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Abstract

We show a generic reduction from multiclass differentially private PAC learning to
binary private PAC learning. We apply this transformation to a recently proposed
binary private PAC learner to obtain a private multiclass learner with sample com-
plexity that has a polynomial dependence on the multiclass Littlestone dimension
and a poly-logarithmic dependence on the number of classes. This yields a doubly
exponential improvement in the dependence on both parameters over learners from
previous work. Our proof extends the notion of Ψ-dimension defined in work of
Ben-David et al. [5] to the online setting and explores its general properties.

1 Introduction

1 Machine learning and data analytics are increasingly deployed on sensitive information about
individuals. Differential privacy [10] gives a mathematically rigorous way to enable such analyses
while guaranteeing the privacy of individual information. The model of differentially private PAC
learning [17] captures binary classification for sensitive data, providing a simple and broadly appli-
cable abstraction for many machine learning procedures. Private PAC learning is now reasonably
well-understood, with a host of general algorithmic techniques, lower bounds, and results for specific
fundamental concept classes [8, 12, 3, 4, 1, 15, 2, 16].

Beyond binary classification, many problems in machine learning are better modeled as multiclass
learning problems. Here, given a training set of examples from domain X with labels from [k] =
{0, 1, . . . , k}, the goal is to learn a function h : X → [k] that approximately labels the data and
generalizes to the underlying population from which it was drawn. Much less is presently known
about differentially private multiclass learnability than is known about private binary classification,
though it appears that many specific tools and techniques can be adapted one at a time. In this work,
we ask: Can we generically relate multiclass to binary learning so as to automatically transfer results
from the binary setting to the multiclass setting?

To illustrate, there is a simple reduction from a given multiclass learning problem to a sequence of
binary classification problems. (This reduction was described by Ben-David et al. [5] for non-private

1The full version of this paper with all of the details can be found at https://arxiv.org/abs/2107.10870
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learning, but works just as well in the private setting.) Intuitively, one can learn a multi-valued
label one bit at a time. That is, to learn an unknown function f : X → [k], it suffices to learn the
dlog2(k + 1)e binary functions fi : X → [k], where each fi is the ith bit of f .
Theorem 1.1 (Informal). Let H be a concept class consisting of [k]-valued functions. If all of the
binary classes Hi = {fi : f ∈ H} are privately learnable, then H is privately learnable.

Beyond its obvious use for enabling the use of tools for binary private PAC learning on the classes
Hi, we show that Theorem 1.1 has strong implications for relating the private learnability of H to the
combinatorial properties ofH itself. Our main application of this reductive perspective is an improved
sample complexity upper bound for private multiclass learning in terms of online learnability.

1.1 Online vs. Private Learnability

A recent line of work has revealed an intimate connection between differentially private learnability
and learnability in Littlestone’s mistake-bound model of online learning [18]. For binary classes, the
latter is tightly captured by a combinatorial parameter called the Littlestone dimension; a class H
is online learnable with mistake bound at most d if and only if its Littlestone dimension is at most
d. The Littlestone dimension also qualitatively characterizes private learnability. If a class H has
Littlestone dimension d, then every private PAC learner for H requires at least Ω(log∗ d) samples [1].
Meanwhile, Bun et al. [7] showed that H is privately learnable using 22

O(d)

samples, and Ghazi et
al. [13] gave an improved algorithm using Õ(d6) samples. (Moreover, while quantitatively far apart,
both the upper and lower bound are tight up to polynomial factors as functions of the Littlestone
dimension alone [15].)

Jung et al. [14] recently extended this connection from binary to multiclass learnability. They gave
upper and lower bounds on the sample complexity of private multiclass learnability in terms of the
multiclass Littlestone dimension [9]. Specifically, they showed that if a multi-valued class H has
multiclass Littlestone dimension d, then it is privately learnable using 2k

O(d)

samples and that every
private learner requires Ω(log∗ d) samples.

