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Abstract—We derive exact expressions for the probabilities that
partly random hyperplanes separate two Euclidean balls. The
probability that a fully random hyperplane separates two balls
turns out to be significantly smaller than the corresponding
probabilities for hyperplanes which are not fully random in
certain cases. Our results motivate studying partially random
neural networks and provide a first step in this direction.

I. INTRODUCTION

In this short paper we deduce exact expressions for the
probabilities that three types of partly random hyperplanes
separate two Euclidean balls. Letting H[w; b] be the zero
locus of u 7→ (w | u)− b, we consider the following three
types of partly random hyperplanes: H[w;𝒷],H[𝓌; b], and
H[𝓌;𝒷], where w, b are deterministic and 𝓌,𝒷 are random
variates.

The hyperplane parametrization H[w; b] is redolent of neural
networks by design; a “neuron” in a neural network consists
of a nonlinear activation function being applied to a linear
function of the form u 7→ (w | u)− b.

This paper was inspired by [2], where the authors showed
that random neural networks can make two fairly arbitrary
subsets of Euclidean space linearly separable by covering
those two sets with small enough balls. In [2] they consider
an architecture with two layers. Their result relies on letting
the first layer be wide enough for it to separate all the balls
covering one set from all of the balls covering the other set
with high probability. This boils down to drawing enough
fully random hyperplanes to separate all the balls covering
one set from all the balls covering the other set with high
probability. Clearly the probability one random hyperplane
separates one pair of balls is of interest if one wants to get
insight into how many random hyperplanes are needed to
separate all pairs of balls with high probability.

Since sufficiently nice manifolds are known to admit nice
covering number bounds [6, Thm 4.2], [7, Lemma B.1],
[8, §5] the result in [2] and possible improvements thereof
could be of great interest to those interested in classifying
manifolds; a commonly assumed situation.

Random neural networks might sound void of practical
significance at first as one generally wants to learn the
weights and biases. Well, learning the weights and biases
can be slow, sensitive to hyperparameters, and final values
may be suboptimal [3].

One way to avoid these undesirabilities is to forgo learning
some of the weights or/and biases; a popular architecture
with this design philosophy is the so-called Random Vector
Functional Link (RVFL) network [3]. In the case of RVFL
networks, it has been known for quite a while that they are
performant despite the random weights and biases [4], [5].

An RVFL consists of two layers, the first one being fully
random and the second one being learned. As far as the
author knows, partially random layers have not yet been
studied despite having the potential to be a best of both
worlds golden mean. In §VI we shall discuss how our
theorems hint at this indeed being the case.

In §II we clarify the setting wherein we operate throughout
the paper, including notation and assumptions. §§III–V are
each dedicated to a probability that a partly random hyper-
plane separates two balls; H[w;𝒷],H[𝓌; b], and H[𝓌;𝒷] in
that order. Lastly, we discuss our results and their possible
implications in §VI.

II. SETTING

Since we are interested in separating balls in Rn with
hyperplanes, we introduce the following notation.

The Euclidean inner product and norm on Rn will be
denoted by (· | ·) and | · | resp.

Let B[c, r] = tu ∈ Rn : |c− u| < ru, where c ∈ Rn and
r > 0. Let H[w; b] be the zero locus of u 7→ (w | u)− b,
where b ∈ R and w ∈ Sn−1 = tu ∈ Rn : |u| = 1u.

The notations B[c, r] and H[w; b] parametrize all balls and
hyperplanes resp., albeit not quite uniquely, as H[w; b] =
H[−w;−b].

Definition. We say H[w; b] separatesseparatesseparatesseparatesseparatesseparatesseparatesseparatesseparatesseparatesseparatesseparatesseparatesseparatesseparatesseparatesseparates B[c, r] and B[x, p] if
(w | u)− b ≷ 0 for all u ∈ B[c, r] whereas (w | u)− b ≶ 0
for all u ∈ B[x, p].

The balls B[c, r] and B[x, p] clearly cannot be separated if
B[c, r] X B[x, p] ̸= ∅. Since we are interested in partially
random hyperplanes, we assume |c− x| = p+ r + δ for
some δ > 0. If δ = 0, only one hyperplane separates the
balls B[c, r] and B[x, p]; namely, tc− xu⊥ + v, where
tvu = ∂B[c, r] X ∂B[x, p].

