
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACCELERATE HIGH-QUALITY DIFFUSION MODELS
WITH INNER LOOP FEEDBACK

Anonymous authors
Paper under double-blind review

Figure 1: PixArt-sigma 1024x1024 images, generated with 20 steps using DPM-Solver++ (top) vs.
PixArt-sigma with caching (middle) vs. PixArt-sigma with ILF (bottom). ILF produces high quality
images 1.8x faster, measured on H100 GPUs.

ABSTRACT

We propose Inner Loop Feedback (ILF), a novel approach to accelerate diffu-
sion models’ inference. ILF trains a lightweight module to predict future features
in the denoising process by leveraging the outputs from a chosen diffusion back-
bone block at a given time step. This approach exploits two key intuitions; (1)
the outputs of a given block at adjacent time steps are similar, and (2) performing
partial computations for a step imposes a lower burden on the model than skipping
the step entirely. Our method is highly flexible, since we find that the feedback
module itself can simply be a block from the diffusion backbone, with all set-
tings copied. Its influence on the diffusion forward can be tempered with a learn-
able scaling factor from zero initialization. We train this module using distillation
losses; however, unlike some prior work where a full diffusion backbone serves as
the student, our model freezes the backbone, training only the feedback module.
While many efforts to optimize diffusion models focus on achieving acceptable
image quality in extremely few steps (1-4 steps), our emphasis is on matching
best case results (typically achieved in 20 steps) while significantly reducing run-
time. ILF achieves this balance effectively, demonstrating strong performance
for both class-to-image generation with diffusion transformer (DiT) and text-to-
image generation with DiT-based PixArt-alpha and PixArt-sigma. The quality of
ILF’s 1.7x-1.8x speedups are confirmed by FID, CLIP score, CLIP Image Quality
Assessment, ImageReward, and qualitative comparisons.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Feedback Module

Frozen, from pre-trained

Learnable, from scratch

Key Idea: Powerful inner
loop within diffusion model
for high quality generation

with less steps.

s* **

s Rescaling Parameters

+ + +

Figure 2: ILF uses a lightweight, learnable feedback module to create a powerful inner loop within
a diffusion model. Instead of computing a forward through all backbone blocks, in order, we choose
some block, feed its output features to the feedback, then feed those features back to some earlier
blocks in the model, modified by a learnable scaling term. The feedback’s objective is essentially to
predict features corresponding to some future diffusion time step, so the resulting noise prediction
is more reliable for the model’s current step.

1 INTRODUCTION

Since its introduction as an alternative to generative adversarial networks (GANs) Goodfellow et al.
(2014) for image synthesis Dhariwal & Nichol (2021), diffusion has been one of the most prominent
methods for generative tasks. These methods deliver stable training, high quality generations, and
easy alignment to a variety of conditions for generative tasks Yang et al. (2024). However, the actual
generation process is quite expensive. While GANs generate images in a single model forward pass,
diffusion models require many model forward passes to iteratively progress from random noise to
clean images. As a result, many researchers have focused on trying to improve the efficiency of
diffusion models, while retaining the quality. Some of these are training-free, focusing on caching
features for cheaper inference; others involve expensive distillation to dedicated-purpose few step
models.

We propose inner loop feedback (ILF) for diffusion models, seeking to achieve higher quality at
better efficiency than caching, as shown in Figure 1, without the training cost and inflexibility of
distillation-based approaches. With this approach, we can take any frozen pre-trained transformer-
based diffusion model, and make each of its steps more powerful by training a new block, the
feedback module, to take features from a block b at one step, t, and predict features for prior blocks
b − 1, b − 2, ..., b − l corresponding to the next step, t − r, as shown in Figure 2. In contrast to
these distillation-based methods that seek to learn models that can achieve reasonable quality with
4 or fewer inference steps, we focus instead on matching or surpassing the best-case performance
of the original model, in less time. Furthermore, with our approach, one does not need to store an
entire additional set of models weights, instead only those corresponding to the lightweight learnable
module.

From caching literature focused on the U-Net architecture, we already know that features for these
U-Net diffusion models are very similar for a given block, b, at adjacent time steps, t and t− r Ma
et al. (2023); Wimbauer et al. (2024). We find this remains consistent for transformer-based diffusion
models, in Figure 3, with an implementation described in Section 2.2. Caching methods leverage
this concept to skip computation for certain blocks at certain steps, simply re-using the prior features.
However, as Figure 3 also shows, leveraging these similar adjacent features changes the make-up of
the features themselves.

