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ABSTRACT

Imitation learning based policies perform well in robotic manipulation, but they
often degrade under egocentric viewpoint shifts when trained from a single ego-
centric viewpoint. To address this issue, we present EgoDemoGen, a framework
that generates paired novel egocentric demonstrations by retargeting actions in the
novel egocentric frame and synthesizing the corresponding egocentric observation
videos with proposed generative video repair model EgoViewTransfer, which is
conditioned by a novel-viewpoint reprojected scene video and a robot-only video
rendered from the retargeted joint actions. EgoViewTransfer is finetuned from a
pretrained video generation model using self-supervised double reprojection strat-
egy. We evaluate EgoDemoGen on both simulation (RoboTwin2.0) and real-world
robot. After training with a mixture of EgoDemoGen-generated novel egocentric
demonstrations and original standard egocentric demonstrations, policy success
rate improves absolutely by +17.0% for standard egocentric viewpoint and by
+17.7% for novel egocentric viewpoints in simulation. On real-world robot, the ab-
solute improvements are +18.3% and +25.8%. Moreover, performance continues
to improve as the proportion of EgoDemoGen-generated demonstrations increases,
with diminishing returns. These results demonstrate that EgoDemoGen provides a
practical route to egocentric viewpoint-robust robotic manipulation.

1 INTRODUCTION

Imitation learning has emerged as a powerful paradigm in robotic manipulation, enabling end-to-end
visuomotor policies that map raw observations to control actions. Recent imitation learning policies
including Vision-Language-Action models (Chi et al., 2023; Zhao et al., 2023; Zitkovich et al., 2023;
Ghosh et al., 2024; Liu et al., 2024; O’Neill et al., 2024; Black et al., 2024) have demonstrated
remarkable performance when trained on large and diverse demonstration datasets (Wu et al., 2024;
Khazatsky et al., 2024; Walke et al., 2023; O’Neill et al., 2024). However, these policies remain
sensitive to distribution shift: policies trained or finetuned from a single egocentric viewpoint often
fail to generalize to unseen egocentric viewpoints (Tian et al., 2025; Xing et al., 2025), See Figure 1(a).
This limitation underscores the need to increase viewpoint diversity.

Generating novel egocentric viewpoint demonstrations serves as one effective solution to this problem.
Existing efforts to mitigate this issue can be broadly categorized into two lines of work. One line
of works focus on novel viewpoint synthesis using techniques such as point cloud rendering, 3D
reconstruction, or image generation models (Sargent et al., 2024; Xue et al., 2025; Yang et al., 2025).
These approaches synthesize novel visual observations but maintain original actions, leading to
visual-action mismatch in egocentric setting, shown in Figure 1(b). Another line of works employ
world models or action-conditioned video generation to target prediction or planning, rather than
observation-action paired demonstration generation (Wang et al., 2025a; Rigter et al., 2024; Bruce
et al., 2024; Luo & Du, 2024; Hafner et al., 2025). Moreover, these works do not explicitly model
changes in the egocentric viewpoint caused by robot motion. Generating demonstrations from
a novel egocentric viewpoint requires coherent synthesis of both the visual observations and the
corresponding actions.
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Standard Egocentric View Move Backward

↺ CounterClockwise ↻ Clockwise
Novel Third-person View Novel Egocentric View

(a) Egocentric Viewpoint Shift (b) Novel Third-person View vs. Egocentric View

Action Difference

Observation Difference

Figure 1: Illustration of viewpoint transformations. (a) Shifts in the egocentric viewpoint,
including backward translation and clockwise/counterclockwise rotations. (b) Compared with a
third-person view, robot base link and egocentric camera are mechanically coupled under egocentric
view. A novel egocentric view requires action retargeting and observation synthesis consistent with
the retargeted robotic arm state.

Our key insight addresses this fundamental gap: generating novel egocentric demonstrations requires
not only synthesizing realistic observations from novel egocentric viewpoints, but also retargeting
the original actions to align with the shifted viewpoint. This entails tackling two core challenges:
(1) producing kinematically feasible robot actions that achieve the task under the novel egocentric
viewpoint, and (2) generating realistic, temporally consistent observation videos that match these
retargeted actions. Crucially, the generated demonstrations must preserve the style and intent of the
original demonstrations while ensuring visual–action alignment.

To tackle these challenges, we propose EgoDemoGen, a novel framework for generating demon-
strations from novel egocentric viewpoints. First, on the action side, we perform kinematics-based
action retargeting to produce joint actions corresponding to novel egocentric viewpoint. Second,
on the visual side, we propose EgoViewTransfer, a generative vide repair model that fuses the
reprojected scene videos with the robot motion videos rendered under the retargeted actions and
generate novel egocentric observation videos. We conducted experiments in the RoboTwin2.0 (Chen
et al., 2025b) simulation environment and on a real-world dual-arm robot to evaluate the effectiveness
of the generated demonstrations.