Jung et al.’s upper bound [14] directly extended the definitions and arguments from Bun et al.’s [7]
earlier 22

O(d)

-sample algorithm for the binary case. While plausible, it is currently unknown and far
from obvious whether similar adaptations can be made to the improved binary algorithm of Ghazi
et al. [13]. Instead of attacking this problem directly, we show that Theorem 1.1, together with
additional insights relating multiclass and binary Littlestone dimensions, allows us to generically
translate sample complexity upper bounds for private learning in terms of binary Littlestone dimension
into upper bounds in terms of multiclass Littlestone dimension. Instantiating this general translation
using the algorithm of Ghazi et al. gives the following improved sample complexity upper bound.
Theorem 1.2 (Informal). Let H be a concept class consisting of [k]-valued functions and let d be
the multiclass Littlestone dimension of H . Then H is privately learnable using Õ(d6 log8(k + 1))
samples.

In addition to being conceptually simple and modular, our reduction from multiclass to binary
learning means that potential future improvements for binary learning will also automatically give
improvements for multiclass learning. For example, if one were able to prove that all binary classes
of Littlestone dimension d are privately learnable with O(d) samples, this would imply that every
[k]-valued class of multiclass Litttlestone dimension d is privately learnable with Õ(d log3(k + 1))
samples.2

1.2 Techniques

Theorem 1.1 shows that a multi-valued class H is privately learnable if all of the binary classes
Hi are privately learnable, which in turn holds as long as we can control their (binary) Littlestone
dimensions. So the last remaining step in order to conclude Theorem 1.2 is to show that if H has
bounded multiclass Littlestone dimension, then all of the classes Hi have bounded binary Littlestone
dimension. At first glance, this may seem to follow immediately from the fact that (multiclass)

2The nearly cubic dependence on log(k + 1) follows from the fact that the accuracy of private learners can
be boosted with a sample complexity blowup that is nearly inverse linear in the target accuracy [11, 6].
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Littlestone dimension characterizes (multiclass) online learnability – a mistake bounded learner for
a multiclass problem is, in particular, able to learn each individual output bit of the function being
learned. The problem with this intuition is that the multiclass learner is given more feedback from
each example, namely the entire multi-valued class label, than a binary learner for each Hi that is
only given a single bit. Nevertheless, we are still able to use combinatorial methods to show that
multiclass online learnability of a class H implies online learnability of all of the binary classes Hi.

Theorem 1.3. Let H be a [k]-valued concept class with multiclass Littlestone dimension d. Then
every binary class Hi has Littlestone dimension at most 6d ln(k + 1).

Moreover, this result is nearly tight. In the full version of the paper, we show that for every k, d ≥ 1
there is a [k]-valued class with multiclass Littlestone dimension d such that at least one of the classes
Hi has Littlestone dimension at least Ω(d log(k + 1)).

In addition, it turns out that online learnability of the binary classes Hi implies multiclass online
learnability of H . In the full version of the paper, we show that if the multiclass Littlestone dimension
of H is d, then there is at least one binary class Hi with Littlestone dimension larger than d

log(k+1) .
This result is also tight.

Theorem 1.3 is the main technical contribution of this work. The proof adapts techniques introduced
by Ben-David et al. [5] for characterizing the sample complexity of (non-private) multiclass PAC
learnability. Specifically, Ben-David et al. introduced a family of combinatorial dimensions, param-
eterized by collections of maps Ψ and called Ψ-dimensions, associated to classes of multi-valued
functions. One choice of Ψ corresponds to the “Natarajan dimension” [19], which was previously
known to give a lower bound on the sample complexity of multiclass learnability. Another choice
corresponds to the “graph dimension” [19] which was known to give an upper bound. Ben-David et
al. gave conditions under which Ψ-dimensions for different choices of Ψ could be related to each
other, concluding that the Natarajan and graph dimensions are always within an O(log(k+ 1)) factor,
and thus characterizing the sample complexity of multiclass learnability up to such a factor.

