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ABSTRACT

Machine learning for protein modeling faces significant challenges due to pro-
teins’ inherently dynamic nature, yet most graph-based machine learning meth-
ods rely solely on static structural information. Recently, the growing availability
of molecular dynamics trajectories provides new opportunities for understanding
the dynamic behavior of proteins; however, computational methods for utilizing
this dynamic information remain limited. We propose a novel graph represen-
tation that integrates both static structural information and dynamic correlations
from molecular dynamics trajectories, enabling more comprehensive modeling
of proteins. By applying relational graph neural networks (RGNNs) to process
this heterogeneous representation, we demonstrate significant improvements over
structure-based approaches across three distinct tasks: atomic adaptability predic-
tion, binding site detection, and binding affinity prediction. Our results validate
that combining static and dynamic information provides complementary signals
for understanding protein-ligand interactions, offering new possibilities for drug
design and structural biology applications.

1 INTRODUCTION

With the recent surge and successes of deep learning methods in protein structure prediction, at-
tention is rapidly turning towards the prediction of the temporal behavior of these highly dynamic
macromolecules. Combined with quantitative and qualitative advances in molecular dynamics sim-
ulations (Joshi & Deshmukh, 2021; Zeng et al., 2021; Majewski et al., 2023; Nam & Wolf-Watz,
2023), this attention is resulting in the increased availability and accessibility of simulated molecular
dynamics trajectories (Vander Meersche et al., 2024; Siebenmorgen et al., 2024a; Liu et al., 2024).
Consequently, various approaches are being developed to train predictive and generative models ca-
pable of producing molecular dynamics trajectories or sample specific conformations (López-Correa
et al., 2023; Jing et al., 2024; Lewis et al., 2024). So far, the potential of these increasingly large
trajectory datasets to enhance property predictions in proteins and protein-ligand complexes, such as
binding site identification and affinity prediction, remains largely unexplored (Dhakal et al., 2022).

Despite these advances, representing and exploiting molecular dynamics trajectories of proteins for
machine learning remains challenging due to the diverse and complex nature of protein structures.
One effective alternative is to focus on a higher-order representation of protein dynamics through
correlation patterns derived from molecular motion. These dynamic correlations are essential to pro-
tein function, and the resulting correlation matrices have long been used to analyze protein dynamics
(Agarwal et al., 2002; Lange & Grubmüller, 2008).

In this work, we propose combining molecular structure and simulated molecular trajectories
through residue-based correlation matrices and relational graph neural networks (Schlichtkrull et al.,
2017). We show that this approach enables the exploitation of the rapidly expanding collection of
readily available protein dynamics trajectories for protein and protein–ligand property prediction. In
summary:
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• We propose a novel heterogeneous graph representation that integrates both static structural
information and dynamic correlations from molecular trajectories, enabling more compre-
hensive modeling of protein properties.

• We introduce the first application of relational graph neural networks to directly process
molecular dynamics trajectories, demonstrating clear benefits over graph neural networks
(GNNs) based on structure alone.

• We validate our approach across three distinct tasks: atomic adaptability prediction, bind-
ing site detection, and binding affinity prediction, showing consistent benefits of combining
static and dynamic information.

2 METHODOLOGY

2.1 GRAPH CONSTRUCTION FRAMEWORK

We represent a protein complex as a tuple (V,Ed, Ec), where V represents the set of nodes, Ed

represents distance-based edges, and Ec represents correlation-based edges derived from molecular
dynamics trajectories.

We propose a novel approach for incorporating both static structural and dynamic motion informa-
tion into protein graph representations. Our method consists of two key components: (1) a hetero-
geneous graph construction framework that combines spatial proximity with dynamic correlations
from molecular dynamics simulations, and (2) the application of relational neural networks to effec-
tively process the heterogeneous graphs enriched by both structural and dynamic information.