Our main contributions can be summarized as follows:

• We present EgoDemoGen, a framework that generates novel egocentric demonstrations with
paired retargeted actions and egocentric observation videos, improving policy generalization
to egocentric viewpoint shifts.

• We generate novel demonstrations by retargeting actions in the novel egocentric frame and
synthesizing corresponding observation videos from a novel-viewpoint reprojected scene
video and a robot-only video rendered from the retargeted joint actions. The generated
paired demonstrations are used to train downstream policies.

• We introduce EgoViewTransfer, a generative video repair model finetuned from a pretrained
video generation model with a double reprojection strategy, which fuses reprojected scene
video and rendered robot video to synthesize consistent, realistic egocentric observation
video.

• Experiments on simulation (RoboTwin2.0) and real-world robot show policy success rate
absolute improvements of +17.0% (standard egocentric viewpoint) and +17.7% (novel
egocentric viewpoints) in simulation when incorporating demonstrations generated by
EgoDemoGen into the training mixture, and +18.3% and +25.8% on real-world robot.
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Moreover, performance continues to improve as the proportion of EgoDemoGen-generated
demonstrations increases, with diminishing returns.

2 RELATED WORK

Data Generation for Policy Learning. Generating synthetic demonstrations has emerged as a
promising approach to address data scarcity in imitation learning (Hussein et al., 2017; Zhao et al.,
2020). Existing methods can be broadly categorized into three streams: (1) Geometry-based
methods leverage 3D representations to generate novel viewpoint observations but typically preserve
original actions, causing visual-action mismatch under significant viewpoint changes (Xue et al.,
2025; Yang et al., 2025; Zhou et al., 2023). (2) Visual synthesis methods focus on generating
realistic observations without corresponding actions via advanced generative image models, making
them unsuitable for egocentric demonstration generation (Tian et al., 2025; Sargent et al., 2024;
Chen et al., 2023; 2025a). (3) Motion retargeting methods excel at adapting action trajectories to
new object poses but operate primarily from third-person viewpoint without addressing egocentric
viewpoint shifts (Mandlekar et al., 2023; Ameperosa et al., 2025; Lin et al., 2025). Unlike these works,
EgoDemoGen specifically addresses egocentric demonstration generation by utilizing a generative
video repair model EgoViewTransfer that synthesizes novel viewpoint observations conditioned on
both reprojected scene videos and robot motion videos, while simultaneously retargeting actions to
maintain precise visual-action alignment from the novel egocentric viewpoint.

Video Generation Models in Robotics. Recent advances in foundational video generation models
have catalyzed applications in robotics (Blattmann et al., 2023; Hong et al., 2022; Yang et al., 2024;
Zhu et al., 2024b). Broadly, methods fall into three groups: (1) video-as-policy train or adapt a
strong video model and decode executable actions from its rollouts, yielding policies with improved
generalization (Cheang et al., 2024; Liang et al., 2025b;a). (2) predict-then-act first synthesize future
observations (often text/goal-conditioned) and then infer actions or supervision from the generated
sequences (Du et al., 2023; Luo & Du, 2024; Patel et al., 2025). (3) action-conditioned world
models generate future video conditioned on actions to serve as simulators or data engines (Zhu et al.,
2024a; Zhou et al., 2024; Liu et al., 2025; Jang et al., 2025). Unlike these directions, which rarely
handle novel egocentric viewpoint shifts explicitly, EgoDemoGen finetunes a video generation model
to produce observation videos paired with retargeted actions in the novel egocentric frame, ensuring
visual–action alignment for egocentric viewpoint-robust learning.

3 METHODOLOGY

3.1 OVERVIEW

Our goal is to generate novel egocentric demonstration pairs (Ṽ , Q̃) for a dataset of demonstrations
{(V,Q,D)} collected from single egocentric viewpoint. Each demonstration includes an RGB
observation video V and the corresponding robot joint actions Q, along with aligned depth maps D.
A novel egocentric viewpoint v is defined by a movement (∆x,∆y,∆θ) of the robot base, where
∆x,∆y are translations and ∆θ is a rotation about its vertical axis. For any such novel egocentric
viewpoint, our framework EgoDemoGen generates a paired demonstration comprising a egocentric
observation video Ṽ and its corresponding kinematically feasible joint actions Q̃. The detailed
EgoDemoGen framework is shown in Figure 2

The proposed EgoDemoGen operates through two main modules: (1) Action Retargeting (§3.2):
retarget actions in the novel egocentric frame. (2) Novel Egocentric Observation Generation
(§3.3): synthesize novel egocentric observation with EgoViewTransfer by constructing a novel-
viewpoint reprojected scene video and a robot-only video rendered from the retargeted joint actions
as inputs. EgoViewTransfer (§3.4) is finetuned from a pretrained video generation model using a
self-supervised double reprojection strategy.