The caching schedule itself is noticeable; since features are cached on every other step, instead of
smooth change over blocks and time, feature pairs become noticeable on the time axis. Furthermore,
except for the last steps, the final model outputs become less distinct between neighboring steps. The
same phenomenon manifests when we consider how the features evolve across blocks (Figure 4);
once we introduce caching, features of the last block do not become as dissimilar to the first step
for the steps on which the caching occurs. This is clearly not optimal, and results in poorer quality
images, as shown in Figure 5. Caching often loses key details, and produces blurrier, less appealing

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 3: Change in features across time steps,
measured for each block as difference from that
block’s feature at t = 1000, normalized by di-
viding by the maximum difference across both
plots. Caching reduces the degree to which the
features change over time.

Figure 4: Change in features across blocks,
measured for each block at each time step as
difference from the first block’s feature at that
time step, normalized as in Figure 3. The trend
with caching is similar here as when measuring
difference over time.

generations. This motivates our inner loop feedback; we want to take advantage of the redundancy
between blocks across time, without compromising the quality of the final images.

For flexibility of adaptation to novel architectures, we propose leveraging the model architecture
itself to design the feedback module. The module consists of a single block, copied from the block
design of the corresponding pre-trained diffusion transformer backbone. That is, for the basic DiT,
our feedback module is a single DiT block. This way, our feedback handles conditions, input sizes,
and output sizes in the same way as the base model.

Different diffusion models have different learned weight values, and training quickly, without over-
fitting, is quite challenging. To allow for fast training we use distillation. However, unlike prior
works, we do not have a separate teacher and student. Instead, the model without feedback is the
teacher, and the model with feedback is the student – but only the feedback is learnable. Further-
more, while prior works perform multiple teacher iterations, which is expensive, we propose an
approach that allows us to only use one. We find this Fast Approximate Distillation works equally
well, at lower cost. To avoid over-fitting, we add Learnable Feedback Rescaling, where we learn
an integer scaling term on the feedback before we add it to the features in the pretrained model.
Initializing this to zero allows the model to learn quickly from the distillation, without diverging due
to excessively large error. Neither Fast Approximate Distillation nor Learnable Feedback Rescaling
require any hand-tuned hyperparameters, allowing for easy implementation and extension to other
models and data.

One challenge introduced by our approach is that since we attempt to predict features corresponding
to future steps, it is not immediately clear how to set the noise steps for the backbone and sched-
uler. While we find that using default schedulers works well, this does not hold true for the model
backbone itself, where we must use a rescaled step for the time conditioning at inference time.
Furthermore, we find that for larger inner loops, it is often best to skip feedback on some steps
altogether. We instantiate these findings collectively as Feedback-aware Inference Scheduling.

In summary, we achieve high quality efficient generation with the following contributions:

• We propose diffusion with Inner Loop Feedback (ILF), a feedback mechanism which cre-
ates a powerful inner loop within transformer-based diffusion backbones for optimal time-
quality trade-offs.

• We develop Learnable Feedback Rescaling and Fast Approximate Distillation for speedy
training, and Feedback-aware Inference Scheduling to adaptively leverage the power and
speed of ILF at inference time.

• We achieve superior results to caching for 1.7x-1.8 speedups compared with the baseline
model, with an average +7.9 improvement for Image Reward, +0.14 CLIP, -0.22 MJHQ
FID, and +1.4 CLIP IQA Score.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

2.1 DIFFUSION FOR IMAGE GENERATION

Diffusion Fundamentals. Diffusion models Ho et al. (2020); Nichol & Dhariwal (2021); Dhariwal
& Nichol (2021) consider a forward noising process. Given some distribution q(x0), a sample x0 is
noised in steps accordingly to a schedule, {βt}Tt=1, where at any time step t, we can calculate the
noised sample, xt, as

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (1)

with αt := 1− βt and ᾱt :=
∏t

i=0 αi. The diffusion model is instantiated as a neural network that
reverses the forward noising process, by predicting ϵt that ought to be removed from xt to predict
xt−1.