As illustrated in Figure 1, our approach derives two complementary edge types from protein data:
distance edges based on static structure, and correlation edges from molecular dynamics trajectories.
These correlation edges provide direct links between dynamically coupled regions of the protein,
enabling more efficient information flow than in the original graph structure. The mechanism is akin
to graph rewiring, which is known to mitigate over-squashing in GNNs (Attali et al., 2024).

2.1.1 NODE DEFINITION AND FEATURES

Nodes are defined based on the specific requirements of each task: for atomic-level predictions
(e.g., atomic property prediction), each node represents a non-hydrogen atom, capturing detailed
molecular interactions at the atomic scale; for residue-level tasks (e.g., binding site detection), each
node represents a residue, where the coordinates of its Cα atom are used to determine the residue’s
spatial position. Each node vi ∈ V is associated with a feature vector hi ∈ Rd consisting of the
one-hot encoding of the atom/residue type and the atom charge (for atomic-level graphs).

2.1.2 DISTANCE-BASED EDGE CONSTRUCTION

The distance-based edges Ed capture spatial proximity in the static structure:

Ed = {(vi, vj) | d(vi, vj) < τd} (1)

where d(vi, vj) represents the Euclidean distance between nodes, and τd is a distance threshold
(4.5 Å for atomic-level and 10 Å for residue-level graphs). These thresholds are widely used in pro-
tein modeling: the 4.5 Å threshold captures meaningful atomic interactions (Bouysset & Fiorucci,
2021), while the 10 Å threshold is commonly adopted for residue-level contacts (Gligorijević et al.,
2021b).

2.1.3 DYNAMIC CORRELATION EDGE CONSTRUCTION

To capture dynamic behaviors, we analyze classical force-field molecular dynamics trajectories to
construct correlation-based Ec. Before computing correlations, all trajectory frames are aligned to
the initial structure through rigid-body superposition optimized to minimize the root-mean-square
deviation (RMSD) between equivalent atomic positions. The alignment eliminates global transla-
tions and rotations while preserving internal conformational changes.
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Unlike distance-based representations that primarily capture local structural relationships,
correlation-based edges can identify dynamically coupled regions regardless of spatial proximity,
creating direct pathways between motion-related but spatially distant parts of the protein (as shown
in Figure 1). For each pair of nodes, we compute their motion correlation across simulation frames:

Cij =
1

T

T∑
t=1

∆rti ·∆rtj
|∆rti||∆rtj |

(2)

where ∆rti represents the displacement vector of node i at frame t, and T is the total number of
frames. The correlation edges are then defined as:

Ec = {(vi, vj) | |Cij | > τc} (3)

where τc is the correlation threshold (0.6 for atomic-level and 0.3 for residue-level graphs). These
thresholds are chosen to maintain similar graph sparsity, thereby achieving a fairer comparison when
either Correlation or Distance Graph is used.

2.1.4 COMBINED GRAPH

The final graph representation integrates both distance-based and correlation-based edges, yield-
ing a heterogeneous graph that captures both static structural information and dynamic behavioral
patterns. This combined representation enables the model to utilize local spatial relationships and
potential long-range dynamic interactions simultaneously.

2.2 RELATIONAL GRAPH NEURAL NETWORKS

The heterogeneous nature of our Combined Graph, containing both distance-based and correlation-
based edges, requires a neural network architecture capable of processing different types of re-
lationships. We therefore employ two established relational neural networks: the Relational Graph
Convolutional Network (RGCN) (Schlichtkrull et al., 2018) and the Relational Graph Attention Net-
work (RGAT) (Busbridge et al., 2019). These architectures are particularly suited for our approach
as they handle heterogeneous edges by learning different weight matrices for different edge types.

3 EXPERIMENTS

3.1 DATASET

We evaluate our approach using the MISATO dataset (Siebenmorgen et al., 2024b), which contains
19,443 protein-ligand complexes derived from PDBbind (Su et al., 2018; Liu et al., 2017; Wang
et al., 2005). Each complex undergoes quantum mechanical relaxation and 10 ns molecular dynam-
ics simulation using the Amber20 software package with gaff2 force field for ligands and ff14SB for
proteins. The dataset also provides key physicochemical properties, forming a high-quality bench-
mark for machine learning tasks.

