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ABSTRACT

General continual learning (GCL) is a broad concept to describe real-world contin-
ual learning (CL) problems, which are often characterized by online data streams
without distinct transitions between tasks, i.e., blurry task boundaries. These re-
quirements result in poor initial performance, limited generalizability, and severe
catastrophic forgetting, heavily impacting the effectiveness of mainstream GCL
models trained from scratch. While the use of a frozen pretrained backbone with
appropriate prompt tuning can partially address these challenges, such prompt-
based methods remain sub-optimal for CL of remaining tunable parameters on the
fly. In this regard, we propose an innovative approach named MISA (Mask and
Initial Session Adaption) to advance prompt-based methods in GCL. It includes a
forgetting-aware initial session adaption that employs pretraining data to initialize
prompt parameters and improve generalizability, as well as a non-parametric logit
mask of the output layers to mitigate catastrophic forgetting. Empirical results
demonstrate substantial performance gains of our approach compared to recent
competitors, especially without a replay buffer (e.g., up to 18.39%, 22.06%, and
11.96% performance lead on CIFAR-100, Tiny-ImageNet, and ImageNet-R, re-
spectively). Moreover, our approach features the plug-in nature for prompt-based
methods, independence of replay, ease of implementation, and avoidance of CL-
relevant hyperparameters, serving as a strong baseline for GCL research.1

1 INTRODUCTION

Continual learning (CL) (Wang et al., 2024b; De Lange et al., 2021) focuses on the lifelong acqui-
sition of knowledge in response to real-world changes. Although conventional CL research often
relies on offline training of each task with distinct transitions between tasks (i.e., clear task bound-
aries), online scenarios with blurry task boundaries tend to be more practical yet challenging. Such
“online” scenarios demand the model to swiftly adapt to new information, which is essential for
real-time applications. Blurry task boundaries further reflect realistic data distributions without dis-
tinct transitions between tasks, i.e., old classes disappear gradually over time and might re-appear
when new classes emerge (see Fig. 1, Left). The above considerations, collectively referred to as
general continual learning (GCL) (De Lange et al., 2021), have received increasing attention in re-
cent years. However, most of the existing works (Aljundi et al., 2019; Buzzega et al., 2020; Koh
et al., 2021; Bang et al., 2021) address GCL by learning a model from scratch. This strategy often
leads to challenges such as poor initial performance, limited generalizability, and severe catastrophic
forgetting (McCloskey & Cohen, 1989) in such a complex setting.

One promising direction that emerged in GCL literature (Moon et al., 2023) is to employ prompt-
based methods (Wang et al., 2022d;c; 2024a) on the basis of pretrained models (PTMs), which
involves keeping the PTMs frozen and introducing a few prompt parameters for representation learn-
ing. Such methods outperform the previous training-from-scratch ones by a significant margin. The
frozen backbone pretrained on a large-scale dataset provides solid initialization with strong gener-
alizability and is resistant to forgetting. However, the particular challenges of GCL persist for the
remaining tunable components, i.e., the prompt parameters and the output layers, making a direct
application of prompt-based methods to GCL sub-optimal.

1Our code is included in supplementary materials for examination and will be released upon acceptance.
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Figure 1: Problem setup and motivation. Left: illustration of the GCL data stream. Mid: average
online evaluation accuracy at different timesteps. Right: session 1 accuracy, where we evaluate the
disjoint classes of session 1 after each session. All methods are tested without a replay buffer.

Studies have demonstrated that the prompt parameters and the output layers are particularly vulnera-
ble in the challenging setting of GCL. First, prompt-tuning is known to suffer from a limited capacity
in vision tasks (Lester et al., 2021; Vu et al., 2021; Chen et al., 2021). Training these parameters on
the fly in online scenarios of GCL can result in poor initial performance and limited generalizabil-
ity. As shown in Fig. 1 (Mid), state-of-the-art methods have moderate initial performance and drop
dramatically after session transitions (timestep 4). Moreover, it is well-studied in CL literature (Wu
et al., 2019; Ahn et al., 2021) that the output layers suffer from forgetting in class-incremental learn-
ing, a challenge that is exacerbated in GCL due to the naturally imbalanced data stream and the
interference between new and old knowledge caused by blurry task boundaries. While recent GCL
works (Moon et al., 2023) have introduced specialized learning strategies for the output layers, they
still fail to outperform conventional prompt-based methods. Specifically, the session 1 accuracy in
Fig. 1 (Right) shows the capacity of retaining acquired knowledge from the first session in subse-
quent sessions, where all existing methods suffer to retain this knowledge. Thus, there is a clear
need for learning-efficient, forgetting-less strategies to address the particular GCL challenges.

Our method, MISA (Mask and Initial Session Adaption), is designed with two objectives: a
forgetting-aware initial session adaption (ISA) for better learning efficiency and generalizability
of the prompt parameters, and a non-parametric logit masking for less catastrophic forgetting of the
output layers. The initial session refers to a warm-up of the model parameters prior to any GCL
sessions. Specifically, we reuse the pretraining data of the PTMs to warm up the prompt parame-
ters. As naı̈ve pretraining tends to enhance mainly the initialization rather than the generalizability,
we devise a novel forgetting-aware minimization technique in ISA to improve the generalizability of
prompts to distribution shift. Unlike conventional CL methods that address forgetting after it occurs,
our approach proactively prevents future forgetting and maintains pretrained knowledge for down-
stream GCL. As for reducing forgetting of the output layers, we propose a non-parametric strategy
that is based on class appearance to mask the output logits. We show that such a simple strategy,
which is not effective for training-from-scratch paradigm, can benefit from the stable representation
space retained by the frozen backbone and effectively rectify the output layers.

In summary, our MISA is specifically designed for tunable parameters of prompt-based methods in
GCL. We emphasize the plug-in nature of MISA for different methods and scenarios, as it is replay-
independent, hyperparameter-free, and remarkably effective in GCL. Accordingly, our approach
brings substantial performance gains compared to recent strong baselines. For instance, there is up
to 18.39%, 22.06%, and 11.96% performance lead on CIFAR-100, Tiny-ImageNet, and ImageNet-
R, respectively. Our contributions can be summarized as follows:

• We propose an innovative approach that addresses the poor initialization, limited generaliz-
ability, and severe forgetting of GCL, which features the ease of implementation, avoidance
of CL-relevant hyperparameters, and plug-in nature for prompt-based methods.

• Our proposed forgetting-aware initial session adaptation effectively improves the initial-
ization of prompt parameters and their generalizability to distribution shift, and our non-
parametric logit masking rectifies the output layers to alleviate catastrophic forgetting.

