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ABSTRACT

Existing studies on talking video generation have predominantly focused on single-
person monologues or isolated facial animations, limiting their applicability to
realistic multi-human interactions. To bridge this gap, we introduce MIT, a large-
scale dataset specifically designed for multi-human talking video generation. To
this end, we develop an automatic pipeline that collects and annotates multi-person
conversational videos. The resulting dataset comprises 12 hours of high-resolution
footage, each featuring two to four speakers, with fine-grained annotations of
body poses and speech interactions. It captures natural conversational dynamics
in multi-speaker scenario, offering a rich resource for studying interactive visual
behaviors. To demonstrate the potential of MIT, we furthur propose CovOG, a
baseline model for this novel task. It integrates a Multi-Human Pose Encoder
(MPE) to handle varying numbers of speakers by aggregating individual pose
embeddings, and an Interactive Audio Driver (IAD) to modulate head dynamics
based on speaker-specific audio features. Together, these components showcase
the feasibility and challenges of generating realistic multi-human talking videos,
establishing MIT as a valuable benchmark for future research. The code and data
will be fully public available.

1 INTRODUCTION

Recent advancements in human-centric video generation [25, 24] have markedly improved the
synthesis of high-fidelity human videos. Among the most prominent research directions are pose-
guided animation [5, 29, 16, 49], which enables fine-grained control over full-body movements,
and audio-driven talking avatar generation [7, 10, 60], which focuses on producing accurate lip
synchronization and expressive head motion conditioned on speech. Within the domain of audio-
driven generation, substantial progress has been made in co-speech gesture synthesis [13] and talking
head animation [38, 45]. The former seeks to align upper-body gestures with spoken content, while
the latter aims to generate realistic facial expressions, head poses, and lip movements driven by
audio input, thereby enhancing the expressiveness and naturalness of talking avatars. Despite these
advances, existing methods predominantly focus on single-person monologues or isolated facial
regions, lacking the capacity to model multi-speaker interactions. This limitation significantly
constrains their applicability in realistic settings such as interviews, panel discussions, or films, where
natural, multi-party conversations are essential.

In contrast to single-speaker scenarios, multi-speaker interactions involve complex dynamics, includ-
ing turn-taking, fluid role transitions between speaking and listening, and non-verbal communicative
behaviors such as eye contact and gesturing. Moreover, current datasets [9, 13] and generation frame-
works [27, 26] are not designed to capture such multi-speaker conversational dynamics. Although
recent work such as INFP [61] has taken initial steps toward interactive talking-head generation with
multiple speakers, it remains restricted to facial animation alone. As a result, it fails to incorporate
full-body behavioral cues critical for modeling realistic social interactions, thereby limiting both the
quality and application of the generated content.

To advance beyond the limitations of single-speaker and facial-only generation, we define a new
task, Multi-Human Talking Video Generation, which aims to synthesize realistic multi-person
talking videos conditioned on reference images, body poses, and speech audio, as illustrated in
Figure 1. Constructing a dataset suitable for this task is particularly challenging, as it requires
the accurate extraction of multi-person conversational scenes, stabilization of camera motion, and
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Figure 1: Single Speaker Generation v.s. Mulit-human Interactive Talking Generation and
Automatic Data Collection Pipeline. The pipeline of existing tasks are shown in blue, Co-speech
Gesture Generation [13, 26], and Talking or Listening Head Generation [10, 45]. In contrast, Multi-
person Interactive Talking Generation enables dynamic speaker interactions by incorporating identity,
interactive pose and audio control, as shown in red. And the automatic data collection is shown
consisting of raw data collection, valid video clip extraction and annotation.

the removal of occlusions and post-production artifacts. In this paper, we propose an automatic
data collection pipeline and use it to build a benchmark for this task. Specifically, we introduce
the Multi-human Interactive Talking dataset(MIT), a fine-grained collection of 12 hours of multi-
human videos featuring 2–4 speakers with diverse identities. This dataset includes multi-human
pose annotations aligned with each speaker’s speaking score label that indicates whether the human
is speaking. Furthermore, we propose a baseline model designed for this task, namely CovOG:
ConversationOriginal. Built on AnimateAnyone [1], CovOG integrates two key components: the
Multi-Human Pose Encoder (MPE) and the Interactive Audio Driver (IAD). The MPE aggregates
individual pose embeddings, allowing the model to accommodate a flexible number of human
speakers. Meanwhile, the IAD dynamically refines speaker-specific head and pose features using an
audio-driven speaking score, ensuring smooth and natural transitions between speaking and listening.
Our work aims to lift audio-driven human-centric video generation to a more realistic setting, offering
a significant contribution to the field.

To summarize, the contributions of this paper are:

• To the best of our knowledge, we first explore multi-human talking generation which lift
exiting audio-driven video generation to a more realistic, universal setting.

• We develop an automatic data collection pipeline and construct the first dataset for multi-
human talking video generation, featuring annotations of pose and speech interaction.

