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Figure 1: We present CapTalk, a framework generate 3D head motions from audio and text captions,
enabling the real-time synthesis of realistic and stylized animation sequences. To achieve this, we
constructed a new dataset with style and emotion captions.

ABSTRACT

Audio-driven 3D facial animation aims to generate synchronized lip movements
and expressive facial expressions from arbitrary audio inputs. However, exist-
ing methods typically rely on predefined identity or style latent features, restrict-
ing users’ ability to flexibly control speaking styles. Moreover, applying a fixed
style or identity throughout an entire audio segment often leads to facial anima-
tions that fail to adapt to the dynamic emotional content of speech. To over-
come these limitations, we revisit the definition of speaking style and construct
a large-scale dataset annotated with textual descriptions of both style and emo-
tion. Building on this, we propose a novel talking head generation framework
that enables fine-grained control over both speaking style and character emotion.
Our model accepts textual descriptions of style and emotion alongside the driving
audio, allowing real-time generation of highly synchronized lip movements and
facial expressions that faithfully reflect the provided descriptions. Furthermore,
our approach supports dynamic style and emotion control during inference, en-
abling the generation of facial animations that adapt to changing emotions within
a single utterance. Experimental results demonstrate that our method achieves
superior expressiveness and controllability compared to existing approaches.

1 INTRODUCTION

In recent years, the rapid advancement of large language models has driven significant progress in
artificial intelligence, particularly in text generation and conversational interactions. However, many
of these systems rely on text or speech for communication, often lacking the visual components
needed for rich human-computer interaction. To bridge this gap and create more engaging user
experiences, research on digital humans has attracted attention from both academia and industry.
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Given the connection between speech and facial expressions, speech-driven 3D facial animation has
emerged as a crucial element in crafting realistic virtual characters. Advancements in this field are
therefore essential for expanding the use of digital humans in fields like education and entertainment.

The goal of speech-driven 3D head motion generation is to create realistic, synchronized facial
expressions and head movements from audio input. This field has seen significant progress, with
researchers exploring various generative models, such as autoregressive (Fan et al., 2022; Xing et al.,
2023; Chu et al., 2025) and diffusion-based methods(Stan et al., 2023; Sun et al., 2024). While these
techniques have achieved impressive lip synchronization and realistic facial motion, current methods
for controlling the style of generated motions remain limited. Existing approaches (Fan et al., 2022;
Xing et al., 2023; Peng et al., 2023a; Stan et al., 2023; Fan et al., 2024) often rely on fixed identity
sets or utilize latent codes derived from specific identity motion sequences. This design restricts
their ability to generalize to diverse or unseen speaking styles. Models trained on fixed identities
struggle to scale beyond the identities in the training data, while those requiring motion sequences
require additional videos, which is often cumbersome and impractical for end users.

To overcome the limitations of existing methods and enable style-controllable speech-driven motion
generation, we introduce a new dataset with text-based annotations of speaking style, and then lever-
age this dataset to develop a model capable of text-guided speech-driven head motion generation.
While speaking style is often associated with speaker identity, we observe that identity descrip-
tions alone are insufficient to capture the speaking style. Instead, we define speaking style based on
three key determinants: mouth movement amplitude, head movement amplitude, and emotion in this
dataset. To annotate these features, we employ a combination of Vision-Language Models (VLMs)
(Hurst et al., 2024; Team et al., 2024; Xu et al., 2025) and Audio-Language Models (ALMs) (Chu
et al., 2023b; Wu et al., 2025). Since visual cues such as mouth and head movement amplitudes are
readily extractable from video data, we employ a VLM to generate these annotations. In contrast,
speech emotion is more accurately inferred from audio characteristics, prompting the use of ALM
for emotion labeling. Based on these insights, we construct a dataset from YouTube videos. Each
video segment is annotated with style annotations, emotion annotations, and frame-level FLAME
head motion parameters.

Building upon the recent advances such as DiffPoseTalk and ARTalk, we propose a time-windowed,
autoregressive speech-to-action model. The temporal receptive field afforded by time windows is
essential for synthesizing high-quality, contextually coherent motions. For efficient and high-fidelity
action generation, we adopt an autoregressive framework that operates both within and across time
windows, enabling the capture of fine-grained facial expressions and the production of temporally
continuous motion sequences. To integrate multi-modal information from both audio and text, we
incorporate cross-modal fusion layers within the autoregressive process, aligning and fusing the
precisely time-synchronized audio features and the more loosely text-based style captions. Further-
more, by leveraging historical action information, our model maintains overall motion continuity
even when text-based style descriptions change between time windows.

The major contributions of our work are as follows:

• We introduce CapTalk, the first model to empower users with direct control over both the
speaking style and emotion of generated motions via textual descriptions.

