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Abstract

Reliable satellite data is needed for many large-scale tasks in urban planing, agri-
culture, and disaster relief. However, high resolution satellite data is restricted or
expensive. ESA’s Sentinel-2 provides free satellite data with global coverage but
only at a coarse level of detail. In this work we use super-resolution models trained
to create high-resolution versions of Sentinel-2 data. We compare the feasibility of
various CLIP embeddings to evaluate similarity between hallucinated satellite data
and extend the existing S2-NAIP dataset. We automatically clean unreliable data
and add new NIR band data. Our experiments show clear improvement in fidelity
and quality of single image cross-sensor super resolution for satellite images.

1 Introduction

Earth Observation (EO) is essential for many applications, from urban planning to environmental
monitoring. It effectiveness often depends on the availability of high-quality multispectral satellite
imagery. Among other criteria, a low enough Ground Sampling Distance (GSD, metric size of one
pixel) is important for a detailed surface analysis. Access to high-quality satellite and aerial images
remains a significant challenge. Some providers offer sub-meter resolution imagery[3, 16], but may
suffer from high costs, restricted licensing, coverage limitations, or national security considerations.
In contrast, the Sentinel-2[5] project offers global coverage with a revisit time of 5 days under an
open-access policy, but has a GSD of ≥ 10 meters.

Super-resolution techniques for satellite imagery promise a way to create training material for
reliable ML models based on unreliable upscaled data. Specifically, Single-Image Super-Resolution
(SISR) aims to reconstruct a high-resolution (HR) image from a single low-resolution (LR) input.

Figure 1: Examples of Sentinel2-NAIP data from our dataset. Top: RGB, Bottom: NIR; Left-to-Right:
Original NAIP, Histogram-matched NAIP, Sentinel-2

This task suffers from a distribution gap as HR counterparts for existing LR data cannot be reliably
obtained. Large datasets such as S2-NAIP [21] or SEN2NAIP [1] have fueled progress in this domain
by providing large amounts of LR/HR pairs. S2-NAIP provides real Sentinel-2 images paired with
geographically-aligned NAIP[17] aerial images serving as HR counterparts ("cross-sensor" approach).
SEN2NAIP’s main split uses NAIP images, which are spectrally aligned and then degraded to mimic
Sentinel-2 data ("synthetic" approach).
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This work improves the typical training and evaluation pipelines in the field of SISR. Notably,
we i) compare metrics based on various Contrastive Language-Image Pretraining (CLIP) models;
ii) process the S2-NAIP dataset [21] to improve the alignment of its pairs for SISR; iii) add NIR bands
to S2-NAIP; and iv) reproduce and assess the recent progress [4, 6] proposing synthetic pretraining
with cross-sensor fine-tuning as an efficient paradigm for SISR.

2 Literature Review

LR/HR pairs for SISR can be constructed by artificially degrading HR images into corresponding LR
inputs (synthetic datasets) or by aligning low- and high-resolution images acquired from different
sensors such as in [21] (cross-sensor datasets). Recent efforts for synthetic datasets [8, 23, 27]
proposed sophisticated degradation methods to simulate cross-sensor effects (e.g., based on U-Net [1]).
This allows for better LR/HR alignment, but distribution gaps still remain. True cross-sensor data
ensures that the model learns from the correct input distribution, but introduces new challenges:
geometric and radiometric discrepancies [9], and visible temporal misalignment (cloud coverage,
disaster damage, seasonal variations...) due to LR/HR data from different capture dates. Both dataset
types require careful preprocessing and alignment strategies to handle these unreliable uncertainties.

Another challenge of SISR is the difficulty of designing consistent metrics for benchmarking. Al-
though Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) are
widely adopted, they often fail to reliably capture perceptual quality [9, 21], which is more robust
to misalignments. Recent studies have proposed alternative metrics, including CLIP-based meth-
ods [21, 11, 10], the OPENSR metrics [2], and no-reference image quality assessment approaches [9],
which aim to provide more robust and perceptually aligned evaluations.

3 CLIP comparison

To address the inconsistencies of common image quality metrics such as PSNR and SSIM, Wolters et
al. [21] proposes a novel metric named CLIPScore. It computes the cosine similarity between the
semantically rich CLIP embeddings of the two images. This promises better metrics for complex
scenes such as aerial imagery. However, CLIPScore exhibits high scores with low variance across
various classes of aerial images (ranging from 0.7 to 0.99), and surprisingly high scores between
highly dissimilar images (e.g., a score of 0.67 for dog vs. computer).

