for prior blocks
b − 1, b − 2, ..., b − l corresponding to the next step, t − r, as shown in Figure 2. In contrast to
these distillation-based methods that seek to learn models that can achieve reasonable quality with
4 or fewer inference steps, we focus instead on matching or surpassing the best-case performance
of the original model, in less time. Furthermore, with our approach, one does not need to store an
entire additional set of models weights, instead only those corresponding to the lightweight learnable
module.

From caching literature focused on the U-Net architecture, we already know that features for these
U-Net diffusion models are very similar for a given block, b, at adjacent time steps, t and t− r Ma
et al. (2023); Wimbauer et al. (2024). We find this remains consistent for transformer-based diffusion
models, in Figure 3, with an implementation described in Section 2.2. Caching methods leverage
this concept to skip computation for certain blocks at certain steps, simply re-using the prior features.
However, as Figure 3 also shows, leveraging these similar adjacent features changes the make-up of
the features themselves.

The caching schedule itself is noticeable; since features are cached on every other step, instead of
smooth change over blocks and time, feature pairs become noticeable on the time axis. Furthermore,
except for the last steps, the final model outputs become less distinct between neighboring steps. The
same phenomenon manifests when we consider how the features evolve across blocks (Figure 4);
once we introduce caching, features of the last block do not become as dissimilar to the first step
for the steps on which the caching occurs. This is clearly not optimal, and results in poorer quality
images, as shown in Figure 5. Caching often loses key details, and produces blurrier, less appealing
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Figure 3: Change in features across time steps,
measured for each block as difference from that
block’s feature at t = 1000, normalized by di-
viding by the maximum difference across both
plots. Caching reduces the degree to which the
features change over time.

Figure 4: Change in features across blocks,
measured for each block at each time step as
difference from the first block’s feature at that
time step, normalized as in Figure 3. The trend
with caching is similar here as when measuring
difference over time.

generations. This motivates our inner loop feedback; we want to take advantage of the redundancy
between blocks across time, without compromising the quality of the final images.

For flexibility of adaptation to novel architectures, we propose leveraging the model architecture
itself to design the feedback module. The module consists of a single block, copied from the block
design of the corresponding pre-trained diffusion transformer backbone. That is, for the basic DiT,
our feedback module is a single DiT block. This way, our feedback handles conditions, input sizes,
and output sizes in the same way as the base model.

Different diffusion models have different learned weight values, and training quickly, without over-
fitting, is quite challenging. To allow for fast training we use distillation. However, unlike prior
works, we do not have a separate teacher and student. Instead, the model without feedback is the
teacher, and the model with feedback is the student – but only the feedback is learnable. Further-
more, while prior works perform multiple teacher iterations, which is expensive, we propose an
approach that allows us to only use one. We find this Fast Approximate Distillation works equally
well, at lower cost. To avoid over-fitting, we add Learnable Feedback Rescaling, where we learn
an integer scaling term on the feedback before we add it to the features in the pretrained model.
Initializing this to zero allows the model to learn quickly from the distillation, without diverging due
to excessively large error. Neither Fast Approximate Distillation nor Learnable Feedback Rescaling
require any hand-tuned hyperparameters, allowing for easy implementation and extension to other
models and data.

One challenge introduced by our approach is that since we attempt to predict features corresponding
to future steps, it is not immediately clear how to set the noise steps for the backbone and sched-
uler. While we find that using default schedulers works well, this does not hold true for the model
backbone itself, where we must use a rescaled step for the time conditioning at inference time.
Furthermore, we find that for larger inner loops, it is often best to skip feedback on some steps
altogether. We instantiate these findings collectively as Feedback-aware Inference Scheduling.

In summary, we achieve high quality efficient generation with the following contributions:

• We propose diffusion with Inner Loop Feedback (ILF), a feedback mechanism which cre-
ates a powerful inner loop within transformer-based diffusion backbones for optimal time-
quality trade-offs.

• We develop Learnable Feedback Rescaling and Fast Approximate Distillation for speedy
training, and Feedback-aware Inference Scheduling to adaptively leverage the power and
speed of ILF at inference time.

