Under review as a conference paper at ICLR 2026

THE CLIMB CARVES WISDOM DEEPER THAN THE
SUMMIT: ON THE IMPORTANCE OF REASONING PAT-
TERNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Unlike typical RL studies on verifiable tasks like math, we investigate the more
practical challenge of noisy rewards from non-verifiable, real-world tasks. We
begin by artificially injecting noise (flipping rewards) into verifiable tasks (e.g.,
math and question answering) to gain some insights. Surprisingly, we found that
rewarding a large portion of outputs with incorrect answers does not hinder the ac-
quisition of effective reasoning abilities. Thus, we hypothesize that the reasoning
process itself must be valuable. We validate this hypothesis with a simple yet ef-
fective mechanism: the Reasoning Pattern Reward (RPR), which rewards only the
appearance of key reasoning phrases (e.g., "first, I need to””) without verifying an-
swer correctness. Using RPR, the model achieves peak downstream performance
comparable to that of models trained with clean, verified rewards. Recognizing
the importance of the reasoning process, we developed a core method that uses
RPR to calibrate noisy reward models in open-ended NLP tasks. By incorporating
RPR, we effectively mitigate potential false negatives in reward signals, thereby
enhancing the LLM’s reasoning capabilities and evaluation performance on such
tasks. Our findings are validated across both Qwen and Llama model series. These
findings provide new insights for advancing post-training techniquesm

1 INTRODUCTION

Reinforcement learning (RL) applied to post-training large language models (LLMs) has led to
significant advancements in enhancing their thinking and reasoning abilities (DeepSeek-AlL [2025;
Team, [2025), resulting in improved performance on many challenging downstream tasks. Most cur-
rent research focuses on math tasks (Hu et al., 2025} [Pan et al., 2025} Yeo et al., 2025 Gandhi et al.,
2025} |Chen et al}|2025), as these can be easily verified as correct or incorrect by simple rule-based
reward functions. However, in many real-world applications, such as preference alignment (Ouyang
et al.}[2022;Zhu et al.,2023)) and open question-answering (Jaques et al.,|2020;|Nakano et al.,|2022),
responses cannot be easily quantified with simple rule-based functions and instead require evalua-
tion by neural reward models. These models, being imperfect, often introduce noise even resulting
in opposite rewards. In this paper, we study such noisy and open-domain conditions, with the goal
of providing practical insights for developing more robust and general reasoning models suited for
real-world deployment.

In Section E], we begin with verifiable tasks such as math and multi-choice QA, due to their con-
trollable and quantifiable rewards, which provide an ideal testbed for obtaining preliminary insights.
We introduce noise by flipping rewards. For example, we assign a reward of O for a correct an-
swer and 1 for an incorrect one. Surprisingly, even under substantial noise, such as flipping 40%
of rewards to incorrect values, a Qwen-2.5-7B model (Yang et al.| [2024) improved its accuracy on
MATH-500 (Hendrycks et al.,|2021) to 72.02%, approaching the 75.85% achieved with a noiseless
reward. Similar robustness was also observed in Llama models (Llama Team, [2024). These results
suggest that even model responses with incorrect final answers may still deserve reward. Because
their answers are wrong, the value worthy of reward likely lies in the reasoning processes.

'Our code and scripts are available at ht tps : / /anonymous . 4open.science/r/NoisyRewards)

https://anonymous.4open.science/r/NoisyRewards

Under review as a conference paper at ICLR 2026

We hypothesize that learning effective reasoning patterns during rollouts is one of the keys to RL
improvements. To test this, we introduced Reasoning Pattern Reward (RPR), which rewards the
use of certain reasoning phrases (e.g., “first, I need to”) regardless of final-answer correctness. Using
only RPR—without any correctness supervision, Qwen-2.5-7B achieved 70.21% on MATH-500,
comparable to full-verification training. This robustness is consistent across our experiments with
Llama, further supporting the validity of our hypothesis. Since no correctness labels were provided
and little new knowledge was acquired in these experiments, the improvements strongly suggest that
the performance gains are due to the reinforcement of useful reasoning patterns.

Section] and [5] extend these insights to non-verifiable tasks, focusing on Al assistance generation
across diverse user queries. To simulate real-world noise conditions, we trained multiple reward
models with varying accuracy levels. We demonstrate that while Qwen and Llama models in non-
verifiable tasks exhibit a degree of robustness, it is lower than their robustness in well-pretrained ver-
ifiable tasks. Nonetheless, we confirm that reasoning patterns remain influential and can effectively
overcome such noise. We employ RPR to calibrate reward models by compensating for potential
false negatives. This simple yet effective method introduces minimal overhead and improves the net
win rate by up to 30% compared to LLMs trained with vanilla reward models. Furthermore, the
RPR-calibrated reward model enables even 3B-parameter small models to achieve notable success
in complex tasks where training with vanilla reward models would otherwise collapse.

In summary, our contribution are two-fold:

(1) Our preliminary experiments on verifiable tasks are the first to demonstrate LLMs’ robustness
to reward noise during post-training and further reveal a key insight: reinforcing effective reasoning
patterns is one of primary contributors to RL improvements.

(2) Building on this finding, we focus on open-domain non-verifiable tasks and propose a simple yet
effective method that calibrates noisy reward models by explicitly rewarding high-quality reasoning
patterns. This approach not only enhances the performance of large language models but also lowers
the threshold for enabling effective reasoning in smaller models.

We hope this work offers valuable insights to future research in reinforcement learning for non-
verifiable, open-domain tasks.

2 RELATED WORKS

The robustness to reward noise. (Shao et al., [2025) is a concurrent preprint that also studies
robustness to reward noise. Their study, however, is limited in several key aspects: it demonstrates
robustness only on Qwen models without extension to other model families, and it does not provide
an explanation for the observed robustness. Beyond merely reporting the robustness, our work
first identifies one of its underlying causes—the importance of reasoning patterns. Furthermore,
we actively leverage this insight by utilizing reasoning patterns to achieve success in challenging
open-domain, non-verifiable NLP tasks.

Reward model accuracy. An accurate reward model was considered crucial for successful
RL (Frick et al.l [2024; [Lambert et al.l 2025} [Liu et al., [2025; |[Zhou et al., [2025). Even in math
tasks where rewards are calculated by verification functions, Yeo et al.| (2025) proposed that it is
beneficial to refine the reward function with a fine-grained approach for accurately evaluating math
answers, considering factors such as output length, correctness, and repetition. However, |Chen et al.
(20244a) found that more accurate reward models do not necessarily lead to stronger LLMs in down-
stream tasks. [Razin et al|(2025) argues that high reward variance is also important for making
the reward model a good teacher. Additionally, [Wen et al.| (2025) suggested that relying solely on
accuracy does not fully capture the impact of reward models on policy optimization.

Studying the accuracy of reward models from a realistic perspective, i.e., accounting for noise,
offers new insights. We contend that RMs need not be flawless, though calibration to noisy rewards
improves evaluation. We provide the first evidence of LLMs’ robustness to significant reward noise.

The role of RL in post-training LLLMs. This paper aligns with recent studies suggesting that pre-
trained models already possess the fundamental reasoning abilities needed for complex tasks. [Yeo
et al.|(2025) found that pre-training data often includes long chain-of-thought patterns, establishing
a foundation for reasoning. Similarly, Yue et al.|(2025) noted that base models can perform similarly

Under review as a conference paper at ICLR 2026

A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The
assistant first thinks about the reasoning process in the mind and then provides the user with the answer.
The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags,
respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: You
must put your answer inside <answer> </answer> tags, i.e., <answer> answer here </answer>. And your
final answer will be extracted automatically by the \boxed{} tag. {question} Assistant: <think>

Figure 1: The prompt used in verifiable task training, where the “question” placeholder will be
replaced with a specific question.

to RL-post-trained models after multiple attempts at difficult tasks. |(Gandhi et al.[(2025) showed that
Qwen models outperform Llama (Llama Team) 2024) models in downstream tasks post-RL, with
Qwen models exhibiting natural reasoning behavior. Prior works (Al et al.}[2025)) demonstrated that
reasoning can emerge during pre-training, with models using a reasoning trigger token like “wait”
to activate chain-of-thoughts and arrive at the correct answer.

We provide strong evidence that models can achieve peak performance, comparable to those trained
with strict verification, by rewarding key reasoning patterns instead of requiring correctness verifi-
cation. While RL post-training has seen significant progress, our findings highlight the continued
importance of pre-training in building advanced LLMs. From a post-training perspective, this also
explains why a small amount of high-quality data (Muennighoff et al.,2025) can enhance reasoning
abilities, as the foundational capabilities are already present and need effective triggers.

3 INSIGHTS VIA MANUALLY INTRODUCED NOISE IN VERIFIABLE REWARDS

3.1 LLMS ARE ROBUST TO NOISY REWARDS

Mathematics and multi-choice QA are among the most widely studied domains for reasoning in
large language models (LLMs), owing to their clear rule-based rewards and objective evaluation
metrics. To explore the RL performance under noisy rewards, we start by manually injecting noise
into the RL rewards of verifiable tasks.

Random reward flip We train the model by randomly flipping the reward with a probability p,
where a reward of 1 is transformed to 0, and vice versa. This flip is applied on a question-wise
basis, meaning that if a reward flip occurs for a given question, the rewards for all rollout outputs
corresponding to that question will be flipped. Note that flipping rewards on an output-wise basis
does not effectively introduce noise. For instance, when an LLM generates multiple correct outputs,
some of which are rewarded correctly while others are not, it results in a sparse reward distribution.
Such sparsity can only slow convergence and has minimal impact on the model’s final performance.