Model Architecture. Early diffusion models rely on U-Net architectures Ronneberger et al. (2015);
Ho et al. (2020); Dhariwal & Nichol (2021), processing images (or noised images) into features
in an encoder, then back to images (or noise, in pixel space) with a decoder, with connections
between symmetric encoder and decoder blocks. For the sake of efficiency, subsequent methods
perform diffusion on latent representations Rombach et al. (2022) from pre-trained variational auto-
encoders Kingma & Welling (2014). Originally proposed for image generation, these models are
also well-suited for image editing Kawar et al. (2023); Brooks et al. (2023) and video generation Ho
et al. (2022); Blattmann et al. (2023); Liu et al. (2024b). These models can be conditioned on
text encodings Saharia et al. (2022); Ramesh et al. (2022); Nichol et al. (2022); Ruiz et al. (2023);
Podell et al. (2023) from powerful models including CLIP Radford et al. (2021) and T5 Raffel et al.
(2023). Recently, to allow for more flexible scaling, transformer-based diffusion models Peebles &
Xie (2023); Bao et al. (2023) have become the predominant architecture for state-of-the-art diffu-
sion models Chen et al. (2023; 2024b;a); Esser et al. (2024); Liu et al. (2024b). Due to the recent
trend towards diffusion transformers, we choose to focus our work primarily on this family of ar-
chitectures, including the original DiT Peebles & Xie (2023) for class-to-image generation, and
PixArt-alpha Chen et al. (2023) and PixArt-sigma Chen et al. (2024a) for text-to-image generation.

Inference Scheduling. While diffusion models are typically trained on 1000-step schedules, in-
ference is performed at much lower steps, with schedulers to handle timestep spacing, as well
as forward and reverse noising Song et al. (2022); Karras et al. (2022); Lu et al. (2023). Recent
work investigates non-uniform, model-specific timestep spacing Sabour et al. (2024). We propose
substantial inference-time improvements for ILF in Section 3.3, but these are all compatible with
existing inference schedulers.

2.2 FASTER DIFFUSION INFERENCE

A significant body of work focuses on speeding up diffusion inference to generate good images
in fewer steps. The majority of these approaches can be divided between training-free caching
approaches, and training-based distillation approaches.

Caching. Prior caching work focuses mainly on U-Net architectures. While the methods share a key
intuition, that features are similar at adjacent time steps, their configurations differ. Some cache only
encoder features Li et al. (2023), others cache outer layers of both encoder and decoder Ma et al.
(2023), and others automatically discover ways to cache a variety of layers Wimbauer et al. (2024).
Concurrent work has started to approach caching for DiTs Selvaraju et al. (2024); Liu et al. (2024a),
including some work which focuses on learnable routing for the caching Ma et al. (2024). One major
difference between U-Nets and DiTs is the absence of encoder-decoder distinction, which changes
the caching approach substantially. Furthermore, many of these approaches focus on generation
of lower resolution images, using class conditioning, with many time steps. By contrast, more
modern text-to-image models use fewer steps. With fewer steps, the feature maps change much less
smoothly over time, mitigating the suitability of caching; furthermore, errors and blurriness become
even more glaring at higher resolution (see Figure 5 for examples). Nevertheless, we implement
caching as a point of comparison for ILF.

For this caching, we store the attention and feedforward results for each cacheable block on the
first step. Then, at subsequent steps, for all cacheable blocks, we only recompute attentions and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 5: We compare typical 20 step diffusion
inference to caching for PixArt-alpha, 512x512
images. We cache the middle 14 blocks, re-
computing features every other step. Caching,
while more efficient, sometimes results in qual-
ity degradation – loss of detail (no faces in left-
most image), less appealing design (middle im-
ages), and blurriness (rightmost image, zoom in
on eyes, ears, hair, and mouth).

Feedback Module

s* **

+ + +

+ + +

DiT

Feedback
Cached

Figure 6: Caching (top) vs. ILF (bottom). We
show how we use a partial diffusion forward pass
to compute ft,b+3, which we then use to compute
ft−r,b+3. We can use fewer of ILF’s heavy steps
to ultimately achieve better quality-time trade-
offs than caching’s cheap steps.

feedforwards on every other step; otherwise, we simply add the stored results to the new input hidden
states. We illustrate this approach in Figure 6, and compare it to ILF. Unlike caching approaches,
we train ILF with lightweight external module that increases the complexity of each forward pass,
which allows us to achieve much better quality-speed trade-offs at inference time.

Training or Finetuning. Some approaches learn lightweight modules for predicting skip connec-
tions Jiang et al. (2023) or predicting steps based on prompt complexity Zhang et al. (2023). The
majority of the literature tends to focus on knowledge distillation Hinton et al. (2015), progres-
sive distillation Salimans & Ho (2022), guidance distillation Meng et al. (2023), and consistency
distillation Luo et al. (2023). Unlike the majority of these works, we do not focus on generating
images of acceptable quality in extremely low steps Lee et al. (2024); Sauer et al. (2023); Kohler
et al. (2024); Yin et al. (2023); Xu et al. (2023b); instead, we seek to synthesize maximum quality
images in the fewest possible steps.