• We achieve superior results to caching for 1.7x-1.8 speedups compared with the baseline
model, with an average +7.9 improvement for Image Reward, +0.14 CLIP, -0.22 MJHQ
FID, and +1.4 CLIP IQA Score.
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2 RELATED WORKS

2.1 DIFFUSION FOR IMAGE GENERATION

Diffusion Fundamentals. Diffusion models Ho et al. (2020); Nichol & Dhariwal (2021); Dhariwal
& Nichol (2021) consider a forward noising process. Given some distribution q(x0), a sample x0 is
noised in steps accordingly to a schedule, {βt}Tt=1, where at any time step t, we can calculate the
noised sample, xt, as

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (1)

with αt := 1− βt and ᾱt :=
∏t

i=0 αi. The diffusion model is instantiated as a neural network that
reverses the forward noising process, by predicting ϵt that ought to be removed from xt to predict
xt−1.

Model Architecture. Early diffusion models rely on U-Net architectures Ronneberger et al. (2015);
Ho et al. (2020); Dhariwal & Nichol (2021), processing images (or noised images) into features
in an encoder, then back to images (or noise, in pixel space) with a decoder, with connections
between symmetric encoder and decoder blocks. For the sake of efficiency, subsequent methods
perform diffusion on latent representations Rombach et al. (2022) from pre-trained variational auto-
encoders Kingma & Welling (2014). Originally proposed for image generation, these models are
also well-suited for image editing Kawar et al. (2023); Brooks et al. (2023) and video generation Ho
et al. (2022); Blattmann et al. (2023); Liu et al. (2024b). These models can be conditioned on
text encodings Saharia et al. (2022); Ramesh et al. (2022); Nichol et al. (2022); Ruiz et al. (2023);
Podell et al. (2023) from powerful models including CLIP Radford et al. (2021) and T5 Raffel et al.
(2023). Recently, to allow for more flexible scaling, transformer-based diffusion models Peebles &
Xie (2023); Bao et al. (2023) have become the predominant architecture for state-of-the-art diffu-
sion models Chen et al. (2023; 2024b;a); Esser et al. (2024); Liu et al. (2024b). Due to the recent
trend towards diffusion transformers, we choose to focus our work primarily on this family of ar-
chitectures, including the original DiT Peebles & Xie (2023) for class-to-image generation, and
PixArt-alpha Chen et al. (2023) and PixArt-sigma Chen et al. (2024a) for text-to-image generation.

Inference Scheduling. While diffusion models are typically trained on 1000-step schedules, in-
ference is performed at much lower steps, with schedulers to handle timestep spacing, as well
as forward and reverse noising Song et al. (2022); Karras et al. (2022); Lu et al. (2023). Recent
work investigates non-uniform, model-specific timestep spacing Sabour et al. (2024). We propose
substantial inference-time improvements for ILF in Section 3.3, but these are all compatible with
existing inference schedulers.

2.2 FASTER DIFFUSION INFERENCE

A significant body of work focuses on speeding up diffusion inference to generate good images
in fewer steps. The majority of these approaches can be divided between training-free caching
approaches, and training-based distillation approaches.

Caching. Prior caching work focuses mainly on U-Net architectures. While the methods share a key
intuition, that features are similar at adjacent time steps, their configurations differ. Some cache only
encoder features Li et al. (2023), others cache outer layers of both encoder and decoder Ma et al.
(2023), and others automatically discover ways to cache a variety of layers Wimbauer et al. (2024).
Concurrent work has started to approach caching for DiTs Selvaraju et al. (2024); Liu et al. (2024a),
including some work which focuses on learnable routing for the caching Ma et al. (2024). One major
difference between U-Nets and DiTs is the absence of encoder-decoder distinction, which changes
the caching approach substantially. Furthermore, many of these approaches focus on generation
of lower resolution images, using class conditioning, with many time steps. By contrast, more
modern text-to-image models use fewer steps. With fewer steps, the feature maps change much less
smoothly over time, mitigating the suitability of caching; furthermore, errors and blurriness become
even more glaring at higher resolution (see Figure 5 for examples). Nevertheless, we implement
caching as a point of comparison for ILF.

For this caching, we store the attention and feedforward results for each cacheable block on the
first step. Then, at subsequent steps, for all cacheable blocks, we only recompute attentions and
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Figure 5: We compare typical 20 step diffusion
inference to caching for PixArt-alpha, 512x512
images. We cache the middle 14 blocks, re-
computing features every other step. Caching,
while more efficient, sometimes results in qual-
ity degradation – loss of detail (no faces in left-
most image), less appealing design (middle im-
ages), and blurriness (rightmost image, zoom in
on eyes, ears, hair, and mouth).