We assess the performance of new CLIP alternatives trained for remote sensing tasks [15, 10, 11]
using two datasets: AID [22]; a dataset of aerial images and CelebA [12], a dataset of face images.
We use 100 random images from three of AID’s scene types: School, Industrial, and Desert. These
classes are chosen based on their perceptual similarity: School and Industrial are expected to be more
similar than Desert scenes. An additional 100 random CelebA images provide samples of a clearly
distinct image domain. Using different CLIP models, we compare the average CLIPScore between
images from the School class (intra-class similarity) and every image across the other selected classes
(inter-class similarity). The resulting score histograms allow us to evaluate each model’s behaviour.

Figure 2: Distribution of CLIPScore across different image subsets from AID and CelebA

Our results can be seen in Figure 2. Unlike CLIPA-v2 and Git-RSCLIP, some models show a
significant overlap in the distribution of CLIPScore values between face images and landscape
images, indicating less distinct separation between these semantically different classes. Moreover,
RemoteCLIP, CLIPA-v2, and Geo-RSCLIP exhibit a large overlap in their score distributions over
various remote sensing classes. This suggests that these models may struggle to distinguish between
different landscape categories, potentially limiting their effectiveness in tasks that require fine-grained
differentiation. For SISR, the images to compare are very similar semantically, requiring a high
capability to discriminate between different classes and within a given class.
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In contrast, Git-RSCLIP demonstrates better class separation, and a greater variance in CLIPScore
within the same class. This higher intra-class variance implies that it is better at distinguishing subtle
differences within similar images making it particularly well-suited for SISR.

4 Dataset

We process S2-NAIP [21] to make it a cross-sensor dataset suitable for SISR, with RGB and NIR
bands. The original dataset consists of 1.2 million 128 × 128 HR NAIP images (≈ 2.4m GSD)
with corresponding 32 × 32 LR Sentinel-2 time-series images (≈ 9.5m GSD). Those time-series
varies from 32 to hundreds of observations which may contain clouds, seasonality changes such
as snow cover, and low reflectance images. Prior work uses random images from the time series,
thus introducing noise in the training process. We improve this by selecting the perceptually closest
Sentinel-2 image from the time-series (for each NAIP image).

Pre-processing As a first step, we clean up the dataset by discarding pairs where NAIP images
contain black pixels along the border, as well as NAIP images with no associated Sentinel-2 time
series (≈1 million remaining pairs). In each Sentinel-2 time series, we similarly discard entries with
black borders. We also remove most of the cloudy and low-reflectance observations by keeping in
the time series only the 16 images with the highest PSNR with respect to the HR reference (after
resampling). Though imperfect, this step considerably reduces the number of cloudy images in the
dataset. We then download and reproject the NIR bands for the NAIP dataset (the Sentinel-2 data in
S2-NAIP already contains all bands) using their unique tile identifiers from the dataset.

Figure 3: The left-most image is the high-resolution (HR) reference. Adjacent images depict kept
low-resolution (LR) images from the time series, chosen according to their PSNR scores compared to
the HR image. Lower PSNR images often correspond to cloudy observations.

Selecting the Closest LR Image The main differences between HR and LR images are due to the
domain gap and temporal discrepancies. The domain gap refers to the shift in pixel value distributions
due to differences in sensor characteristics and surface reflectance [9]. Temporal discrepancies arise
from landscape changes such as snow cover, seasonal variations, or harvest cycles.

To capture the similarity between LR and HR images, we compute two types of distances:

• The raw distance between each LR image and its corresponding HR image, which captures
overall differences including both the domain gap and perceptual discrepancies.

• The distance between each LR image and the HR image after histogram matching, using
scikit-image[18] and the LR image as the reference. This metric emphasizes temporal
discrepancies while reducing the domain gap, but cannot be used alone as it will favour very
low- or high-reflectance images remaining in the data.

For each pair (HR, [LR]n), and for each j ∈ [[1, n]], we compute the combined score:

Scorej = α · d(HR,LRj) + (1− α) · d(HRhistmj , LRj)

where α = 0.7 is chosen empirically and HRhistmj denotes the high-resolution image histogram
matched to the j-th low-resolution image as reference.

After selecting the best LR image, we form image pairs for SISR training by applying histogram
matching to the HR image using the chosen LR as reference thus reducing radiometric discrepancies
(see Figure 1).