• Across multiple challenging benchmarks, Our approach outperforms a variety of existing
methods by a wide margin, setting a new state of the art for GCL research.
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2 RELATED WORK

Continual Learning (CL). The default setting of CL usually performs offline training of each task
with explicit task boundaries. Rrepresentative methods for such settings can be roughly divided
into three groups (Wang et al., 2024b). The first is replay-based methods, which store or gen-
erate a few old training samples for subsequent reuse (Buzzega et al., 2020; Wang et al., 2022a;
Kang et al., 2023; Ostapenko et al., 2019). The second is parameter isolation methods (Serra et al.,
2018; Jung et al., 2020), which allocate task-specific parameters to prevent overwriting. The third
is regularization-based methods, which introduce regularization in loss functions to mitigate forget-
ting (Wu et al., 2019; Cha et al., 2021; Douillard et al., 2020). Typically, there have been explorations
on regularizing the sharpness of the loss surface to alleviate forgetting (Mirzadeh et al., 2020; Yang
et al., 2023; Mehta et al., 2023), but limited to a training-from-scratch paradigm or shallow networks.

Prompt-based methods (Smith et al., 2023; Wang et al., 2022d;c; 2024a) serve as an emerging new
technical route of CL. In particular, they are essentially state of the art of CL with PTMs, which
keeps the PTMs frozen and introduce a few prompt parameters to instruct representation learning.
They can be categorized into task-specific prompts (Razdaibiedina et al., 2023a; Wang et al., 2022b),
task-shared prompts (Wang et al., 2022d; Smith et al., 2023) and their combinations (Wang et al.,
2022c; Hong et al., 2024). Although such methods perform well in conventional CL scenarios with
adequate pretraining, they exhibit many problems in GCL such as poor initial performance, limited
generalizability, and severe catastrophic forgetting. [Revised: Moreover, many advanced prompt-
based methods are not adapted to GCL by design. For instance, CODA-Prompt (Smith et al., 2023)
and NSP2 (Lu et al., 2024) assume orthogonality between tasks which cannot be satisfied by the
blurry task boundaries. RanPAC (McDonnell et al., 2024) and HiDe-Prompt (Wang et al., 2024a)
lack the design for online update of class statistics in GCL.]

General Continual Learning (GCL) is a broad concept to describe a variety of practical challenges
for CL (De Lange et al., 2021). In addition to the primary focus on “online learning” and “blurry
task boundaries” considered in our approach, other requirements of GCL like “constant memory”
and “no test-time oracle” also play a crucial role in enabling the model to better adapt to real-world
applications. These additional aspects will be briefly discussed in this paper as well to demonstrate
that our approach is ideally suited for GCL. Various settings have been proposed as realizations of
GCL (Aljundi et al., 2019; Koh et al., 2021; Moon et al., 2023). Si-Blurry (Moon et al., 2023) is
the latest example of GCL to evaluate the two primary facets, which assumes the distributions of
training samples belonging to each class is randomly sampled in each task. Although there have
been numerous methods (Aljundi et al., 2019; Buzzega et al., 2020; Bang et al., 2021) attempting
to address GCL, these methods often focus on training from scratch and thus necessitate replaying
a few old training samples, achieving inferior performance with potential privacy issues. [Revised:
Gummadi et al. (2022) dealt with blurry task boundaries with novelty detection, yet failed to meet
the online data stream of GCL.] The most recent and only prompt-based GCL method (Moon et al.,
2023) demonstrated improved performance when using a pretrained backbone compared to train-
ing from scratch. However, it remains remarkably sub-optimal in addressing the GCL challenges,
yielding only marginal improvements over conventional prompt-based CL methods.

3 PRELIMINARIES

In this section, we describe the problem setup of conventional CL and GCL, as well as the advanced
prompt-based methods that address the former.

Problem Setup. Let C be the set of available classes whose cardinality is denoted as N = |C|.
Suppose that there are T learning sessions or tasks. In conventional CL, we create a uniform partition
{Ct}t=1...T of C, where Ct represents the classes allocated for task t. The number of classes in each
task is identical, we thus have: ∀i, j, i ̸= j, |Ci| = |Cj |. In addition, at each task, the model can
extensively iterate on the data with epoch K ∈ N. In contrast, GCL relaxes the assumptions of clear
boundaries and offline learning. Due to the blurry task boundaries, we opt for the notion of learning
sessions which represent different time steps in a one-pass data stream of GCL. Specifically, classes
can be overlapped between learning sessions, such that:

∀i, j, i ̸= j, P (Ci ∩ Cj ̸= ∅) > 0, (1)
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Figure 2: An overview of our MISA with a frozen pretrained backbone in GCL. (a) Data in GCL
consists of disjoint and blurry classes. (b) Initial session adaption is conducted prior to any CL ses-
sions. Once finished, only the warmed-up prompt parameters are reused for CL. (c) Non-parametric
logit mask which retains logits of available classes in a batch or a session.

where P (·) denotes the probability. Moreover, due to the one-pass constraint on the data, the model
can only iterate one epoch over the data, such that K = 1. Consequently, GCL emphasizes realistic
data distributions and the swift adaptation of the model.

The latest realization of GCL is Si-Blurry (Moon et al., 2023). First, available classes C are ran-
domly divided into non-overlapping CD and CB for disjoint classes and blurry classes, respectively.
The disjoint class ratio is defined as m = |CD|/|C|. CD and CB are divided into non-uniform par-
titions {CD

t }t=1...T and {CB
t }t=1...T , unlike the uniform distribution in conventional CL. Although

all data corresponding to CD is divided into disjoint sessions, there is a ratio of n training samples
from CB being randomly shuffled across sessions, with n as the blurry sample ratio. The stochastic
nature of Si-Blurry is controlled by m and n. As a realization of GCL, the shuffling of blurry classes
satisfies Eq. 1. Moreover, Si-Blurry assumes an online scenario that naturally fits in the one-pass
requirement of GCL. We further prove in Appendix A.3 that Si-Blurry is a realization of generalized
class incremental learning (Mi et al., 2020).

Prompt-Based Methods. We denote a pretrained vision transformer (ViT) (Dosovitskiy et al.,
2020) as f = fc ◦ fr ◦ fe, where fe is the input embedding network, fr is a stack of self-attention
layers, and fc is the output layer(s). For an input image x and its one-hot label vector y, let fe(x) =
xe ∈ RL×D be the embedding features with L the token length and D the embedding dimension.
Prompts are learnable parameters pe ∈ RLp×D prepended to the embedding features as xp =
[pe;xe], with Lp the prompt length. The extended features are forwarded to the network such that
ŷ = fc ◦ fr(xp), with ŷ ∈ RN the prediction vector. Existing prompt-based methods (Wang et al.,
2022d;c; Smith et al., 2023) for conventional CL usually train a pool of prompts and at each time
select the most relevant ones through a query-key matching mechanism. Thus, how to enhance the
knowledge captured by the prompts is of vital importance for these methods.

4 METHOD

We now present the two main components of our MISA, as shown in Fig. 2: (1) the forgetting-
aware initial session adaption (ISA) warms up prompt parameters with forgetting-aware minimiza-
tion (FAM) and prompt augmentation; and (2) the non-parametric logit masking rectifies the output
of the model to avoid the interference of old and new knowledge. These two components feature the
ease of implementation, the avoidance of CL-relevant hyperparameters, and the plug-in nature for
other prompt-based methods, serving as a strong baseline for GCL research.