Our proof of Theorem 1.3 proceeds by extending the definition of Ψ-dimension to online learning.
We show that one choice of Ψ corresponds to the multiclass Littlestone dimension, while a different
choice corresponds to the maximum Littlestone dimension of any binary class Hi. We relate the two
quantities up to a logarithmic factor using a new variant of the Sauer-Shelah-Perles Lemma for the “0-
cover numbers” of a class of multi-valued functions. While we were originally motivated by privacy,
we believe that Theorem 1.3 and the toolkit we develop for understanding online Ψ-dimensions may
be of broader interest in the study of (multiclass) online learnability.

Finally, we remark that Theorem 1.3 implies a qualitative converse to Lemma 1.1. If a multi-valued
class H is privately learnable, then the lower bound of [14] implies that H has finite multiclass
Littlestone dimension. Theorem 1.3 then shows that all of the classes Hi have finite binary Littlestone
dimension, which implies via [7, 13] that they are also privately learnable.

Societal Impact Our work is motivated by privacy-respecting data analysis. Our focus is on
theoretical questions aimed at uncovering general principles about when private learning is feasible.
As such, it does not negatively impact the way privacy-respecting techniques are used, but rather it
clarifies their potential.

2 Background

Differential privacy. Differential privacy is a property of a randomized algorithm guaranteeing
that the distributions obtained by running the algorithm on two datasets differing for one individual’s
data are indistinguishable up to a multiplicative factor eε and an additive factor δ. Formally, it is
defined as follows:

Definition 2.1 (Differential privacy, [10]). Let n ∈ N. A randomized algorithm M : Xn → Y is
(ε, δ)-differentially private if for all subsets S ⊆ Y of the output space, and for all datasets X and
X ′ containing n elements of the universe X and differing in at most one element (we call these
neighbouring datasets), we have that

Pr(M(X) ∈ S) ≤ eε Pr(M(X ′) ∈ S) + δ
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One useful property of differential privacy that we will use is that any output of a differentially private
algorithm is closed under ‘post-processing’, that is, its cannot be made less private by applying any
data-independent transformations.

Lemma 2.2 (Post-processing of differential privacy, [10]). If M : Xn → Y is (ε, δ)-differentially
private, and B : Y → Z is any randomized function, then the algorithm B ◦M is (ε, δ)-differentially
private.

PAC learning. PAC learning [21] aims at capturing natural conditions under which an algorithm
can approximately learn an hypothesis class.

Definition 2.3 (Hypothesis class). A hypothesis class H with input space X and output space Y
(also called the label space) is a set of functions f mapping X to Y .

Where it is clear, we will not explicitly name the input and output spaces. We can now formally
define PAC learning.

Definition 2.4 (PAC learning, [21]). A learning problem is defined by a hypothesis class H . For any
distribution P over the input space X , consider n independent draws x1, x2, · · ·xn from distribution
P . A labeled sample of size n is the set {(x1, f(x1)), (x2, f(x2)), · · · , (xn, f(xn))} where f ∈ H .
We say an algorithm A taking a labeled sample X of size n is an (α, β)-accurate PAC learner for the
hypothesis class H if for all functions f ∈ H and for all distributions P over the input space, A on
being given a labeled sample of size n drawn from P and labeled by f , outputs a hypothesis h ∈ H
such that with probability greater than or equal to 1− β over the randomness of the sample and the
algorithm,

Pr[h(x) 6= f(x)] ≤ α.

The definition above defines PAC learning in the realizable setting, where all the functions f labeling
the data are in H . Two well studied settings for PAC learning are the binary learning case, where
Y = {0, 1} and the multiclass learning case, where Y = [k] = {0, 1, · · · , k} for natural numbers
k > 2. The natural notion of complexity for PAC learning is sample complexity.

Definition 2.5 (Sample complexity). The sample complexity SH,α,β(A) of algorithm A with respect
to hypothesis class H is the minimum size of the sample that the algorithm requires in order to be an
(α, β)-accurate PAC learner for H . The PAC complexity of the hypothesis class H is

inf
A
SH,α,β(A).