Training setup Most of the training setups follow the approach in (Hu et al.l [2025)), which pro-
vides a simplified framework designed to help LLMs learn to reason. The experiments are based
on VeRL (Sheng et al| 2024) framework by Volcengine. The dataset includes 57K high-quality,
source-mixture math problems spanning various difficulty levels. In practice, we observed that the
model performance plateaued after training on only a subset of the dataset.

The prompts used in these tasks are shown in Figure [T} Notably, the prompt is directly decoded
without applying model-specific chat template to avoid potential bias across different model fam-
ilies. While this approach may affect initial accuracy, it does not impact converged performance.
Model outputs are extracted from the box tag, normalized in format (e.g., converting fractions to
decimals and translating LaTeX answers to plain text), and compared to the ground truth.

In the absence of manual reward noise, the model is given a reward of 1 if the output matches the
ground truth and O otherwise. For training, we employ vanilla PPO (Schulman et al.l [2017) with
GAE (Schulman et al.| [2018), using A = 1 and 7y = 1, with no KL-regularization. The training batch
size is 128, with a maximum response length of 4096. The learning rate for the actor is 1075,
and for the critic, it is 5 x 1079, To ensure stable training, we apply critic warmups for 20 steps,
initially training the critic before training the actor model. We set the rollout number to 4. We use
Qwen-2.5-7B (Yang et al.,2024) and Llama-3.1-8B-Instruct (Llama Team| 2024) as base models.

Under review as a conference paper at ICLR 2026

Qwen-2.5-7B
MATH-500 30 GPQA
70
60
50
S
LE‘ 40
£ 30
3
< 20
10
0
Step 20 40 60 80 100 20 40 60 80 100
Llama-3.1-8B-Instruct
MATH-500
50! 251
40| 20
:3\ 30, 154
g
5 201 10
Q
<
101 5
Step 20 40 60 80 100 20 40 60 80 100

Figure 2: Model performance under varying noise probabilities p. Top: Qwen-2.5-7B. Bottom:
Llama-3.1-8B-Instruct. Both models show robustness to a large reward noise.

Evaluation To assess the model’s reasoning capability on challenging tasks, we utilize two
datasets: MATH-500 (Hendrycks et al., 2021), a math dataset, and GPQA (Rein et al.|, [2023)), an
out-of-domain dataset relative to the math-centric training data. We report the Pass@1 accuracy
dynamics throughout the training.

Experiments: The impact of p We train the model with the probability p of noise increasing from
0% to 50%, with intervals of 10%, corresponding to increasingly random reward flips. The results
are shown in Figure[2] We only display the first 100 steps, as the performance has already plateaued.

On the MATH-500, the Qwen model exhibits strong robustness, maintaining high performance with
anoise level (flip rate) of up to 40%. At this point, its accuracy begins to decline compared to training
with no noise, but still yields a peak score of 72.02% versus 75.85%. At lower noise levels, the final
performance remains comparable to the noise-free baseline, and convergence occurs at a similar
rate. When the flip rate p is increased to 50%, making the reward signal entirely random, training
collapses. Similar trends are observed in the GPQA task, although performance fluctuations are
more pronounced. The Llama model remains stable up to a noise level of p = 30 ~ 40%. Although
still robust, its tolerance to noise is weaker than that of the Qwen models. This is likely related to
its inherently weaker baseline capability. Additionally, Figure[I3|shows that the small Qwen-2.5-3B
model also exhibits strong noise robustness, comparable to the 7B model.

3.2 HYPOTHESIS AND VALIDATION: THE ROLE OF REASONING PATTERNS IN PERFORMANCE
IMPROVEMENT

Given the surprising result, the key question is why assigning a reward of 1 to outputs with genuinely
incorrect answers does not have a significant detrimental effect. Since the answer is incorrect, we
hypothesize that the reasoning process itself must be valuable and worth rewarding.

To test this, we conducted an experiment: We first identified n high-frequency phrases that
imply certain desired reasoning patterns, such as “We know that” and “First I need to,”
in the outputs of a model trained with p=0E| Next, instead of verifying the correctness

These phrases also frequently appear in model outputs trained with higher levels of noise.

Under review as a conference paper at ICLR 2026

Qwen-2.5-7B
MATH-500 GPQA
70
25
60
20
50
s 40 15
>
g |
= 30 10
8
<20 . 5
The reward is hacked and
10 the models start to overthink. 0
Step 20 40 60 80 100 20 40 60 80 100
Llama-3.1-8B-Instruct
MATH-50 GPQA
45 25
40
20
35
S
<30 15
g
225
1 10
<20
15 5
Step 20 40 60 80 100 20 40 60 8 100

Figure 4: We applied RL post-training using RPR as the sole reward signal. The resulting models
achieved high peak performance; however, in some cases, this led to reward hacking, characterized
by overthinking and subsequent performance degradation after the peak. As shown in Section [3]
combining RPR with other reward signals eliminates reward hacking.

of the answer, the model receives a reward of value r each time a pre-identified reasoning
phrase appeared in the output. We name this strategy as Reasoning Pattern Reward (RPR).

Figllre E iHUStrates hOW RPR WOI'kS. To Pre- 0O Assistant: <think> To solve this problem, first
vent the model from hacking the reward by out- lpeed to Secol\ldly, oo We l(n?w’ that ...
putting repeated reasoning phrases (e.g., “We know ' m ! i{:};lrlﬂyo ;;;;";f{‘;f,;JE??T“Z?Z,,‘;;;;
that We know that We know that...”), a repetition i

penalty (Yeo et al, [2025) is used. Implementation Reasoning Pattern Reward: 5r
details, including the keyword lists, example code, ~-----------ooooooo oo
and hyperparameters (n, r), are provided in Ap-

O Assistant: <think> Let me first Given
pendix @ that Therefore, As a result, the
| m | answer is <\think> <answer> \boxed{...}
The results are presented in Figure [l Remarkably, <lanswer>

even without verifying the correctness of reasoning
during the training process, the model demonstrates
strong reasoning capabilities in the early stages,
achieving high performance with only a minimal gap
compared to models trained without noise. There-
fore, we have demonstrated that:

Reasoning Pattern Reward: 4r

Figure 3: The reasoning pattern reward based
on the count of pre-identified high-frequency
reasoning phrases.

Reasoning patterns alone—even without correctness supervision—can elicit high model perfor-
mance, confirming the importance of learning effective reasoning patterns.

As training progresses, the performance of both models on MATH-500 (and of Qwen on GPQA)
declines due to overthinking. Output analysis shows that after several reasoning steps, the model
begins to revisit and extend previous thoughts in a cyclical manner. The long reasoning chain finally
exceeds the context limit and is truncated before the final answer can be generated. An example
is shown in Figure [TT} where the model has already arrived at the correct answer but continues to
reason, preventing the extraction of the final answer.

Under review as a conference paper at ICLR 2026

These performance drops, caused by reward hacking, are an inherent limitation of using rule-based
rewards alone, but they do not undermine the importance of reasoning patterns. As we show in §5|
this issue is effectively mitigated when RPR is combined with other reward sources.

Declarations To avoid potential misunderstandings, we clarify the following:

(1) Our focus on reasoning patterns is not a denial of the role new knowledge plays in improv-
ing RL performance, but an investigation of that role is not this paper’s focus.

(2) The primary goal of this experiment is to validate the hypothesis that reasoning patterns emerging
even in incorrect outputs are valuable, and that reinforcing them improves reasoning ability—not to
achieve state-of-the-art accuracy. Therefore, fine-tuning RPR hyperparameters, optimizing keyword
lists, or preventing reward hacking are not primary concerns in this section. We also note that the
keyword list we collected is broadly applicable across tasks, as shown in Section [5]

4 LEARNING TO REASON USING REWARD MODELS OF VARYING ACCURACY

Building on the insights above, now we turn to the open NLP tasks requiring reward models (RMs).
Different from manually flipping rewards in verifiable tasks, the noise level in open NLP tasks can
be approximately reflected in the varying evaluation accuracies of RMs. We first introduce the data,
RM training details, followed by experiments with noisy RL rewards and corresponding findings.

Dataset We use the NVIDIA HelpSteer3 (Wang et al., 2025) dataset, which contains 40.5K multi-
domain open-ended questions that require helpful assistance. Each question is paired with two re-
sponses, evaluated by multiple annotators for helpfulness, categorized into seven fine-grained levels.
There is also a chat history preceding the current question, providing context for the question. The
dataset is split into a training set of 38.5K samples and a validation set of 2K samples.

RM training Our RMs are built on a Qwen-2.5-
7B model with an added prediction head. We simplify
the original seven-level helpfulness scale into a binary
classification task: the more helpful response in each
pair is labeled as 1, and the less helpful one as 0. For
each response, we concatenate it with the chat history
as the input to the RM. The prediction head produces
a scalar output s, and we optimize the model using
the MSE between s and the corresponding binary la-
bel (Liu et al.,2024a; |Zhang et al.,2024a;|Deng et al., 0 5000 10000 15000 20000 25000
2024). The model learns to predict the absolute help- Step

fulness, facilitating further RL, instead of using con-
trastive learning to compare the relative helpfulness
of paired responses. The learning rate is 1075, and
the RM is trained for 25,000 steps.

Accuracy (%)
2 o = oa w e
2 & 3 a 82

%3
a

%3
S

Figure 5: Reward model’s accuracy across
the training. Checkpoints at specific steps
are used for RL experiments.

The evaluation accuracy dynamics of RMs are shown in Figure 5] The best-performing model
achieved an evaluation accuracy of 85%. Different RMs with varying accuracies are used in subse-
quent experiments to simulate the scenarios with different levels of reward noises.