3 APPROACH

3.1 INNER LOOP FEEDBACK DESIGN

We propose a lightweight learnable module that leverages similar intuitions to caching, but with
a different mechanism and superior results. This method, illustrated in Figure 2, starts with some
pre-trained, transformer-based diffuion model. Standard diffusion forward passes attempt to predict
ϵ̂(xt, t), for some noised latent xt and time step t. By contrast, with our feedback mechanism, we
attempt to make the forward pass more powerful, where we instead predict ϵ̂(xt−r, t−r), where r is
some positive integer, meaning t− r is some subsequent time step. This allows us to generate high
quality images with fewer, but more powerful, inference steps.

We design the feedback module itself by simply copying the architecture of the model blocks them-
selves, such that for a standard N block DiT, we introduce a (N + 1)th block. However, instead of
simply appending, prepending, or inserting the block, we dramatically alter the flow of information.
We first set a location for the inner loop, denoted by the beginning (b) block, Bb, and the ending
(e) block Be. For some time step t, the feedback module takes as its input, the output of Be, fe,t,
along with the embedded time and text conditions. The feedback model gives its output, ffeed. We
then rescale the ffeed for separately for each block in the inner loop, {Bb, Bb+1, ..., Be}, by multi-
plying each by its corresponding learnable floating point scaling factor, {sb, sb+1, ..., se}. For the
first block, Bb, we compute its result as

fb,t−r = ffeed ∗ sb + fb−1,t (2)
We compute the features outputs of any subsequent block, fi,t−r for block Bi, with

fi,t−r = ffeed ∗ si + fi−1,t−r (3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 TRAINING INNER LOOP FEEDBACK

One cannot train this feedback mechanism with basic random initialization; the magnitude of the
feedback will be too large, and the training will diverge. Furthermore, standard training is needlessly
slow. To keep the training stable and time-efficient, we leverage both novel Learnable Feedback
Rescaling as well as Fast Approximate Distillation.

Learnable Feedback Rescaling. As mentioned in Section 3.1, we rescale the feedback outputs,
ffeed with some learnable scalar si for each block in the inner loop. This simple multiplication
operation is cheap, and allows us to use a single feedback computation to improve the features used
by all blocks within the inner loop. Furthermore, by zero-initializing and learning s we are able to
avoid needing to set any hard-coded hyperparameters.

Fast Approximate Distillation Standard diffusion models train with a reconstruction loss. We use
this same loss, and a novel pseudo-self-distillation loss between the output of diffusion with ILF
(student) and diffusion without ILF (teacher). To align with our objective to predict future noise
outputs, we perform the distillation using less noisy images. Specifically, whenever our ILF input
during training is noised to step t, we noise the teacher input to step t/2. We then compute standard
mean squared error loss between their predictions. Note that while we refer to diffusion with ILF
as the student, only the feedback module and the rescaling parameters are learnable. This novel
formulation saves on training cost.

3.3 FEEDBACK-AWARE INFERENCE SCHEDULING

With ILF, we are training the feedback to take inputs for one time step t, and produce predictions
for a future time step t − r. However, in practice, we still need to denoise the actual original input,
xt. Treating this as if it were a more clean input, xt-r, and removing the corresponding amount of
noise, would be counterproductive. So, we still use the sigmas corresponding to t rather than t − r
for the backwards diffusion process itself. Thus, our method is akin to conditioning the model to
generate a more reliable noise prediction, which can be used reliably for more spacing diffusion
(fewer inference steps).

However, time step is not only used for the noise subtraction process. Rather, it is also a condition
for the diffusion backbone itself. Hence, we must change the time condition used for all computation
in the each forward pass that occurs after the feedback module forward. For the subsequent compu-
tation, we find that using an intermediate step, weighted for the size of the inner loop, is appropriate.
So, for an inner loop with m blocks in a model comprised of n total blocks, and a scheduler with
consecutive time steps t and t− i, we compute the intermediate post-feedback time step, tpost, with

tpost = t− i ∗ (n/m) (4)

We refer to this strategy in Section 4 as “Rescaling,” as opposed to “Uniform” computation of
tpost = t− i/2. We also observe that as we continue to train the feedback mechanism, it will “over-
fit” – providing cluttered, over-saturated outputs. While on face this seems problematic, we actually
find we can take advantage of it. First, we modify our rescaling to anneal over time. For t = 999,
we use tpost as in Equation 4. However, for subsequent steps, we instead compute tpost as

tpost = t− max(i ∗ (n/m) ∗ (t/1000), 10) (5)