In this work, we will be interested in generic learners, that work for every hypothesis class.

Definition 2.6 (Generic learners). We say that an algorithm A that additionally takes the hypothesis
class as an input, is a generic (α, β)-accurate private PAC learner with sample complexity function
SC(H,α, β), if for every hypothesis class H , it is an (α, β)-accurate private PAC learner for H
with sample complexity SC(H,α, β).

Differentially private PAC learning. We can now define differentially private PAC learning, by
putting together the constraints imposed by differential privacy and PAC learning, respectively.

Definition 2.7 (Differentially private PAC learning [17]). An algorithm A is an (ε, δ)-differentially
private and (α, β)-accurate private PAC learner for the hypothesis class H with sample complexity
n if and only if:

1. A is an (α, β)-accurate PAC learner for the hypothesis class H with sample complexity n.

2. A is (ε, δ)-differentially private.

In this work, we study the complexity of private PAC learning. Our work focuses on the multiclass
realizable setting.

Multiclass Littlestone dimension. We recall here the definition of multiclass Littlestone dimen-
sion [9], which we will use extensively in this work. Unless stated otherwise, we will use the
convention that the root of a tree is at depth 0. As a first step, we define a class of labeled binary trees,
representing possible input-output label sequences over an input space X and the label space [k].
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Definition 2.8 (Complete io-labeled binary tree). A complete io-labeled binary tree of depth b with
input set X and output set [k] consists of a complete binary tree of depth b with the following
properties:

1. Every node of the tree other than the leaves is labeled by an example x ∈ X .

2. The 2 edges going from any parent node to its two children are labeled by two different
labels in [k].

3. The leaf nodes of the tree are unlabeled.

We are interested in whether the input-ouput labelings defined by the complete io-labeled tree can be
achieved by some function in the hypothesis class; to this end, we define realizability for root-to-leaf
paths.
Definition 2.9. Given a complete io-labeled binary tree of depth b, consider a root-to-leaf path
described as an ordered sequence S = {(xi, yi) |i ∈ [b]}, where xi is a node label and yi is the
label of the edge between xi and xi+1, and where x0 is the root. We say that the root-to-leaf path is
realized by a function f ∈ H if for every (xi, yi) in S, we have xi ∈ X and yi = f(xi).

Using this definition we can now define what it means for a hypothesis class of functions to shatter a
complete io-labeled binary tree, which helps to capture how expressive the hypothesis class is.
Definition 2.10 (Shattering). We say that a complete io-labeled binary tree of depth b with label set
[k] is shattered by a hypothesis class H if for all 2b root-to-leaf sequences S of the tree, there exists a
function f ∈ H that realizes S.

Using this definition of shattering we can finally define the multiclass Littlestone dimension.
Definition 2.11 (Multiclass Littlestone dimension, [9]). The multiclass Littlestone dimension of
a hypothesis class H , denoted MLS(H), is defined to be the maximum b such that there exists a
complete io-labeled binary tree of depth b that is shattered by H . If no maximum exists, then we say
that the multiclass Littlestone dimension of H is∞.

3 Main results

3.1 Reduction from multiclass private PAC learning to binary private PAC learning

Our first main result is a reduction from multiclass private PAC learning to binary private PAC
learning. Informally, the idea is that that every function f mapping examples to labels in [k] can be
thought of as a vector of binary functions (f1, · · · , flog(k+1)). Here, each binary function predicts a
bit of the binary representation of the label predicted by f . Then, we can learn these binary functions
by splitting the dataset into log(k + 1) parts, and using each part to learn a different fi. We can
learn the binary functions using an (ε, δ)-DP binary PAC learner. Then, we can combine the binary
hypotheses obtained to get a hypothesis for the multiclass setting, by applying a binary to decimal
transformation. This process, described in Figure 1, preserves privacy since changing a single element
of the input dataset changes only one of the partitions, and we apply an (ε, δ)-DP learning algorithm
to each partition. The binary to decimal transformation can be seen as post-processing.