LLM Training The hyperparameters used in this section basically follow those employed in pre-
vious verifiable experiments. Training is conducted with Qwen-2.5-7B and Llama-3.1-8B-Instruct
on the HelpSteer3 dataset, lasting a total of 200 steps. Figure [6] shows the prompt template, which
instructs the model to first carefully consider how to provide useful assistance. It then asks the model
to summarize its reasoning and present the final response within the <answer> tag. Importantly, the
RM only evaluates the text within the <answer> tag, not the entire output. This approach ensures
that the reward pipeline aligns with the one used in previous verifiable experiments.

Evaluation Settings Evaluating open-ended tasks during training presents a much greater chal-
lenge than evaluating verifiable problems, due to the lack of objective criteria and the absence of
reliable, efficient evaluators. Because our most accurate reward model (RM) is used during training,
it cannot be employed for evaluation at test time, as LLMs may learn to hack its preferences. It is
also prohibitive to ask more advanced LLMs like ChatGPT or human evaluators to frequently eval-

Under review as a conference paper at ICLR 2026

{Chat history} User: I present a question, and you, the assistant, first thinks about the reasoning process in
the mind and then provides the user with the answer. Enclose the reasoning within <think>...</think> tags
and the final answer — which should also summarize the reasoning — within <answer>...</answer> tags.
For example: <think>Reasoning process here</think> <answer>Answer with summary of reasoning here

</answer>. Now, here is my question: {question} Assistant: <think>

Figure 6: The prompt used in the HelpSteer3 task, where the “question” and “chat history” place-
holders are filled accordingly.

Qwen-2.5-7B Llama-3.1-8B

Net Win: 4% Net Win: 25% Net Win: 10% Net Win: 37%

L Loss
Win (kL ‘Win 18%
o 30% . @ .
46% ‘Win 43% Win
Tie 55% Tie 55%
Tie 15% Tie 27%
12% 24%
RM (85% Acc) vs RM (85% Acc) vs RM (85% Acc) vs RM (85% Acc) vs
RM (75% Acc) RM (65% Acc) RM (75% Acc) RM (65% Acc)

Figure 7: LLMs trained with an 85%-accurate RM performs similarly to using a 75%-accurate RM,
but significantly better than using a 65%-accurate RM. The “Net Win” refers to the performance
advantage of the former RM over the latter.

uate models during training. As a result, we perform evaluation only after training, using a subset of
200 samples from the evaluation set, assessed by both GPT-40 and human evaluators. Specifically,
we compare two models by having GPT-40 and human evaluators assess their responses to the same
question. Only text in <answer> tags is used for evaluation.

The prompt used for GPT’s evaluation is shown in Figure [I5] The evaluation considers factors
including helpfulness, informativeness, reasoning, and coverage of user needs. To avoid bias from
positional preferences (Liu et al.,2024b; (Chen et al.l 2024b; |Zhang et al.||2024b) in language models,
ChatGPT-40 evaluates an output pair twice for the same question, each time with a different order.
A model’s response may result in a win, loss, or tie relative to the other model’s response, with
the results presented in pie charts. In the main text, we report GPT evaluation scores, as they are
more reproducible for the community. Details on human evaluation—guidelines, results, and inter-
evaluator agreement measured by Fleiss” Kappa (Fleiss et alll [1971)—are provided in Appendix [B]
There, we show that human evaluation aligns with GPT assessments, with evaluators demonstrating
moderate to substantial agreement.

Experiment: Comparing LLMs trained with RMs of various accuracies = We compare the
performance of Qwen and Llama trained with reward models (RMs) of varying accuracies: 85%,
75%, and 65%. The results are presented in Figure []] Two models perform comparably when
trained with reward models that are 75% and 85 % accurate, indicating a degree of robustness
to reward noise. However, their robustness is less pronounced than what has been observed in
verifiable tasks, since the models trained using the 65%-accurate RM shows a significant decline in
downstream performance.

This is because, beyond accuracy, the magnitude and distribution of non-verifiable reward scores
are also critical. In contrast to verifiable problems—where rewards are typically binary (e.g., O or
1)—RMs, especially less accurate ones, tend to produce scores clustered around 0.5, even when
they make correct classifications. This clustering reflects underlying model uncertainty. This effect
is exhibited in the reduced variance of reward outputs from lower-accuracy RMs: on a validation
set, the score variances are 0.1937, 0.1161, and 0.0672 for the 85%, 75%, and 65%-accurate RMs,
respectively. A more accurate RM pushes scores further from the decision boundary, helping to
avoid both over- and under-estimated rewards. These observations align with findings by (Razin
et al) [2025), who emphasized that higher variance is also a key factor in RM effectiveness. In
summary, both the lower accuracy and lower variance of the 65%-accurate RM likely contribute to
its weak downstream performance.

RMs with greater than 80% accuracy are often attainable in practice, and our experiments offer
relief for real-world applications, where concerns about RM accuracy are prevalent. However, as

Under review as a conference paper at ICLR 2026

Qwen-2.5-7B Llama-3.1-8B-Instruct

Net Win: 8% Net Win: 23% Net Win: 30% Net Win: 14% Net Win: 17% Net Win: 28%

Win Win

47% i Win 41% Win Win
55% o say 53% : 57%
5 Tie Tie . . Tie
I 13% 2% Tie ie 14%
14% ’ 32% 11%)
Original RM (85% Acc) vs Calibrated RM (85% Acc) vs Calibrated RM (65% Acc) vs | Original RM (85% Acc) vs Calibrated RM (85% Acc) vs Calibrated RM (65% Acc) vs
Calibrated RM (65% Acc) Original RM (85% Acc) Original RM (65% Acc) Calibrated RM (65% Acc) Original RM (85% Acc) Original RM (65% Acc)

Figure 8: Reward noise calibration effectively enhances downstream performance.

demonstrated by our RM with 65% accuracy, some noisy RMs are indeed inadequate for practical
use as the sole source of reward. Recognizing the importance of reasoning patterns, we propose
a method for calibrating RMs with RPR (Section [3). This approach overcomes the performance
ceiling imposed by the limitations of the reward models at hand.

5 CALIBRATING NOISY RMS WITH REASONING PATTERN REWARD

We investigate whether the Reasoning Pattern Reward (RPR; Section [3) can help calibrate weak
RMs to obtain better LLM performance. There are two potential ways to calibrating noisy rewards
based on the value of reasoning patterns:

1. Compensatory reward for underestimated responses. When an RM produces false negatives,
assigning a low score to an “objectively” good response, we give it some compensation. E| We as-
sume that responses that display better reasoning patterns are likely to be closer to the “objectively”
good ones. Therefore, we reuse the RPR as the compensation reward.

2. Discounting for overestimated responses. Conversely, when an RM provides false positive
results, that is, it incorrectly assigns a high score to a “objectively” poor response, we can apply a
discount to RM scores. However, this situation is more complex than discounting false negatives.
The main challenge is determining the appropriate discount factor. For instance, if a response re-
ceives a full score but lacks key reasoning phrases, should its reward be near zero? Setting it too low
could overemphasize reasoning pattern rewards, leading to overthinking and performance collapse,
as discussed in Section[3] This remains an open research question: how can we effectively calibrate
an RM when the noisy reward is a false positive?

Consequently, we only introduce the first method to calibrate the RM model: When the RM outputs
a score lower than a pre-defined 7, we calculate an RPR score only for the thought text (enclosed in
<think> tags), while text in <answer> tags is not considered. This RPR score is added to the RM
output, scaled by a weight . This calibration incurs no additional time or memory costs.

Note that in our approach, RPR compensates not only for false negatives but also for true negatives.
This is not problematic, as we demonstrated in Section [3]that true negative responses still contain
valuable reasoning patterns and are therefore worth rewarding. Another potential concern is that
using RPR as the sole reward signal might lead to performance collapse (Figure[2). However, when
RPR is used as an auxiliary signal rather than the sole reward, LLMs are trained effectively without
such collapse in the following experiments.

Experiment: RPR-calibrated RMs enhance RL post-training We use RMs with accuracies of
65% and 85% to conduct several comparisons: (1) Calibrating the RMs using RPR, applying it to
post-training LLMs, and comparing their performance with models trained solely with the original
RMs. (2) Comparing an LLM trained with a 65%-accurate RM calibrated by RPR to a model trained
with an 85%-accurate RM. We set the threshold 7 to 0.5 and « to 0.1. The choice of « is discussed
in Appendix D] The results in Figure 8| demonstrate the effectiveness of RPR calibration:

1. Qwen trained with the calibrated 65%-accurate reward model lags behind the 85%-accurate
counterpart by a mere 8% —an improvement from an initial 25% gap, highlighting the substantial
gains achieved through calibration. The Llama model exhibits a similar trend.

3By “objectively.” we refer to whether rewarding the response eventually improves performance on the test
set. If it does, the response should be considered good, at least from a deep learning perspective.

Under review as a conference paper at ICLR 2026

(a) Average Response Length (b) Net Win: 5%

12001 m= QOriginal RM (85%)

w=== QOriginal RM (75%)
=== Calibrated RM (85%)
Calibrated RM (75%)

1000+

Win
45%

800 |

#Token

600 1

400 |
L, (5"
200 | i
W&! _’r—ﬂk‘: Calibrated RM (85% Acc) vs
| Calibrated RM (75% Acc)

Figure 9: (a) Average response length of Qwen-2.5-3B during training with original vs calibrated
RMs. The calibrated RMs successfully enable this small-scale model to perform reasoning, whereas
the original RMs fail. (b) Experiment 3 using Qwen-2.5-3B models trained with calibrated RMs.
There is no pie chart data for original RMs because they failed to train a viable model for comparison.

2. Calibrating noisy RMs boosts downstream LLM performance, outperforming LLMs trained with
original RMs. Even the 85%-accurate RM continues to improve after RPR calibration. RPR cali-
bration addresses the limitations of RMs at hand.