3.2 ACTION RETARGETING

The objective of action retargeting is to compute a kinematically feasible joint actions Q̃ that
reproduces the original task from the novel egocentric viewpoint v.

3
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Figure 2: Overview of EgoDemoGen. (1) Egocentric View Transform: a Novel Egocentric View
is specified by robot base motion (∆x, ∆y, ∆θ). (2) Action Retargeting: the original joint actions
Q is retargeted into the novel robot base frame to yield a kinematically feasible joint actions Q̃. (3)
Novel Egocentric Observations: starting from the original observation video V , we mask the robot,
reproject the scene to the novel viewpoint, perform hole filling, and apply EgoViewTransfer to
synthesize the coherent observations Ṽ . (4) Novel Demonstrations & Policy Training: we obtain
aligned pairs (Ṽ , Q̃) for training egocentric viewpoint-robust policies.

For each arm a ∈ {L,R}, time step t and qat ∈ Q, we first compute the end-effector pose in the
source base frame via forward kinematics:

T a
e (t) = FKa(q

a
t ). (1)

This pose is then transformed into the target base frame defined by v:

T a→v
e (t) = T a

v · T a
e (t). (2)

We subsequently solve inverse kinematics to find the corresponding joint angles in the target frame:

q′at = IKa(T
a→v
e (t)). (3)

The retargeted dual-arm sequence is finally obtained by concatenating the joint angles for both arms:
Q̃ = {[q′Lt ; q′Rt ]}Tt=1. Further details can be found in Appendix A.2

3.3 NOVEL EGOCENTRIC OBSERVATION GENERATION

The generation of the novel egocentric observation video Ṽ aligned with the retargeted joint actions
Q̃ proceeds through three main stages. Given the source RGB-D sequence (V,D) and the novel
egocentric viewpoint v, the pipeline first prepares a scene video by reprojecting the scene and applying
hole filling, then renders a robot video from the retargeted joint actions, and finally fuses both through
conditional generative video repair to produce the final output.

Scene Video Preparation. Since the robot’s joint state differs in the novel egocentric viewpoint,
We begin by removing the robot from the original frames to isolate the scene content. We render a
segmentation mask M robot

t for each frame, details in Appendix A.3:

Iscene
t = (1−M robot

t )⊙ It. (4)
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The scene-depth pair (Iscene
t , Dt) is reprojected to novel egocentric viewpoint, details in Appendix A.4.

This reprojection creates an initial novel-view scene image Înov
t but introduces holes due to occlusion.

We apply hole filling to complete the missing regions, producing Iscene,nov
t . The scene video V nov

S is
formed by aggregating these frames.

Robot Video Rendering. Using the retargeted joint action sequence Q̃ and the novel viewpoint
parameters, we render a robot-only video V nov

R = {I robot,nov
t }Tt=1, details in Appendix A.3. This video

serves as a conditioning input to the generative video repair model, providing information about the
robot’s motion in the novel egocentric viewpoint.

Conditional Video Generative Repair. The final novel-view video Ṽ is generated by a conditional
generative video repair model EgoViewTransfer (described in §3.4) Gϕ that takes both the scene
video V nov

S and robot video V nov
R as inputs:

Ṽ = Gϕ(V
nov
S , V nov

R ). (5)

The generated video Ṽ shows a complete execution of the task from the novel egocentric viewpoint,
with the robot motion aligned to Q̃.

3.4 EGOVIEWTRANSFER

VAE
Encoder

VAE
Encoder

Scene Video

Robot Video

Noise
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D
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…… VAE
Decoder

Prompt: Generate a realistic 
egocentric view video ……

Text
Encoder

(a) Double Reprojection (b) EgoViewTransfer

Original
Video

Reproj
Video

Double
Reproj

Generated Video

Figure 3: EgoViewTransfer. (a) Double reprojection. It simulates artifacts and occlusions caused
by viewpoint change. The double reprojected video are aligned with the original video to form
input/label pairs for training. (b) Architecture of EgoViewTransfer. The model takes a degraded
scene video and a robot video as conditions and generates egocentric observation videos consistent
with dual inputs.

We employ a self-supervised finetuning strategy to train EgoViewTransfer Gϕ using only source
egocentric view demonstrations, eliminating the need for novel egocentric view ground truth data.
Our approach adapts the double reprojection technique (YU et al., 2025) to simulate the occlusions
encountered during novel view synthesis.