When considering a hyperplane H[w; b], we shall refer to
w, b as the weightweightweightweightweightweightweightweightweightweightweightweightweightweightweightweightweight and biasbiasbiasbiasbiasbiasbiasbiasbiasbiasbiasbiasbiasbiasbiasbiasbias resp., in keeping with neural
networks. We account random weights uniformly on Sn−1

and random biases uniformly on [−k, k] with k > 0.



Henceforth we shall always consider B[c, r] and B[x, p] so
that |c− x| = p+ r + δ for some δ > 0. We withal assume
that n ⩾ 2 and that 𝓌,𝒷 are uniformly distributed on Sn−1

and [−k, k] resp., where k ⩾ |c| ∨ |x| > 0 (⇐ c ̸= x).

III. RANDOM BIASES

The first and easiest probability we are interested in is

P𝒷t∃w ∈ Sn−1 : H[w;𝒷] separates B[c, r] and B[x, p]u

To compact notation, we will shorten this to

P𝒷t∃w : H[w;𝒷] separatesu

Before we evaluate this probability, however, we return to
the aforementioned H[w; b] = H[−w;−b], which suggests
that it may be more natural to consider w ∈ Sn−1/t±u „=
Pn−1 instead, where Pn−1 comprises lines in Rn through
the origin. Indeed, the orthogonal complement of a hyper-
plane is a line through the origin.

We therefore introduce a second parametrization of hyper-
planes, namely H[a, v] = tau⊥ + v, where a ∈ Pn−1 and
v ∈ a is the unique point on the line a wherethrough the
hyperplane passes. This parametrization is unique and we
have H[w; (w | v)] = H[wR, v] whenever w ∈ Sn−1 and
v ∈ Rw.

Theorem III. Let 𝒷 be as in §II. Then

P𝒷t∃w : H[w;𝒷] separatesu =

P𝒷tH[ωR, ω𝒷] separatesu = δ/(2k)

where Sn−1 ∋ ω is parallel to the line through c and x,
which we will call a.

Proof. Starting with the second equality, we can introduce
coordinates onto a by considering Ω : a ∋ v 7→ (ω | v). Let
the intervals (s, t) and (y, z) be the images of B[c, r] X a &
B[x, p] X a under Ω resp.; i.e., s is the coordinate of one of
the endpoints of the line segment B[c, r] X a, etc.

WLOG assuming that t < y, we must have y − t = δ. Now,
Ω(ω𝒷) = 𝒷 so

P𝒷tH[ωR, ω𝒷] separatesu = P𝒷t𝒷 ∈ [t, y]u = δ/(2k)

if [t, y] ⊆ [−k, k]; indeed, since t, y ∈ (c, x),

|t| ∨ |y| ⩽ |c| ∨ |x| ⩽ k

As for the first equality, it is geometrically optimal to have
H[w;𝒷] ⊥ a, which is achieved by letting w = ω. Indeed,
each separating hyperplane must intersect a with coordinate
in the interval [t, y] and every coordinate is achieved by at
most one realization of 𝒷. Only H[ωR, ω𝒷] can achieve the
coordinates t and y, and since we have already shown it in
fact achieves the entire interval, w = ω is optimal.

Since (ω | ω𝒷) = 𝒷|ω|2 = 𝒷 the first equality follows.

Henceforth a will always denote the line through c and x.

IV. RANDOM WEIGHTS

In this section we consider

P𝓌t∃b ∈ [−k, k] : H[𝓌; b] separatesu

But first we recall two facts. First off, Pn−1 is metrized by
the angle between two lines ∡ : Pn−1 × Pn−1 → [0, π

2 ]. A
closed metric ball on Pn−1 is thus of the form

C[ε, α] = tℓ ∈ Pn−1 : ∡(ℓ, ε) ⩽ αu

which is a (double) cone with axis ε.