3.2 RESULTS AND DISCUSSION

We evaluate our approach on three distinct tasks: atomic adaptability prediction, binding site identi-
fication, and binding affinity prediction. For each task, we analyze how different graph representa-
tions (Distance, Correlation, and Combined) affect model performance using RGCN and RGAT.

3.2.1 ATOMIC ADAPTABILITY PREDICTION

Atomic adaptability quantifies the conformational plasticity of atoms within a protein structure,
where higher values indicate greater flexibility and lower values indicate rigidity. This property
helps identify key regions of motion, making it crucial for understanding protein dynamics and
molecular design. We formulate adaptability prediction as a node-level regression task, where each
atom is annotated with an adaptability score from the MISATO dataset (see Figure 2).
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Table 1: Atomic adaptability prediction. Node-level regression task predicting atomic adaptability
values using data from the MISATO dataset. Results show mean ± standard deviation over 5 runs
(↓ indicates lower is better, ↑ indicates higher is better). The Combined Graph, which integrates
both distance and correlation information, consistently outperforms single-information approaches
across all metrics using both RGCN and RGAT. Notably, the Correlation Graph alone achieves
better performance than the Distance Graph on every evaluation metric, suggesting the importance
of dynamic information for this task.

Model Graph Type MAE (↓) RMSE (↓) Pearson R (↑) Spearman R (↑)

RGCN
Distance 0.2658 ± 0.0061 0.4274 ± 0.0008 0.5259 ± 0.0015 0.5543 ± 0.0017

Correlation 0.2311 ± 0.0014 0.3846 ± 0.0011 0.6426 ± 0.0026 0.6990 ± 0.0019
Combined 0.1981 ± 0.0020 0.3417 ± 0.0008 0.7326 ± 0.0014 0.7922 ± 0.0010

RGAT
Distance 0.2766 ± 0.0038 0.4419 ± 0.0018 0.4746 ± 0.0066 0.4762 ± 0.0085

Correlation 0.2443 ± 0.0013 0.3976 ± 0.0013 0.6106 ± 0.0037 0.6521 ± 0.0068
Combined 0.2074 ± 0.0030 0.3511 ± 0.0018 0.7153 ± 0.0033 0.7699 ± 0.0024

Table 1 presents the performance comparison across different graph representations using two base-
line architectures (RGCN and RGAT). The Correlation Graph, which captures dynamic motion pat-
terns derived from MD trajectories, consistently outperforms the Distance Graph across all metrics
for both architectures. Using RGCN, we observe improvements in both error metrics (MAE reduces
from 0.2658 to 0.2311) and correlation coefficients (Pearson R increases from 0.5259 to 0.6426).
Similar comprehensive improvements are observed with RGAT, demonstrating the value of dynamic
information for atomic adaptability prediction.

When both types of information are integrated in the Combined Graph, we observe further signif-
icant improvements across all metrics: the Pearson correlation coefficient reaches 0.7326 (RGCN)
and 0.7153 (RGAT), representing improvements of 39.3% and 50.7% respectively over the Distance
Graph baseline (0.5259 using RGCN and 0.4746 using RGAT). Similar improvements are observed
across other metrics, as evidenced by the reduction in MAE from 0.2658 to 0.1981 (RGCN) and
0.2766 to 0.2074 (RGAT).

These performance improvements align with the physical nature of atomic adaptability. While spa-
tial proximity (captured by the Distance Graph) provides important structural constraints, atomic
adaptability is inherently a dynamical property that highly depends on atomic fluctuations and con-
formational changes, which cannot be fully captured by spatial proximity alone. The Correlation
Graph, leveraging dynamical information derived from MD trajectories, better captures elements
tied to motion and complements the structural information. When combined, these two edge types
enable the model to learn from both spatial constraints and dynamic coupling patterns, resulting in
the Combined Graph’s superior performance.