Notably, the improvements observed are not due to an increase in reward score variance (0.1889
and 0.0653 for the 85% and 65%-accurate RMs post-calibration), as variance actually decreases
slightly. We provide output examples from models trained with both the original and calibrated
RMs in Appendix [C]

Experiment: RPR-calibrated RMs enable small models to effectively reason In the Help-
Steer3 task, vanilla RL fails to enable Qwen-2.5-3B to perform effective reasoning. We observe
that response lengths initially increase but then rapidly collapse to just a few tokens. This pat-
tern of “first-reason-then-collapse” has also been observed in (Pan et al. [2025), where an LLM is
trained to reason on tasks beyond its initial capabilities. However, the underlying mechanisms driv-
ing this length dynamics remain understudied. In contrast, when trained with RPR-calibrated RMs
(accuracy > 75%), Qwen-2.5-3B exhibits clear reasoning behaviors. As shown in Figure [Pfa), the
response lengths differ significantly between models trained with original versus calibrated RMs.
These results echo the finding that calibrated RMs more effectively evoke reasoning abilities in
large language models. Subfigure (b) shows that using an 85%-accurate RM yields only a 5-point
improvement in net win rate over the 75%-accurate RM—mirroring observations in 7B models’
robustness to RM noise.

Figure [I2] and Figure [T4] present two sample outputs from Qwen-2.5-3B trained with the 85%-
accurate RM, demonstrating that we have successfully elicited the basic reasoning capabilities of
this small-scale model, despite some imperfections in these outputs. In Figure[T2] the Chinese query
asks for the creation of a PowerPoint file to teach primary school students about statistical charts.
The 3B model engages in step-by-step reasoning to generate a coherent PowerPoint structure and
follows through on its plan. In Figure[T4] the model processes a complex chat history and solves a
physics problem, despite not being explicitly trained for mathematics or physics.

6 CONCLUSIONS

Enhanced reasoning ability through reinforcement learning in non-verifiable domains remains rel-
atively understudied compared to the well-explored verifiable tasks. We make three key contribu-
tions: we first report LLMs’ robustness to reward noise during RL post-training; second, through
experiments with reasoning pattern rewards (RPR) across both verifiable and non-verifiable NLP
tasks, we validate that reasoning patterns play a critical role in RL-driven improvements; third, fo-
cusing on real-world non-verifiable tasks, we show that using RPR to calibrate noisy reward models
reduces false negative rewards—this not only pushes LLMs to higher performance levels, overcom-
ing limitations of existing reward models, but also enables small models to effective reason. Our
contributions provide insights for improving post-training techniques.

Under review as a conference paper at ICLR 2026

STATEMENTS ON ETHICS, REPRODUCIBILITY, AND LLM USAGE

This paper does not raise special ethical issues. For reproducibility, we used public data and RL
framework. We commit to open-sourcing the full codebase. We used LLMs solely for typo checking.

REFERENCES

Essential Al :, Darsh J Shah, Peter Rushton, Somanshu Singla, Mohit Parmar, Kurt Smith, Yash
Vanjani, Ashish Vaswani, Adarsh Chaluvaraju, Andrew Hojel, Andrew Ma, Anil Thomas, An-
thony Polloreno, Ashish Tanwer, Burhan Drak Sibai, Divya S Mansingka, Divya Shivaprasad,
Ishaan Shah, Karl Stratos, Khoi Nguyen, Michael Callahan, Michael Pust, Mrinal Iyer, Philip
Monk, Platon Mazarakis, Ritvik Kapila, Saurabh Srivastava, and Tim Romanski. Rethinking
reflection in pre-training, 2025. URL https://arxiv.org/abs/2504.04022.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do not
think that much for 2+3=? on the overthinking of ol-like llms, 2025. URL https://arxiv.
org/abs/2412.21187.

Yanjun Chen, Dawei Zhu, Yirong Sun, Xinghao Chen, Wei Zhang, and Xiaoyu Shen. The accuracy
paradox in RLHF: When better reward models don‘t yield better language models. In Yaser Al-
Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Em-
pirical Methods in Natural Language Processing, pp. 2980-2989, Miami, Florida, USA, Novem-
ber 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.174.
URLhttps://aclanthology.org/2024.emnlp-main.174/.

Yuhan Chen, Ang Lv, Ting-En Lin, Changyu Chen, Yuchuan Wu, Fei Huang, Yongbin Li, and Rui
Yan. Fortify the shortest stave in attention: Enhancing context awareness of large language models
for effective tool use. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 11160-11174, Bangkok, Thailand, August 2024b. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.601. URL https://aclanthology.org/
2024 .acl-1long.601/.

DeepSeek-Al Deepseek-rl: Incentivizing reasoning capability in 1lms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Yanchen Deng, Chaojie Wang, Zhiyi Lyu, Jujie He, Liang Zeng, Shuicheng YAN, and Bo An.
Q*: Improving multi-step reasoning for LLMs with deliberative planning, 2024. URL https:
//openreview.net/forum?id=F7QNwDYG61I.

J.L. Fleiss et al. Measuring nominal scale agreement among many raters. Psychological Bulletin,
76(5):378-382, 1971.

Evan Frick, Tianle Li, Connor Chen, Wei-Lin Chiang, Anastasios N. Angelopoulos, Jiantao Jiao,
Banghua Zhu, Joseph E. Gonzalez, and Ion Stoica. How to evaluate reward models for rlhf, 2024.
URL https://arxiv.org/abs/2410.14872.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. Cogni-
tive behaviors that enable self-improving reasoners, or, four habits of highly effective stars, 2025.
URLhttps://arxiv.org/abs/2503.01307.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2),2021. URL https://openreview.net/forum?id=7Bywt2mQsCel

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.

Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model, 2025. URL https://arxiv.org/abs/2503.24290.

10

https://arxiv.org/abs/2504.04022
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://aclanthology.org/2024.emnlp-main.174/
https://aclanthology.org/2024.acl-long.601/
https://aclanthology.org/2024.acl-long.601/
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=F7QNwDYG6I
https://openreview.net/forum?id=F7QNwDYG6I
https://arxiv.org/abs/2410.14872
https://arxiv.org/abs/2503.01307
https://openreview.net/forum?id=7Bywt2mQsCe
https://arxiv.org/abs/2503.24290

Under review as a conference paper at ICLR 2026

Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Human-centric dialog training via offline reinforcement
learning. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 39854003,
Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.327. URL https://aclanthology.org/2020.emnlp-main.327/.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, Lester James Validad Miranda, Bill Yuchen
Lin, Khyathi Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and
Hannaneh Hajishirzi. RewardBench: Evaluating reward models for language modeling. In Luis
Chiruzzo, Alan Ritter, and Lu Wang (eds.), Findings of the Association for Computational Lin-
guistics: NAACL 2025, pp. 1755-1797, Albuquerque, New Mexico, April 2025. Association
for Computational Linguistics. ISBN 979-8-89176-195-7. URL https://aclanthology.
org/2025.findings—naacl.96/.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms, 2024a. URL
https://arxiv.org/abs/2410.18451l

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157-173, 2024b. doi: 10.1162/tacl_a_00638. URL
https://aclanthology.org/2024.tacl-1.9/l

Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, and Juanzi Li. RM-bench: Benchmarking
reward models of language models with subtlety and style. In The Thirteenth International Con-
ference on Learning Representations, 2025. URL https://openreview.net/forum?
1d=QEHrmQPBdd.

Al @ Meta Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783l

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393!

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback, 2022. URL jhttps://arxiv.
org/abs/2112.09332.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In Pro-
ceedings of the 36th International Conference on Neural Information Processing Systems, NIPS
’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.

Noam Razin, Zixuan Wang, Hubert Strauss, Stanley Wei, Jason D. Lee, and Sanjeev Arora. What
makes a reward model a good teacher? an optimization perspective, 2025. URL https://
arxiv.org/abs/2503.15477.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023. URL https://arxiv.org/abs/2311.12022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

11

https://aclanthology.org/2020.emnlp-main.327/
https://aclanthology.org/2025.findings-naacl.96/
https://aclanthology.org/2025.findings-naacl.96/
https://arxiv.org/abs/2410.18451
https://aclanthology.org/2024.tacl-1.9/
https://openreview.net/forum?id=QEHrmQPBdd
https://openreview.net/forum?id=QEHrmQPBdd
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2503.15477
https://arxiv.org/abs/2503.15477
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/1707.06347

Under review as a conference paper at ICLR 2026

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation, 2018. URL https:
//arxiv.org/abs/1506.02438.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du,
Nathan Lambert, Sewon Min, Ranjay Krishna, Yulia Tsvetkov, Hannaneh Hajishirzi, Pang Wei
Koh, and Luke Zettlemoyer. Spurious rewards: Rethinking training signals in rlvr, 2025. URL
https://arxiv.org/abs/2506.10947.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Kimi Team. Kimi k1.5: Scaling reinforcement learning with llms, 2025. URL https://arxiv.
org/abs/2501.125909.

Zhilin Wang, Jiaqi Zeng, Olivier Delalleau, Daniel Egert, Ellie Evans, Hoo-Chang Shin, Felipe
Soares, Yi Dong, and Oleksii Kuchaiev. Dedicated feedback and edit models empower inference-
time scaling for open-ended general-domain tasks, 2025. URL https://arxiv.org/abs/
2503.04378.

Xueru Wen, Jie Lou, Yaojie Lu, Hongyu Lin, XingYu, Xinyu Lu, Ben He, Xianpei Han, Debing
Zhang, and Le Sun. Rethinking reward model evaluation: Are we barking up the wrong tree?
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=Cnwz9jON1i5,

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
of-thought reasoning in llms, 2025. URL https://arxiv.org/abs/2502.03373.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao
Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the
base model?, 2025. URL https://arxiv.org/abs/2504.13837.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. ReST-MCTS*:
LLM self-training via process reward guided tree search. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems, 2024a. URL https://openreview.net/
forum?id=8rcFOgEud>.