Feedback Module

s* **

+ + +

+ + +

DiT

Feedback
Cached

Figure 6: Caching (top) vs. ILF (bottom). We
show how we use a partial diffusion forward pass
to compute ft,b+3, which we then use to compute
ft−r,b+3. We can use fewer of ILF’s heavy steps
to ultimately achieve better quality-time trade-
offs than caching’s cheap steps.

feedforwards on every other step; otherwise, we simply add the stored results to the new input hidden
states. We illustrate this approach in Figure 6, and compare it to ILF. Unlike caching approaches,
we train ILF with lightweight external module that increases the complexity of each forward pass,
which allows us to achieve much better quality-speed trade-offs at inference time.

Training or Finetuning. Some approaches learn lightweight modules for predicting skip connec-
tions Jiang et al. (2023) or predicting steps based on prompt complexity Zhang et al. (2023). The
majority of the literature tends to focus on knowledge distillation Hinton et al. (2015), progres-
sive distillation Salimans & Ho (2022), guidance distillation Meng et al. (2023), and consistency
distillation Luo et al. (2023). Unlike the majority of these works, we do not focus on generating
images of acceptable quality in extremely low steps Lee et al. (2024); Sauer et al. (2023); Kohler
et al. (2024); Yin et al. (2023); Xu et al. (2023b); instead, we seek to synthesize maximum quality
images in the fewest possible steps.

3 APPROACH

3.1 INNER LOOP FEEDBACK DESIGN

We propose a lightweight learnable module that leverages similar intuitions to caching, but with
a different mechanism and superior results. This method, illustrated in Figure 2, starts with some
pre-trained, transformer-based diffuion model. Standard diffusion forward passes attempt to predict
ϵ̂(xt, t), for some noised latent xt and time step t. By contrast, with our feedback mechanism, we
attempt to make the forward pass more powerful, where we instead predict ϵ̂(xt−r, t−r), where r is
some positive integer, meaning t− r is some subsequent time step. This allows us to generate high
quality images with fewer, but more powerful, inference steps.

We design the feedback module itself by simply copying the architecture of the model blocks them-
selves, such that for a standard N block DiT, we introduce a (N + 1)th block. However, instead of
simply appending, prepending, or inserting the block, we dramatically alter the flow of information.
We first set a location for the inner loop, denoted by the beginning (b) block, Bb, and the ending
(e) block Be. For some time step t, the feedback module takes as its input, the output of Be, fe,t,
along with the embedded time and text conditions. The feedback model gives its output, ffeed. We
then rescale the ffeed for separately for each block in the inner loop, {Bb, Bb+1, ..., Be}, by multi-
plying each by its corresponding learnable floating point scaling factor, {sb, sb+1, ..., se}. For the
first block, Bb, we compute its result as

fb,t−r = ffeed ∗ sb + fb−1,t (2)
We compute the features outputs of any subsequent block, fi,t−r for block Bi, with

fi,t−r = ffeed ∗ si + fi−1,t−r (3)
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3.2 TRAINING INNER LOOP FEEDBACK

One cannot train this feedback mechanism with basic random initialization; the magnitude of the
feedback will be too large, and the training will diverge. Furthermore, standard training is needlessly
slow. To keep the training stable and time-efficient, we leverage both novel Learnable Feedback
Rescaling as well as Fast Approximate Distillation.

Learnable Feedback Rescaling. As mentioned in Section 3.1, we rescale the feedback outputs,
ffeed with some learnable scalar si for each block in the inner loop. This simple multiplication
operation is cheap, and allows us to use a single feedback computation to improve the features used
by all blocks within the inner loop. Furthermore, by zero-initializing and learning s we are able to
avoid needing to set any hard-coded hyperparameters.

Fast Approximate Distillation Standard diffusion models train with a reconstruction loss. We use
this same loss, and a novel pseudo-self-distillation loss between the output of diffusion with ILF
(student) and diffusion without ILF (teacher). To align with our objective to predict future noise
outputs, we perform the distillation using less noisy images. Specifically, whenever our ILF input
during training is noised to step t, we noise the teacher input to step t/2. We then compute standard
mean squared error loss between their predictions. Note that while we refer to diffusion with ILF
as the student, only the feedback module and the rescaling parameters are learnable. This novel
formulation saves on training cost.