While we find this “Annealing” helps to improve results (see Figure 8), it is not fully optimal. By
“Skipping” some feedback on some of the middle inference steps, we are able to perform infer-
ence even faster, while improving the quality from ILF. We provide some useful configurations and
empirical exploration in Section 4.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We use 5 pre-trained diffusion models, DiT, PixArt-alpha 512x512, PixArt-alpha 1024x1024,
PixArt-sigma 512x512, and PixArt-sigma 1024x1024. All experiments and results are computed

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Main results, high-quality text-to-image generation, speedups compared to 20 step DPM-
Solver++ generations. We bold the best efficient results; that is, the higher of each metric between
ILF, caching, and the baseline at 12 steps. ILF is sometimes even better than the 20 step baseline.

Settings Latency Prompt-aware Metrics FID ↓ CLIP Image Quality Assessment

Model Res. # Steps # Blocks s / img Image Reward CLIP MJHQ Good Noisy ↓ Colorful Natural

PixArt-alpha 1024 20 560 6.38 94.43 28.96 6.51 92.71 23.92 57.79 66.26
PixArt-alpha 1024 12 336 3.69 (1.7x) 90.41 28.94 6.86 92.75 25.38 56.07 64.71
PixArt-alpha w/ cache 1024 20 326 3.63 (1.8x) 82.49 28.86 6.85 91.20 29.47 50.38 63.38
PixArt-alpha w/ ours 1024 10 332 3.63 (1.8x) 91.71 28.98 6.13 90.60 24.91 59.18 66.97
PixArt-sigma 1024 20 560 6.63 83.87 29.28 7.28 90.32 27.98 59.60 69.12
PixArt-sigma 1024 12 336 3.81 (1.7x) 81.82 29.43 6.86 89.65 31.78 63.26 65.01
PixArt-sigma w/ cache 1024 20 326 3.75 (1.8x) 71.93 29.33 7.44 84.24 38.49 48.02 72.24
PixArt-sigma w/ ours 1024 10 332 3.75 (1.8x) 79.74 29.45 6.79 88.26 30.22 69.28 63.56

PixArt-alpha 512 20 560 1.06 92.03 29.06 7.13 92.79 17.17 66.17 51.59
PixArt-alpha 512 12 336 0.62 (1.7x) 88.42 29.02 7.86 94.49 18.95 71.57 48.06
PixArt-alpha w/ cache 512 20 326 0.59 (1.8x) 82.95 28.93 6.56 92.04 19.52 61.99 48.67
PixArt-alpha w/ ours 512 10 332 0.59 (1.8x) 89.47 29.11 7.20 92.67 16.89 69.31 50.18
PixArt-sigma 512 20 560 1.14 94.17 29.12 7.99 89.57 20.04 65.67 52.69
PixArt-sigma 512 12 336 0.66 (1.7x) 94.17 29.20 7.21 90.82 19.75 68.47 48.93
PixArt-sigma w/ cache 512 20 326 0.66 (1.7x) 87.08 29.09 7.05 87.73 22.32 59.38 53.26
PixArt-sigma w/ ours 512 10 332 0.66 (1.7x) 95.28 29.24 6.92 89.35 19.91 73.06 45.87

on NVIDIA H100 GPUs, unless otherwise specified, and scale up the quantity as necessary for each
experiment. Whenever we train our feedback module for text-to-image, we use learning rate 10−6,
batch size 2048, and train for 5 epochs across a proprietary set of 2 million high-quality text-image
pairs. For class-to-image, we use learning rate 5 ∗ 10−6, batch size 8192, and train for 10 epochs on
the approximately 1,281,167 ImageNet Russakovsky et al. (2015) class-image pairs. Unless other-
wise indicated, we use DPM-Solver++ Lu et al. (2023). For the base 28-block DiT with 749M frozen
parameters, our feedback adds 26.7M learnable parameters. ILF adds 21.3M learnable parameters
to 611M frozen parameters for both 28-block PixArt-alpha and 28-block PixArt-sigma.