Zhenyu Zhang, Runjin Chen, Shiwei Liu, Zhewei Yao, Olatunji Ruwase, Beidi Chen, Xiaoxia Wu,
and Zhangyang Wang. Found in the middle: How language models use long contexts better via
plug-and-play positional encoding, 2024b. URL https://arxiv.org/abs/2403.04797.

Enyu Zhou, Guodong Zheng, Binghai Wang, Zhiheng Xi, Shihan Dou, Rong Bao, Wei Shen, Li-
mao Xiong, Jessica Fan, Yurong Mou, Rui Zheng, Tao Gui, Qi Zhang, and Xuanjing Huang.
Rmb: Comprehensively benchmarking reward models in llm alignment, 2025. URL https:
//arxiv.org/abs/2410.09893.

Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human
feedback from pairwise or k-wise comparisons. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 43037-43067. PMLR, 23-29 Jul 2023. URL https://proceedings.mlr.
press/v202/zhu23f.html.

12

https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/2506.10947
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2503.04378
https://arxiv.org/abs/2503.04378
https://openreview.net/forum?id=Cnwz9jONi5
https://openreview.net/forum?id=Cnwz9jONi5
https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2504.13837
https://openreview.net/forum?id=8rcFOqEud5
https://openreview.net/forum?id=8rcFOqEud5
https://arxiv.org/abs/2403.04797
https://arxiv.org/abs/2410.09893
https://arxiv.org/abs/2410.09893
https://proceedings.mlr.press/v202/zhu23f.html
https://proceedings.mlr.press/v202/zhu23f.html

Under review as a conference paper at ICLR 2026

A THE DESIGN OF REASONING PATTERN REWARDS

Similar to human reasoning where coherent thought relies on a general set of common transitional
phrases and logical connectors rather than an extensive list of keywords, our design for the keyword
list and its size n reflects this principle.

In all experiments, we set n = 40 for RPR. This value was not specifically tuned; empirical observa-
tions indicated that n > 40 leads to a convergence rate similar to that achieved under full correctness
verification. Moreover, n = 40 already captures a substantial portion of generally effective reason-
ing patterns. For simplicity, each matched pattern is assigned a reward value of r = % = 0.025.

An example implementation of RPR is provided in Figure |10} To mitigate the risk of reward hacking
and overthinking, we allow a maximum of 10 keyword matches per instance.

The RPR keyword lists, which can also be found in Figure [I0] were collected from outputs of a
Qwen-2.5-7B model trained on mathematical datasets during rollouts. The reasoning patterns ex-
hibited in these keywords were verified to generalize across both tasks (from mathematical domains
to non-verifiable NLP tasks) and model architectures (e.g., Llama). Experimental results validating
these claims are presented in and §5]

A potential concern is the risk of reward hacking with RPR. However, experiments in §5|demonstrate
that this occurs only when RPR is used as the sole reward signal. In practice, when combined with a
reward model, RPR provides positive benefits. Since our core focus is on improving scenarios where
reward models have limitations—and since using RPR alone serves only for validation purposes in
$Bland is neither a proposed method nor recommended in practice—the risk of hacking is effectively
mitigated in real-world applications. Enhancing the robustness of rule-based rewards like RPR to
eliminate potential hacking risks remains an important direction for future work.

B HUMAN EVALUATION

B.1 GUIDELINES

We recruited three graduate students with expertise in model evaluation. Each evaluator spent ap-
proximately 8 hours completing all tasks and earned $70 USD. The human evaluation was granted
by our institute, with the payment slightly above the standard wage for graduate students working in
Al companies in our country. Below is the guideline for human evaluators:

Guideline for Evaluating Responses:
Your task is to determine which of the two responses better addresses the user’s latest request.

Steps to Follow:

* Review the Conversation History: Carefully read the conversation history provided. The
user’s most recent question will be the last message, and that is the request you need to
evaluate the responses against.

* Examine the Two Responses: You will be presented with two possible replies from two
Al assistants (Response #1 and Response #2).

* Criteria for Evaluation: Evaluate each response based on the following factors:
— Helpfulness: Does the response directly answer the user’s request? Is it practical and
useful?
— Amount of Information: Does the response provide sufficient details to address the
request thoroughly?
— Clarity and Coherence: Is the response easy to understand, and does it present in-
formation logically?
— Thoroughness: Does the response cover all aspects of the user’s request? Is anything
missing or incomplete?
* Avoid Quick Judgment: We will randomize the response order from two models. You
cannot infer which one is always better based on the order. Also, don’t assume one response
is better simply because it’s shorter or longer.

13

PN Y N SR OC IR

Under review as a conference paper at ICLR 2026

from collections import Counter

def calculate_ngram_repetition_penalty (text,

words = text.split ()

ngrams = [tuple(words[i:i+n]) for i in range(len (words)

ngram_counts = Counter (ngrams)
total_ngrams = len(ngrams)

repeated_ngrams = sum(l for count in ngram_counts.values ()

> 1)

repetition_penalty = repeated_ngrams / total_ngrams if total_ngrams

> 0 else O
return repetition_penalty

def reasoning_pattern_reward(solution):
reason_pos = solution.find("Assistant:_<think>")
solution_str = solution[think_pos + len("Assistant: <think>_"):

score = 0
solution_str = solution.lower ()

n) :

score += float ("i_need_to" in solution_str)

score += float ("we_need _to" in solution_str)
score += float ("wait" in solution_str)

score += float ("alternatively" in solution_str)
score += float ("let _me_ check" in solution_str)
score += float ("let _me see" in solution_str)
score += float("let’s_ focus_on" in solution_str)
score += float ("we_know_that" in solution_str)
score += float ("we_can_observe " in solution_str)
score += float ("we_can see " in solution_str)
score += float ("let _me try" in solution_str)

score += float ("let’s_try" in solution_str)

score += float ("let_us_try" in solution_str)
score += float ("first," in solution_str)

score += float ("firstly," in solution_str)

score += float ("next," in solution_str)

score += float("finally," in solution_str)

score += float ("let_us, first" in solution_str)
score += float ("let’s_ first" in solution_str)
score += float ("let_me first" in solution_str)

score += float ("try _,again" in solution_str)
score += float("still not" in solution_str)

score += float ("not_working" in solution_str)
score += float ("not correct" in solution_str)
score += float ("does_not_work" in solution_str)
score += float ("doesn’t _work" in solution_str)
score += float ("makes _,sence" in solution_str)

score += float("since_we" in solution_str)

score += float ("because_we" in solution_str)
score += float ("consequently" in solution_str)
score += float ("as_a,_result" in solution_str)
score += float ("thus" in solution_str)

score += float ("therefore" in solution_str)

score += float ("hence" in solution_str)

score += float ("so_that" in solution_str)
score += float ("thereby" in solution_str)
score += float ("if we" in solution_str)

score += float ("given_there" in solution_str)
score += float ("for ,instance" in solution_str)
score += float ("for example" in solution_str)

score = min (10, score)
score /= 40

score —= calculate_ngram repetition_penalty(solution_str,

return score

Figure 10: An example code of reasoning pattern reward without checking answer correctness.

14

- n + 1)]

if count

20)

Under review as a conference paper at ICLR 2026

A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the
reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think>
</think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: You
must put your answer choice (a single capital letter) inside <answer> </answer> tags, i.e., <answer> answer here </answer>. And your final
answer will be extracted automatically by the \boxed{} tag. Dienes are organic compounds with two adjacent double bonds in their structure,
and they exhibit unique reactivity due to their conjugated pi-electron system. They play a significant role in organic chemistry and are
involved in various chemical reactions and natural processes.

Among the given options which one is the possible reactant (A) for the given reaction also mention the correct sequence of the dienes
according to their reactivity (most reactive to least reactive) B.

Cyclohexene + A ———> 8,8-diiodobicyclo[4.2.0]octan-7-one

(B) 1. 2,3-dimethylbuta-1,3-diene, 2. (2E,4E)-hexa-2,4-diene, 3. cyclopenta-1,3-diene, 4. (2Z,4Z)-hexa-2,4-diene

A. A = 2,2-diiodoethen-1-one, B = 3, 1,

B. A = 4,4-diiodocyclobut-2-en-1-one, B 4
C. A = 2,2-diiodoethen-1-one, B = 4,

D. A = 4,4-diiodocyclobut-2-en-1-one, B = 3

Assistant: <think> First, I need to understand what we know about dienes and how they react with other compounds. We know that dienes have two
adjacent double bonds, so let's see if we can figure out which of these options contains a diene. Additionally, we need to determine the
correct sequence of dienes based on their reactivity, so let me try to recall some information about that.

Firstly, since we are looking at a reaction involving cyclohexene, it seems like we might be dealing with an addition reaction where one of
the dienes would add across the double bond of cyclohexene. Next, I need to consider the structure of each option provided and identify any
dienes present within them. Furthermore, since we want to find the most reactive diene first, I should look into the properties of different
types of dienes and their reactivity patterns.

Next, let's try to analyze the structures of these compounds and see if we can spot any dienes among them. Also, we need to figure out how
these dienes would react with cyclohexene and form the product mentioned in the question. Lastly, we need to determine the correct order of
reactivity for these dienes.

Firstly, let us examine option A because it has a simple structure and contains a diene. Now, let us check if this diene could react with
cyclohexene to produce the desired product. Secondly, let us compare the structures of the other options to see if they contain dienes as well.
Finally, we need to establish the correct sequence of reactivity for these dienes.

Firstly, let us focus on option A, which includes 2,2-diiodoethen-1-one and 3,1,2,4 as its components. Since we know that dienes are
characterized by having two adjacent double bonds, let us try to identify those in this option. Upon closer inspection, we notice that there
is indeed a diene present in this option, specifically 2,2-diiodoethen-1-one. This compound contains two adjacent double bonds, making it a
diene. Therefore, we can conclude that option A contains a diene. However, we still need to determine if this diene can react with cyclohexene
to form the required product.