• We construct and will publicly release the first large-scale 3D facial motion dataset with
rich annotations for speaking styles and emotions, to facilitate future research in this area.

2 RELATED WORK

2.1 SPEECH-DRIVEN HEAD MOTION GENERATION

Research on audio-driven 3D motion generation has been an active area for decades, with method-
ologies evolving substantially over time. Early approaches (Taylor et al., 2012; Xu et al., 2013;
Edwards et al., 2016) primarily relied on procedural techniques, segmenting speech into phonemes
and mapping them to predefined visemes using handcrafted rules. In recent years, learning-based
methods (Fan et al., 2022; Xing et al., 2023; Lu et al., 2023; Aneja et al., 2024; Daněček et al., 2023;
Peng et al., 2023b; Yang et al., 2024; Fan et al., 2024; Liu et al., 2024; Chae-Yeon et al., 2025; Wang
et al., 2025; Chopin et al., 2025) have made significant advances, overcoming many limitations of
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rule-based systems and enabling the generation of more natural and expressive facial animations.
For instance, CodeTalker (Xing et al., 2023) introduces a model based on discrete motion priors,
learning a codebook to map input audio to facial motion codes. EmoTalk (Peng et al., 2023c)
presents an end-to-end framework for generating expressive 3D facial animations from speech and
one-hot identity vector by disentangling emotional and content cues. FaceTalk (Aneja et al., 2024)
leverages identity codes and audio features to generate facial motion within the expression space of
3D neural parametric head models. OT-Talk (Wang et al., 2025) employs optimal transport to syn-
thesize facial motions from mesh and audio inputs, while Dimitra (Chopin et al., 2025) generates
action latent vectors conditioned on audio and identity images. Despite these advancements, most
existing methods utilize fixed identity and emotion vectors in some way, which limits their ability to
generalize to a broader range of identities and speaking styles during inference. Additionally, some
approaches (Ji et al., 2021; Sinha et al., 2022; Liang et al., 2022; Ji et al., 2022; Yi et al., 2022; Gan
et al., 2023; Tan et al., 2024a; Zhang et al., 2023; Tan et al., 2024b; Hong et al., 2025; Zhen et al.,
2025) focus on directly generating talking head videos instead of head motion. While effective for
certain applications, this strategy restricts their integration with motion-driven downstream tasks,
thereby limiting their broader applicability.

2.2 STYLIZED SPEECH-DRIVEN HEAD MOTION GENERATION

In recent years, stylized and emotionally expressive head motion generation has received increasing
attention, aiming to create generative methods that are more expressive and can generalize to new
identities. For example, EmoFace (Liu et al., 2024) introduces a dataset with emotions controlled
via facial rig controllers, but it only provides emotion labels and is not publicly available. Diff-
PoseTalk (Sun et al., 2024) and ARTalk (Chu et al., 2025) generate stylized facial animations using
diffusion and autoregressive models, respectively, both guided by style embeddings extracted from
reference videos. Similarly, ProbTalk3D (Wu et al., 2024a) proposes a non-deterministic, two-stage
model that synthesizes facial animations conditioned on a style vector. These style feature-based
approaches require users to supply reference videos and extract motion sequences to obtain style
representations, which can be cumbersome when generalizing to new identities and styles. Mod-
elSeeModelDo (Pan et al., 2025) introduces a style basis to guide a latent diffusion model, leverag-
ing key poses from a reference video to ensure accurate style transfer; however, this method also
necessitates user-provided template sequences. Among existing works, MEDTalk (Liu et al., 2025)
is most closely related to our approach. It proposes to jointly generate facial motions using multi-
ple modalities, including reference images, appearance descriptions, expression labels, audio, and
audio text. However, it focuses more on generating emotional expressions, rather than encompass-
ing broader aspects such as head movements. Furthermore, this work constructs text annotations
and MetaHuman-based motions from a laboratory recordings dataset (1.5 hours), whereas we col-
lect from in the wild videos (more than 200 hours) to achieve robust generation. In contrast to
these methods, our model enables convenient and flexible control over generated motions by lever-
aging textual descriptions of speaking style, eliminating the need for reference videos or template
sequences.

3 DATASET

Generating speech-driven head motions requires not only synthesizing synchronized facial expres-
sions but also capturing the unique speaking style. Existing datasets often address this by collecting
speech-driven facial motions linked to specific subject IDs, enabling personalized generation. How-
ever, this approach presents two main limitations: (1) identity-based datasets require extensive data
from participants; (2) models trained on such datasets lack the ability to generalize to unseen identi-
ties. Alternatively, some datasets leverage in-the-wild videos to capture a broader range of identities
and speaking styles, but it still difficult for users to specify desired speaking style at inference. To
enable flexible, user-friendly style control, we introduce CapTalkingHead, a new dataset that uses
natural language annotations to describe speaking style and emotion.