The consistent improvement across both RGCN and RGAT architectures suggests the performance
gains primarily stem from enriched graphs rather than specific architectural choices. This robust-
ness validates our approach of incorporating dynamic information through correlation edges as an
effective strategy for enhancing protein graph representations in dynamical property prediction.

3.2.2 BINDING SITE DETECTION

Binding site detection aims to identify key residues in proteins that directly interact with ligands,
specifically those residues within 10 Å from the ligand, following PDBbind. This task is essential
for understanding protein functionality and facilitating early-stage drug design. We formulate this
as a binary node classification problem at the residue level, where each node represents a residue
and is classified as either a binding site or a non-binding site (see Figure 3). For this task, the ligand
coordinates are removed from the complex and not provided to the model.

Table 2 presents the classification performance across different graph representations using RGCN
and RGAT architectures. The incorporation of dynamic information through the Correlation Graph
proves beneficial, showing better performance than the Distance Graph on all evaluation metrics
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Table 2: Binding site detection. Node-level binary classification task identifying binding site
residues (those within 10 Å from the ligand) using data from the MISATO dataset. Results show
mean ± standard deviation over 5 runs (↑ indicates higher is better). The Combined Graph demon-
strates superior performance across all metrics for both architectures. The Correlation Graph’s
improved performance over the Distance Graph baseline on every metric highlights the value of
molecular dynamics information in binding site identification.

Model Graph Type Acc (↑) Precision (↑) Recall (↑) F1 score (↑)

RGCN
Distance 0.7112 ± 0.0092 0.1678 ± 0.0024 0.4464 ± 0.0164 0.2428 ± 0.0027

Correlation 0.7282 ± 0.0069 0.1808 ± 0.0022 0.4552 ± 0.0102 0.2578 ± 0.0012
Combined 0.7433 ± 0.0067 0.2005 ± 0.0030 0.4889 ± 0.0111 0.2834 ± 0.0023

RGAT
Distance 0.6602 ± 0.0120 0.1475 ± 0.0032 0.4439 ± 0.0234 0.2089 ± 0.0040

Correlation 0.6938 ± 0.0111 0.1664 ± 0.0031 0.4441 ± 0.0182 0.2294 ± 0.0030
Combined 0.7226 ± 0.0067 0.1861 ± 0.0029 0.4750 ± 0.0137 0.2574 ± 0.0032

for both architectures. Using RGCN, we observe improvements in both precision (from 0.1678 to
0.1808) and F1 score (from 0.2428 to 0.2578). Similar improvements are seen with RGAT, where
precision increases from 0.1475 to 0.1664 and F1 score from 0.2089 to 0.2294, demonstrating the
value of dynamic information for binding site detection.

The fusion of static and dynamic information in the Combined Graph leads to stronger results. The
Combined Graph achieves the best performance across all metrics, demonstrating the complemen-
tary advantages of integrating these two types of information. For RGCN, the F1 score increases
from 0.2428 (Distance Graph) and 0.2578 (Correlation Graph) to 0.2834, representing improve-
ments of 16.7% and 9.9% respectively. Similar patterns emerge with RGAT, where the F1 score
improves from 0.2089 (Distance Graph) and 0.2294 (Correlation Graph) to 0.2574.

Compared to atomic adaptability, which relies more directly on dynamic information, binding site
identification depends heavily on static structural features such as protein surfaces and binding pock-
ets. While our results still show that the Correlation Graph consistently outperforms the Distance
Graph across all metrics, the magnitude of improvement is more moderate compared to the adapt-
ability task, reflecting the balanced importance of both static and dynamic features in this context.
When combined, the model can utilize both spatial proximity and motion patterns, leading to more
accurate binding site identification.