Next, let us examine option B, which consists of 4,4-diiodocyclobut-2-en-1-one and 3,1,2,4 as its components. Again, we need to check if this
option contains a diene. After analyzing the structure, we find that there is no diene present in this option. Hence, we can eliminate option
B as a potential reactant.

Now, let us move on to option C, which comprises 2,2-diiodoethen-1-one and 4,2,1,3 as its components. Similar to our previous analysis, we
observe that there is a diene present in this option, namely 2,2-diiodoethen-1-one. Thus, we can confirm that option C also contains a diene.
However, we must now determine if this diene can react with cyclohexene to yield the desired product.

Lastly, let us analyze option D, which includes 4,4-diiodocyclobut-2-en-1-one and 4,2,1,3 as its components. Once more, we need to verify if
this option contains a diene. Upon examination, we realize that there is no diene present in this option. Consequently, we can rule out option
D as a viable reactant.

Having analyzed all the options, we have identified that both options A and C contain a diene. Therefore, we need to decide which one is the
correct reactant for the given reaction. To do this, we need to consider the reactivity of these dienes and determine which one is more likely
to participate in the reaction.

Firstly, let us think about the general reactivity pattern of dienes. Generally speaking, dienes with more substituted double bonds tend to be
more reactive than those with fewer substituents. Moreover, dienes with electron-donating groups attached to the double bond are typically
more reactive than those without such groups. With this knowledge in mind, let us compare the structures of the dienes present in options A
and C.

Upon comparing the structures, we notice that the diene in option A has two iodine atoms attached to the double bond, whereas the diene in
option C does not have any substituents on the double bond. Consequently, we can infer that the diene in option A is likely to be more
reactive than the one in option C due to the presence of the electron-withdrawing iodine atoms.

Therefore, we can conclude that option A is the most probable reactant for the given reaction. Now, we need to establish the correct sequence
of reactivity for these dienes.

Secondly, let us think about the reactivity of dienes in general. Typically, dienes with more substituted double bonds tend to be more
reactive than those with fewer substituents. Furthermore, dienes with electron-donating groups attached to the double bond are usually more
reactive than those without such groups. Based on this information, we can deduce that the diene in option A, which has two iodine atoms
attached to the double bond, is likely to be the most reactive diene among the ones we have considered. Next, we need to determine the
reactivity of the diene in option C.

Finally, let us consider the reactivity of the diene in option C. As previously mentioned, the diene in option C lacks any substituents on the
double bond. Consequently, we can infer that this diene is likely to be less reactive than the one in option A. Thus, we can conclude that the
diene in option C is the least reactive diene among the ones we have analyzed.

Hence, we can establish the correct sequence of reactivity for these dienes as follows: the diene in option A is the most reactive, followed
by the diene in option C, which is the least reactive.

Lastly, we need to determine the correct sequence of the dienes according to their reactivity. Since we have already established that the
diene in option A is the most reactive and the diene in option C is the least reactive, we can conclude that the correct sequence of
reactivity for these dienes is option A, then option C.

Thus, we need to select the correct option from the given choices. Given that we have determined that option A is the correct reactant and the
correct sequence of reactivity is option A, we can now proceed to choose the appropriate answer.

Hence, we need to select the option that matches our findings. Since we have concluded that option A is the correct reactant and the correct
sequence of reactivity is option A, we can deduce that the correct answer must be option A.

Therefore, we need to choose the option that corresponds to our findings. Hence, we need to select the option that matches our conclusion.
Consequently, we can conclude that the correct answer is option A.

Finally, we need to express our final answer using the provided format. Thus, we need to enclose our answer within the specified tags.
Hence, I shall now provide my final answer in the required format.
Thus, we can conclude that the correct answer is \boxed{\text{A}}.

Therefore, we can write our final answer as follows: $\therefore \text{The correct answer is } \boxed{\text{A}}$. Hence, we can express our
final answer as $\boxed{\text{A}}$.

Figure 11: An example of output in the later stage of RL math training, where only the reasoning
pattern reward is used without correctness verification. The model has arrived at the correct answer
“A.” but due to the ongoing reasoning process, the <think> tag remains open, causing the output
length to reach the limit and preventing the correct answer from being generated in answer tags.

15

Under review as a conference paper at ICLR 2026

Question:

HRBEA R Appt, BHNBABB(GAtER], BUPPTAREHENED). HREY. 445D, S=MEYTESEEDERSIRBERANMBELK E—RE F RKRAH
B, ORI GER). DRSS ERMREREEHEIISR). REAEERAMITRIGNE:, SEGLE, TABER D MREL BRAEEMN. Kk, &
EEE . EEpptisAmarkdown RTESER, =R, HEHDFEMN/ bR RLEESRE. \n BRES, FEF QUERY, MERHEX, FHIEAMMHEEMEHEARE
(https://source.unsplash.com/960x640/2{ QUERY}), fFAMarkdown 355% 3K BE7~ B

Answer:

First, | need to plan the structure of the PPT for teaching statistics to primary school students. This includes creating a clear introduction, engaging activities, and a conclusion. Each
section should include a problem to stimulate inquiry, concept explanation, hands-on activities, and assessment points. For images, | will use a combination of relevant images and
custom ones generated using the provided website. Finally, | will format the PPT using Markdown with appropriate headers and lists.

Reasoning process:

1. Begin by drafting an introduction that captures the students' attention and explains the importance of learning about statistical graphs.

2. Design the "engage" section with a problem that encourages students to explore different types of graphs, such as bar charts or pie charts, and how they represent data.

3. Develop the "explain” section by providing clear definitions and examples of each type of graph, using visual aids to enhance understanding

4. Create the "do" section with hands-on activities where students can create their own graphs using real-life data sets, reinforcing the concepts learned.

5. Prepare the "summarize" section with a review of the key points and encourage students to reflect on what they've learned.

6. Incorporate assessment points at the end of each activity, detailing what students should be able to demonstrate in terms of knowledge, skills, and attitudes.

7. Generate images for the PPT by translating search queries into English and using the website to fetch appropriate images.

Final Answer:
““markdown
Teaching Statistics to Primary School Students

Introduction
Welcome to our lesson on statistical graphs! Understanding how to interpret and create these visual representations is crucial for analyzing data in everyday life.

Engage
*+Question:++ How can we visually compare the favorite fruits of our classmates?

*x|mage:** [Image of students discussing their favorite fruits]

Explain
*+Concept:+» What are bar charts and pie charts? How do they differ?

+|mage:+ [Bar Chart Image]
[Pie Chart Image]

*+Definition:** A bar chart uses bars to show comparisons between different categories of data. A pie chart shows the proportion of each category in relation to the whole.
Do

«Activity:+ Create a bar chart and a pie chart based on the following data:

- 15 students like apples

- 10 students like bananas

- 5 students like oranges

*+Image++ [Example Bar Chart]
[Example Pie Chart]

Summarize
*+*Review:** What did you learn about bar charts and pie charts? Can you describe their differences?

Assessment Points

- #*Knowledge:++ Can you identify which type of graph is best suited for comparing quantities?
- #Skills:++ Can you create a bar chart or pie chart from given data?

- #*Attitudes:** Are you curious about how statistics can help us understand the world better?

[J Knowledge [Skills [J Attitudes

This PPT structure ensures a comprehensive learning experience for the students, combining theoretical knowledge with practical application, all while keeping the content
engaging and interactive.

Figure 12: Our calibrated RMs successfully elicit Qwen-2.5-3B’s reasoning ability, whereas the
original RM fails to do so. This figure presents 1 of 2 output cases. The Chinese question translates
to: “Please design a teaching PowerPoint for teaching elementary school students about [statistical
charts]. The overall structure of the PPT should include three parts: introductory activity, develop-
mental activity, and summary activity. Each of these activities must include: A question that triggers
student inquiry, along with an image illustrating the context of the problem. A concept explanation
(detailed). A math hands-on activity using multiple representations, with a clearly listed step-by-
step process. At the end of the PPT, include a formative assessment checklist. Each checklist item
should start with the symbol ”[]” aligned to the left and should address three aspects: knowledge,
skills, and attitudes. Please present the entire PPT in Markdown format with a three-level heading
structure. For fractions, use the a/b format as it is easier for me to understand. As for the images,
first translate the QUERY into English, and then use the following website with an English query
to retrieve the images:https://source.unsplash.com/960x640/?QUERY Use Markdown syntax to dis-
play the images.”

After evaluating both responses, decide which one is more helpful overall. You can choose #1 is
better, #2 is better, or they tie with each other. Write the evaluation, as well as reasons.

B.2 RESULTS AND INTER-ANNOTATOR AGREEMENT

In Figure [T6] we present the averaged human evaluation results for Experiments 3 and 4 in Sec-
tion @ Each figure also reports inter-evaluator agreement r, with all experiments demonstrating

16

Under review as a conference paper at ICLR 2026

MATH-500 GPQA

60 20

50
s 15
O540

>

8 30 10

-

3
220

5
10
ﬁ/
0 0 ==
Steps 20 40 60 80 100 120 140 20 40 60 80 100 120 140

Figure 13: Qwen-2.5-3B: Impact of p and RPR-only training.

Chat History:
User: What was the total length of the Circus Maximus?\nHow many laps were in a traditional chariot race?\nHow
long would a chariot race take on average?