3.3 FEEDBACK-AWARE INFERENCE SCHEDULING

With ILF, we are training the feedback to take inputs for one time step t, and produce predictions
for a future time step t − r. However, in practice, we still need to denoise the actual original input,
xt. Treating this as if it were a more clean input, xt-r, and removing the corresponding amount of
noise, would be counterproductive. So, we still use the sigmas corresponding to t rather than t − r
for the backwards diffusion process itself. Thus, our method is akin to conditioning the model to
generate a more reliable noise prediction, which can be used reliably for more spacing diffusion
(fewer inference steps).

However, time step is not only used for the noise subtraction process. Rather, it is also a condition
for the diffusion backbone itself. Hence, we must change the time condition used for all computation
in the each forward pass that occurs after the feedback module forward. For the subsequent compu-
tation, we find that using an intermediate step, weighted for the size of the inner loop, is appropriate.
So, for an inner loop with m blocks in a model comprised of n total blocks, and a scheduler with
consecutive time steps t and t− i, we compute the intermediate post-feedback time step, tpost, with

tpost = t− i ∗ (n/m) (4)

We refer to this strategy in Section 4 as “Rescaling,” as opposed to “Uniform” computation of
tpost = t− i/2. We also observe that as we continue to train the feedback mechanism, it will “over-
fit” – providing cluttered, over-saturated outputs. While on face this seems problematic, we actually
find we can take advantage of it. First, we modify our rescaling to anneal over time. For t = 999,
we use tpost as in Equation 4. However, for subsequent steps, we instead compute tpost as

tpost = t− max(i ∗ (n/m) ∗ (t/1000), 10) (5)

While we find this “Annealing” helps to improve results (see Figure 8), it is not fully optimal. By
“Skipping” some feedback on some of the middle inference steps, we are able to perform infer-
ence even faster, while improving the quality from ILF. We provide some useful configurations and
empirical exploration in Section 4.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We use 5 pre-trained diffusion models, DiT, PixArt-alpha 512x512, PixArt-alpha 1024x1024,
PixArt-sigma 512x512, and PixArt-sigma 1024x1024. All experiments and results are computed
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Table 1: Main results, high-quality text-to-image generation, speedups compared to 20 step DPM-
Solver++ generations. We bold the best efficient results; that is, the higher of each metric between
ILF, caching, and the baseline at 12 steps. ILF is sometimes even better than the 20 step baseline.

Settings Latency Prompt-aware Metrics FID ↓ CLIP Image Quality Assessment

Model Res. # Steps # Blocks s / img Image Reward CLIP MJHQ Good Noisy ↓ Colorful Natural

PixArt-alpha 1024 20 560 6.38 94.43 28.96 6.51 92.71 23.92 57.79 66.26
PixArt-alpha 1024 12 336 3.69 (1.7x) 90.41 28.94 6.86 92.75 25.38 56.07 64.71
PixArt-alpha w/ cache 1024 20 326 3.63 (1.8x) 82.49 28.86 6.85 91.20 29.47 50.38 63.38
PixArt-alpha w/ ours 1024 10 332 3.63 (1.8x) 91.71 28.98 6.13 90.60 24.91 59.18 66.97
PixArt-sigma 1024 20 560 6.63 83.87 29.28 7.28 90.32 27.98 59.60 69.12
PixArt-sigma 1024 12 336 3.81 (1.7x) 81.82 29.43 6.86 89.65 31.78 63.26 65.01
PixArt-sigma w/ cache 1024 20 326 3.75 (1.8x) 71.93 29.33 7.44 84.24 38.49 48.02 72.24
PixArt-sigma w/ ours 1024 10 332 3.75 (1.8x) 79.74 29.45 6.79 88.26 30.22 69.28 63.56

PixArt-alpha 512 20 560 1.06 92.03 29.06 7.13 92.79 17.17 66.17 51.59
PixArt-alpha 512 12 336 0.62 (1.7x) 88.42 29.02 7.86 94.49 18.95 71.57 48.06
PixArt-alpha w/ cache 512 20 326 0.59 (1.8x) 82.95 28.93 6.56 92.04 19.52 61.99 48.67
PixArt-alpha w/ ours 512 10 332 0.59 (1.8x) 89.47 29.11 7.20 92.67 16.89 69.31 50.18
PixArt-sigma 512 20 560 1.14 94.17 29.12 7.99 89.57 20.04 65.67 52.69
PixArt-sigma 512 12 336 0.66 (1.7x) 94.17 29.20 7.21 90.82 19.75 68.47 48.93
PixArt-sigma w/ cache 512 20 326 0.66 (1.7x) 87.08 29.09 7.05 87.73 22.32 59.38 53.26
PixArt-sigma w/ ours 512 10 332 0.66 (1.7x) 95.28 29.24 6.92 89.35 19.91 73.06 45.87