The consistent improvement across both RGCN and RGAT architectures demonstrates that these im-
provements result from the complementary nature of static and dynamic features rather than specific
architectural choices. These results validate our approach of incorporating both types of information
into protein graph representations, offering new possibilities for studying protein-ligand interactions.

3.2.3 BINDING AFFINITY PREDICTION

Binding affinity prediction represents a critical task in drug design and virtual screening, as it quan-
tifies the interaction strength between proteins and ligands. We formulate this as a graph-level
regression task, where each graph represents a protein pocket and its ligand, with experimentally
measured binding affinities as targets. Following previous work (Li et al., 2021a), we evaluate our
approach on the PDBbind 2020 benchmark (details in Appendix A.6).

Table 3 presents the regression performance across different graph representations using RGCN and
RGAT architectures. For this task, the Correlation Graph shows performance comparable to the
Distance Graph, with differences varying across architectures and metrics. This suggests that for
binding affinity prediction, dynamic information alone may not provide additional advantages over
static structural features.

However, the Combined Graph achieves consistent improvements across all metrics, demonstrating
the value of fusing both types of information. Using RGCN, the Combined Graph reaches a Pear-
son correlation of 0.6983 and reduces MAE to 1.2439, improving upon both the Distance Graph
(0.6596, 1.3046) and Correlation Graph (0.6360, 1.3572). Similar patterns emerge with RGAT,
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Table 3: Binding affinity prediction. Graph-level regression task predicting protein-ligand binding
affinity values using MISATO and PDBbind datasets. Results show mean ± standard deviation
over 5 runs (↓ indicates lower is better, ↑ indicates higher is better). While the Correlation Graph
performs comparably to the Distance Graph baseline, their integration in the Combined Graph yields
consistent improvements across all metrics for both architectures, demonstrating the complementary
value of static and dynamic information.

Model Graph Type MAE (↓) RMSE (↓) Pearson R (↑) Spearman R (↑)

RGCN
Distance 1.3046 ± 0.0267 1.6653 ± 0.0336 0.6596 ± 0.0156 0.6352 ± 0.0234

Correlation 1.3572 ± 0.0792 1.6974 ± 0.0827 0.6360 ± 0.0428 0.6185 ± 0.0440
Combined 1.2439 ± 0.0256 1.5798 ± 0.0447 0.6983 ± 0.0193 0.6773 ± 0.0208

RGAT
Distance 1.3028 ± 0.0261 1.6427 ± 0.0459 0.6694 ± 0.0222 0.6417 ± 0.0225

Correlation 1.3249 ± 0.0341 1.6623 ± 0.0335 0.6643 ± 0.0212 0.6481 ± 0.0254
Combined 1.2596 ± 0.0290 1.6012 ± 0.0411 0.6931 ± 0.0157 0.6752 ± 0.0157

where the Combined Graph achieves a Pearson correlation of 0.6931 and MAE of 1.2596, outper-
forming both single-information approaches (Distance Graph:0.6694, 1.3028; Correlation Graph:
0.6596, 1.3046).

These results reflect the complex nature of protein-ligand binding affinity, which requires both struc-
tural and dynamic information for accurate prediction. While static distance information captures
geometric constraints, it cannot reflect potential conformational adjustments and long-range inter-
actions during binding. Similarly, dynamic correlations alone, though capturing important motion
patterns, cannot fully characterize the binding pocket geometry, leaving room for additional im-
provements. The integration of both information types enables the model to simultaneously consider
geometric constraints and dynamic interaction patterns, achieving better performance across both er-
ror metrics and correlation coefficients and demonstrating the value of this combined approach.

The consistent improvement pattern across both RGCN and RGAT architectures validates that these
performance gains arise from the complementary nature of static and dynamic features rather than
specific architectural choices. These results show that the fusion of both static and dynamic informa-
tion enhances the accuracy of binding affinity prediction, offering valuable insights for drug design
and molecular screening applications.