Secondly, the regularized beta functionregularized beta functionregularized beta functionregularized beta functionregularized beta functionregularized beta functionregularized beta functionregularized beta functionregularized beta functionregularized beta functionregularized beta functionregularized beta functionregularized beta functionregularized beta functionregularized beta functionregularized beta functionregularized beta function is given by

I(κ; y, z) =
1

B(y, z)

κ∫
0

sy−1(1− s)z−1 ds

where B(y, z) is the familiar beta function, y, z > 0, and
κ ∈ [0, 1].

Theorem IV. Let 𝓌 be as in §II. Then

P𝓌t∃b : H[𝓌; b] separatesu = I(Q; n−1
2 , 1

2 )

= P𝓌tH[𝓌R, (𝓌 | v)𝓌] separatesu

where Q = 1− ( p+r
p+r+δ )

2 and v = p
p+r c+

r
p+rx.

Remark. The point v is the vertex of the (unique) double
cone touching both balls. The line a is its axis.

Proof. Let ϕ be the angle between the generatrices of the
aforementioned double cone and a. Then ϕ ∈ (0, π

2 ) and
sinϕ = p+r

p+r+δ because

p+ r + δ = |c− x| = |c− v|+ |v − x|

=
r

sinϕ
+

p

sinϕ

(1)

using that tangent lines to circles are perpendicular to the
radii at the points of tangency. WLOG let v = 0, so that
a ∈ Pn−1 for convenience.

The idea of the proof is to show that having the randomly
oriented hyperplane pass through the vertex of the double
cone is optimal. Separating the balls is then equivalent to
separating the two nappes of the double cone.

Let α ∈ (0, π
2 ). We claim that

tω ∈ Pn−1 : ∡(ℓ, ω) < π
2 for all ℓ ∈ C[a, α]u

= C[a, π
2 − α]

Indeed, if ℓ ∈ C[a, α] and ω ∈ C[a, π
2 − α], then

∡(ℓ, ω) ⩽ ∡(ℓ, a) + ∡(a, ω) ⩽ α+ (π2 − α) = π
2

Conversely, if ω /∈ C[a, π
2 − α], then ∡(ω, ν) < α, with ν

being the line through v perpendicular to a in the plane a
spans with ω. Letting ℓ be the 90◦ rotation of ω about v
within the plane it spans with a, plainly ℓ ∈ C[a, α] since
∡(ℓ, a) = ∡(ω, ν) and ∡(ℓ, ω) = π

2 .



Ergo, P𝓌tv + t𝓌u⊥ separatesu equals the probability of
separating the two nappes, which may be expressed as

P𝓌t∡(ℓ,𝓌R) < π
2 for all ℓ ∈ C[a, ϕ]u

= P𝓌t𝓌R ∈ C[a, π
2 − ϕ]u (2)

because Pn−1 „= Sn−1/t±u. However, [1, (1)] yields that

P𝓌t𝓌 ∈ C[a, π
2 − ϕ]u = 2× 1

2I(cos
2 ϕ; n−1

2 , 1
2 )

Using that cos2 ϕ = 1− sin2 ϕ, we have thus shown that

P𝓌tv + t𝓌u⊥ separatesu = I(1− ( p+r
p+r+δ )

2; n−1
2 , 1

2 )

All that remains to be shown is therefore that

P𝓌t∃b : H[𝓌; b] separatesu = P𝓌tv + t𝓌u⊥ separatesu

= P𝓌tH[𝓌R, (𝓌 | v)𝓌] separatesu

As the intersection of v + t𝓌u⊥ and 𝓌R is 𝓌(𝓌 | v), it
follows that

v + t𝓌u⊥ = H[𝓌R, (𝓌 | v)𝓌] = H[𝓌; (𝓌 | v)]

That b = (𝓌 | v), or equivalently, v ∈ H[𝓌; b], is geometri-
cally optimal may be seen as follows: if q, the intersection
of a and H[𝓌; b], is WLOG closer to B[c, r] than v is, then
the cone touching B[c, r] with vertex q has wider aperture
than C[a, ϕ], so the corresponding separating probability
would be smaller because (2) is decreasing in ϕ.

Lastly, b = (𝓌 | v) ⇒ |b| ⩽ |𝓌|.|v| ⩽ |c| ∨ |x| ⩽ k.