4.1 INITIAL SESSION ADAPTION

We start by defining the initial session. In conventional (offline) CL, it has been overlooked that
using the pretrained models for prompt-based methods implies an initial learning session of the

4
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backbone that is prior to any downstream CL sessions. Similarly, we propose to incorporate prompt
parameters in the initial session of GCL. In particular, we leverage the pretraining dataset Dinit

to prepare the prompt parameters for a swift adaption. We warm up the prompt parameters in a
supervised manner2 for ISA, following the pretraining paradigm of the backbone. Accordingly, the
supervised learning objective is defined as:

min
pe,fc

∑
(x,y)∈Dinit

Lce(fc ◦ fr([pe;xe]),y), (2)

where Lce is the cross-entropy loss and we omit the regularization term in Eq. 2 for simplicity.
[Revised: Both pe and fc are randomly initialized and then perform ISA. The learned fc will

be discarded after this step and only the learned pe will be reused afterward. The class proto-
types learned from Dinit in fc are irrelevant to downstream tasks, as class identities are expected to
change, making them ineffective for downstream use. Note that using the same pretraining dataset
at the backbone is rather a design choice to ensure a fair comparison with existing methods, as the
adaptation of pe does not require any additional data, than a strict requirement of the ISA dataset.
Additional experiments when pretraining data is partially or completely unavailable can be found in
Appendix A.4.9.]

There are several reasons for which ISA should naturally be effective. First, ISA for the prompt
parameters is equivalent to the pretraining operation in an offline setting, which has already been
shown effective in various settings. Second, ISA can also be seen as a particular initialization of
prompts, which proved to be essential for the effectiveness of visual prompt tuning (Tsai et al., 2024;
Shen et al., 2024). Lastly, from a domain adaptation perspective, the warmed-up prompts effectively
reduce the domain gap to downstream GCL compared to the randomly initialized prompts. [Re-
vised: It is noteworthy that ISA is designed to improve the poor learning capacity of visual prompts
in GCL. Such limitation is less significant in conventional (offline) CL, as adequate training with
adequate differentiation of task-specific knowledge allows the prompts to eventually converge to a
near-optimal stage. This highlights that our design is tailored to the particular challenges of GCL.]

4.2 FORGETTING-AWARE MINIMIZATION

While naively initializing the prompt parameters using Eq. 2 on the pretraining data can address the
poor initialization, this straightforward strategy lacks considerations for generalizability. Inspired
by sharpness-aware minimization (SAM) that encourages the model to converge to a flat minima,
we propose forgetting-aware minimization (FAM) in ISA, which seeks forgetting-aware flat minima
and improves generalizability to distribution shift of prompt parameters.

Vanilla SAM. SAM (Foret et al., 2020) aims to reduce the sharpness of the loss surface by a
minimax game: minimizing the maximal loss changes from a small perturbation ϵ on the model’s
learnable parameters θ. The optimization objective is defined as:

min
θ

max
||ϵ||2≤ρ

Ltrain(θ + ϵ), (3)

where ρ is the size of the neighborhood and Ltrain represents a general learning objective. The
correlation between the flatness of the loss surface and less forgetting in CL has been revealed
by Mirzadeh et al. (2020); Shi et al. (2021); Mehta et al. (2023), which motivates the use of SAM in
CL (Yang et al., 2023). However, previous efforts mainly focus on a training-from-scratch paradigm
of shallow ResNets, rather than a pretraining paradigm of large transformer backbones.

Perturbation in Vanilla SAM. The optimal perturbation ϵ⋆ can be calculated by using a first-
order Taylor expansion of Ltrain(θ + ϵ) around θ. This simplifies the original optimization problem
into a linear constrained one, which can be approximated as (Foret et al., 2020):

ϵ⋆
∆
= argmax

||ϵ||2≤ρ

Ltrain(θ + ϵ) ≈ ρ
∇θLtrain(θ)

∥∇θLtrain(θ)∥2
. (4)

Although this strategy has shown effectiveness in various situations, applying SAM directly to CL
neglects the inherent conflict caused by distribution shift, a common challenge in CL. In particular,

2We leave self-supervised warm-up as a potential future direction.
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when the distribution of a new task diverges significantly from that of the previous task(s), the
model is likely to be pulled from the initial flat loss surface to a sharp and unconstrained one. This
phenomenon is widely recognized as a cause of forgetting, but here, it also contributes to a loss of
generalizability of the initialized prompt parameters. Therefore, the perturbation in vanilla SAM is
not a reliable estimation of future forgetting in CL, significantly limiting its effectiveness. To address
this issue, our approach is to simulate such distribution shifts during ISA and estimate perturbations
from them, thereby enhancing the robustness of the initialized parameters against forgetting and the
loss of generalizability.

Forgetting-Aware Minimization. Our design improves generalizability by using gradients com-
puted for external tasks as perturbations. We define the data from the target task as in-distribution
data Did and the data from the external task as out-of-distribution data Dood. While also minimizing
the training loss under parameter perturbations, we target the perturbations that are consistent with
the external task gradient, rather than those that lead to the maximum changes of the training loss.
Consequently, this gradient represents the maximum forgetting for Did data caused by Dood. Such
perturbation pulls the model out of the loss space of Did and encourages the model to flatten as well
the loss surface for out-of-distribution data. This is a realistic simulation of the parameter update for
downstream CL tasks after ISA. The overall optimization objective is defined as:

min
θ

Ltrain(θ + δ;Did), (5)

subject to δ = −ρ
∇θLtrain(θ;Dood)

∥∇θLtrain(θ;Dood)∥2
. (6)

Similarly, ρ is a constant controlling the neighborhood radius. Like SAM, our design requires only
one additional backpropagation step. In practice, to avoid any additional data for ISA, we simply
split the ISA dataset Dinit without overlap into a large subset of Did and a small subset of Dood

3.

In summary, our FAM aims to not only find a flat loss surface, but also mitigate the loss of gen-
eralizability and performance for parameters initialized from ISA by proactively preventing future
forgetting. Unlike conventional CL methods that address forgetting after it occurs, we take a pre-
ventative approach with the help of pretraining. While the vanilla SAM offers some benefits in this
regard, its perturbation is randomly chosen from the high-dimensional loss space unrelated to forget-
ting, and is ineffective in handling distribution shifts in CL. Accordingly, we use ISA data to create
pseudo-downstream tasks, optimizing on a more targeted and informative direction of perturbation
to obtain a more forget-aware flat loss surface. [Revised: Notably, Eq. 5 and Eq. 6 exhibit a similar
form to MAML (Finn et al., 2017) (i.e., a representative meta-learning framework), suggesting that
our FAM promotes generalizability of forgetting-sensitive directions in a data-driven manner.]

Prompt Augmentation. In preliminary experiments, we observe that the vanilla SAM faces dif-
ficulties in optimizing in the limited and constrained space of the prompt parameters (see Ap-
pendix A.4.3). Therefore, we propose to use a prompt augmentation technique in ISA to directly
increase the complexity of the learnable parameters space. Specifically, we have p′

e = pe+fMLP(pe)
with fMLP(·) a shallow multi-layer perception (MLP) (Razdaibiedina et al., 2023b;a). With the ad-
ditional parameters and non-linearity introduced by the MLP, the learning capacity is improved to
enable the flatness-aware minimization for prompt-based methods. At the end of ISA, the fMLP(·)
will be discarded and we store the augmented p′

e for later purposes, as is shown in Fig. 2 (b).