To assess our performance, we rely on both examples and metrics. Unless otherwise specified,
example images are drawn from sample prompts we provide in the supplementary material. For
quantitative results, we compute Image Reward Xu et al. (2023a), using the prompts and procedure
from the official code repository. We also compute MJHQ Li et al. (2024) FID with clean-fid Parmar
et al. (2022), CLIP score Hessel et al. (2022) on the generations from complex prompts we provide in
the supplementary, and CLIP IQA Wang et al. (2023) on images generated from the Image Reward
prompts. When computing CLIP IQA, we report the standard CLIP IQA Score as “Good” (since it
is the result of competing “Good” and “Bad” text prompts), as well as its measurements of “Noisy,”
“Colorful,” and “Natural.” In general we prioritize Image Reward due to its good correlation with
human judgments, but other metrics offer further confirmation of our method’s utility.

4.2 MAIN RESULTS

We show that our method works exceptionally well for fast, high quality text-to-image generation
in Table 1. For settings for our method, we train feedback to create an inner loop from block b = 8
to block b = 19, and at inference we perform feedback only for the first two and last two steps. We
outperform the caching baseline (where we cache the middle 18 blocks, re-computing features once
every 3 steps) for nearly every metric across both models at both resolutions. Furthermore, we even
achieve comparable or better results in many metrics compared to the inefficient baseline.

In addition to seconds per image, we measure latency by number of block forwards to generate the
image. To compute block forwards, we add up the total number of passes through a transformer
block. Since the blocks are all the same size and shape (including our feedback block), this is a
straightforward, reliable way to compare complexity across methods.

While we sample a variety of metrics for thoroughness, none correlate perfectly with human judg-
ment of quality. So, for further results and ablations, we show actual generated images in Figure 7.
While Table 1 shows ILF performs well in the 1.8x speedup setting, here we show our results are
clearly superior to caching even for less dramatic speedups, where our 1.5x has better visual quality
than caching at 1.4x. For this setting, we use 12 steps instead of 10, and skip feedback for the inner
8 steps. Notice how even when it deviates from the content of the baseline, ILF provides more clear,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 7: 512x512 results, alpha (top 3 rows) and sigma (bottom 3 rows), with baseline, caching,
and our results, respectively. ILF yields images of similar content and quality to the un-accelerated
baseline, and clearly superior to the caching, for both models. Zoom in for finer details.

appealing, detailed generations compared to the caching approach. See Figure 12 in the appendix
for results from the MJHQ prompts, showing further evidence of ILF’s good quality, at 1.8x speed.

4.3 ABLATIONS

We first show ILF works for class-to-image generation in Table 2. While the speedups are less
dramatic, the ImageNet FID improvements are non-trivial. Since the method itself is designed
primarily for text-to-image generation, we use this to showcase the flexibility of the method for
a different task. We choose settings to safely give both some speedup and FID improvement, but
with more tuning, or else aiming for equal FID, one could achieve better ImageNet FID with ILF.

We verify that our method is not overly sensitive to the location of the inner loop in Table 3. Indeed,
as long as the loop is not at the end of the model, results are quite comparable among various settings.
Note that for the smaller loops we only rescale the feedback, whereas for the larger loops we both
rescale and skip feedback for the middle 8 steps.

We provide some understanding of the impact of training time on quality in Figure 8 and of the
relationship between inference steps and image reward in Figure 9. Image quality increases over
training time until it saturates around 5,000 iterations. However, not all inference strategies are
equally well-suited. Similarly, quality increases with more inference steps. As Figure 9 suggests,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Class-to-Image results, ImageNet, DiT
256x256. ILF consistently has better FID at
better speed. While we choose settings here
that consistently outperform the non-accelerated
baseline FID, one could instead prioritize speed
with ILF to match, rather than beat, the baseline.
Model # Steps # Blocks s / img FID ↓
DiT 12 336 0.14 4.50
DiT w/ ours 10 304 0.13 (1.1x) 4.06 (-0.47)
DiT 25 700 0.29 3.96
DiT w/ ours 20 584 0.24 (1.2x) 3.59 (-0.37)
DiT 50 1400 0.57 3.56
DiT w/ ours 40 1144 0.47 (1.2x) 3.31 (-0.25)

Table 3: PixArt-alpha 512x512 loop size and
location ablation, 12 steps. We compare small
loops 3 different locations, to large loops at sim-
ilar locations. We use our skipping inference
scheduling for the larger loops to preserve the
quality, which also gives better speedups.