Henceforth Q, v will always be as in Theorem IV.

V. FULLY RANDOM CASE

Lastly, we compute P𝓌,𝒷tH[𝓌;𝒷] separatesu.

Theorem V. Let 𝓌,𝒷 be as in §II. Then

P𝓌,𝒷tH[𝓌;𝒷] separatesu =

|c− x|
2k

(
Q(n−1)/2

n−1
2 B(n−1

2 , 1
2 )

− p+r
p+r+δ I(Q; n−1

2 , 1
2 )

)
Proof. WLOG let v = 0 again. By Adam’s law,

P𝓌,𝒷tH[𝓌;𝒷] separatesu = E
𝓌
(P𝒷tH[𝓌;𝒷] separates | 𝓌u)

Let α = cos−1|(𝓌 | ω)|, with ω as in Theorem III. Then
α = ∡(a,R𝓌). It follows from (2) that H[𝓌; (𝓌 | v)], a
fortiori H[𝓌;𝒷], separates only if α ⩽ π

2 − ϕ, where

ϕ = sin−1 p+r
p+r+δ (3)

Smaller α correspond to larger ranges of separating biases;
e.g., if α = π

2 − ϕ, only 𝒷 = (𝓌 | v) separates.

Throughout the next paragraph we consider 𝓌 fixed so that
α ∈ (0, π

2 − ϕ]. Note that α > 0 almost surely. We also let

U =
⋃

tH[𝓌; b] : b ∈ [−k, k] so that H[𝓌; b] separatesu

Using that k ⩾ |c| ∨ |x| > 0, a computation similar to (1)
shows that the length of line segment a X U is

|c− x| − p+ r

sin(π2 − α)
=

(
1− sinϕ

sin(π2 − α)

)
|c− x|

Indeed, letting P be the plane 𝓌 spans with a, the angle
between a and the line H[𝓌;𝒷] X P is π

2 − α. Projecting
onto R𝓌 yields that the length of R𝓌 X U is(

1− sinϕ

sin(π2 − α)

)
|c− x| cosα = (cosα− sinϕ)|c− x|

Ergo, using Iverson brackets, P𝒷tH[𝓌;𝒷] separates | 𝓌u =

|c− x|
2k

(cosα− sinϕ)[cosα ⩾ sinϕ]

Plugging this back into the expectation, we get

|c− x|
2k

E
𝓌

((
|(𝓌 | ω)| − sinϕ

)[
|(𝓌 | ω)| ⩾ sinϕ

])
By the well-known Funk–Hecke formula [9] the above
expectation equals

1

B(n−1
2 , 1

2 )

+1∫
−1

(
|s| − sinϕ

)[
|s| ⩾ sinϕ

]
(1− s2)(n−3)/2 ds

=
2

B(n−1
2 , 1

2 )

1∫
sinϕ

(s− sinϕ)(1− s2)(n−3)/2 ds

The above integral evaluates to

Q(n−1)/2

n−1
2 B(n−1

2 , 1
2 )

− I(Q; n−1
2 , 1

2 ) sinϕ

where we recall that Q = 1− sin2 ϕ. Putting everything
together now yields the desideratum.

It behooves us to verify that the resultant probability in
Theorem V is indeed a probability, since it is no longer
immediately clear.

Lemma. If α ∈ (0, π
2 ), then

I(cos2 α; n−1
2 , 1

2 ) sinα ⩽

cosn−1 α
n−1
2 B(n−1

2 , 1
2 )

⩽ I(cos2 α; n−1
2 , 1

2 )

Proof. Let κ = cos2 α. Plainly s ∈ [0, κ] ⇒

1 ⩽ (1− s)−1/2 ⩽ (1− cos2 α)−1/2 = cscα

Integration now yields that
κ∫
0

s(n−3)/2 ds ⩽

κ∫
0

s(n−3)/2(1− s)−1/2 ds

⩽ cscα

κ∫
0

s(n−3)/2 ds



The rest is trivial.

Applying the Lemma with α = ϕ as in (3) evinces that the
resultant probability in Theorem V is indeed a probability,
since |c− x| ⩽ |c|+ |x| ⩽ 2k as well.