Double Reprojection for Data Preparation. For each source RGB-D frame (It, Dt), we simulate
the geometric distortions and occlusion artifacts typical of novel view synthesis through a double
reprojection process, see Figure 3(a). We first reproject the source frame to randomly sampled
novel viewpoint v ∼ p(v) and obtain novel view frame (Înov

t , D̂nov
t ). To simulate incomplete scene

information, we repeoject this novel view frame back to he original source view and obtain artifacted
scene frames V̆ src

S = {Ĭsrc
t }Tt=1 that mimic the challenges of novel-view synthesis. Details of novel

view reprojection can be found in Appendix A.4.

Training Objective. To mitigate the influence of robot-shaped black holes in the artifacted scene
video V̆ src

S , which result from the original robot mask and may misalign with the retargeted robot

5
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actions, we apply hole filling to obtain the final scene conditioning video V̄ src
S . The model then learns

to reconstruct the original source video V GT = {It}Tt=1 conditioned on both V̄ src
S and the source

robot video V src
R (rendered from the original joint action sequence Q), see Figure 3(b). Following the

standard diffusion training paradigm, we minimize the denoising objective:

Ldiff = Eτ,ε∥ε− ε̂ϕ(xτ , τ ; [V̄
src
S , V src

R ])∥22, (6)

where xτ = ατV
GT + στε is a noisy version of the target video.

Inference. During inference at a novel egocentric viewpoint v, the generation pipeline is consistent
with Conditional Video Generative Repair in §3.3.

4 EXPERIMENT RESULTS

4.1 EXPERIMENTAL SETUP

4.1.1 ENVIRONMENTS AND TASKS

We conduct experiments in both the RoboTwin2.0 (Chen et al., 2025b) simulation environment and
on a dual-arm robot in the real world, as illustrated in Figure 4.

(a) Simulation Tasks

(b) RealWorld Tasks

(c) RealWorld Test
Egocentric View Shift

Figure 4: Simulation and Real-World Tasks with
Egocentric View Shift.

Simulation Environment: We conduct simu-
lation experiments in RoboTwin2.0 with dual
Piper arms. Detailed Setup is in Appendix A.5.1.
We evaluate on three tasks: Lift Pot, Handover
Mic, and Shake Bottle. 100 demonstrations
are collected per task from the standard ego-
centric viewpoint via scripted policies. Eval-
uation involves 100 trials each for the stan-
dard egocentric viewpoint and novel egocentric
viewpoints sampled within ∆x ∈ [−0.1, 0.1]m,
∆y ∈ [−0.1, 0.1]m, ∆θ ∈ [−10, 10] degrees.

Real-World Environment: We conduct real-
world experiments in a Mobile ALOHA plat-
form. Detailed Setup is in Appendix A.7.1.
Tasks include Pick Up Bowl, Pick Bowl and
Place to Basket, and Pick Bowl and Place to
Plate. 50 demonstrations are collected per task from the standard egocentric viewpoint via teleopera-
tion. Evaluation involves 20 trials each for three fixed viewpoints: standard, counterclockwise, and
clockwise egocentric viewpoint, as shown in Figure 4(c).

4.1.2 BASELINE METHODS

We evaluate the following baselines under different training-data configurations and use policy model
ACT (Zhao et al., 2023) for simulation and π0 (Black et al., 2024) for the real robot:

• Standard View (50): Training with 50 standard egocentric viewpoint demonstrations

• Standard View (100): Training with 100 standard egocentric viewpoint demonstrations
(simulation only)

• EgoDemoGen w/o EgoViewTransfer: Training with 50 standard + 50 naively composed
demonstrations (directly merge scene video and robot video)

4.1.3 IMPLEMENTATION DETAILS

EgoViewTransfer Models: We adapt CogVideoX-5b-I2V (Yang et al., 2024) by expanding input
channels to 48 for dual-video conditioning. The model is finetuned on a large multi-task demonstration
dataset: 380 episodes for simulation (details in Appendix A.5) and 1,000 episodes for real-world
(details in Appendix A.7), split 9:1 for training and validation.
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For demonstration generation, novel egocentric viewpoints are sampled within ∆x ∈ [−0.1, 0.1]m,
∆y ∈ [−0.1, 0.1]m, ∆θ ∈ [−10, 10] degrees relative to the original base pose in simulation and
∆x ∈ [−0.1, 0.0]m, ∆y ∈ [−0.1, 0.1]m, ∆θ ∈ [−10, 10] degrees in real-world because real-world
robot cannot move forward. Wrist camera observations remain unchanged from the original demon-
strations. For 50 standard egocentric demonstrations, we sample one novel egocentric viewpoint per
demonstration and EgoDemoGen generate novel demonstration.

Policy Models: Details of policy models can be found in Appendix A.6 (ACT) and Appendix A.8
(π0).

4.1.4 EVALUATION METRICS

Policy Performance: We evaluate policy performance using Task Success Rate.