Manually improving the test set Training and evaluating models on our new dataset validation set
reveals a high variance in the results. Approximately 200 of the 7571 images from our test set yield
outlier PSNR values below 20 dB. These are failure cases from our selection process (e.g. clouds

3



or seasonality differences). We fix this by manual selection leading to 166 refined and 27 removed
entries (due to the lack of any suitable low-resolution pair).

5 Impact of Pretraining

We assess our dataset by training an ESRGAN [19] as our reference model. The training procedure
is conducted in two steps following recent trends [4, 6]: we first pre-train the model using the
SEN2NAIPv2 dataset [1], then we fine-tune the model on our dataset.

The SEN2NAIPv2 dataset exists in two versions for two different methods of synthetic alignment
(histogram matching and U-Net based). We evaluate the impact of pretraining on model performance
under three conditions: (1) pretraining on the SEN2NAIPv2-HM variant (using Histogram Matching),
(2) pretraining on SEN2NAIPv2-UNet, and (3) training from scratch without any pretraining. This
comparison allows us to assess how different synthetic data generation strategies affect performance.

Table 1: Quantitative results on our test set. Best scores are highlighted in bold.

Model PSNR-RGBN (dB) ↑ SSIM-RGBN ↑ PSNR-RGB (dB) ↑ SSIM-RGB ↑ Git-RSCLIP-RGB ↑ LPIPS-RGB ↓
No Pretraining + Finetuning 25.885 0.548 27.860 0.594 0.670 0.358
Pretraining SEN2NAIPv2-HM 25.718 0.593 27.695 0.650 0.496 0.480
Pretraining SEN2NAIPv2-HM + Finetuning 27.514 0.588 28.308 0.603 0.734 0.343
Pretraining SEN2NAIPv2-UNet 27.112 0.630 27.912 0.654 0.492 0.470
Pretraining SEN2NAIPv2-UNet + Finetuning 27.432 0.587 28.249 0.601 0.743 0.340

Table 1 presents the results of the models after 20k pretraining iterations and 8k fine-tuning iterations.

Pretraining shows a positive impact on all metrics except SSIM, highlighting the inconsistency of
this metrics. The performance difference between HM and UNet versions are relatively small. Figure
4 shows HR outputs from each model for the same LR input. It is clear that finetuning using our data
vastly improves details and pre-training is necessary to reduce generation artifacts. Git-RSCLIP in
Table 1 succeeds to properly reflect these quality changes while PSNR and SSIM fail.

Figure 4: Outputs of super resolution models, same order as Table 1. LR stands for low-resolution,
Pr. stands for Pretraining, FT stands for Fine-tuning, HM stands for Histogram-Matching Result,
and GT stands for Ground-Truth.

6 Discussion

Limitations One limitation of this study lies in the cloud removal process, which could be improved
by leveraging additional spectral bands or more recent cloud detection techniques. Additionally, the
current use of histogram matching for aligning image characteristics could be improved (e.g., using
the U-Net employed in SEN2NAIPv2 [1]).

Future Directions Future work could focus on extending the dataset to a global scale to improve
the model’s generalisation capabilities. Incorporating zero-shot classification approaches—such
as those based on CLIP—to estimate the distribution of landscape classes could help balance or
stratify training data according to real-world land cover distributions. The current work rewards
super-resolving homogeneous landscapes like oceans similarly to highly heterogeneous areas like
urban environments, which exhibit richer high-frequency details.
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Appendix

7 Online resources

Please see our companion repo at https://github.com/ozendelait/better_s2_naip for
scripts to automatically create the NAIP-NIR extension of S2-NAIP, the semi-automatic selection
process for best single image correspondence, and the manual correction data for S2-NAIP.

7.1 CLIP Embedding Variants

Our paper compares multiple CLIP embeddings which can be used to represent satellite data in a
high-dimensional feature space.

7.1.1 CLIPA-v2

The goal of CLIPA-v2 is to provide a framework that can train CLIP efficiently and effectively at
scale. It is trained on Datacomp[7] , a large benchmark designed for multimodal dataset curation,
consisting of 12.8 billion image-text pairs from Common Crawl.

7.1.2 RemoteCLIP

RemoteCLIP is a vision-language foundation model for remote sensing that aims to learn robust visual
features with rich semantics and aligned text embeddings for seamless downstream applications.
It is trained on a comprehensive dataset that combines a wide range of remote sensing datasets
(RSITMD[25], RSICD[13], UCM[24]) addressing the scarcity of pre-training data in remote sensing.