Next, we formalize this idea. Given a hypothesis class H with label set [k], construct the following
log(k + 1) hypothesis classes H|1, · · · , H|log(k+1). For every function f ∈ H , let fi : X → {0, 1}
be the function defined such that fi(x) is the ith bit of the binary expansion of f(x). Let the
hypothesis class H|i be defined as {fi : f ∈ H}. We will call these the binary restrictions of H .
Theorem 3.1. Let H be a hypothesis class with label set [k] and let H|1, · · · , H|log(k+1)

be its binary restrictions. Assume we have (ε, δ)-differentially private, (α, β)-accurate PAC
learners B1, · · · , Blog(k+1) for H|1, · · · , H|log(k+1) with sample complexities upper bounded

by SC1
α,β , SC

2
α,β , · · · , SC

log(k+1)
α,β . Then, there exists an (ε, δ)-differentially private, (α, β)-

accurate PAC learner A for the hypothesis class H that has sample complexity upper bounded
by
∑log(k+1)
i=1 SCiα/ log(k+1),β/ log(k+1).

The proof of this lemma can be found in the full version of the paper. Next, we recall that the
sample complexity of privately learning binary hypothesis classes is characterized by the Littlestone
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Figure 1: Algorithm A is the (ε, δ)-DP PAC learner for hypothesis classes with label set [k]. The
algorithm B used as a subroutine is an (ε, δ)-DP PAC learner for binary hypothesis classes. bin2dec
represents a binary to decimal conversion.

dimension of the hypothesis class [1] [7]. That is, there exists an (α, β)-accurate (ε, δ)-DP PAC
learning algorithm for any binary hypothesis class H with sample complexity upper and lower
bounded by a function only depending on α, β, ε, δ and d where d is the Littlestone dimension of H .
Using this characterization, we obtain the following corollary to Theorem 3.1.
Corollary 3.2. Let H be a hypothesis class with label set [k] and let H|1, · · · , H|log(k+1) be its
binary restrictions. Let the Littlestone dimensions of H|1, · · · , H|log(k+1) be d1, · · · , dlog(k+1).
Assume we have a generic (ε, δ)-differentially private, (α, β)-accurate PAC learner B for binary
hypothesis classes G that has sample complexity upper bounded by a function SCε,δ(d′, α, β) where
d′ is the Littlestone dimension of G. Then, there exists an (ε, δ)-differentially private, (α, β)-accurate
PAC learner A for H that has sample complexity upper bounded by

∑log(k+1)
i=1 SCε,δ(di, α/ log(k +

1), β/ log(k + 1)).

Corollary 3.2 shows that the sample complexity of privately PAC learning a hypothesis class in the
multiclass setting can be upper bounded by a function depending on the Littlestone dimensions of its
binary restrictions. However, as described earlier, Jung et al. [14] showed that the sample complexity
of private multiclass PAC learning could be characterized by the multiclass Littlestone dimension.
Hence, an immediate question is what the relationship between the multiclass Littlestone dimension
of a class and the Littlestone dimensions of its binary restrictions is.

3.2 Connection between multiclass and binary Littlestone dimension

We show that the multiclass Littlestone dimension MLS(H) of a hypothesis class is intimately
connected to the maximum Littlestone dimension over its binary restrictions.
Theorem 3.3. Let H by a hypothesis class with input set X and output set [k]. Let the multiclass
Littlestone dimension of H be d. Let H|1, H|2, · · · , H|log(k+1) be the binary restrictions of H . Let
the Littlestone dimensions of H|1, H|2, · · · , H|log(k+1) be d1, · · · , dlog(k+1). Then,

max
i=1,··· ,log(k+1)

di ≤ 6d ln(k + 1).