A key contribution of our dataset is the inclusion of style captions extracted from both audio and
video streams, making it the first large-scale resource to provide multi-modal style supervision for
the talking head generation task. Audio and video capture different but complementary aspects
of speaking style: while audio reveals prosody, intensity, and emotional tone, the visual modality
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conveys head motion, lip dynamics, identity-related traits, and visible affect. By combining the two,
we obtain a holistic description of speaking style that cannot be captured by either modality alone.

For audio, we employ the Qwen-Audio-Chat model (Chu et al., 2023a), prompted to output an
emotional label chosen from the predefined set {angry, disgust, contempt, fear, happy, sad,
surprised, neutral}. For video, we use a finetuned Qwen2.5-VL 7B model (Bai et al., 2025), adapted
to ignore background context and instead focus on human appearance (mainly head shape), mouth
opening size, and head movement amplitude during speaking. The combined use of these two
captioning pipelines provides comprehensive style annotations, enables fine-grained controllability
in talking head generation, and fully utilizes the audio and video information in the original data.

After collecting and processing, our dataset comprises 24,441 video clips, totaling approximately
200 hours. All videos are standardized to 25 frames per second and 16,000 Hz audio, resulting in
18,074,445 frames, with an average clip duration of approximately 29 seconds. Each video clip is
paired with a style description derived from the video content, an emotion annotation extracted from
the audio, and corresponding FLAME motion parameters.

4 METHOD

We provide an overview of our method in Figure 2. We first train a codec model on the FLAME
parameters, thereby achieving a discrete representation of the motion space. We then train an au-
toregressive model guided by speech and text captions to generate motion code in the discrete space.
In the following sections, Section 4.1 details the problem definitions, Section 4.2 explains the multi-
scale codec model, and Section 4.3 introduces the speech and caption-guided autoregressive model.

4.1 PRELIMINARIES

We adopt the widely used 3D deformable model (3DMM) FLAME (Li et al., 2017) to represent
facial motion, where motion is modeled by shape β, expression ψ, and pose θ. Given these param-
eters, a face mesh including 5,023 vertices V can be reconstructed using blendshapes and rotation
operations. And we define the motion vector M as the concatenation of the ψ and θ over N frames.

4.2 MULTI-SCALE CODEC

Predicting motion frames from speech is a challenging task due to the dense temporal structure and
complex mapping between modalities. Drawing inspiration from the success of discrete represen-
tations in image and motion generation (Xing et al., 2023; van den Oord et al., 2017; Zhou et al.,
2022; Chu et al., 2025) and the effectiveness of multi-scale modeling (Jung et al., 2024; Tian et al.,
2024; Chu et al., 2025), we adopt a multi-scale binary quantized codec to efficiently capture motion
dynamics.

Given an input motion sequence of N frames, we first employ a transformer encoder to process
features and project them into a latent space. We then quantize the latent representation Ln into
binary, multi-scale discrete codes Clvl using binary spherical quantization (Zhao et al., 2024). Clvl

of different levels are obtained by resizing the original latent sequence Ln to the corresponding
length in the temporal dimension and then quantize it. And the residuals are then subtracted from
each scale during the quantization process. During the decoding process, the discrete codes Clvl at
each scale are upsampled to length n and then summed. A transformer decoder then reconstructs
the motion sequence M̂n from these summed codes. The overall process is illustrated in Figure 2
(a).

To train the VQ autoencoder, we employ a hybrid loss function that balances motion accuracy and
codebook stability as follows:

LCodec = ∥M̂n −Mn∥1 + wfull∥V̂ − V ∥2 + wlips∥V̂lips − Vlips∥2 + Lvq, (1)

where Mn and M̂n denote the FLAME motion sequences, V and Vlips represent the full head mesh
vertices and lip region vertices, and Lvq is the loss for binary code stability. By jointly optimizing
these objectives, our model learns a compact and expressive motion representation that models local
and long-range dependencies in discrete space, ensuring high-fidelity synthesis and strong temporal
consistency.

4
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Figure 2: Figure (a) shows our multi-scale codec. It encodes motion Mn into binary codes C1,
C2, ..., Clvl of different lengths. The motion latent is resized to the length of Ci and residually
quantized to get Ci. We then resize Ci to length n and sum them for decoding. Figure (b) shows our
autoregressive generator. Based on the previous window codes, previous scale codes C1,i−1, audio
features, style and emotion text features, the next scale code Ci is generated through autoregression.
After completing the current window, the generation of the next window begins with start token S.