Video Quality: We evaluate the generated videos using PSNR, SSIM, LPIPS (Zhang et al., 2018),
and FVD (Unterthiner et al., 2018) to quantify visual similarity, fidelity, and temporal coherence
compared to ground truth videos.

4.2 MAIN RESULTS

Simulation. Table 1 shows that EgoDemoGen achieves the best results on both views. Averaged
over tasks, the novel view improves from 14.7% to 30.0% (+15.3% abs.), while the standard view
increases from 78.0% to 80.7% (+2.7% abs.). Compared with EgoDemoGen (w/o EgoViewTransfer),
the gains are 15.3%→30.0% (+14.7% abs.) on the novel view and 75.7%→80.7% (+5.0% abs.)
on the standard view. Per task, novel-view gains are consistent—Lift Pot 18%→43% (+25% abs.),
Handover Mic 7%→22% (+15% abs.), Shake Bottle 19%→25% (+6% abs.); the standard view
changes are 75% → 83% (+8% abs.), 94% → 96% (+2% abs.), and 65% → 63% (−2% abs.),
respectively. Overall, kinematics-based retargeting plus EgoViewTransfer yields paired demonstra-
tions that enhance viewpoint robustness without degrading average standard-view performance.

Table 1: Simulation results: success rates (%) across tasks and viewpoints (100 trials each).
Standard: Standard Egocentric View, Novel: Novel Egocentric View.

Lift Pot Handover Mic Shake Bottle Average
Method Standard Novel Standard Novel Standard Novel Standard Novel
Standard View (50) 64 16 85 11 42 10 63.7 12.3
Standard View (100) 75 18 94 7 65 19 78.0 14.7
EgoDemoGen (w/o EgoViewTransfer) 68 20 94 12 65 14 75.7 15.3
EgoDemoGen 83 43 96 22 63 25 80.7 30.0

Real-world. Table 2 summarizes three real-world tasks (novel view averaged over CCW/CW;
20 trials per condition). EgoDemoGen attains the best averages. Novel-view success rises from
36.7% to 62.5% (+25.8% abs.) over Standard View (50) and from 43.3% to 62.5% (+19.2% abs.)
over EgoDemoGen (w/o EgoViewTransfer). Standard-view success increases from 60.0% to 78.3%
(+18.3% abs.) and from 51.7% to 78.3% (+26.6% abs.) relative to w/o EgoViewTransfer. Gains
hold across all three tasks and both rotation directions, indicating that pairing retargeted actions
with repaired videos improves egocentric viewpoint robustness without harming standard-view
performance.

Table 2: Real-world results: success rates (%) across tasks and viewpoints (20 trials each).
Std.: Standard Egocentric View, CCW: Counterclockwise View, CW: Clockwise View, Nov.: Novel
Egocentric View (averaged over CCW and CW).

Pick Up Bowl Place Bowl Basket Place Bowl Plate Average
Method Std. CCW CW Std. CCW CW Std. CCW CW Std. Nov.
Standard View (50) 70 40 55 65 35 45 45 25 20 60.0 36.7
EgoDemoGen (w/o EgoViewTransfer) 50 15 40 60 65 75 45 45 20 51.7 43.3
EgoDemoGen 90 75 70 80 75 75 65 45 35 78.3 62.5

7
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Figure 5: Success Rates under varying data mixture ratios for the standard view and novel egocentric
view. The dashed lines indicate the 1:0 baselines, and for real-world results the novel curve is the
mean over Counterclockwise/Clockwise rotations.

4.3 DATA MIXING RATIO ANALYSIS

Figure 5 plots success under the standard view and the novel egocentric view across mixing ratios
{1:0, 1:0.5, 1:1, 1:3}. Increasing the share of paired EgoDemoGen demonstrations improves both
curves, with larger gains on the novel view on most tasks. A clear knee appears at 1:1: performance is
flat/modest at 1:0.5, jumps at 1:1, then grows more slowly at 1:3 (diminishing returns). Standard-view
accuracy rises in parallel—no trade-off—indicating that mixing generated pairs with source data
enhances viewpoint robustness without harming in-distribution behavior. Overall, 1:1 is a strong
accuracy–cost point, with 1:3 giving smaller additional gains.

4.4 ACTION RETARGETING VALIDATION

Table 3: Novel egocentric-view replay success rate (%).
Evaluated over 20 random views per task.

Method Lift Pot Handover Mic Shake Bottle Average
Original Action 5 15 5 8.3
Retargeted Action 100 60 75 78.3

Table 3 reports replay success in the
novel egocentric view (mean over 20
random viewpoints). Retargeted ac-
tions vastly outperform original ac-
tions, raising the average from 8.3%
to 78.3% (+70.0% abs.,≈ 9.4×).
Per task: Lift Pot 5% → 100%
(+95% abs.), Handover Mic 15% → 60% (+45% abs.), Shake Bottle 5% → 75% (+70% abs.).
These results show that source-frame actions do not transfer to novel viewpoints; kinematics-based
retargeting (IK in the novel frame) is essential for feasible trajectories and for constructing paired
(video, action) demonstrations that enable viewpoint-robust manipulation.