on NVIDIA H100 GPUs, unless otherwise specified, and scale up the quantity as necessary for each
experiment. Whenever we train our feedback module for text-to-image, we use learning rate 10−6,
batch size 2048, and train for 5 epochs across a proprietary set of 2 million high-quality text-image
pairs. For class-to-image, we use learning rate 5 ∗ 10−6, batch size 8192, and train for 10 epochs on
the approximately 1,281,167 ImageNet Russakovsky et al. (2015) class-image pairs. Unless other-
wise indicated, we use DPM-Solver++ Lu et al. (2023). For the base 28-block DiT with 749M frozen
parameters, our feedback adds 26.7M learnable parameters. ILF adds 21.3M learnable parameters
to 611M frozen parameters for both 28-block PixArt-alpha and 28-block PixArt-sigma.

To assess our performance, we rely on both examples and metrics. Unless otherwise specified,
example images are drawn from sample prompts we provide in the supplementary material. For
quantitative results, we compute Image Reward Xu et al. (2023a), using the prompts and procedure
from the official code repository. We also compute MJHQ Li et al. (2024) FID with clean-fid Parmar
et al. (2022), CLIP score Hessel et al. (2022) on the generations from complex prompts we provide in
the supplementary, and CLIP IQA Wang et al. (2023) on images generated from the Image Reward
prompts. When computing CLIP IQA, we report the standard CLIP IQA Score as “Good” (since it
is the result of competing “Good” and “Bad” text prompts), as well as its measurements of “Noisy,”
“Colorful,” and “Natural.” In general we prioritize Image Reward due to its good correlation with
human judgments, but other metrics offer further confirmation of our method’s utility.

4.2 MAIN RESULTS

We show that our method works exceptionally well for fast, high quality text-to-image generation
in Table 1. For settings for our method, we train feedback to create an inner loop from block b = 8
to block b = 19, and at inference we perform feedback only for the first two and last two steps. We
outperform the caching baseline (where we cache the middle 18 blocks, re-computing features once
every 3 steps) for nearly every metric across both models at both resolutions. Furthermore, we even
achieve comparable or better results in many metrics compared to the inefficient baseline.

In addition to seconds per image, we measure latency by number of block forwards to generate the
image. To compute block forwards, we add up the total number of passes through a transformer
block. Since the blocks are all the same size and shape (including our feedback block), this is a
straightforward, reliable way to compare complexity across methods.

While we sample a variety of metrics for thoroughness, none correlate perfectly with human judg-
ment of quality. So, for further results and ablations, we show actual generated images in Figure 7.
While Table 1 shows ILF performs well in the 1.8x speedup setting, here we show our results are
clearly superior to caching even for less dramatic speedups, where our 1.5x has better visual quality
than caching at 1.4x. For this setting, we use 12 steps instead of 10, and skip feedback for the inner
8 steps. Notice how even when it deviates from the content of the baseline, ILF provides more clear,
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Figure 7: 512x512 results, alpha (top 3 rows) and sigma (bottom 3 rows), with baseline, caching,
and our results, respectively. ILF yields images of similar content and quality to the un-accelerated
baseline, and clearly superior to the caching, for both models. Zoom in for finer details.

appealing, detailed generations compared to the caching approach. See Figure 12 in the appendix
for results from the MJHQ prompts, showing further evidence of ILF’s good quality, at 1.8x speed.

4.3 ABLATIONS

We first show ILF works for class-to-image generation in Table 2. While the speedups are less
dramatic, the ImageNet FID improvements are non-trivial. Since the method itself is designed
primarily for text-to-image generation, we use this to showcase the flexibility of the method for
a different task. We choose settings to safely give both some speedup and FID improvement, but
with more tuning, or else aiming for equal FID, one could achieve better ImageNet FID with ILF.

We verify that our method is not overly sensitive to the location of the inner loop in Table 3. Indeed,
as long as the loop is not at the end of the model, results are quite comparable among various settings.
Note that for the smaller loops we only rescale the feedback, whereas for the larger loops we both
rescale and skip feedback for the middle 8 steps.