4.3 SPEECH-TO-MOTION AUTOREGRESSIVE MODEL WITH CAPTIONS

After training the encoder-decoder, we obtain discrete motion encodings. To achieve long-term
temporal consistency and high-quality synthesis, we autoregressively model these encodings using
a Transformer that operates across both temporal windows and code scales. For speech feature
extraction, we employ a multilingual pre-trained wav2vec2 model (Baevski et al., 2020). Style
and emotion features are extracted using a T5 model (Raffel et al., 2020a), with style captions
derived from video content and emotion captions from audio. We process information from different
modalities by stacking self-attention layers and cross-attention layers in the model. For audio feature
injection, we utilize a carefully designed Rotary Position Embedding (RoPE) (Su et al., 2024) to
ensure precise temporal alignment between each code at every scale and its corresponding audio
feature, thereby achieving time-synchronized audio conditioning. In contrast, for time-insensitive
textual style control, we do not apply positional alignment between textual feature and the code
features. Instead, we retain only the position encoding within the code features, allowing the textual
control information to influence all code levels within a window uniformly. The overall process
is shown in Figure 2 (b). We supervise the model using a cross-entropy loss and introduce label
perturbations during training to enhance the diversity and robustness of the generation process.

5 EXPERIMENTS

In this section, we first introduce the details of the dataset, provide an overview of the implementa-
tion of our method, describe the metrics used, and present the baseline methods. Subsequently, we
compare our method with existing approaches across a range of evaluation metrics.

5.1 EXPERIMENT SETTING

Datasets. We introduce CapTalkingHead, a novel dataset consisting of 24,441 video clips,
18,074,445 motion frames, and a total length of 200.8 hours. We reconstruct FLAME parame-
ters of each frames and provide textual annotations describing the speaking style and emotion of
each video. Further details of the dataset are provided in Section 3 and Appendix C. To assess the
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Figure 3: Qualitative comparison with existing methods (all head poses fixed). Our method shows
better alignment with the ground truth in expression style, mouth dynamics, and lip synchronization.
Additional videos results are available in the supplementary materials.

Figure 4: Qualitative results of head pose. When certain words are stressed, our method generates
head movements that are similar to human behavior and consistent with the style text description.

generalization capability of our model, we also conduct evaluations on the test split of the widely
used MEAD dataset (Wang et al., 2020), which contains expression annotations but only provides
video data. We apply the same tracking pipeline to extract the corresponding FLAME parameters
from MEAD. It is worth noting that at inference time, we only utilize the original MEAD emotion
labels as emotion captions, and do not extract or provide additional style captions.

Evaluation Metrics. Based on previous studies (Richard et al., 2021; Fan et al., 2022; Xing et al.,
2023; Nocentini et al., 2024; Sun et al., 2024), we adopted the lip vertex error (LVE) (Richard et al.,
2021) and the upper face dynamic deviation (FDD) (Xing et al., 2023) to evaluate the generated
facial motions. LVE calculates the maximum error of lip vertices for each frame, evaluating the
largest error between predictions and ground truth. FDD calculates the standard deviation of the
motion of each upper facial vertex over time between predictions and ground truth, evaluating the
consistency of upper facial motion, which is closely related to speaking styles. In addition, we use
the mean head distance (MHD) to measure the average difference of full head vertices. Compared
to LVE, MHD is less sensitive to temporal synchronization and includes some evaluation of expres-
sions. We also use lip open dynamic deviation (LODD) and head pose dynamic deviation (HPDD)
to assess the quality of style control. LODD measures the standard deviation of the upper and lower
lip distance over time between the predicted and ground truth motions, assessing mouth opening
size, which is closely related to speaking style. HPDD measures the standard deviation of the head
rotation between the predicted and ground truth motions, assessing the control of head movement.
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Table 1: Quantitative results on the CapTalkingHead test split. We use colors to denote the first
and second places respectively. These results marked with ∗ are from methods that cannot generate
head poses, and we calculated them with all zero head poses.

Method LVE ↓ MHD ↓ FFD ↓ LODD ↓ HPDD ↓
FaceFormer (Fan et al., 2022) 13.24 3.03 37.00 205.81 13.13*
CodeTalker (Xing et al., 2023) 12.55 2.83 38.93 170.52 13.13*
SelfTalk (Peng et al., 2023a) 12.46 2.81 36.16 175.84 13.13*
MultiTalk (Sung-Bin et al., 2024) 12.13 2.72 34.59 110.30 13.13*
UniTalker (Fan et al., 2024) 13.68 3.39 33.91 132.27 13.13*
DiffPoseTalk (Sun et al., 2024) 11.38 2.50 29.36 82.30 9.59
ARTalk (Chu et al., 2025) 7.71 1.98 29.64 90.89 9.76

CapTalk (Ours) 6.44 1.80 25.14 58.27 7.59

Table 2: Quantitative results on the MEAD (Wang et al., 2020) test split. We use colors to denote
the first and second places respectively. It is worth noting that our method is not trained or fine-
tuned on MEAD. Furthermore, compared to DiffPoseTalk and ARTalk, which use reference action
sequences, our method only utilizes emotion labels from the original data, meaning we can only
capture very few style cues.