4 CONCLUSION

This work enhances protein graph representations by overcoming a key limitation in current ap-
proaches: their exclusive reliance on static structural information without incorporating crucial in-
formation about protein dynamics. We propose a novel heterogeneous graph representation that
integrates static structural information and dynamic correlations from molecular simulation trajec-
tories, and apply relational graph neural networks to process these enriched representations. Our
systematic evaluation examines three distinct tasks: atomic adaptability prediction, binding site de-
tection, and binding affinity prediction. The experimental results show task-dependent patterns: the
Correlation Graph demonstrates clear advantages over the Distance Graph for atomic adaptability
prediction and binding site detection, while showing comparable performance for binding affinity
prediction. Notably, the Combined Graph consistently achieves superior performance across all
tasks and metrics, maintaining this advantage across different graph neural network architectures.
These results demonstrate that static and dynamic information provide complementary signals for
understanding protein behavior. Our approach opens new possibilities for protein modeling and de-
sign by effectively capturing both static structural constraints and dynamic correlations in a unified
framework.

Future directions include exploring advanced architectures like graph transformers to enhance het-
erogeneous information processing, and investigating additional correlation measures such as Mu-
tual Information to enrich dynamic feature representation. As a broader direction, integration with
emerging generative models for molecular dynamics could further expand the applicability of our
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approach by trajectory generation, especially when molecular dynamics trajectories are not readily
available. These developments will further strengthen our approach’s capability in protein modeling,
advancing applications in drug design and structural biology.
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A APPENDIX

A.1 ADDITIONAL VISUALIZATIONS

Figure 1: Fusion of static structure and molecular dynamics information. The left side shows
the transformation of protein structure (PDB ID 5GMU) into a distance-based matrix, while the right
side presents the correlation matrix derived from molecular dynamics trajectories, which shows mo-
tion correlations between different regions. The correlation edges create direct connections between
dynamically coupled regions that may be spatially distant (shown in red), enabling efficient infor-
mation flow across the protein structure. The fusion of these structural and dynamic features creates
a heterogeneous graph representation, which serves as input to relational graph neural networks.

Figure 2: Atomic adaptability prediction. Visualization of per-atom adaptability in a protein struc-
ture (PDB ID 5C11). Left: ground-truth (target) adaptability values shown as blue spheres. Right:
predicted adaptability values shown as pink spheres. Sphere size indicates the magnitude of adapt-
ability, with larger spheres corresponding to more flexible (higher adaptability) regions.
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Figure 3: Binding site prediction. Visualization of binding site detection task using protein struc-
ture (PDB ID 3M67). Left: Ground truth binding site residues (shown in red) and the bound ligand
(yellow). Right: Predicted binding site residues using the Combined Graph, showing reasonable
agreement with the true binding regions for this example. This case illustrates how the model aims
to identify residues within 10 Åfrom the ligand. The ligand is shown only for reference and is not
provided to the model.

A.2 RELATED WORK

A.2.1 DYNAMIC CORRELATIONS IN PROTEIN ANALYSIS

Dynamic correlations derived from molecular dynamics trajectories have been extensively applied
in protein analysis, particularly for understanding allosteric mechanisms and signal propagation
(McClendon et al., 2009; Long & Brüschweiler, 2011; Wang et al., 2020), investigating tRNA-
protein complex interactions (Sethi et al., 2009), and identifying catalytically important regions for
enzyme engineering (Bunzel et al., 2021; Gao et al., 2024). However, they have not been used as
a representation of trajectories when training predictive models on large data sets but mainly as a
means to investigate the propagation of structural changes in a single, or a class of proteins through
methods such as dynamical network analysis (Melo et al., 2020; Calvó-Tusell et al., 2022).

A.2.2 GRAPH NEURAL NETWORKS FOR PROTEIN STRUCTURE AND DYNAMICS

Graph neural networks have been widely used to predict properties and functions of proteins as well
as properties of protein-ligand or protein-protein interactions based on structure (Gligorijević et al.,
2021a; Li et al., 2021b; Réau et al., 2023). More recently, graph neural networks have been applied
to enhance and accelerate molecular dynamics simulations (Wang et al., 2022; Yue et al., 2024).