7.1.3 Geo-RSCLIP

The goal of Geo-RSCLIP is to perform zero-shot classification tasks, achieving significant improve-
ment in Remote Sensing Cross-Modal Text–Image Retrieval and in Semantic Localization tasks. It is
trained on RS5M[28], a large-scale remote sensing image-text paired dataset constructed by filtering
large-scale image-text datasets and captioning RS datasets with a pretrained model.

7.1.4 Git-RSCLIP

The goal of Git-RSCLIP is to explore the application of the Git-10M dataset to pretrain a vision-
language foundation model using a contrastive learning framework. It is trained on Git-10M[10], the
largest-scale remote sensing image-text dataset with extensive geographical diversity and metadata,
overcoming the limitations of previous small-scale datasets and providing a robust foundation for
training generative models.

7.2 Evaluation Metrics

These evaluation metrics are used in our work to measure visual similarity between satellite data.

7.2.1 Peak Signal-to-Noise Ratio (PSNR)

The Peak Signal-to-Noise Ratio (PSNR)[14] is a widely used metric to evaluate the quality of a
reconstructed or compressed image compared to a reference image. It is defined using the Mean
Squared Error (MSE) between the reference image I and the distorted image Î as

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

(
I(i, j)− Î(i, j)

)2
, (1)

where m× n is the image size. The PSNR in decibels (dB) is then given by

PSNR = 10 · log10
(
MAX2

I

MSE

)
, (2)

with MAXI denoting the maximum possible pixel intensity (e.g., 255 for 8-bit images).
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7.2.2 Structural Similarity Index (SSIM)

The Structural Similarity Index (SSIM)[20] is a perceptual metric that measures the similarity between
a reference image I and a distorted image Î by considering structural information. It combines
luminance (l), contrast (c), and structure (s) comparisons into a single measure:

SSIM(I, Î) =
(2µIµÎ + C1)(2σIÎ + C2)

(µ2
I + µ2

Î
+ C1)(σ2

I + σ2
Î
+ C2)

, (3)

where µI , µÎ are mean intensities, σ2
I , σ

2
Î

are variances, and σIÎ is the covariance. The constants
C1 and C2 stabilize the division, and SSIM values range from −1 to 1, with 1 indicating perfect
structural similarity.

7.2.3 Learned Perceptual Image Patch Similarity (LPIPS)

The Learned Perceptual Image Patch Similarity (LPIPS)[26] is a deep-learning-based metric that
evaluates the perceptual similarity between a reference image I and a distorted image Î . It computes
distances in feature space using a pretrained convolutional neural network (e.g., AlexNet, VGG) as

LPIPS(I, Î) =
∑
l

1

HlWl

∑
h,w

∥wl ⊙ (f I
l (h,w)− f Î

l (h,w))∥22, (4)

where f I
l and f Î

l are normalized feature maps at layer l, wl are learned channel-wise weights, and
Hl,Wl denote spatial dimensions. Lower LPIPS values indicate higher perceptual similarity, making
it well aligned with human visual judgments compared to traditional metrics.

7.3 Histogram Matching

Histogram matching is a technique used to adjust the pixel intensity distribution of a source image I
so that it matches the histogram of a reference image R. Formally, it relies on cumulative distribution
functions (CDFs) of the two images:

Î(x) = F−1
R (FI(x)), (5)

where FI and FR denote the CDFs of the source and reference images, respectively, and F−1
R is

the inverse CDF. This process ensures that the transformed image Î has an intensity distribution
statistically similar to R, improving visual consistency across images.

For this paper, we use the consistent library scikit-learn v0.25.2[18]
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7.4 More results from our pipeline

LR No Pr.+FT Pr. HM Pr. HM+FT Pr. Unet Pr. Unet+FT GT

LR No Pr.+FT Pr. HM Pr. HM+FT Pr. Unet Pr. Unet+FT GT

LR No Pr.+FT Pr. HM Pr. HM+FT Pr. Unet Pr. Unet+FT GT

LR No Pr.+FT Pr. HM Pr. HM+FT Pr. Unet Pr. Unet+FT GT

LR No Pr.+FT Pr. HM Pr. HM+FT Pr. Unet Pr. Unet+FT GT

Figure 5: More outputs of super resolution models, same order as Table 1. LR stands for low-
resolution, Pr. stands for Pretraining, FT stands for Fine-tuning, and HM stands for Histogram-
Matching Result
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