Method LVE ↓ MHD ↓ FFD ↓ LODD ↓
FaceFormer (Fan et al., 2022) 15.60 3.45 25.21 243.06
CodeTalker (Xing et al., 2023) 13.95 3.09 27.62 200.85
SelfTalk (Peng et al., 2023a) 14.26 3.05 27.32 230.96
MultiTalk (Sung-Bin et al., 2024) 12.89 2.84 27.82 100.55
UniTalker (Fan et al., 2024) 16.13 3.86 27.52 173.31
DiffPoseTalk (Sun et al., 2024) 10.19 2.44 23.33 79.99
ARTalk (Chu et al., 2025) 8.12 1.73 18.51 109.80

CapTalk (Ours) 8.07 1.81 20.59 85.82

Baseline Methods. We conduct a comprehensive evaluation of our method against leading aca-
demic baselines across two datasets: CapTalkingHead and MEAD (Wang et al., 2020). The baseline
methods FaceFormer (Fan et al., 2022), CodeTalker (Xing et al., 2023), and SelfTalk (Peng et al.,
2023a) are mesh-based methods, where we input the corresponding mesh and specify its first speaker
identity for inference. For MultiTalk (Sung-Bin et al., 2024), which supports language-based styl-
ization, we used its English style for evaluation. For UniTalker (Fan et al., 2024), we compute the
metrics using the meshes generated by the generalized pivot identities. For DiffPoseTalk (Sun et al.,
2024) and ARTalk (Chu et al., 2025), we use pre-trained weights for evaluation and input the first
few seconds of the ground truth motion clip as style reference.

5.2 QUANTITATIVE RESULTS

We present the quantitative comparison on CapTalkingHead test split in Table 1. The results show
that our method achieving significant improvements in lip synchronization accuracy (LVE) and out-
performs the baseline in style control (MHD, FFD, LODD, HPDD), indicating that our method not
only achieves precise lip synchronization but also effectively captures the specified speaking styles.
We also present quantitative comparison results on the MEAD test set in Table 2 . Because the head
in the MEAD dataset is rarely motionless, we do not evaluate head pose-related metrics. Further-
more, our method only utilizes emotion labels, not style description labels as input. This means
that our method can obtain very few style cues. However, compared to baseline methods, especially
DiffPoseTalk and ARTalk, which use ground truth action sequences as reference action sequences,
our method still demonstrates competitive performance.
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Table 3: User study results. The percentages represent the proportion of users who preferred the
our method over the baseline in each category. Among them, Sync represents lip synchronization.
Style, Expression and Pose represent the consistency and naturalness of style, facial expression and
head pose respectively.

Method Sync (%) Style (%) Expression (%) Pose (%)

vs FaceFormer (Fan et al., 2022) 0.63 0.75 0.73 -
vs CodeTalker (Xing et al., 2023) 0.83 0.77 0.87 -
vs SelfTalk (Peng et al., 2023a) 0.92 0.96 0.98 -
vs MultiTalk (Sung-Bin et al., 2024) 0.94 0.94 0.88 -
vs UniTalker (Fan et al., 2024) 0.96 0.92 0.94 -
vs DiffPoseTalk (Sun et al., 2024) 0.79 0.78 0.79 0.72
vs ARTalk (Chu et al., 2025) 0.68 0.66 0.68 0.67

5.3 QUALITATIVE RESULTS

In Figure 3, we present a qualitative comparison between our method and other baseline approaches.
Our method demonstrates excellent lip synchronization, accurately capturing various speech ele-
ments. Furthermore, the generated facial expressions and mouth openings are close to ground truth,
demonstrating our excellent style control capabilities. In Figure 4, we demonstrate the capabili-
ties of our approach with respect to head movements. The results show that our approach can well
capture accents and generate plausible head movements. In Figure 5, we show results for different
styles and emotions inputs using the same audio input. This demonstrates that our method is able to
respond to changes in text input while feeding the same input speech. For more dynamic qualitative
evaluation results, please refer to the supplementary videos.