4.3 NON-PARAMETRIC LOGIT MASKING

Logit Masking. Although the blurry task boundaries of GCL result in a natural replay that partially
alleviates forgetting, they make it more difficult for the model to handle the balance between learning
and forgetting, especially in the output layers. Specifically, GCL not only leads to an imbalance
in class distribution but also enforces the model to overfit the re-appeared classes CB and thus
overwrite the knowledge of other previous tasks, especially the disjoint classes CD. This is a typical
cause of forgetting when the model is trained with a supervised cross-entropy loss Lce. The output

3We leave the choice of external datasets as a future direction since the focus of this work is to enhance
prompt parameters without demanding any external data.
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logit masking is known to be effective for this in conventional CL, as it isolates the logits of non-
repeated classes to maintain their activation at test time. We have:

min
θ

∑
(x,y)∈D

Lce(m⊙ ŷ,y), (7)

where D is the dataset available and ⊙ is an element-wise multiplication. m ∈ RN is a masking
vector that masks out some logits and keeps the rest. The latest work MVP (Moon et al., 2023) in
GCL proposed to train a learnable mask to improve information retention. We empirically find that
such learnable mask is not desirable, as the method still suffers from strong forgetting to retain the
knowledge of previous classes (see Fig. 1, Right).

Non-Parametric Logit Masking. After analyzing the purpose of the logit mask and the sub-
optimality of existing learnable masks, we propose an embarrassingly simple logit mask that is
parameter-free and can effectively reduce the information interference between classes. The first
masking strategy is a session-level mask, where the mask is renewed at the end of each session and
keeps logits of available classes in the current session. However, it requires the notion of sessions,
which is not always meaningful in an online setting. To this end, we further propose a batch-level
mask that operates in the same way but at the batch level. We thus have:

mi =

{
1, if yi = 1, for (x,y) ∈ D,

0, otherwise,
(8)

where yi is the i-th entry of the one-hot label vector, and D is the set of available data. More
precisely, when D refers to the data from a mini-batch, m is a batch-level mask, as shown in Fig. 2
(c). Instead, when D refers to the data available for one session, m is a session-level mask. With
the mask, we then multiply the mask with the prediction vector as defined in Eq. 7.

Despite its simplicity, the non-parametric masking brings a substantial improvement in reducing
forgetting, which allows the model to better adapt to GCL. We believe that the effectiveness of logit
masking stems from the stable representation space provided by the frozen pretrained model, which
is not the case when training from scratch. The mask therefore effectively rectifies the output layer
on top of this representation space to avoid the interference of new and old knowledge. [Revised:
We include further analysis and comparison with existing logit masking strategy Caccia et al. (2021)
in Appendix A.4.10].

5 EXPERIMENTS

5.1 EXPERIMENTAL DETAILS

Datasets. We consider three representative datasets: CIFAR-100, Tiny-ImageNet and ImageNet-
R with 60,000 / 100,000 / 30,000 training samples and 100 / 200 / 200 classes, respectively. We
follow the Si-Blurry setting (Moon et al., 2023) in our GCL experiments. Specifically, the disjoint
class ratio m is set to 50% and the blurry sample ratio n is set to 10%. We perform 5-session GCL
on all three datasets. [Revised: An extended study of one new class at each session can be found
in Appendix A.4.8.] Unless specified, the results are obtained on 5 runs with independent seeds. By
default, our ISA uses the ImageNet-1k dataset (Deng et al., 2009) of 1000-class large-scale images.

Baselines. We consider a variety of CL methods from different categories, including replay-based
methods, e.g., ER (Rolnick et al., 2019), DER++ (Buzzega et al., 2020), ER-ACE (Caccia et al.,
2021), Rainbow Memory (RM) (Bang et al., 2021), and CLIB (Koh et al., 2021); regularization-
based method, e.g., LwF (Li & Hoiem, 2018), EWC (Kirkpatrick et al., 2017); and prompt-based
methods, e.g., L2P (Wang et al., 2022d) and DualPrompt (Wang et al., 2022c). We also consider
the state-of-the-art prompt-based GCL method, i.e. MVP (Moon et al., 2023). Continual fine-tuning
and linear probing are considered as the lower-bound methods. All methods share the same frozen
pretrained vit-base-patch16-224 model, except EWC++ and fine-tuning that conducted full
parameter tuning on the same pretrained model. Following the model architecture of MVP for a fair
comparison, unless specified, we opt for DualPrompt as the baseline method and add on top our
components. We emphasize that our proposed method is not restricted to specific model designs.
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Table 1: Average accuracy (%) with standard deviation of different methods, tested with 5-task
CIFAR-100, Tiny-ImageNet, and ImageNet-R.

Buffer Method
CIFAR-100 Tiny-ImageNet ImageNet-R

AAUC ↑ ALast ↑ AAUC ↑ ALast ↑ AAUC ↑ ALast ↑

0

Finetuning 19.71±3.39 10.42±4.92 15.50±0.74 10.42±4.92 7.51±3.94 2.29±0.85

Linear Probe 49.69±6.09 23.07±7.33 42.15±2.79 21.97±6.43 29.24±1.26 16.87±3.14

EWC 49.51±0.52 52.83±2.31 51.70±2.89 31.04±3.12 31.58±1.04 20.72±1.11

LwF 55.51±3.49 36.53±10.96 49.00±1.52 27.47±7.59 31.61±1.53 20.62±3.67

L2P 57.08±4.43 41.63±12.73 52.09±1.92 35.05±5.73 29.65±1.63 19.55±4.78

DualPrompt 67.07±4.16 56.82±3.49 66.09±2.00 48.72±3.41 40.11±1.27 29.24±4.63

MVP 68.10±4.91 62.59±2.38 68.95±1.33 52.78±2.08 40.60±1.21 31.96±3.07

Ours 80.55±2.17 80.98±1.08 80.44±0.80 74.84±0.64 50.89±1.03 43.92±0.37

500

ER 65.57±4.77 60.68±1.15 59.46±1.81 40.60±2.71 40.31±1.33 28.85±1.43

DER++ 66.92±4.16 65.63±0.72 61.67±1.19 46.03±1.00 40.32±1.08 31.53±1.57

ER-ACE 69.36±3.01 72.07±0.62 64.52±0.78 56.82±0.67 41.06±1.32 36.59±0.52

RM 40.86±3.32 23.94±0.61 31.96±0.80 7.43±0.27 18.31±1.09 4.14±0.18

CLIB 69.68±2.20 67.16±0.72 60.11±1.53 48.97±1.48 37.18±1.52 29.51±0.98

MVP 76.06±4.22 79.32±1.28 76.52±0.73 65.19±0.58 49.07±1.47 44.17±1.72

Ours 82.37±1.54 82.27±0.73 79.08±0.60 69.91±0.52 54.72±1.15 47.48±0.57

2000

ER 69.86±4.08 71.81±0.69 66.75±1.13 55.07±1.28 45.74±1.35 38.13±0.32

DER++ 69.42±3.65 65.68±0.72 66.58±0.88 56.81±0.65 42.79±1.31 36.06±1.04

ER-ACE 70.59±3.02 74.75±0.19 66.86±0.84 58.40±0.38 43.62±1.31 40.49±0.22

RM 53.27±3.00 65.51±0.55 47.26±1.13 44.55±0.37 27.88±1.29 24.25±0.99

CLIB 71.53±2.61 72.09±0.49 65.47±0.76 56.87±0.54 42.69±1.30 35.43±0.38

MVP 78.65±3.59 84.42±0.44 80.67±0.75 74.34±0.32 52.47±1.45 50.54±2.08

Ours 83.58±1.72 85.32±0.25 82.91±0.47 76.41±0.33 57.67±0.72 53.62±0.68

Table 2: Ablation studies of the proposed forgetting-aware initial session adaption (ISA-FAM) and
non-parametric logit mask (Logit Mask) in MISA.