A similar-looking theorem relating the Natarajan dimension of a hypothesis class with the maximum
VC dimension over its binary restrictions was proved in Ben-David et al. [5] using the notion of
Ψ-dimension. Our proof of Theorem 3.3 is inspired by this strategy. It will proceed by defining and
analyzing a notion of dimension that we call Ψ-Littlestone dimension. It will also use the 0-cover
function of a hypothesis class defined in Rakhlin et al. [20]. The details of the proof are described in
Section 5. Finally, combining Theorem 3.3 and Corollary 3.2, we can obtain the following corollary
to Theorem 3.1.
Corollary 3.4. Assume we have a generic (ε, δ)-differentially private, (α, β)-accurate PAC learner
B for binary hypothesis classes G that has sample complexity upper bounded by a function
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SCε,δ(d
′, α, β) where d′ is the Littlestone dimension of G. Then, there exists a generic (ε, δ)-

differentially private, (α, β)-accurate PAC learner A for multi-valued hypothesis classes H (label
set [k]) that has sample complexity upper bounded by log(k + 1)SCε,δ(6d log(k + 1), α/ log(k +
1), β/ log(k + 1)) where d is the multiclass Littlestone dimension of H .

We now consider an application of this result. The best known sample complexity bound for (ε, δ)-DP
binary PAC learning is achieved by a learner described in Ghazi et al. [13]. We state a slightly looser
version of their result here.
Theorem 3.5 (Theorem 6.4 [13]). Let G be any binary hypothesis class with Littlestone dimension
dL. Then, for any ε, δ, α, β ∈ [0, 1], for some

n = O

(
d6L log2( dL

αβεδ )

εα2

)
,

there is an (ε, δ)-differentially private, (α, β)-accurate PAC learning algorithm B for G with sample
complexity upper bounded by n.

The above learner can be boosted via a technique of Bun et al. [6] to improve the dependence on
α to nearly inverse linear. The details of this boosting are discussed in the full version of the paper.
Applying the reduction described in Theorem 3.1, with this boosted learner as a subroutine, and using
Corollary 3.4, we get the following theorem.
Theorem 3.6. LetH be a concept class overX with label set [k] and multiclass Littlestone dimension
d. Then, for any ε, δ, α, β ∈ [0, 1], for some

n = O
(d6(log(k + 1))8 log2(d log

3 k
εδαβ )

εα2

)
there is an (ε, δ)-differentially private, (α, β)-accurate PAC learning algorithm A for H with sample
complexity upper bounded by n.

4 Ψ-Littlestone dimension

4.1 Definition

In this section, we define an online analogue to the Ψ-dimension [5] that will help us prove Theo-
rem 3.3. The main intuition is that similar to in the definition of Ψ-dimension, we can use what we
term collapsing maps to reason about the multiclass setting while working with binary outputs. Let
φ : [k] → {0, 1, ∗} represent a function that maps labels to {0, 1, ∗}, which we term a collapsing
map. We define a family of collapsing maps Ψ as a set of collapsing maps. The definitions of labeled
trees will be the only distinction from the regular definition of multiclass Littlestone dimension; and
every node in addition to an example will also have a collapsing map assigned to it.
Definition 4.1 (Ψ-labeled binary tree). A complete Ψ-labeled binary tree of depth b with label set [k]
and mapping set Ψ on input space X consists of a complete binary tree of depth b with the following
labels:

1. Every node of the tree other than the leaves is labeled by an example x ∈ X , and a
collapsing map φ ∈ Ψ.

2. The left and right edges going from any parent node to its two children are labeled by 0 and
1 respectively.

3. The leaf nodes of the tree are unlabeled.

Where the input space, label space and mapping set are obvious, we will omit them and simply refer
to a complete Ψ-labeled binary tree.
Definition 4.2. Consider a root-to-leaf path in a complete Ψ-labeled binary tree described as an
ordered sequence S = ((x0, φ0, y0), . . . , (xb−1, φb−1, yb−1)), where each xi ∈ X is an input, φi is
a collapsing map, and yi ∈ {0, 1} is an edge label. We say that this path is realized by a function
f ∈ H if yi = φi(f(xi)) for every triple in the ordered sequence S.