Figure 5: Qualitative results for style control. We fixed the input speech and varied only the text
input. The results show that our method generates facial motions that correspond to the input style
and emotion captions. For details on Caps A, B, C, D, and E, please refer to the Appendix F. Video
results are also provided in the supplementary material.

5.4 USER STUDY

User studies are a reliable method for evaluating generation models. To comprehensively compare
our method with baseline methods, we conducted a user study focusing on four key metrics: lip sync,
style consistency, facial expression consistency, and head pose consistency. For baseline methods
that cannot generate head motion, we also fix the head of our method during rendering. All com-
parisons were conducted using a pairwise comparison method, with the motions generated by our
method and the competing baseline methods displayed side by side (shuffled in order) and provided
with ground truth video as a user reference. After watching the videos, users subjectively selected
the results they thought was better. The proportion of user selections was then calculated to quantify
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Table 4: Ablation results on CapTalkingHead dataset.

Method LVE ↓ MHD ↓ FFD ↓ LODD ↓ HPDD ↓
Clip Text Encoder 6.57 1.81 25.15 58.62 8.24
No Caption 7.49 2.08 29.59 86.48 9.30
Emotion (Audio) Caption Only 7.39 1.96 26.18 65.82 8.62
Style (Video) Caption Only 6.98 1.90 23.73 62.86 8.14

CapTalk (Ours) 6.44 1.80 25.14 58.27 7.59

satisfaction. As shown in Table 3, our method significantly outperforms the baseline methods in lip
sync, style consistency, and expression and pose consistency. In particular, the style of our generated
motions is closer to the ground truth than DiffPoseTalk (Sun et al., 2024) and ARTalk (Chu et al.,
2025).

5.5 ABLATION STUDY

Text Encoder. To verify the effect of text encoders on style text injection, we also tried Clip (Rad-
ford et al., 2021) text encoder. The results shown in Table 4 show that t5 (Raffel et al., 2020a) has
slightly better control performance.

Style and Emotion Caption. To assess the contribution of style and emotion text captions, we
conducted ablation experiments by selectively removing these inputs. When all text inputs were
removed and the model relied solely on audio, as shown in Table 4, the system was still able to gen-
erate synchronized lip movements. However, control over facial expressions and head movements
was lost, leading to substantial declines in FFD, LODD, and HPDD metrics. Further, we evaluated
the impact of removing style and emotion captions individually. Excluding the style caption resulted
in a more pronounced degradation in performance metrics compared to removing the emotion cap-
tion. This indicates that style descriptions—particularly those related to mouth opening and head
movement amplitude—play a more significant role in controlling expressive aspects of the generated
motion. In contrast, emotion text alone contributed less to overall performance, which also explains
why our method only achieves results comparable to the baseline on the MEAD dataset when only
emotion labels are provided as input. We attribute this to the fact that the model can infer some
emotional cues directly from the audio input, whereas style captions captured in the video provides
additional details that are not readily available from audio alone.

6 DISCUSSION AND CONCLUSION

In this paper, we introduce CapTalk, a novel framework that allows users to directly control the
speaking style and emotion of generated motions through textual descriptions. We will also release a
corresponding large-scale 3D facial motion dataset with rich speaking style and emotion annotations
to facilitate future research in this area. Our experimental results demonstrate that CapTalk outper-
forms state-of-the-art baseline models in lip synchronization, naturalness of expression, and style
control. We believe that the strong generalization and convenient control capabilities of CapTalk
make it a promising solution for a wide range of applications, including virtual avatars, language
training, and animation for games and films.

Limitations and future work. While CapTalk demonstrates strong lip synchronization and effec-
tive style control, it has several notable limitations. First, the window-based modeling approach
hinders the generation of motion in a fully streamlined and continuous manner. Additionally, the
model’s limited semantic understanding restricts its ability to produce culturally specific or context-
sensitive facial motions. We believe that our work provides a solid foundation for future research
in 3D talking head generation. In particular, future efforts will focus on overcoming these chal-
lenges, with an emphasis on integrating richer semantic information to enable more context-aware
and culturally adaptive head motion synthesis.
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A ETHICS STATEMENT

The advancement of our method in generating photorealistic talking head sequences brings signifi-
cant opportunities for creative and educational applications, but also introduces ethical challenges,
particularly regarding the potential for misuse in deceptive or harmful contexts. We acknowledge
the dual-use nature of this technology and the responsibility that comes with its development and
dissemination. To promote responsible use, we are committed to transparency in both our research
and the outputs generated by our system. We recommend that all synthetic content produced using
our method be accompanied by explicit disclosures, such as watermarks or tags, to help users and
viewers distinguish between real and generated media. Furthermore, we support the establishment
and adoption of industry-wide ethical guidelines and best practices for the creation and distribution
of synthetic media. We also recognize the importance of ongoing vigilance and adaptation as the
technology evolves. To this end, we will actively engage with the broader community—including
ethicists, policymakers, and technologists—to monitor emerging risks and to contribute to the de-
velopment of effective safeguards. By fostering a culture of ethical awareness and accountability,
we aim to maximize the societal benefits of our work while minimizing the potential for harm.