Loop Size Latency Metrics

Start End # Blocks s / img Image Reward MJHQ FID ↓
0 5 420 0.78 (1.36x) 94.26 7.32
11 16 420 0.78 (1.36x) 93.80 7.07
22 27 420 0.78 (1.36x) 88.10 8.39
0 11 388 0.73 (1.44x) 93.10 6.47
8 19 388 0.73 (1.44x) 93.14 6.75
16 27 388 0.73 (1.44x) 90.20 7.56

1000 2000 3000 4000 5000
Training time (iters)

84

86

88

90

92

Im
ag

e
Re

wa
rd

None
Uniform

Rescaled
Annealing

Skipping

Figure 8: Training time effects on feedback
scheduling, measured by Image Reward for
PixArt-alpha 512x512.

0.2 0.3 0.4 0.5 0.6 0.7
Latency (seconds per 512x512 image)

80

85

90

95

Im
ag

e
Re

wa
rd

Baseline
Caching 18
ILF (Ours)

Figure 9: Image Reward vs. inference time,
PixArt-alpha 512x512 for baseline, caching, and
ILF. Ours is superior.

our method has a substantial edge in quality across the range of intermediate to high steps (we
neither consider nor report extremely low step results). As a disclaimer, Image Reward, while it
correlates with human judgment better than most metrics, is still not perfect; from our observation,
it is not overly sensitive to some of the lighting, sharpening, and over-detailing artifacts our method
will introduce if its over-fitting is not properly mitigated.

To determine which steps for which to skip feedback, we perform an ablation, with sample gen-
erations shown in Figure 10. We find that skipping feedback for the inner steps yields the most
consistently good results, which lines up with our intuition that the first steps are the most impor-
tant for determining good layouts, and the last steps are quite important for guaranteeing good fine
details. So, naturally, it is best to perform our powerful diffusion feedback on those steps.

We also demonstrate that training with our Fast Approximate Distillation is better than training
without using distillation, in Figure 11. Furthermore, our results match results from training with
the more expensive standard distillation (multiple teacher steps, in this case 8). Since instead of 8
teacher steps, we only need 1, we are able to achieve good results with cheaper training. For further
ablations, exploration, and examples, see the Appendix.

5 CONCLUSION

We propose diffusion with Inner Loop Feedback (ILF), which lets us perform diffusion inference
with fewer, more powerful inference steps. As a result, we can leverage pre-trained diffusion mod-
els to generate high-quality images in less time. With Learnable Feedback Rescaling and Fast Ap-
proximate Distillation, we are able to train feedback for efficient megapixel image generation in
approximately 100 GPU hours. Our method outperforms the training-free caching baseline, and is
substantially cheaper and more flexible than any distillation-based alternative. Future work could
explore our method as a way to cheaply finetune a diffusion model on new data, as well as try to
achieve better performance at extremely low steps. Additionally, with some adjustments (accounting
for encoder-decoder skip connections), our work could be adapted for U-Nets, though we consider
this out of scope due to the rising popularity of DiTs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 10: Visual examples of different skipping feedback for different time steps at inference time,
skipping feedback for the alternating steps (top), first steps only (second), last steps only (third),
outer steps (fourth) and then inner steps (bottom). Skipping feedback for inner steps is best, with
good overall structure and high quality details, without distortions.

Figure 11: We show results for training with no distillation (top), with standard teacher distillation
(middle), and then with our fast approximate teacher distillation (bottom). Ours gives the same good
results as standard ablation, but with lower training cost.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models, 2023. URL https://arxiv.org/abs/2209.
12152.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 22563–22575, June 2023.

Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 18392–18402, June 2023.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer
for photorealistic text-to-image synthesis, 2023. URL https://arxiv.org/abs/2310.
00426.

Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
Luo, Huchuan Lu, and Zhenguo Li. Pixart-σ: Weak-to-strong training of diffusion transformer
for 4k text-to-image generation, 2024a. URL https://arxiv.org/abs/2403.04692.

Junsong Chen, Yue Wu, Simian Luo, Enze Xie, Sayak Paul, Ping Luo, Hang Zhao, and Zhenguo
Li. Pixart-δ: Fast and controllable image generation with latent consistency models, 2024b. URL
https://arxiv.org/abs/2401.05252.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
glish, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow
transformers for high-resolution image synthesis, 2024. URL https://arxiv.org/abs/
2403.03206.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014. URL https:
//arxiv.org/abs/1406.2661.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning, 2022. URL https://arxiv.org/
abs/2104.08718.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P.
Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans. Imagen video: High
definition video generation with diffusion models, 2022. URL https://arxiv.org/abs/
2210.02303.