Method
Component CIFAR-100 ImageNet-R

ISA-FAM Logit Mask AAUC ↑ FLast ↓ AAUC ↑ FLast ↓
Baseline 67.07±4.16 35.12±2.44 40.11±1.27 43.27±6.35

Ours
✓ 68.97±0.85 30.01±4.14 41.09±1.74 41.51±7.75

✓ 74.84±2.99 11.71±1.56 45.59±1.71 20.84±5.49

✓ ✓ 80.55±2.17 10.35±1.12 50.89±1.03 19.91±4.21

Implementation Details. For existing methods, we re-use the implementation of Moon et al.
(2023). For MISA, we follow the same training configuration to ensure a fair comparison, e.g.,
using an Adam optimizer of learning rate 0.005 and batch size 32. In ISA, we use an Adam op-
timizer of learning rate 0.0001 and batch size 128 to train the prompts in an offline manner for 3
epochs. For FAM, we split ImageNet-1k into 900 classes for Did and 100 classes for Dood without
overlap. We randomly sample 10 classes as Dood to simulate a small-scale downstream task and
resample new ones when we iterate over this subset. More aggressive augmentation is applied on
Dood data as we applied double auto-augmentation (Cubuk et al., 2019). For a fair comparison with
existing logit masking strategies, we apply our batch-level mask in MISA by default as it does not
require a session identifier. More details can be found in Appendix A.1.

Evaluation Metrics. We follow the evaluation protocol of Moon et al. (2023), using AAUC and
ALast as the main evaluation metrics. AAUC (Koh et al., 2021) measures the performance of anytime
inference, with no task labels provided to satisfy the “no test-time oracle” requirement in GCL.
ALast is equivalent to the final average accuracy in conventional CL. As we identified forgetting
as an essential issue in existing methods, we include FLast as the average forgetting at the end of
training. Definitions of the metrics can be found in Appendix A.2.

5.2 BENCHMARK RESULTS

We compare our MISA to existing methods in Tab.1. Our approach consistently outperforms all
methods by a significant margin, especially when the model is trained without rehearsal, i.e., buffer
size = 0. This is an extremely challenging case as the previous GCL methods often rely on a
reply buffer to alleviate forgetting. Specifically, MISA outperforms the state-of-the-art MVP by a
margin of 18.39%, 22.06%, and 11.96% in ALast on CIFAR-100, Tiny-ImageNet, and ImageNet-
R, respectively. While ALast focuses on the overall performance at the end of the training, AAUC
better exhibits the effectiveness in adaptation to the online data stream. Our approach outperforms
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Table 3: Comparison of different masking strategies with different batch sizes. All masking strate-
gies are applied to the same baseline method.

Mask
Buffer 0 Buffer 500

1 32 64 1 32 64

Seen-Class 35.41±0.87 39.40±2.72 37.15±1.64 42.68±1.24 48.91±2.00 45.32±1.74

Learnable 36.00±1.54 39.88±1.73 37.74±1.49 44.40±1.97 44.83±1.86 43.49±2.11

Batch-Level 1.50±0.04 45.59±1.71 48.41±2.14 34.14±0.89 49.00±1.46 47.87±2.60

Session-Level 44.19±0.19 48.71±3.57 48.19±2.31 44.58±0.77 48.99±2.00 50.26±1.16

Table 4: AAUC scores on CIFAR100 and ImageNet-R with prompts obtained by different strategies.

Method Logit Mask Naive ISA SAM FAM CIFAR-100 ImageNet-R

Baseline ✓ 74.84±2.99 45.59±1.71

Ours
✓ ✓ 77.21±2.66 47.71±1.31

✓ ✓ ✓ 79.13±2.38 49.99±1.21

✓ ✓ ✓ 80.55±2.17 50.89±1.03

MVP by a margin of 12.45%, 11.49%, and 10.29% in AAUC on the three above-mentioned datasets,
respectively. In particular, MISA overwhelms all conventional CL methods in this measure, which
was not accomplished by MVP. Furthermore, our approach significantly reduces the variance of the
performance with different stochastic classes and data compositions, which confirms its robustness
with different realistic learning scenarios.

The integration of the replay buffer can further improve our approach and ensure its standing-out
performance over existing methods with the same configuration. One might notice that MVP bene-
fits more from the replay buffer than MISA. We believe that it is because MVP suffers from strong
forgetting due to their ineffective logit mask. The existence of a replay buffer largely relieves MVP
from this issue. In contrast, MISA better handles the interference of new and old knowledge through
our non-parametric logit masking and performs consitently well with or without a replay buffer.
Therefore, the replay-independent nature makes MISA a more suitable choice in practice.

5.3 FURTHER ANALYSIS

Ablation Study. We present the ablation study on CIFAR-100 and ImageNet-R for our proposed
components in Tab. 2. The baseline method is overwhelmed by severe forgetting, which prevents the
model from accumulating knowledge for good average accuracy, even with the help of the forgetting-
aware ISA (ISA-FAM). Instead, with the integration of our non-parametric logit masking, the for-
getting is largely reduced and the performance gets improved. Finally, without the interference of
forgetting, ISA-FAM becomes much more effective. These experiments justify the importance of
swift adaption and knowledge retention, as well as their complementary roles in GCL.

Logit Masking vs Batch Size. We examine the effectiveness of different logit masking strategies
for different batch sizes in Tab. 3. Our session-level masking performs especially well when no
replay buffer is available. Not surprisingly, the batch-level mask fails with the batch size = 1.
This corresponds to an extreme case of online learning where the model receives one sample at a
time, which is out of the scope of this paper. In addition, the batch-level mask can quickly recover
the performance with a replay buffer. Notably, both of our non-parametric masks outperform the
learnable mask in most cases.