VI. DISCUSSION

In §I we suggested that partially random neural network
layers could be a golden mean between fully learned and
fully random layers. We shall therefore discuss how the
separating probability for fully random hyperplanes com-
pares to those for random weights and random biases.

Comparing the resultant probabilities in Theorems IV and V
is easy thanks to our Lemma:

|c− x|
2k

(
Q(n−1)/2

n−1
2 B(n−1

2 , 1
2 )

− p+r
p+r+δ I(Q; n−1

2 , 1
2 )

)
⩽

Q(n−1)/2

n−1
2 B(n−1

2 , 1
2 )

− p+r
p+r+δ I(Q; n−1

2 , 1
2 )

⩽
Q(n−1)/2

n−1
2 B(n−1

2 , 1
2 )

⩽ I(Q; n−1
2 , 1

2 )

which makes sense: choosing the bias optimally should
improve the separating probability.

Of note is also that Q ∈ (0, 1) ⇒

Q(n−1)/2

n−1
2 B(n−1

2 , 1
2 )

<
Γ(n2 )

n−1
2 Γ(n−1

2 )Γ( 12 )

=
Γ(n2 )

Γ(n+1
2 )

√
π

„
√
2/(nπ)

so PtH[𝓌;𝒷] separatesu ≼ 1/
√
n where “„” & “≼” are as

in [10, pp. 2f.]; i.e., fully random hyperplanes separate balls
really poorly if the ambient dimension is large regardless of
p, r, δ.

Note that this is not the case for hyperplanes with random
biases (and optimal weights). There the separating probabi-
lity can get as close to 1 as desired if p+r

p+r+δ is sufficiently
small (compared to the ambient dimension).

Comparing the resultant probabilities in Theorems III and V
is a bit harder. Recall that PtH[𝓌;𝒷] separates | 𝓌u =

cosα

2k

(
|c− x| − p+ r

sin(π2 − α)

)
[cosα ⩾ sinϕ]

⩽
1

2k

(
|c− x| − p− r

)
= δ/(2k)

so PtH[𝓌;𝒷] separatesu = E(PtH[𝓌;𝒷] separates | 𝓌u) ⩽
E(δ/(2k)) = δ/(2k) = Pt∃w : H[w,𝒷] separatesu, as is to
be expected.

Like the resultant probability for random weights, the resul-
tant probability for random biases is unlike the resultant
probability for fully random hyperplanes in the sense that
δ/(2k) ̸≼ 1/

√
n.

All in all, we have seen that hyperplanes with random bi-
ases (and optimal weights) or random weights (and optimal
biases) are significantly better at separating small balls in a
high dimensional space than fully random hyperplanes. But
small balls in high dimensional space is exactly the situation
we talked about in §I. This suggests that partially random
neural networks may be quite a bit better at classifying low
dimensional manifolds than their fully random counterparts.
A detailed exploration of this topic is beyond the scope of
this paper, however.

The author is currently cosupervising Guido Wagenvoorde
(master student at Utrecht University) who is currently, i.a.,
numerically comparing RVFL, a neural net of the form

Rn ∋ x 7→
m∑
j=1

ajρ((wj | x) + bj) = (a | ϱ) (4)

a = tajumj=1, ϱ =
!

ρ((wj | x) + bj)
)m

j=1

with random wj’s and bj’s, with RVFL with learned biases
(random wj’s only) in his thesis. Many popular activation
functions ρ, like ReLU & (hard) tanh, are positive on posi-
tive inputs and nonpositive on nonpositive inputs, thus in
which cell of the hyperplane tessellation induced by the
H[wj ; bj ]’s x lies determines in which octant ϱ lies when-
ever ρ is positive for positive inputs and nonpositive for
nonpositive inputs, evincing the linkage between (4) and
hyperplane tessellations.

In light of the linkage between (4) and hyperplane tessella-
tions, RVFL thus corresponds to fully random hyperplanes
and RVFL with learned biases corresponds to hyperplanes
with random weights (and optimal biases). Extending our
results to partly random hyperplane tessellations would be
a nice follow-up direction, seeing as (random) hyperplane
tessellation is an active area of research interesting in its
own right [11].
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