4.5 VIDEO GENERATION QUALITY ANALYSIS

Quantitative Analysis. In simulation, we compare synthesized videos against the GT reference
under novel egocentric views. As shown in Table 4, Naive Composition suffers from artifacts and
temporal flicker, while EgoViewTransfer achieves markedly lower FVD (460.62→211.99) and
LPIPS (0.1175→0.1145), indicating closer alignment with the GT distribution. The slight decrease
in PSNR/SSIM is expected in clean simulated environments where pixelwise overlap favors direct
merge.
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Table 4: Simulation (Novel Egocentric View): video generation metrics. Naive Composition:
directly merge scene video and robot video without generative repair. Higher ↑ is better; lower ↓ is
better.

Task Method PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓

Lift Pot Naive Composition 25.998 0.9064 0.1020 387.63
EgoViewTransfer 25.916 0.8929 0.0938 157.83

Handover Mic Naive Composition 22.404 0.9130 0.1323 617.74
EgoViewTransfer 23.077 0.9017 0.1297 272.64

Shake Bottle Naive Composition 21.788 0.8963 0.1182 376.48
EgoViewTransfer 21.126 0.8675 0.1201 205.49

Average Naive Composition 23.397 0.9052 0.1175 460.62
EgoViewTransfer 23.373 0.8874 0.1145 211.99

Table 5: Real World (Validation Set, Standard View):
video generation metrics. Naive Composition: directly
merge scene video and robot video without generative repair.
Higher ↑ is better; lower ↓ is better.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓
Naive Composition 19.9507 0.7645 0.2453 896.46
EgoViewTransfer 26.9332 0.8895 0.0870 148.61

In the real world, evaluated on a dou-
ble reprojection validation set (Ta-
ble 5), EgoViewTransfer improves
PSNR and SSIM and substantially re-
duces LPIPS (0.2453→0.0870) and
FVD (896.46→148.61), confirming
that generative repair enhances vi-
sual fidelity and temporal coherence,
which aligns with the observed policy-
level gains.

Qualitative analysis. Figure 6 presents representative frames in simulation and the real world
comparing GT, EgoViewTransfer and Naive Composition. Naive Composition shows reprojection
blur and scene artifacts, and the URDF-rendered robot appears synthetic and inconsistent. In contrast,
EgoViewTransfer removes blur and artifacts and stylizes the overlaid robot to match the scene,
yielding cleaner, action-aligned observation videos.

(a) GT Videos

(b) Videos
EgoViewTransfer

(c) Videos
Naive Composition

Figure 6: Visualization of observation videos generated by EgoViewTransfer. Left: simulation.
Right: real-world.

5 CONCLUSION

We present EgoDemoGen, a framework that generates paired novel egocentric demonstrations by
retargeting actions in the novel egocentric frame and synthesizing novel egocentric observation videos
with proposed EgoViewTransfer, a generative video repair model. Aligning actions and observations
in the novel egocentric frame improves success under both novel egocentric viewpoints and source
standard egocentric viewpoint. Moreover, performance continues to improve as the proportion of
EgoDemoGen-generated paired data increases, with diminishing returns. EgoDemoGen offers a
practical route to improving the egocentric viewpoint robustness of visuomotor policies.

9
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were used only to aid or polish writing—e.g., grammar correction,
wording standardization, and caption/LaTeX cleanup. All edits were manually verified by the authors.
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A.2 KINEMATICS BASED ACTION RETARGETING

Kinematics-based Action Retargeting is detailed in Algorithm 1.

Algorithm 1 Kinematics-Based Action Retargeting (FK→ Ego Motion→ IK)

Input: joint trajectory {qt}T−1t=0 (14-DoF: L6, Lg, R6, Rg), URDF U , ego-motion (∆x,∆y,∆θ), IK
tolerance schedule T , optional joint maskM
Output: retargeted trajectory {q̃t}T−1t=0

1: Split qt→(qL
t ,g

L
t ,q

R
t ,g

R
t )

2: Load robot from U and instantiate FK/IK solvers
3: compute FK: TL

t ← FK(qLt ), TR
t ← FK(qRt )

4: (BL, BR)← CreateTransform(∆x,∆y,∆θ)

5: Left targets: T̂L
t ← BL T

L
t

6: Right targets: T̂R
t ← BR TR

t

7: Robust IK (left): (Q̃L, sL)← IK_Trajectory
(
{T̂L

t }, init = qL0 , schedule = T , mask =M
)

8: Robust IK (right): (Q̃R, sR)← IK_Trajectory
(
{T̂R

t }, init = qR0 , schedule = T , mask =M
)

▷ Trajectory IK uses LM solver with tolerance escalation, random restarts, and interpolate fill for
failures.