Effectiveness of FAM in ISA. We perform a specific ablation study for our forgetting-aware ISA
training strategy, by comparing the impact of prompt parameters with different initialization strate-
gies in Tab. 4. All methods are equipped with our non-parametric logit mask to exclude the negative
impact of strong forgetting. The baseline method utilizes a uniform initialization for prompt param-
eters. Initializing prompts from a naive ISA, i.e. pretraining with Eq. 2 provides better initialization
but lasks considerations for generalizability. Thus, direct integration of SAM can improve the per-
formance. Our FAM further boosts the model by enhancing the robustness to distribution shift to
maintain the generalizability in downstream GCL, as highlighted by the AAUC score. Note that both
SAM and FAM are equipped with prompt augmentation to enable the flatness-aware minimization,
whose ablation study can be found in Appendix A.4.4.
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Table 5: Validation of transferability of our proposed components on existing prompt-based methods
on ImageNet-R. For ISA, both methods reuse the same prompts as our approach.

Baseline ISA-FAM & Logit Mask AAUC ↑ ALast ↑

L2P
29.42±1.46 20.46±4.17

✓ 34.11±0.36 27.86±1.11

MVP
40.60±1.21 31.96±3.07

✓ 43.01±1.26 33.52±3.38

Table 6: Performance of pre-trained checkpoint not overlapping with CIFAR-100 or Tiny-ImageNet.

Method
CIFAR-100 Tiny-ImageNet ImageNet-R NCH

AAUC ALast AAUC ALast AAUC ALast AAUC ALast

EWC 41.5±6.6 29.4±3.3 40.9±2.3 23.3±5.5 31.8±1.3 19.9±6.2 50.0±12.4 32.6±9.7

DualPrompt 47.2±2.8 42.7±4.6 48.2±1.1 31.2±2.7 33.7±1.0 26.7±0.8 60.6±11.7 49.4±7.8

MVP 48.8±5.1 35.5±5.1 46.5±2.0 26.8±4.5 35.4±1.4 24.2±4.4 60.4±10.1 43.5±11.6

Ours 55.7±1.9 53.8±3.6 56.5±2.0 47.4±1.7 41.2±1.0 35.9±0.9 71.2±3.3 61.8±7.4

Transferability of MISA. Our approach is designed to be general and plug-in for prompt-based
CL methods. To demonstrate this standing-out transferability, we apply our approach to two other
baselines: L2P and MVP. The former is a representative prompt-based method for conventional CL,
and the latter is the state-of-the-art prompt-based method for GCL. As shown in Tab. 5, both methods
can benefit from our design. Note that these methods share the same initialized prompts parameters
as our approach, without performing additional ISA. The full table can be found in Appendix A.4.1.

Knowledge Overlap Analysis. This analysis aims to reduce the potential knowledge overlap
between pretraining data and downstream GCL. Specifically, we consider a particular pretrained
checkpoint (Kim et al., 2022), which removes 389 classes from ImageNet-1k that are similar to
CIFAR-100 or Tiny-ImageNet. We repeat our experiments on this subset of ImageNet-1k to exclude
information leaks to either the backbone or prompt parameters from ISA. [Revised: Moreover, we
included a completely out-of-distribution dataset NCH (Kather et al., 2018) from the medical image
domain to showcase the transferability of our learned prompts.] As shown in Tab. 6, our approach
still achieves substantial improvements over all baselines (see details in Appendix A.4.2).

Table 7: Comparison of resource overheads
with the same machine and configuration.

Method # Param. Time Accuracy

DualPrompt 637k 1.31s 67.07
MVP 639k 2.75s 68.10
Ours 637k 1.32s 80.55

Memory and Computation Analysis. We analyze
in Tab.7 the complexity of representative methods.
Specifically, we report the average execution time for
each method to learn from one batch. Our approach
brings a significant performance gain without intro-
ducing additional parameters or increased execution
time. Combined with the replay-independent nature,
our MISA has further satisfied the demand of GCL in
terms of constant memory.

CL-Relevant Hyperparameters. We argue that the hyperparameters of MVP selected with vali-
dation data from a static view is contradictory to the stochastic nature of data distribution. In con-
trast, our approach does not require CL-relevant hyperparameters, which is an important advantage
for facilitating the use of our components in other methods or scenarios such as GCL.

6 CONCLUSION

In this paper, we advance the prompt-based methods in the challenging GCL setting with a novel
approach MISA, which consists of a forgetting-aware initial session adaption to improve learning
efficiency and generalizability of the prompt parameters, and a non-parametric logit mask to alleviate
forgetting of the output layers. Our extensive experiments show the effectiveness of each component
and the significant performance gain compared to existing methods, setting a new state of the art
for GCL research. Moreover, our approach is compatible with other prompt-based CL methods,
which can seamlessly benefit from our components. Finally, our approach features an avoidance
of CL-relevant hyper-parameters and is independent of replay data, enabling better robustness and
flexibility for CL applications.
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7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have provided comprehensive details about the exper-
imental setup in Section 5, including datasets used, baseline methods, implementation details and
evaluation metrics. More details about the implementation can be found in Appendix A.1. All code,
models, and configuration files required to replicate our results will be made publicly available in a
repository upon acceptance. To facilitate the review process, we provide the codebase to reproduce
our experiments in supplementary materials for examination.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We follow the implementation of Moon et al. (2023) for a fair comparison with existing methods.
Specifically, all methods use a pretrained ViT checkpoint ViT-B/16 (Dosovitskiy et al., 2020). We
freeze the backbone, learning only the prompt parameters and the classification head. As such, the
total number of parameters is around 86M whereas the trainable one is around 0.6M. We equip our
approach with a same memory buffer as DualPrompt in the implementation of Moon et al. (2023)
with size 500 and 2000, if applicable.

For forgetting-aware optimization, we use the first 900 classes of ImageNet-1k as Did for initializing
the parameters and the last 100 classes for Dood to calculate perturbation. During training, we
randomly sample 10 classes as actual Dood. Since this subset is smaller than Did, whenever we go
through the entire small subset, we will resample other 10 classes. We will repeat this process until
the end of training. To apply a more aggressive data augmentation on Dood data, we applied two
times AutoAugment to augment the image, while for Did data we only applied once.

For prompt augmentation, we use a two-layer MLP with projection dimension (768, 96) and
(96, 768), which corresponds to a down-sampling rate of 1/8 for the feature dimension D. We
empirically found it more effective than up-sampling. We add LayerNorm (Ba et al., 2016) and
ReLU (Agarap, 2018) activation in between these two layers. Once the ISA is finished, this MLP is
discarded.

A.2 EVALUATION METRICS

We start from conventional evaluation metrics in CL. Let Ri,j be the evaluation score of the model
after session i with respect to the data in the session j. We then have a evaluation matrix R such
that the column Rj shows the history of evaluation after each session with respect to the data in the
session j. The final accuracy ALast can be defined as:

ALast =
1

T

T∑
i=1

RT,i, (9)

and the forgetting can be defined as:

FLast =
1

T

T∑
i=1

(max(Rj)−RT,i), (10)

where ALast is the higher the better and FLast is the lower the better.

AAUC is the anytime inference metric proposed by Koh et al. (2021) to evaluate the GCL perfor-
mance. Here the evaluation is not performed at the end of each session, but whenever the model
observes a number of n samples. Let the total number of evaluation performed be L and l be the the
time-step for evaluation. We have:

AAUC =
1

L

L∑
l=1

Rl,l, (11)

where Rl,l shows the evaluation score of the model at the time-step l with respect to the data it has
observed until time-step l.