Chiang et al. (2022) explored incorporating dynamic information into protein graphs by using nor-
mal mode analysis to generate correlation edges, combining this with 1D and 2D persistence dia-
grams of α-carbons for molecular function classification using graph convolutional networks (GCN)
(Defferrard et al., 2017; Kipf & Welling, 2017). In parallel, relational graph neural networks have
shown promise in small-molecule molecular graph generation (Zou et al., 2023), and protein repre-
sentation learning, integrating sequential and spatial distance in proteins (Zhang et al., 2022).

A.3 FORMULATION OF RELATIONAL GRAPH NEURAL NETWORKS

The RGCN extends GCN by introducing relation-specific transformations. For each layer l, the
message passing operation is defined as:
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where Nr(i) denotes neighbors of node i connected by edges of type r, W(l)
r is the relation-specific

transformation matrix, and W
(l)
0 is the self-connection weight matrix. In our case, R represents the

set of edge types (distance and correlation). This formulation allows the network to learn distinct
transformations for distance-based and correlation-based relationships, enabling it to capture the
unique characteristics of each edge type.

The RGAT extends this formulation by incorporating an attention mechanism. This formulation
allows the network to learn distinct transformations for distance-based and correlation-based rela-
tionships, enabling it to capture the unique characteristics of each edge type. For each layer l, the
attention-based message passing operation is defined as:
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The attention coefficients α(r)
ij are computed using query and key kernels for each relation type r:

q
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(r)
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(r)
1 xi ·K(r) (6)

These kernels are used to compute attention logits:
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j ) (7)

The final attention coefficients are obtained as:
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This attention mechanism enables the model to automatically determine the relative importance of
different relationships, potentially providing insights into the contributions of structural and dynamic
information in protein modeling.

A.4 TRAJECTORY ALIGNMENT

During preprocessing, we aligned all MD trajectories to their initial frames using PyTraj’s align
function (Roe & Cheatham III, 2013). The alignment eliminates global translations and rotations,
ensuring that ∆rti captures meaningful conformational changes rather than rigid-body motions.
By focusing on intrinsic protein dynamics, this preprocessing step improves the quality of our
correlation-based edges and leads to more informative graph representations.

A.5 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

We implemented our models using PyTorch Geometric. Each model consists of 5 GNN layers
followed by a two-layer MLP for prediction. We trained models using the Adam optimizer with
a learning rate of 1e-4 and batch size of 32. Training epochs were task-specific: 50 for atomic
adaptability prediction, 200 for binding site detection, and 500 for binding affinity prediction.

For model architecture optimization, we explored different hidden dimensions for each model-task-
graph type combination. The dimension ranges were selected based on architectural differences
and memory constraints. For example, in atomic adaptability prediction using RGCN, we explored
hidden dimensions {26, 32, 53, 64}, while for RGAT we tested {17, 20, 24} due to its higher
memory requirements.

A.6 DATASET DETAILS

For atomic adaptability and binding site detection tasks, we used the data splitting in the MISATO
dataset splits, with 13,597 samples for training, 1,582 for validation, and 1,593 for test. These splits
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were created using sequence-based clustering with BlastP (similarity threshold of 30%) to prevent
information leakage through structural similarities. The dataset contains molecular dynamics trajec-
tories generated using the Amber20 software package with a simulation length of 10ns.

For binding affinity prediction, following previous work (Li et al., 2021a), we used the PDBbind
2020 refined set for training and validation, and evaluated on the core set. The refined set consists
of 5,316 protein-ligand complexes specifically selected for high-quality binding data and crystal
structures through a comprehensive filtering process (Liu et al., 2017). This dataset construction
ensures reliable binding affinity values derived from carefully curated experimental measurements.
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