• We present a baseline model for this novel task, which supports a flexible number of human
speakers and captures the dynamics of speech interactions. We further conduct extensive
studies to benchmark our baseline against existing methods and analyze its performance.

2 RELATED WORK

2.1 HUMAN-CENTRIC VIDEO GENERATION MODEL

Recent advancements in diffusion models [35, 37, 14, 6, 52] have significantly enhanced video
generation in terms of length, quality, and controllability. Stable Video Diffusion [4] employs latent
diffusion to model video distributions within a latent space, enabling efficient and high-quality
video synthesis. Furthermore, DiT-based models [31], such as CogVideoX [51] and MovieGen [36],
improve video length and fidelity by diffusion transformers. Building on the advancements of these
base models, human-centric video generation [25, 24] has garnered increasing attention due to its
significant application potential. Text-driven models, such as Performer [21] and DirectorLLM [39],
synthesize diverse human motions based on text prompts. Meanwhile, pose-based methods [11, 5, 29]
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generate fine-grained controllable motions by leveraging pose sequences and reference images.
Notably, AnimateAnyone [16] employs ControlNet [53] to maintain identity consistency throughout
motion synthesis, while MagicAnimate [49] integrates an additional control branch to achieve better
pose alignment.

2.2 AUDIO-DRIVEN CHARACTER ANIMATION

Single Portrait Image Animation. Single portrait image animation, which generates a talking or
listening head from a given audio and portrait image, has recently gained significant attention. In
talking head generation, various datasets [38, 9, 41] have been proposed. Notably, MEAD [47] focuses
on emotion control, offering data across eight emotions with three intensity levels, while CelebV-
HQ [59] provides diverse identities in realistic settings. Early approaches [33, 44, 54] relied on GAN-
based models to improve lip synchronization. Recently, diffusion-based models [40, 20, 7, 10, 46]
have significantly enhanced realism, consistency, and control ability. In listening head modeling,
RLHG [56] first proposed ViCo dataset and built a sequential auto-encoder to generate non-verbal
facial feedbacks given the speech audio and portrait image. Recent approaches [18, 30, 12, 27] have
advanced reaction quality and controllability(e.g., pose and text), by leveraging superior generative
models(e.g., VQ-VAE) and LLMs.

Single-human Co-speech Generation. Co-speech generation enhances single-head generation by
incorporating nonverbal gestures, making the content more expressive. To facilitate research in this
area, a high-quality dataset, SSGD [13], has been developed, providing co-speech video clips of 10
speakers along with pose annotations. Early approaches [34, 28, 60, 15] typically follow a two-stage
pipeline: first, human poses are generated based on speech audio, and subsequently, pose-to-video
methods (e.g., AnimateAnyone [16]) are employed to synthesize co-speech gesture videos using
a reference image. More recently, some studies have explored retrieval-based solutions for this
task. Gesture video reenactment [58, 26] utilizes a short reference video clip (e.g.„ two minutes) to
generate stylized gesture videos that align with novel speech inputs, resulting in more faithful and
visually coherent outputs.

Multi-human Conversation Generation. Despite notable advancements in audio-driven single-
human animation, it remains limited in capturing the richness of multi-human interactive conversa-
tions, which are more common and expressive in real-world applications (e.g., movie dialogues, talk
show interviews, and live streams). Recently, several studies [45, 57, 43] have explored interactive
head generation, producing two talking-listening heads in a dyadic manner forming a conversation.
Notably, INFP [61] introduced a large-scale dataset comprising extensive head-only conversational
videos between two individuals and proposed an interactive motion guide to facilitate seamless
talking-listening transitions. These approaches are constrained to generate only two individuals’
head areas, as they fail to incorporate non-verbal contents such as eye contact, physical interaction,
thereby restricting their applicability in more dynamic and natural conversational full-body interaction
settings. Moreover, existing studies primarily focus on ideal turn-taking scenarios, where speakers
alternate systematically, while challenges such as rapid role-switching and overlapping speech remain
inadequately addressed. Existing methods fail to address multi-human talking generation in terms of
full-body interactions and dynamic talking patterns, which requires specific models and datasets to
capture multi-human interactive talking videos.

3 MULTI-HUMAN INTERACTIVE TALKING DATSET

We present a high-quality dataset for multi-human interactive talking video generation, comprising
over 12 hours of high-resolution conversational clips with diverse interaction patterns and approx-
imately 200 distinct identities. The dataset was constructed through a fully automated pipeline,
facilitating future scale-up with minimal manual intervention. We provide a detailed description of
this process in the following subsections, covering the data collection methodology (Section 3.1) and
a analysis of interaction types and annotation statistics (Section 3.2).