A.3 SI-BLURRY AS A REALIZATION OF GENERALIZED CLASS INCREMENTAL LEARNING

Following the definition of generalized class incremental learning (GCIL) in Mi et al. (2020), we
reformulate the Si-Blurry scenario in this GCIL framework. Let C be the set of available classes
whose cardinality is N = |C|. Let {CD, CB} be a partition of C where CD represents disjoint
classes and CB represents blurred classes. m is the disjoint class ratio such that m = |CD|/|C|.
Let X be the set of available samples, we thus have: XD = {xi : yi ∈ CD} and XB = {xi : yi ∈
CB}, where yi is the class label of the sample xi. Let T be the total number of learning sessions.
{CD

t }t=1...T and {CB
t }t=1...T are then a partition of CD and CB to allocate classes for each session,
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Table 8: Validation of transferability of our proposed components on existing prompt-based meth-
ods. We perform experiments on 5-task ImageNet-R, averaged over 5 runs.

Baseline
Component ImageNet-R

Init-Adapt Logit-Mask AAUC ↑ ALast ↑

L2P

29.42±1.46 20.46±4.17

✓ 31.72±1.36 21.09±3.87

✓ 31.84±2.99 25.88±0.83

✓ ✓ 34.11±0.36 27.86±1.11

MVP

40.60±1.21 31.96±3.07

✓ 41.12±1.77 32.05±1.32

✓ 40.98±0.85 32.31±3.32

✓ ✓ 43.01±1.26 33.52±3.38

respectively. In Si-Blurry, the number of classes for each session is not uniform across tasks as the
number is randomly sampled. For disjoint data, we have XD

t = {xi : yi ∈ CD
t }. Let {X̃B , X̄B} be a

partition of XB , with a blurry sample ratio n = |X̃B |/|XB |. X̄B is a normal set and X̃B is the blurred
set. X̄B will be divided into sessions as X̄B

t = {xi : xi ∈ X̄B , yi ∈ CB
t }. In a blurred boundary

setting, X̃B is non-empty and will be shuffled and randomly distributed to different sessions as
{X̃B

t }. The final set of data available to the session t is then Xt = XD
t ∪ X̄B

t ∪ X̃B
t . Accordingly,

the classes available for the session is Ct = CD
t ∪ CB

t ∪ C̃B
t where ∀xi ∈ X̃B

t , yi ∈ C̃B
t . With this

formulation, we revisit the properties of GCIL defined in Mi et al. (2020) to show that Si-Blurry can
be seen as a realization of GCIL in an online learning paradigm.

Property 1: The number of classes could differ in each session. We have:

∀i, j, i ̸= j, P (|Ci| ≠ |Cj |) > 0, (12)
where P (·) is the probability.

Property 2: Classes could appear in different sessions. We have:

∀i, j, i ̸= j, P (Ci ∩ Cj ̸= ∅) > 0, (13)

Property 3: The number of samples for each class could be different in one session. For a session
t, we have:

∀i, j, i ̸= j, P (|Xi
t| ≠ |Xj

t |) > 0, (14)
where |Xi

t| is the number of samples for class i in session t.

As GCIL in Mi et al. (2020) has no explicit constraint on the number of iterations allowed for
learning, Si-Blurry features the more complex and realistic setting with the one-pass requirement.
In summary, Si-Blurry can be seen as a realization of GCIL of Mi et al. (2020) with an online
learning paradigm.

A.4 ADDITIONAL EXPERIMENTS

A.4.1 TRANSFERABILITY

We include the full table for the validation of transferability of our proposed components on existing
prompt-based methods for the effectiveness of each components, as shown in Tab. 8.

A.4.2 KNOWLEDGE OVERLAP ANALYSIS

To ensure that there is no overlapping of data with ImageNet, Kim et al. (2022) manually removed
389 classes from the original 1000 classes in ImageNet that are similar/identical to the classes in
CIFAR-10, CIFAR-100, or Tiny-ImageNet. They pre-trained the network with the remaining subset
of 611 classes of ImageNet and released the checkpoint for public research purposes.

While the list of the 389 classes is not publicly available, we reached out to the authors for the list
and performed additional ISA to obtain prompt parameters that are initialized without knowledge
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Table 9: Validation of ISA for different types of prompts. All methods are equipped with our logit
mask to exclude the impact of strong forgetting.

Baseline
Prompt Type ImageNet-R

G-prompt E-prompt AAUC ↑ ALast ↑

DualPrompt
✓ 47.84±1.49 40.82±0.73

✓ 48.40±1.20 42.66±0.34

✓ ✓ 50.89±1.03 43.92±0.37

Table 10: CL experiments on ImageNet-R with prompts obtained by different strategies. We use our
logit masking for all to exclude the impact of strong forgetting.

Method Logit-Mask Naive ISA SAM Augmentation AAUC

Baseline ✓ 45.59±1.71

Ours
✓ ✓ 47.64±1.24

✓ ✓ ✓ 47.71±1.31

✓ ✓ ✓ ✓ 49.99±1.21

overlap. These additional experiments ensure that the improvements of our proposed components
are not from a leak of information from the pretraining data.

A.4.3 SAM WITH PROMPT-TUNING

Although SAM has been shown to be effective in improving generalizability of CL models, it works
most of the time with full-parameter tuning. The effectiveness with parameter-efficient tuning meth-
ods, i.e., a frozen pretrained backbone and a few learnable parameters, remains unclear. We first
conducted a toy example by applying SAM with a pretrained ViT backbone and prompt parameters
in a two-task conventional CL setting. The evaluation on the first task shows the convergence of the
model, whereas the evaluation on the second task is a direct verification of the model’s generaliz-
ability.

As shown in Fig. 3, directly integrating the SAM optimizer into prompt-based tuning cannot work
well, or even hinders the model’s convergence. We speculate it is because the simplicity and scarcity
of the prompts make them incapable of modifying the loss surface of the pretrained model. More-
over, the imposed flatness constraint prevents the loss from converging to the original sharp minima.
Based on this analysis, we further conduct experiments by de-freezing more parameters to the train-
ing. Specifically, 0.3M refers to tuning the prompts pe and the output layer fc, while 7M and 14M
introduce additional parameters from the last one or two self-attention blocks of fr, respectively. We
observe that when more parameters are available for training, the SAM begins to show its power.
This experiment confirms that SAM has difficulty when applied to a large frozen pretrained model
and a few learnable prompt parameters.

Figure 3: Toy example of implementing SAM with prompt tuning. We performed 2-task CL with
randomly sampled 50 classes from ImageNet-1K. The first task is optimized with SAM and the
second task uses a standard Adam optimizer. 0.3M, 7M, and 14M represent the number of learnable
parameters, and additional parameters are from the last layers of the pretrained backbone fr. SAM
works better with more parameters becoming learnable.
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Table 11: Validation of the effectiveness of ISA with respect to the training iterations.

Baseline Epoch
ImageNet-R

AAUC ↑ ALast ↑

DualPrompt

1 48.14±1.26 42.40±0.57

2 49.79±1.11 43.33±0.52

3 49.99±1.21 43.48±0.43

4 49.87±1.31 43.22±0.85

Table 12: Validation of the effectiveness of downstream task adaptation.