B REPRODUCIBILITY STATEMENT

We ensure the reproducibility of this study by describing the details in detail and providing the core
code of our multi-scale binary spherical quantization codec and generative model in the supplemen-
tary material. The model architecture and training details are presented in this section, and we plan
to open source the model code in the future. Data processing is described in the appendix C.

We train our multi-scale encoder-decoder model to obtain binary motion codes, and the code di-
mension is 32 bits. We use a temporal window size is 100 frames (4 seconds) following (Sun et al.,
2024; Chu et al., 2025), and the length of multi-scale code Ci are [1, 5, 25, 50, 100]. This means
that the first level code C1 has a shape of 1× 32 and represents part of the information of the entire
window (motion length 100). The second level has a code C2 has a shape of 5 × 32, and the last
level has a code shape of 100 × 32. During this stage, we use the AdamW (Loshchilov & Hutter,
2019) optimizer with a learning rate of 1.0e-4, a total batch size of 64, and 100,000 iterations. In the
second stage, we train the autoregressive model using the AdamW optimizer, with a learning rate
of 1.0e-4, a total batch size of 64, and 100,000 iterations. For the audio encoder, we use the frozen
pre-trained Wav2vec 2.0 (Baevski et al., 2020). For the text encoder, we use the frozen pre-trained
T5 encoder (Raffel et al., 2020b). During training, we flip the binary codes with a probability of 0.1
and discard the previous actions, style text captions, or emotion text captions with a probability of
0.1 to make the model more robust. All drop probabilities are sampled independently. All training
is conducted on an NVIDIA Tesla A100 GPU, taking approximately 28 GPU hours in total (8 hours
for the first stage and 20 hours for the second stage).

C DATASET

Our dataset is primarily derived from the TalkingHead1KH (Wang et al., 2021) dataset, which com-
prises approximately 1,000 hours of raw YouTube videos released under the Creative Commons
License. To ensure higher quality and longer-duration clips, we implemented a multi-stage pre-
processing pipeline. First, we detected, tracked, and cropped face sequences exceeding 8 seconds
in length from the original videos. Next, we employed SyncNet (Chung & Zisserman, 2016) to ver-
ify audio-visual synchronization, discarding clips with poor lip-audio alignment. We then extracted
FLAME (Li et al., 2017) parameters using a hybrid model based on MICA (Zielonka et al., 2022) and
EMOCA (Danecek et al., 2022). Finally, we applied the aforementioned Vision-Language Model
(VLM) and Audio-Language Model (ALM) annotation procedures to each video segment. After
processing, our dataset comprises 24,441 video clips, totaling approximately 200 hours of footage.
All videos are standardized to 25 frames per second and 16,000 Hz audio, resulting in 18,074,445
frames, with an average clip duration of approximately 29 seconds. Each video clip is paired with
a style description derived from the video content, an emotion annotation extracted from the audio,
and corresponding FLAME motion parameters. This makes our dataset the largest dataset with both
3D motion annotations and style text annotations. Some key comparisons are shown in the Table 5.
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Table 5: Comparison across existing talking head datasets.

Dataset 3D Annotation Style Emotion Hours

VOCASET (Cudeiro et al., 2019) FLAME Mesh ✘ ✘ 0.5
RAVDESS (Livingstone & Russo, 2018) ✘ ✘ ✔ 1.5
MEAD (Wang et al., 2020) ✘ ✘ ✔ 3.48
TalkingHead1KH (Wang et al., 2021) ✘ ✘ ✘ 200
FaMoS (Bolkart et al., 2023) FLAME Mesh ✘ ✘ 2.7
TFHP (Sun et al., 2024) FLAME ✘ ✘ 20
MMHead (Wu et al., 2024b) FLAME ✘ ✔ 49
Express4D (Aloni et al., 2025) ARKit ✔ ✔ 1.5

CapTalkingHead (ours) FLAME ✔ ✔ 200.8

Figure 6: Samples of our user study. Side-by-side videos include ground truth, video 0, and video
1. One of the videos (0 or 1) is generated by our method, and the other is generated by the baseline
method, with their order randomized.