9: (Optional) smooth successful joint sequences with median filtering
10: for t = 0 to T−1 do
11: Compose actions with original grippers: q̃t ← [ Q̃L

t , g
L
t , Q̃

R
t , g

R
t ]

12: end for
13: return {q̃t}T−1t=0

A.3 RENDERING OF ROBOT VIDEO AND MASK

Rendering of Robot Video and Mask is detailed in Algorithm 2.

Algorithm 2 Rendering of Robot-Only Video and Mask in the Camera View

Input: URDF U , joint trajectory {qt}T−1t=0 , intrinsics K, extrinsic Tcam←base, frame rate ffps
Output: robot-only video Vrobot (RGB or RGBA) and robot maskMrobot

1: Load robot from U ; cache link meshes and materials; instantiate FK.
2: Configure off-screen renderer: set camera(K, Tcam←base), image size (H,W ), lighting, and

z-buffer.
3: for t = 0 to T−1 do
4: FK: compute per-link transforms {Li(t)} in the base frame from qt.
5: To camera: Lcam

i (t)← Tcam←base Li(t) for all links i.
6: Rasterize: render only robot geometry with z-buffer → RGBt, Maskt (and optional αt,

Deptht).
7: Background: keep transparent (RGBA) or composite on a constant color.
8: end for
9: Stack {RGBt} (and αt if present) and encode at ffps to obtain Vrobot.

10: Stack {Maskt} and encode at ffps to obtainMrobot.
▷ Off-screen rasterization with anti-aliasing; depth/alpha can be exported for later fusion.

11: return Vrobot,Mrobot

A.4 NOVEL VIEWPOINT REPROJECTION OF RGB AND DEPTH

As shown in Algorithm 3, for each frame we align depth to RGB, backproject to camera 0, transform
points with T0→1, and z-buffered bilinear-splat them to obtain the novel-view RGB and depth
(Ît, D̂t).
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Algorithm 3 RGB–D Novel-View Reprojection

Input: {It, Dt}T−1t=0 (RGB, depth in mm), camera intrinsics K ∈ R3×3, extrinsic T0→1 ∈ SE(3),
optional masks {Mt}, depth scale s (mm→m), max depth dmax

Output: {Ît, Ẑt}T−1t=0 : novel-view RGB and depth
1: for t = 0 to T − 1 do
2: Drgb

t ← AlignDepthToRGB(Dt, It, s) ▷ align depth to RGB resolution
3: (I⋆t , D

⋆
t )← ApplyMask(It, D

rgb
t ,Mt) ▷ optional; with spatial dilation

4: (Pt,Ct)← Backproject(I⋆t , D
⋆
t ,K, s, dmax) ▷ Pt∈RNt×3, Ct∈ [0, 1]Nt×3

5: P
(1)
t ← T0→1 Pt ▷ rigid transform to target camera

6: (Ît, D̂t)← ProjectZBuffer(P
(1)
t ,Ct,K) ▷ bilinear splatting + per-pixel min-depth

7: end for
8: return {Ît, D̂t}T−1t=0

Notes. Depth is assumed in millimeters and converted via s. Frames can be processed independently (optionally
in parallel across t on CPU for safety), or in a single process that can run on GPU. (Optional) A second
backproject–reproject pass via T1→0 can be added if double reprojection is desired.

A.5 SIMULATION IMPLEMENTATION DETAILS

A.5.1 SIMULATION ROBOT SETUP

Figure 7: Simulation Robot Setup.

As illustrated in Figure. 7, the RoboTwin 2.0 (Chen et al., 2025b) simulation environment uses two
Piper manipulators, one head-mounted egocentric camera, and two wrist-mounted cameras (D435;
vertical field of view FOVy = 37◦; resolution 240 × 320). The distance between the two arms is
0.68m.

A.5.2 DETAILS OF SIMULATION EGOVIEWTRANSFER MODEL

We construct the training dataset from 39 simulation tasks: beat_block_hammer,
blocks_ranking_rgb, blocks_ranking_size, click_bell, dump_bin_bigbin,
handover_block, handover_mic, lift_pot, move_can_pot,
move_pillbottle_pad, move_playingcard_away, move_stapler_pad,
open_laptop, open_microwave, pick_diverse_bottles, pick_dual_bottles,
place_a2b_left, place_a2b_right, place_bread_basket,
place_bread_skillet, place_burger_fries, place_can_basket,
place_container_plate, place_dual_shoes, place_empty_cup,
place_fan, place_mouse_pad, place_object_basket, place_object_scale,
place_object_stand, place_phone_stand, place_shoe, press_stapler,
put_bottles_dustbin, shake_bottle, shake_bottle_horizontally,
stamp_seal, and turn_switch. Under the clean configuration, we collect 10 episodes
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per task in the standard egocentric view, yielding a total of 390 episodes, which form the training set
for the simulation video generative repair model.