We provide some understanding of the impact of training time on quality in Figure 8 and of the
relationship between inference steps and image reward in Figure 9. Image quality increases over
training time until it saturates around 5,000 iterations. However, not all inference strategies are
equally well-suited. Similarly, quality increases with more inference steps. As Figure 9 suggests,
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Table 2: Class-to-Image results, ImageNet, DiT
256x256. ILF consistently has better FID at
better speed. While we choose settings here
that consistently outperform the non-accelerated
baseline FID, one could instead prioritize speed
with ILF to match, rather than beat, the baseline.
Model # Steps # Blocks s / img FID ↓
DiT 12 336 0.14 4.50
DiT w/ ours 10 304 0.13 (1.1x) 4.06 (-0.47)
DiT 25 700 0.29 3.96
DiT w/ ours 20 584 0.24 (1.2x) 3.59 (-0.37)
DiT 50 1400 0.57 3.56
DiT w/ ours 40 1144 0.47 (1.2x) 3.31 (-0.25)

Table 3: PixArt-alpha 512x512 loop size and
location ablation, 12 steps. We compare small
loops 3 different locations, to large loops at sim-
ilar locations. We use our skipping inference
scheduling for the larger loops to preserve the
quality, which also gives better speedups.

Loop Size Latency Metrics

Start End # Blocks s / img Image Reward MJHQ FID ↓
0 5 420 0.78 (1.36x) 94.26 7.32
11 16 420 0.78 (1.36x) 93.80 7.07
22 27 420 0.78 (1.36x) 88.10 8.39
0 11 388 0.73 (1.44x) 93.10 6.47
8 19 388 0.73 (1.44x) 93.14 6.75
16 27 388 0.73 (1.44x) 90.20 7.56

1000 2000 3000 4000 5000
Training time (iters)

84

86

88

90

92

Im
ag

e 
Re

wa
rd

None
Uniform

Rescaled
Annealing

Skipping

Figure 8: Training time effects on feedback
scheduling, measured by Image Reward for
PixArt-alpha 512x512.
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Figure 9: Image Reward vs. inference time,
PixArt-alpha 512x512 for baseline, caching, and
ILF. Ours is superior.

our method has a substantial edge in quality across the range of intermediate to high steps (we
neither consider nor report extremely low step results). As a disclaimer, Image Reward, while it
correlates with human judgment better than most metrics, is still not perfect; from our observation,
it is not overly sensitive to some of the lighting, sharpening, and over-detailing artifacts our method
will introduce if its over-fitting is not properly mitigated.

To determine which steps for which to skip feedback, we perform an ablation, with sample gen-
erations shown in Figure 10. We find that skipping feedback for the inner steps yields the most
consistently good results, which lines up with our intuition that the first steps are the most impor-
tant for determining good layouts, and the last steps are quite important for guaranteeing good fine
details. So, naturally, it is best to perform our powerful diffusion feedback on those steps.

We also demonstrate that training with our Fast Approximate Distillation is better than training
without using distillation, in Figure 11. Furthermore, our results match results from training with
the more expensive standard distillation (multiple teacher steps, in this case 8). Since instead of 8
teacher steps, we only need 1, we are able to achieve good results with cheaper training. For further
ablations, exploration, and examples, see the Appendix.

5 CONCLUSION

We propose diffusion with Inner Loop Feedback (ILF), which lets us perform diffusion inference
with fewer, more powerful inference steps. As a result, we can leverage pre-trained diffusion mod-
els to generate high-quality images in less time. With Learnable Feedback Rescaling and Fast Ap-
proximate Distillation, we are able to train feedback for efficient megapixel image generation in
approximately 100 GPU hours. Our method outperforms the training-free caching baseline, and is
substantially cheaper and more flexible than any distillation-based alternative. Future work could
explore our method as a way to cheaply finetune a diffusion model on new data, as well as try to
achieve better performance at extremely low steps. Additionally, with some adjustments (accounting
for encoder-decoder skip connections), our work could be adapted for U-Nets, though we consider
this out of scope due to the rising popularity of DiTs.
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Figure 10: Visual examples of different skipping feedback for different time steps at inference time,
skipping feedback for the alternating steps (top), first steps only (second), last steps only (third),
outer steps (fourth) and then inner steps (bottom). Skipping feedback for inner steps is best, with
good overall structure and high quality details, without distortions.

Figure 11: We show results for training with no distillation (top), with standard teacher distillation
(middle), and then with our fast approximate teacher distillation (bottom). Ours gives the same good
results as standard ablation, but with lower training cost.
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