D PRELIMINARIES OF 3DMM

We leverage the FLAME model (Li et al., 2017), a widely adopted 3D morphable model (3DMM)
renowned for its geometric accuracy, realistic rendering capabilities, and versatility. FLAME ex-
tends beyond static facial models by incorporating parametric controls for identity, pose, and ex-
pression, making it suitable for applications such as facial animation, avatar creation, and facial
recognition.

In our framework, FLAME serves as the representation for facial motion. We construct a multi-scale
codebook using FLAME parameters and learn speech-driven autoregression within this codebook,
effectively leveraging the strong geometric priors embedded in FLAME. This approach offers two
key advantages: (1) it reduces the high-dimensional complexity of directly modeling mesh vertices,
and (2) it enables seamless integration with downstream tasks that utilize FLAME-based represen-
tations (Chu et al., 2024; Deng et al., 2024; Chu & Harada, 2024; Xu et al., 2024).

The FLAME model represents the head shape as follows:

TP (β̂, θ̂, ψ̂) = T̄ +BS(β̂;S) +BP (θ̂;P ) +BE(ψ̂;E), (2)

where T̄ is a template head avatar mesh, BS(β̂;S) is the shape blend-shape function accounting for
identity-related variation,BP (θ̂;P ) is a corrective pose blend-shape for jaw and neck deformations,
and BE(ψ̂;E) captures facial expressions such as eye closure and smiling.
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E USER STUDY DETAILS

We collected a total of 13 survey responses, with each participant completing 132 questions corre-
sponding to 38 pairwise comparison trials. Of these, 20 comparisons were conducted between our
method and baseline methods with fixed head pose, while the remaining 18 comparisons involved
our method and baselines with dynamic head pose (DiffPoseTalk and ARTalk). To mitigate potential
selection bias, the presentation order of our method and the baseline was randomized in each trial.
Specifically, for each comparison, one of the two videos (labeled as 0 or 1) was generated by our
method, with the assignment randomized to ensure fairness.

For each comparison, users were asked three or four questions to evaluate the quality of lip sync,
overall style consistency and naturalness, expression consistency, and head pose consistency. The
questions asked were as follows: Which lip sync is better? Which style is more consistent with the
ground truth and natural? Which expression looks more consistent with the ground truth? Which
head gesture looks more consistent with the ground truth? Each question was single-choice, requir-
ing users to select video 0 or video 1. For baselines that cannot generate head gestures, only the first
three questions were asked. Figure 6 shows some samples from our user study.

F CAPTIONS IN FIGURE 5

Caption A: {”style caption”: ”The head movements are subtle, with occasional nods and slight tilts.
The mouth movements are natural and expressive, indicating active speech. The facial expressions
are neutral to slightly animated, suggesting a conversational tone.”, ”emotion caption”: ”Neutral”}
Caption B: {”style caption”: ”The person in the video appears to be speaking with a positive emo-
tional tone. The head movements are varied, with the person turning their head to the side and then
back to the camera, indicating a change in direction or focus. The mouth movements are expressive,
with the person opening their mouth wide, suggesting emphasis or a strong point being made. The
speaking style seems to be natural and conversational.”, ”emotion caption”: ”Happy”}.

Caption C: {”style caption”: ”The person in the video appears to be speaking with a neutral to
slightly serious emotional tone. The head movements are varied, with some moments of nodding
and others where the head is tilted slightly. The speaking style is natural, with clear articulation and
a moderate pace. The mouth movements are subtle, indicating a controlled and deliberate speech
pattern.”, ”emotion caption”: ”Happy”}.

Caption D: {”style caption”: ”The person in the video appears to be speaking with a serious and
focused expression. Their head movements are moderate, indicating they are actively engaged in
their speech. The mouth movements are subtle, suggesting a controlled and deliberate speaking
style. The emotional tone seems to be serious and professional, appropriate for a formal setting like
the World Economic Forum. The overall expression is one of confidence and authority.”, ”emotion
caption”: ”Happy”}.

Caption E: {”style caption”: ”The person in the video appears to be engaged in a serious conver-
sation on the phone. Their facial expression is one of concern or frustration, with furrowed brows
and a slightly open mouth, indicating they might be speaking with urgency or intensity. The head
movements are minimal, with slight nods and turns to follow the direction of the conversation. The
speaking style is assertive, with a clear and somewhat forceful tone. The mouth movements are ex-
aggerated, with the lips parting slightly more than usual to emphasize the words being spoken. The
overall emotional tone is serious and possibly angry or concerned.”, ”emotion caption”: ”Angry”}.

G THE USE OF LARGE LANGUAGE MODELS

During the writing process, we utilized Large Language Models (LLM) to assist with grammar
checking. The LLM was not used for research ideation or conceptual development. All LLM-
checked text was carefully reviewed by the authors to ensure that no changes were made to the
intended meaning.
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