7



We can now define what it means for a class of functions to Ψ-shatter a complete Ψ-labeled binary
tree.
Definition 4.3 (Ψ-shattering). We say that a complete Ψ-labeled binary tree of depth b with label
set [k] is Ψ-shattered by a hypothesis class H if for all 2b root-to-leaf sequences S of the tree, there
exists a function f ∈ H that realizes S.

Finally, we are in a position to define the Ψ-Littlestone dimension.
Definition 4.4 (Ψ-Littlestone dimension). The Ψ-Littlestone dimension ΨLD(H) of a hypothesis
class H is defined to be the maximum depth b such that there is a complete Ψ-labeled binary tree of
depth b that is Ψ-shattered by H . If no maximum exists, then we say that the Ψ-Littlestone dimension
of H is d =∞.

4.2 Properties of Ψ-Littlestone dimension

In this section, we begin our investigation of the Ψ-Littlestone dimensions by discussing a few simple
and useful properties that they have.

We define three important families of collapsing maps ΨN , Ψbin and ΨB that will play an important
role in our results. Consider a collapsing map φw,w′ defined by φw,w′(`) = 0 if ` = w, φw,w′(`) = 1
if ` = w′, and φw,w′(`) = ∗ otherwise. Then, ΨN is defined to be {φw,w′ |w 6= w′, w, w′ ∈ [k]}.
Similarly, let φi be a collapsing map that maps a label to the ith bit of its log(k + 1) bit binary
expansion. Then, Ψbin is defined to be {φi | i = 1, · · · , log(k + 1)}. Finally, ΨB is defined as the
family of all collapsing maps from [k] to {0, 1, ∗}.

For any hypothesis class H , we show the following properties of ΨN
LD(H),Ψbin

LD(H) and ΨB
LD(H).

1. For all hypothesis classes H , MLS(H) = ΨN
LD(H).

2. For all hypothesis classes H , the Ψbin-Littlestone dimension upper bounds the maximum
Littlestone dimension over its binary restrictions.

3. For all hypothesis classes H , ΨN
LD(H) ≤ Ψbin

LD(H) ≤ ΨB
LD(H).

The proofs of these facts can be found in the supplementary material. These facts show the expressive
power of the Ψ-Littlestone dimension.

5 Proof of Theorem 3.3

In this section, we use the concept of Ψ-Littlestone dimension to prove Theorem 3.3.

5.1 Sauer’s lemma for multiclass Littlestone dimension

In this section, we will describe a version of Sauer’s Lemma that will suffice for our application. This
argument is essentially due to Rakhlin et al. [20]. Theorem 7 in that paper states a Sauer’s lemma
style upper bound for a quantity they introduce called ‘0-cover function’, for hypothesis classes with
bounded ‘sequential fat-shattering dimension’. We show that this argument applies almost verbatim
for hypothesis classes with bounded multiclass Littlestone dimension.

5.1.1 0-Cover function

We start by recalling the definition of 0-cover from Rakhlin et al.
Definition 5.1 (output-labeled trees, input-labeled trees). A complete output-labeled binary tree of
depth b with label set [k] is a complete binary tree of depth b such that every node of the tree is
labeled with an output ∈ [k]. A complete input-labeled binary tree of depth b with input set X is a
complete binary tree of depth b such that every node of the tree is labeled with an input in X .

The convention we will use is that output and input-labeled binary trees have root at depth 1 (as
opposed to io-labeled trees and Ψ-labeled trees, where we use the convention that root has depth
0). Consider a set V of complete output-labeled binary trees of depth b with label set [k]. Consider
a hypothesis class H consisting of functions from input space X to label set [k]. Fix a complete
input-labeled binary tree z of depth b with input space X and a complete output-labeled tree v ∈ V .
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Definition 5.2. We say that a root-to-leaf path A in z corresponds to a root-to-leaf path B in v if for
all 1 ≤ i ≤ b− 1, if node i+ 1 in A is the left child of node i in A, then node i+ 1 in B is the left
child of node i in B and likewise for the case where node i+ 1 is the right child of node i.