Assistant: The Circus Maximus in ancient Rome was approximately 621 meters (2,037 feet) in length. It was a massive
stadium used for chariot racing and other public events.\n\nIn a traditional chariot race, charioteers would have to
complete 7 laps around the Circus Maximus. The starting point was at the closed end of the track, and the chariots
would race towards the open end, then turn around a metae (turning post) and head back in the other
direction.\n\nThe average time for a chariot race in the Circus Maximus would depend on various factors such as the
number of competitors, the condition of the track, and the skill of the charioteers. However, a typical race could last
anywhere from 8 to 15 minutes

Question:
If a car is driving on a 45° bank 1 mile oval track, how fast does the car have to be to avoid falling off the track?

Answer:

To ensure the car stays on the banked track, we need to balance the forces acting on it. The forces include gravity,
the normal force, and friction. On a banked curve, the normal force acts at an angle, and we can resolve the
gravitational force into components parallel and perpendicular to the surface. The component parallel to the surface
provides the necessary centripetal force for circular motion. The formula for centripetal force is \(F.c =
\frac{mv/A2Kr}\), where \(m\) is the mass of the car, \(V\) is the velocity, and \(r\) is the radius of the curve. The radius
\(r\) can be calculated from the length of the track and the angle of the bank using \(r = \frac{L¥{2\sin(\theta)}\),
where \(L\) is the length of the track and \(\theta\) is the angle of the bank. Substituting \(r\) into the centripetal
force formula and equating it to the component of the gravitational force parallel to the surface (\(mg\sin(\theta)\)),
we can solve for the minimum velocity \(vV\). Given that the length of the track \(L = 1\) mile and the angle of the
bank \(\theta = 45AM\circ\), the radius \(r = \frac{1{2\sin(45"\circ)} = \frac{1{2 \cdot \frac{\sqrt{2}{2}} =
\frac{1X{\sqrt{2}}\). Therefore, the minimum velocity \(V\) is given by \(v = \sgrt{\frac{2mg\sin(\theta)m}} =
\sqrt{2g\sin(\theta)}\). Since \(\sin(45/\circ) = \frac{\sqrt{2}}{2}\), we have \(v = \sqrt{2g \cdot \frac{\sqrt{2}}{2}} =
\sqrt{g\sqrt{2}}\). Using \(g \approx 32 \, \text{ft/s}"2\), we find \(v \approx \sqrt{32 \cdot \sqrt{2}} \approx \sqrt{60.8}
\approx 7.8 \, \text{ft/s}\). Converting this to miles per hour (since 1 mile = 5280 feet), we get \(v \approx 7.8 \times
\frac{3600}{5280} \approx 51.4 \, \text{mph}\). Therefore, the car must be traveling at least 51.4 mph to avoid falling
off the track.

Final Answer: The car must be traveling at least 51.4 mph to avoid falling off the track.

Figure 14: This figure presents the second of two output cases from Qwen-2.5-3B, trained with the
calibrated 85%-accurate RM. The model demonstrates reasoning to solve a physics problem.

moderate (0.4 < x < 0.6) to substantial (0.6 < x < 0.8) consistency among evaluators. A key dis-
tinction between human evaluations and those from GPT-4o is that human judges exhibit stronger
discriminatory ability, resulting in fewer comparisons marked as “ties.” Nonetheless, the overall
conclusions—such as the net win ratios and the impact of calibration—align closely with the GPT-
based evaluations. Therefore, we do not repeat Takeaways and conclusions here.

17

Under review as a conference paper at ICLR 2026

Your task is to help me determine which of two responses is more helpful in addressing the user's latest request.
First, I will provide you with the conversation history between the user and the Al assistant, where the last
statement is the user's most recent request.

Then, I will show you the two assistant replies: response #1 and response #2.

Please evaluate which response is better based on factors such as helpfulness, the amount of information
provided, the thoroughness of the reasoning, and overall coverage of the user's needs.

Please check two responses carefully, do not casually answer that #1 is better.

Make sure to clearly state whether '#1 is better' or '#2 is better' or 'tie' AT THE END OF YOUR ANSWER.

Here is the conversation history:
{chat}

Response #1:
{resl}

Response #2:
{res2}

Figure 15: The evaluation prompt for GPT, designed according to the core guidelines for human
annotators. The placeholders will be replaced with user-assistant chat history and two models’
responses.

Net Win: 4% Net Win: 30.6% Net Win: 5.5% Net Win: 27.4% Net Win: 25.5%
k=055 £=0.62 k=0.60 k=0.68 x=0.71
Loss
31.8% IRVt Win
59.2% 5 56.7%
1e
9.0% 12.1%

RM (85% Acc) vs RM (85% Acc) vs
RM (75% Acc) RM (65% Acc)

Original RM (85% Acc) vs Calibrated RM (85% Acc) vs Calibrated RM (65% Acc) v
Calibrated RM (65% Acc) Original RM (85% Acc) Original RM (65% Acc)

Experiment 3 Experiment 4

Figure 16: Human evaluation results and agreements.

C CASE STUDIES

Figures [T8] and [T9] show outputs from Qwen-2.5-7B trained with the calibrated and original 85%-
accurate RMs, respectively. With RPR, the generated code and comments are more detailed, and
both the main function and interaction loop are more comprehensive compared to the single test case
produced by models trained without RPR. The reasoning process is also more thoroughly articulated.

Figures [20] and [21] illustrate Qwen-2.5-7B trained with calibrated and original 65%-accurate RMs,
respectively. Compared to models trained with 85%-accurate RMs, both outputs here fail to ex-
plicitly move the model to the GPU. However, the model trained with the calibrated 65%-accurate
RM correctly implements a chatbot using the transformers pipeline API, which implicitly moves
the model to the GPU. As a result, the model trained with the original 65%-accurate RM performs
slightly worse in terms of helpfulness. It is uncommon for an assistant to build a chatbot using
the transformers pipeline—an approach that is both concise and effective—suggesting that Qwen
models have acquired substantial knowledge during pretraining.

18

Under review as a conference paper at ICLR 2026

Average Response Length

1200 — Caibrated RM (a = 0.1)

= Calibrated RM (a = 0.2)

— Calibrated RM (a = 1)
Original RM

1000
800
!
600 t \

A
5

#Token

400

0 2. 50 75 100 125 150 175 200
en

St

Figure 17: o = 0.1 enables Qwen’s effective reasoning in HelpSteer3 task. These experiments use
the 85%-accurate RM.

D RPR WEIGHT IN CALIBRATION

In Section 3} we set 7 = 0.5 since the RMs are binary classifiers. For the scaling factor «;, we
initially used a value of 1, but observed little difference in training dynamics—such as average
response length—compared to using the original RMs. We then experimented with values of «
ranging from 1 to 0.1. Notably, reducing « to 0.1 led to a significant increase in average response
length (see Figure[T7), suggesting a shift in the model’s reasoning behavior. Based on these findings,

we set o = 0.1.

19

Under review as a conference paper at ICLR 2026

Question: Generate python code for creating a chatbot using a large language model

Answer: To create a chatbot using a large language model, we need to follow a structured approach that involves several steps, including choosing the right
model, preparing the data, setting up the chatbot framework, and testing the chatbot. Below, | will outline the reasoning process and provide a Python code
example that demonstrates how to create a simple chatbot using the Hugging Face Transformers library, which provides access to various large language
models. This example will use the GPT-2 model as an example, but you can replace it with other models as needed.

##t# Reasoning Process

1. »xChoose the Right Large Language Model*+: Select a suitable pre-trained large language model. For this example, we'll use the GPT-2 model, which is
known for its ability to generate human-like text. Other options include GPT-3, BERT, or other models depending on the specific requirements and the tasks
the chatbot will perform.

2. »+Set Up the Environment*+: Ensure you have the necessary libraries installed. This includes the Hugging Face Transformers library for accessing the pre-
trained models and tokenizers, and possibly other libraries for additional functionalities like handling user input and output.

3. #xLoad the Pre-Trained Model and Tokenizer*+: Use the Transformers library to load the pre-trained model and its corresponding tokenizer. The tokenizer
is crucial for converting text into tokens that the model can understand and for converting the model's outputs back into human-readable text.

4. »Define the Chatbot Logic++: Implement the logic for handling user input, generating responses using the model, and managing the conversation flow.
This might involve simple rules-based systems or more complex natural language understanding (NLU) techniques.

5. #xTest and Iteratex*: Test the chatbot with various inputs to ensure it behaves as expected. Iterate on the model selection, data preparation, and chatbot
logic based on the test results and any feedback.

Summary of Reasoning

The process of creating a chatbot using a large language model involves selecting an appropriate model, setting up the necessary environment, loading the
model and tokenizer, defining the chatbot's interaction logic, and thoroughly testing the chatbot to refine its performance. The key is to leverage the
capabilities of the large language model for generating coherent and contextually relevant responses while ensuring the chatbot is user-friendly and effective
in its intended use case.

##t# Python Code Example
Here is a Python code example that demonstrates these steps using the Hugging Face Transformers library to create a simple chatbot with the GPT-2 model:

“python
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch

Step 1. Choose the right large language model
model_name = 'gpt2' # You can change this to other models like 'gpt2-medium’, 'gpt2-large’, etc

Step 2: Set up the environment
Ensure you have the necessary libraries installed: transformers, torch

Step 3: Load the pre-trained model and tokenizer
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)

Move model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu”)
model.to(device)

Step 4: Define the chatbot logic
def generate_response(prompt):
Encode the user's input
input_ids = tokenizer.encode(prompt, return_tensors="pt’).to(device)

Generate text until the output length (which includes the input length) reaches 50
output = model.generate(input_ids, max_length=50, num_return_sequences=1, no_repeat_ngram_size=2)

Decode the generated tokens and return the response
response = tokenizer.decode(output[0], skip_special_tokens=True)
return response

Step 5: Test and interact with the chatbot

if _name__ =="_main_"
print("Chatbot: Hello! How can | assist you today?")
while True:

user_input = input("You: ")
if user_input.lower() in ['exit’, 'quit’]:
print("Chatbot: Goodbye!")
break
response = generate_response(user_input)
print(f'Chatbot: {response}")

Final Answer

To create a chatbot using a large language model like GPT-2, you first need to choose the appropriate model based on your requirements. Then, set up your
Python environment with the necessary libraries, particularly the Hugging Face Transformers library. Load the pre-trained model and tokenizer using the
“GPT2LMHeadModel" and "GPT2Tokenizer classes, respectively. Define the chatbot's interaction logic in a function that takes user input, encodes it, generates
a response using the model, and decodes the model's output back into text. Implement a simple loop to continuously interact with the chatbot, allowing users
to input messages and receive responses from the chatbot. Test the chatbot thoroughly to ensure it meets your expectations and refine it based on feedback
and performance. The provided Python code sets up a basic framework for achieving this, using GPT-2 as the example model, and can be extended or
modified according to specific needs and the capabilities of other large language models.