Zeyinzi Jiang, Chaojie Mao, Yulin Pan, Zhen Han, and Jingfeng Zhang. Scedit: Efficient and
controllable image diffusion generation via skip connection editing, 2023. URL https://
arxiv.org/abs/2312.11392.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models, 2022. URL https://arxiv.org/abs/2206.00364.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
Michal Irani. Imagic: Text-based real image editing with diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6007–6017,
June 2023.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014. URL https:
//arxiv.org/abs/1312.6114.

Jonas Kohler, Albert Pumarola, Edgar Schönfeld, Artsiom Sanakoyeu, Roshan Sumbaly, Peter Va-
jda, and Ali Thabet. Imagine flash: Accelerating emu diffusion models with backward distillation,
2024. URL https://arxiv.org/abs/2405.05224.

Youngwan Lee, Kwanyong Park, Yoorhim Cho, Yong-Ju Lee, and Sung Ju Hwang. Koala: Empiri-
cal lessons toward memory-efficient and fast diffusion models for text-to-image synthesis, 2024.
URL https://arxiv.org/abs/2312.04005.

Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground
v2.5: Three insights towards enhancing aesthetic quality in text-to-image generation, 2024.

Senmao Li, Taihang Hu, Fahad Shahbaz Khan, Linxuan Li, Shiqi Yang, Yaxing Wang, Ming-Ming
Cheng, and Jian Yang. Faster diffusion: Rethinking the role of unet encoder in diffusion models,
2023. URL https://arxiv.org/abs/2312.09608.

Haozhe Liu, Wentian Zhang, Jinheng Xie, Francesco Faccio, Mengmeng Xu, Tao Xiang,
Mike Zheng Shou, Juan-Manuel Perez-Rua, and Jürgen Schmidhuber. Faster diffusion via tem-
poral attention decomposition, 2024a. URL https://arxiv.org/abs/2404.02747.

Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue
Huang, Hanchi Sun, Jianfeng Gao, Lifang He, and Lichao Sun. Sora: A review on back-
ground, technology, limitations, and opportunities of large vision models, 2024b. URL https:
//arxiv.org/abs/2402.17177.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models, 2023. URL https://arxiv.
org/abs/2211.01095.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Syn-
thesizing high-resolution images with few-step inference, 2023. URL https://arxiv.org/
abs/2310.04378.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free,
2023. URL https://arxiv.org/abs/2312.00858.

Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao Wang. Learning-to-cache: Accelerating
diffusion transformer via layer caching, 2024.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik P. Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models, 2023. URL https://arxiv.org/
abs/2210.03142.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models, 2022. URL https://arxiv.org/abs/2112.10741.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising subtleties in
gan evaluation. In CVPR, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL https:
//arxiv.org/abs/2212.09748.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis, 2023. URL https://arxiv.org/abs/2307.01952.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents, 2022. URL https://arxiv.org/abs/
2204.06125.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022. URL https://arxiv.org/
abs/2112.10752.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation, 2015. URL https://arxiv.org/abs/1505.04597.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
22500–22510, June 2023.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. Imagenet large scale visual recognition challenge, 2015. URL https://arxiv.org/
abs/1409.0575.

Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your steps: Optimizing sampling
schedules in diffusion models, 2024. URL https://arxiv.org/abs/2404.14507.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Den-
ton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Sali-
mans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-
image diffusion models with deep language understanding. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 36479–36494. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models, 2022.
URL https://arxiv.org/abs/2202.00512.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
tillation, 2023. URL https://arxiv.org/abs/2311.17042.

Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. Fora: Fast-
forward caching in diffusion transformer acceleration, 2024. URL https://arxiv.org/
abs/2407.01425.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL
https://arxiv.org/abs/2010.02502.

Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel
of images. In AAAI, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom
Sanakoyeu, Peizhao Zhang, Sam Tsai, Jonas Kohler, Christian Rupprecht, Daniel Cremers, Peter
Vajda, and Jialiang Wang. Cache me if you can: Accelerating diffusion models through block
caching, 2024. URL https://arxiv.org/abs/2312.03209.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation,
2023a.

Yanwu Xu, Yang Zhao, Zhisheng Xiao, and Tingbo Hou. Ufogen: You forward once large scale text-
to-image generation via diffusion gans, 2023b. URL https://arxiv.org/abs/2311.
09257.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications, 2024. URL https://arxiv.org/abs/2209.00796.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T. Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation, 2023. URL https:
//arxiv.org/abs/2311.18828.

Hui Zhang, Zuxuan Wu, Zhen Xing, Jie Shao, and Yu-Gang Jiang. Adadiff: Adaptive step selection
for fast diffusion, 2023. URL https://arxiv.org/abs/2311.14768.

14