Definition 5.3. Let A be a root-to-leaf path in z and let the the labels of the nodes in A be
(x1, · · · , xb) where xi ∈ X . The function f ∈ H applied to A, denoted by f(A), is the sequence
(f(x1), · · · , f(xb)).

Definition 5.4 (0-cover, [20]). We say that V forms a 0-cover of hypothesis class H on tree z if, for
every function f ∈ H and every root-to-leaf path A in Z, there exists a complete output-labeled tree
v ∈ V , such that for the corresponding root-to-leaf path B ∈ v with the labels of nodes in B denoted
by a tuple C ∈ [k]b (call this the label sequence of B), we have that f(A) = C.

Definition 5.5 (0-cover function, [20]). We will use N(0, H, z) to denote the size of the smallest
0-cover of hypothesis class H on tree z. Let TXb be the set of all complete input-labeled binary
trees of depth b with input space X . Then, the 0-cover function N(0, H, b) of hypothesis class H is
defined as supz∈TX

b
N(0, H, z).

5.1.2 Statement of theorem

The following theorem is essentially Theorem 7 in Rakhlin et al. (with multiclass Littlestone
Dimension instead of Sequential Fat Shattering Dimension).

Theorem 5.6. Let hypothesis classH be a set of functions f : X → [k]. Let the multiclass Littlestone
Dimension of H be d. Then, for all natural numbers n ≥ d,

N(0, H, n) ≤
d∑
i=0

(
n

i

)
ki ≤

(
ekn

d

)d
and for all natural numbers n < d,N(0, H, n) ≤ (k + 1)n.

The proof of this theorem proceeds via an inductive argument, and can be found in the full version of
the paper.

5.2 Lower bound for 0-cover function

To complement the upper bound given by our variant of Sauer’s Lemma, we give a lower bound
showing that the 0-cover function must grow exponentially in the ΨB-Littlestone dimension of a
class.

Lemma 5.7. Let the ΨB-Littlestone Dimension of hypothesis class H be d. Then,

N(0, H, d) ≥ 2d.

The proof can be found in the full version of the paper.

5.3 Putting the pieces together

In this section, we prove Theorem 3.3 using the techniques we have built up.

LetH be a hypothesis class withMLS(H) = d and letH|1, · · · , H|log(k+1) be its binary restrictions
with Littlestone dimensions d1, · · · , dlog(k+1). Let the ΨB

LD(H) be dB . Then by the discussion in
Section 4.2, we have that d ≤ dB . Additionally, using Lemma 5.7 and Theorem 5.6 with n = dB ≥ d,
we have that

2dB ≤ N(0, H, dB) ≤
(
ekdB
d

)d
. (1)
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We will use the fact that for all positive real numbers x, y, lnx ≤ xy − ln(ey). Fix some constant
y < ln 2 to be chosen later. We can simplify equation 1 with the following chain of inequalities.

2dB ≤
(
ekdB
d

)d
=⇒ dB ln 2 ≤ d

(
ln

(
dB
d

)
+ ln(ek)

)
=⇒ dB ln 2 ≤ d

(
y · dB

d
− ln(ey) + ln(ek)

)
=⇒ dB ≤

1

ln 2− y
d ln

(
k

y

)
.

Setting y = 1
5 < ln 2, we get that

dB ≤ 6d ln(k + 1).

Finally, by the discussion in Section 4.2, we know that the Ψbin
LD(H) is upper bounded by dB and

lower bounded by the maximum Littlestone dimension of the binary restrictions of H . Then,

max
i=1,··· ,log(k+1)

di ≤ Ψbin
LD(H) ≤ dB ≤ 6d ln(k + 1).

This proves the theorem.
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