Figure 18: How to create a chatbot using an LLM: the answer from Qwen-2.5-7B trained with the
calibrated 85%-accurate RM.

20

Under review as a conference paper at ICLR 2026

Question: Generate python code for creating a chatbot using a large language model

Answer: To create a chatbot using a large language model in Python, we can leverage libraries such as “transformers™ by
Hugging Face, which provides easy access to various pre-trained language models including GPT-3 compatible models
(like GPT-2 or larger models in the GPT series, BERT, etc.). Below is a step-by-step reasoning process followed by the
Python code to create a simple chatbot:

Reasoning Process:

1. »Choose a Language Model*+: Select a pre-trained language model from the “transformers’ library. For this example,
we'll use "GPT-2" due to its balance between capability and ease of use.

2. #»xImport Necessary Libraries=*: Import ‘transformers’ and “torch’ (for handling tensors and computations).

3. *xLoad the Model and Tokenizer**: Load the GPT-2 model and its associated tokenizer. The tokenizer is crucial for
converting text inputs into tokens that the model can understand.

4. »xDefine the Chatbot Functionality=*: Create a function that takes user input, tokenizes it, feeds it through the model to
get a response, and then tokenizes and decodes the model's output back into text.

5. »xHandle Conversation Context**: While simple, for this example, we won't maintain conversation context but in a
production setting, you might want to feed the previous interaction history to the model to make the chat more coherent.

Python Code:

“python

import torch

from transformers import GPT2Tokenizer, GPT2LMHeadModel

Step 1: Load the GPT-2 model and tokenizer

model_name = 'gpt2" # Using gpt2, can also use 'gpt2-medium’, 'gpt2-large’, 'gpt2-xI' for more capacity
model = GPT2LMHeadModel.from_pretrained(model_name)

tokenizer = GPT2Tokenizer.from_pretrained(model_name)

Ensure the model is set to evaluation mode and moved to the appropriate device (CPU or GPU)
model.eval()
if torch.cuda.is_available():

model.to(torch.device("cuda"))

Step 2: Define the chat function
def chat_with_bot(user_input):
Tokenize the user input
input_ids = tokenizer.encode(user_input, return_tensors="pt’)

Generate a response
Here we generate 100 tokens (you can adjust this based on expected response length)
output = model.generate(input_ids, max_length=input_ids.shape[1] + 100, num_return_sequences=1)

Decode the response back to text
bot_response = tokenizer.decode(output[0], skip_special_tokens=True)

return bot_response

Example usage

user_message = "Hello, how are you?"
response = chat_with_bot(user_message)
print("Bot says:", response)

Summary of Reasoning and Answer:

In this solution, we first imported the necessary components from the “transformers’ library, specifically the GPT-2 model
and its tokenizer. We loaded these into our script ensuring they are ready for inference, with an option to use a GPU if
available for speedup. The ‘chat_with_bot™ function encapsulates the interaction: it tokenizes the user's input, uses the
model to generate a response by extending the input sequence, and finally decodes the model's output back into human-
readable text. This approach leverages the model's ability to generate text that continues from a given prompt, effectively
simulating a chatbot response. Note that the quality and relevance of the responses depend heavily on the pre-training of
the GPT-2 model and the specific tuning or fine-tuning it might have undergone for chatbot applications.

Figure 19: How to create a chatbot using an LLM: the answer from Qwen-2.5-7B trained with the
original 85%-accurate RM.

21

Under review as a conference paper at ICLR 2026

Question: Generate python code for creating a chatbot using a large language model

Answer: To create a chatbot using a large language model in Python, we can follow these steps:

1. »«Select a Language Modelx+: We'll use a pre-trained language model from Hugging Face's “transformers’ library,
such as "gpt-2" or “gpt-j". For this example, we'll use "gpt-2".

2. »xSet Up the Environment*: Ensure you have Python installed along with the necessary libraries. You can install
them using pip if they are not already installed:

“bash

pip install transformers gradio

3. »xCreate the Chatbot**: We'll write a Python script that sets up the chatbot using the selected language model,
handles user input, generates responses, and displays them in a user-friendly way using “gradio’.

Here's a complete Python script that accomplishes this:

“python
import gradio as gr
from transformers import pipeline

def generate_response(user_input):
Load the pre-trained model for text generation
text_generator = pipeline('text-generation’, model="gpt-2")

Generate a response using the model
response = text_generator(user_input, max_length=150, num_return_sequences=1)

Extract and return the generated text
return response[0]['generated_text']

Set up the Gradio interface
iface = gr.Interface(
fn=generate_response, # The function to call when input changes
inputs="text", # Type of input (in this case, text)
outputs="text", # Type of output (text)
title="GPT-2 Chatbot", # Title of the interface
description="Talk to a chatbot powered by the GPT-2 model." # Description of the interface

)

Launch the interface
iface.launch()

Explanation of the Code:

- =x|mport Libraries**: We import "gradio” for creating the web interface and “pipeline’ from “transformers’ for easily
accessing the language model.

- =xDefine Response Generation Function**: The ‘generate_response’ function takes user input, uses the ‘gpt-2°
model to generate a response, and returns the generated text.

- »+Set Up Gradio Interface*+: We define the Gradio interface using “gr.Interface’. We specify the function to be called
(‘generate_response’), the type of input (‘text’), and the type of output (‘text’). We also add a title and description to
the interface.

- =xLaunch the Interface**: Finally, we call “iface.launch()" to start the web interface where users can interact with the
chatbot.

This script sets up a basic chatbot using the GPT-2 model through a simple web interface. Users can type in questions
or statements, and the chatbot will generate responses based on the model's predictions. This example can be
extended and customized further based on specific requirements, such as integrating more sophisticated input
handling, improving the model's parameters, or adding more advanced features to the chatbot.

Figure 20: How to create a chatbot using an LLM: the answer from Qwen-2.5-7B trained with the
calibrated 65%-accurate RM.

22

Under review as a conference paper at ICLR 2026

Question: Generate python code for creating a chatbot using a large language model

Answer: To create a chatbot using a large language model in Python, you can follow these steps. This example
will use the Hugging Face Transformers library, which provides easy access to a wide range of pre-trained models.
We'll use the ‘gpt-2° model for this demonstration, but you can replace it with any other model from the
Hugging Face Model Hub that suits your needs.

Step 1. Setting up the Environment

First, ensure you have Python installed along with the necessary libraries. You'll need “transformers™ by Hugging
Face and “torch™ for handling the model computations. You can install them using pip if they are not already
installed:

““bash
pip install transformers torch

Step 2: Importing Libraries and Loading the Model
Import the required libraries and load the pre-trained model. Here's how you can do it:

“python
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer

Load pre-trained model and tokenizer

model_name = 'gpt2" # You can change this to any other model name from the Hugging Face Model Hub
model = GPT2LMHeadModel.from_pretrained(model_name)

tokenizer = GPT2Tokenizer.from_pretrained(model_name)

Set the model to evaluation mode
model.eval()

Step 3: Creating a Basic Chat Function

Now, let's create a simple chat function. This function will take user input, tokenize it, generate a response using
the model, de-tokenize the response, and print it out. Note that the quality of responses will depend heavily on
the model used and might require fine-tuning for better performance on specific tasks or domains.

““python
def chat_with_model(user_input):
Tokenize the user input
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt')

Generate a response
output = model.generate(input_ids, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2)

Decode and print the response
response = tokenizer.decode(output[0], skip_special_tokens=True)
print("Chatbot:", response)

Example usage
user_input = "Hello, how are you?"
chat_with_model(user_input)

Summary of Reasoning:

1. =Environment Setup**: Ensure all required libraries are installed and accessible.

2. »*Model Loading**: Use the Hugging Face Transformers library to load a pre-trained large language model
(e.g., "gpt-27). This step includes both the model weights and the tokenizer needed to convert text into a format
the model can understand and vice versa.

3. »*Model Configuration**: Set the model to evaluation mode to ensure it operates in a way that is suitable for
generating responses rather than training.

4. »+Chat Function*+: Create a function that takes user input, processes it through the model to generate a
response, and then presents that response. This involves tokenizing the input, generating text based on the
model, and de-tokenizing the output to human-readable form.

This basic chatbot can be expanded by adding features such as context handling, more sophisticated response
generation, or integration with other services for a more interactive experience.</answer>

Figure 21: How to create a chatbot using an LLM: the answer from Qwen-2.5-7B trained with the
original 65%-accurate RM.

23

	Introduction
	Related works
	Insights via manually introduced noise in verifiable rewards
	LLMs are robust to noisy rewards
	Hypothesis and validation: The role of reasoning patterns in performance improvement

	Learning to reason using reward models of varying accuracy
	Calibrating noisy RMs with reasoning pattern reward
	Conclusions
	The design of reasoning pattern rewards
	Human evaluation
	Guidelines
	Results and inter-annotator agreement

	Case studies
	RPR weight in calibration