For the double-reprojection training data, the sample range of novel egocentric viewpoints is ∆x ∈
[−0.1, 0.1] m, ∆y ∈ [−0.1, 0.1] m, ∆θ ∈ [−10, 10] degrees.

Model Training uses AdamW optimizer (lr=2e-5), batch size 2/GPU, gradient accumulation over 8
steps, for 120 epochs. Input resolution is 240×320. The number of frames is 49. Model is finetuned
on 4×H20 GPUs.

During inference, we process long videos as 49-frame segments, and use 25 denoising steps with
DPM scheduler per segment.

A.6 DETAILS OF ACT

We use default ACT (Zhao et al., 2023) settings unless noted. Batch size is 16, learning rate is
1× 10−5, action chunk size is 50, and input resolution is 480× 640 per camera. Training runs for
40k steps on 1×RTX 4090 GPU. During testing, temporal aggregation is used.

A.7 REAL-WORLD IMPLEMENTATION DETAILS

A.7.1 REAL-WORLD ROBOT SETUP

Egocentric Camera

Figure 8: Real-World Robot Setup.

As illustrated in Figure. 8, real-world environment uses Mobile ALOHA platform with dual arms,
one head-mounted high egocentric camera, and two wrist-mounted cameras (Intel RealSense D435i
RGB-D cameras; resolution 480× 640). The distance between the two arms is 0.6m.

A.7.2 DETAILS OF REAL-WORLD EGOVIEWTRANSFER MODEL

We construct the training dataset from 13 real-world tasks: clean_desk_subtasks,
clean_desk, unfold_shirt, Toilet_paper, pour_drinks,
put_microwave, RG_robot_data, Navigation_to_washing_machine,
throw_bottle_for_sim2real, take_cloth, put_cloth_basket, clean_sink,
and table_setting_origin. Each task contains multiple subtask configurations, and we select
up to 3 episodes for each subtask, yielding a total of approximately 1k episodes for training. For
episodes where depth information is missing, we generate scale-consistent depth maps using the
method of MoGe (Wang et al., 2025b).

For the double-reprojection training data, the sample range of novel egocentric viewpoints is ∆x ∈
[−0.1, 0.1] m, ∆y ∈ [−0.1, 0.1] m, ∆θ ∈ [−10, 10] degrees.
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Training uses AdamW optimizer (lr=2e-5), batch size 1/GPU, gradient accumulation over 8 steps, for
120 epochs. Input resolution is 480×640. The number of frames is 49. Model is finetuned on 4×H20
GPUs.

During inference, we process long videos as 49-frame segments, and use 25 denoising steps with
DPM scheduler per segment.

A.8 DETAILS OF π0

We follow default π0 (Black et al., 2024) settings unless noted. Batch size is 128, input resolution is
480× 640, and training runs for 40k steps on 4×H20 GPUs.

A.9 MORE VISUALIZATION RESULTS

Visualization of policy execution in the Simulation is shown in Figure 9. Visualization of policy
execution in the real world is shown in Figure 10. Visualization of EgoViewTransfer in Simulation is
shown in Figure 11. Visualization of EgoViewTransfer in Real-World is shown in Figure 12.

(a) Lift Pot

(b) Handover
Mic

(c) Shake
Bottle

Figure 9: Visualization of policy execution in the Simulation. The green boxes denote the standard
egocentric view, the red boxes denote the random novel egocentric view.
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(b) Place Bowl
Basket

(c) Place Bowl
Plate

(a) Pick Up
Bowl

Figure 10: Visualization of policy execution in the real world. The green boxes denote the standard
egocentric view, the red boxes denote the counterclockwise egocentric view, and the blue boxes
denote the clockwise egocentric view.
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(a) Lift Pot

(b) Handover
Mic

(c) Shake
Bottle

Figure 11: Visualization of EgoViewTransfer in Simulation. The green boxes denote the GT video,
the red boxes denote the Video w/ EgoViewTransfer, and the blue boxes denote the Video w/o
EgoViewTransfer (Naive Composition).
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(a) Pick Up
Bowl

(b) Place Bowl
Basket

(c) Place Bowl
Plate

Figure 12: Visualization of EgoViewTransfer in Real-World. The red boxes denote the Video w/
EgoViewTransfer, the blue boxes denote the Video w/o EgoViewTransfer (Naive Composition).
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