Baseline Adaptation
ImageNet-R

AAUC ↑ ALast ↑

DualPrompt
49.99±1.21 43.48±0.43

✓ 50.16±1.22 43.56±0.42

A.4.4 ABLATION STUDY OF PROMPT AUGMENTATION

We show in Tab. 10 that direct integration of SAM shows only marginal performance gain, as SAM
struggles to work with prompt-tuning. In the end, with our prompt augmentation technique, we
observe an additional boost to the performance.

A.4.5 IMPACT OF PROMPTS (G-PROMPT AND E-PROMPT)

As our baseline method (Wang et al., 2022c) is composed of two types of prompts: G-prompt, which
is for capturing general information; and E-prompt, which is for capturing task-specific information.
We conduct ablation study in Tab. 9 on these two types of prompts to validate the effectiveness of
each type of prompts.

A.4.6 IMPACT OF TRAINING EPOCHS

Our ISA involves a joint offline training on the large scale dataset. The training only lasts for 3
epochs. We show in Tab. 11 that the prompt parameters the best generalizable warm-up at the end
of epoch 3. Further training brings no significant improvements.

A.4.7 IMPACT OF DOWNSTREAM CL ADAPTATION

Our approach directly uses the prompts obtained from ISA to downstream tasks. However, in the
cases where there is a significant domain gap between the ISA dataset and the downstream CL
dataset, it is preferable to apply a dedicated domain adaptation module to compensate this mismatch.
We found that a simple shift-and-scale method (Lian et al., 2022) can help the model better adapt
the downstream tasks without hindering the knowledge in the ISA prompts, as shown in Tab. 12. We
leave this adaption as an interesting future direction since it was not the main focus of this work.

A.4.8 CASE STUDY OF ONE CLASS AT A TIME GCL

[Revised: We conducted a case study of an extreme case where each new task comprises only one
class. Note that the tasks are not strictly disjoint, as the data stream can still contain data from previ-
ous tasks due to GCL’s blurry task boundary requirements. Typically, any class-incremental scenario
can be decomposed to one-class increments, without assuming the number of classes in each new
task. This challenging setting demands the model to swiftly adapt and learn new knowledge about a
new single class without forgetting previous knowledge that is underrepresented in the current data
stream. The results are presented in Tab. 13. Specifically, we conducted 100-task CIFAR-100 and
200-task ImageNet-R experiments with 5 random seeds. We note that our method still outperforms
existing methods by a substantial margin. ]

A.4.9 EXPERIMENTS OF PARTIALLY OR COMPLETELY UNAVAILABLE PRETRAINING
DATASET.
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Table 13: Performance of different methods in GCL with one incremental class at a time.

Method
ImageNet-R CIFAR-100

AAUC ALast AAUC ALast

EWC 2.3±1.1 3.1±1.6 68.1±0.4 64.5±1.4

DualPrompt 25.6±5.6 31.2±1.6 80.4±0.4 79.1±0.2

MVP 4.1±1.4 5.2±4.4 78.7±0.1 76.2±0.2

Ours 31.1±0.6 42.7±0.7 85.3±0.1 83.7±0.3

[Revised: Although our ISA experiment was based on the same pretrained dataset as the backbone,
this is not a strict requirement. The corresponding pretraining data might be partially or completely
unavailable regarding large pretrained vision, vision-language, and language models. In these cases,
the ISA should be able to learn robust and transferable general knowledge for the prompt parameters
to deal with the potential knowledge mismatch with the backbone. We conduct experiments with
two cases: (1) the pretrained data is partially available, (2) the pretrained data is completely unavail-
able. For the former, we use a subset (ImageNet-100, denoted at IN-100) of the pretraining dataset
(ImageNet-1k, denoted as IN-1k), and for the latter, we use ImageNet-1k as the ISA dataset whereas
the backbone (CLIP-ViT) was trained on a completely unrelated dataset, i.e., YFCC100M (Thomee
et al., 2016). Additionally, we highlight that general and diverse ISA datasets are beneficial for the
prompt parameters to capture transferable knowledge. To showcase this, we also conducted ISA
on a fine-grained dataset, i.e., CUB200 (Wah et al., 2011), where we observed a clear performance
drop. The evaluation was performed with 5-task GCL in ImageNet-R with 5 random seeds. The
results are in Tab. 14.]

A.4.10 ANALYSIS OF OUR LOGIT MASKING STRATEGY.

[Revised: In this section, we compare our non-parametric logic masking with that of ER-ACE Cac-
cia et al. (2021). Although they seem similar, they differ in their use cases and objectives. We follow
the notations of ER-ACE in this analysis.

First of all, the mask of ER-ACE is replay-dependent whereas ours is replay-independent. And we
are primarily interested in the case where we do not use a replay buffer.

The second difference lies in the objective of the mask. Although both masks deal with the co-
existence of current-class data Xcur and old-class data in one mini-batch, the nature of the data is
different. In ER-ACE, old-class data Xbf is sampled from a replay buffer whereas in our case, old-
class data Xold is the new data of old classes from the blurry task boundaries. Let C be the class
in data batch X, and Cseen denote all the classes the model has seen. Thus Cbf ∪ Ccur ⊆ Cseen.
For ER-ACE, they applied 1Ccur

for Xcur and 1Cseen
for Xbf , with 1C a binary vector masking

out classes not in C. The idea was to prevent gradient update of Xcur interfering representations
of previously seen classes. This is a rather conservative strategy as the idea is to prevent old-class
representation from being changed. Instead, since our Xold are new data of old classes, unlike Xbf ,
we can opt for a more proactive strategy to encourage representation update of Ccur and Cold at the
same time. Thus our mask to Xcur ∪ Xold is 1Ccur∪Cold

. Similarly, we exclude other classes that
have not been seen in the current mini-batch to avoid interference with their representations. The
overall optimization objective of ER-ACE is

Lce(X
bf , Y bf |Cseen) + LCE(X

cur, Y cur|Ccur),

whereas ours is
Lce(X

old ∪Xcur, Y old ∪ Y cur|Cold ∪ Ccur),

where Lce(X,Y|C) is the cross-entropy loss with 1C as the binary mask on the data X,Y.].
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Table 14: Experiments of partially or completely unavailable pretraining data for ISA.

Method
PTM(IN-1k)+ISA(IN-100) PTM(IN-1k)+ISA(CUB200) PTM(YFCC100M)+ISA(IN-1k)

AAUC ALast AAUC ALast AAUC ALast

EWC 31.5±1.0 20.7±1.1 30.6±1.3 22.2±3.8 31.5±1.0 20.7±1.1

DualPrompt 40.1±1.2 29.2±4.6 37.9±0.9 30.3±0.2 40.1±1.2 29.2±4.6

MVP 40.6±1.2 31.9±3.0 34.0±1.3 25.0±4.4 40.6±1.2 31.9±3.0

Ours 49.5±1.3 43.0±0.6 49.3±1.2 42.3±0.9 43.4±1.9 36.6±1.6
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