3.1 AUTOMATIC DATA COLLECTION PIPELINE

As illustrated in Figure 1, the data collection pipeline comprises three main stages: raw video
collection, valid clip extraction, and multi-modal annotation. First, conversational videos are collected
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Figure 2: Multi-human Interactive Talking Dataset. Sapiens [23] and WhisperV [17] are used
to annotate multi-human gesture and interactive speech respectively. MIT dataset captures rich
conversation interaction pattens of multi-human, such as talking-listening, tune-talking, over-talking
and other complex pattens.
from online platforms. However, most real-world videos undergo post-editing and include multiple
shots from different perspectives (e.g., close-up shots of faces and wide shots of the entire scene),
which are unsuitable for current video generation models that require temporally consistent visual
content. To address this, WhisperV [17] is adopted to segment videos into individual shots and to
track facial trajectories of speakers within each shot. Clips featuring multiple active speakers within
a single continuous shot are then extracted to preserve interactive dynamics. Finally, foundational
perception models are employed to extract speaking scores, human poses, and bounding boxes. The
bounding boxes serve as spatial anchors to align multi-modal signals, enabling consistent annotation
for each individual speaker.
Pose Annotation. As part of the annotation process, 2D skeletal keypoints are extracted using
Sapiens-2B [23] in the COCO133 [22] format. A subset of 59 keypoints is selected to represent the
head, body, arms, legs, and hands, as illustrated in Figure 2. Specifically, only three keypoints are
retained for the head to define its orientation, as finer facial expressions (e.g., lip movement, emotions)
are primarily driven by audio. Notably, although the detected pose keypoints are pseudo-labels rather
than manually annotated ground truth, they are obtained using a state-of-the-art pose estimation
model, similar to SSGD [13]. This provides sufficient accuracy for generation tasks despite the
absence of human supervision.
Speaking Score. In parallel, speaking scores are extracted using TalkNet [3], a model that performs
speech activity detection. As illustrated in Figure 2, each individual is associated with a speaking
score curve indicating periods of speech and silence. A score approaching 1 indicates active speaking,
while a score nearing -1 corresponds to non-speaking states. The figure further illustrates how
speaking scores reflect various interaction patterns: clear alternation between high and low scores
indicates speaker turns; overlapping high scores across speakers correspond to simultaneous speech;
and smooth transitions between high and low values capture speaking–listening dynamics.
Pose–Speech Alignment. After obtaining pose annotations and speaking scores—which are indepen-
dently extracted and thus not inherently aligned—alignment is performed for each individual using
human bounding boxes detected by YOLOv7. For each frame, pose annotations are assigned to the
individual whose bounding box contains the highest number of keypoints. Similarly, each face track
is matched to the individual whose bounding box most frequently overlaps with the facial bounding
boxes across frames, leveraging the fact that face tracks are already aligned with speaking scores. By
using the human bounding box as a shared spatial reference, both pose and speech annotations are
consistently associated with the correct individual.

3.2 DATASET ANALYSIS

Data Source. Real-world videos often contain camera motion, occlusions, and post-editing artifacts,
which are challenging to remove and typically require extensive manual intervention, such as region-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Existing Datasets v.s. MIT. Compared to previous datasets that focus on single-person
speech and isolated facial animation, our MIT dataset uniquely features multi-person talking videos
with full-body interactions.

Dataset Num. Area Character Pose Speak Res. Total Len.(h)
SSGD [13] One Body Speaking ✓ ✗ 1920×1080 144
HDFTD [55] One Head Speaking ✗ ✗ 512×512 16
ViCo [56] One Head Listening ✗ ✗ 384×384 2
RealTalk[12] Two Head Interactive ✗ ✓ 1280x720 115
DyConv [61] Two Head Interactive ✗ ✓ 400×400 200

MIT Multi Body Interactive ✓ ✓ 1920×1080 12

specific inpainting. To mitigate these issues while ensuring diverse and interactive multi-speaker
scenarios, we curate classic and representative interview videos from two channels—The Tonight
Show1 and The Late Late Show2—as our data sources. These videos feature interactive multi-speaker
scenarios that reflect real-world social behaviors, captured with static camera setups and minimal
occlusions, making them well-suited for training models on interactive talking video generation.
Despite the limited scene variety, the dataset features complex interactions and diverse identities,
demonstrating its potential applicability to news, live broadcasting, and cinematic content.

Interaction Pattern. Multi-human interaction patterns constitute a critical yet challenging aspect
of generating talking videos with multiple speakers, due to their inherent diversity and complexity.
The most common pattern is turn-taking, where speakers alternate their roles, as explored in prior
works [61] for interactive talking head. However, real-world conversations often exhibit more intricate
dynamics, such as interruptions (over-talking), pauses, and rapid shifts between speaking and listening
roles. Figure 2 illustrates the diverse interaction patterns captured in the MIT dataset, highlighting its
suitability for advancing research in multi-human talking video generation.

Dataset Statistics. A comparison between MIT and existing datasets is presented in Table 1. MIT
is the only dataset that features multi-human full-body interactions within conversational contexts.
Although the total duration is limited to 12 hours, the automated data collection pipeline enables
future scalability, compensating for this limitation.

Quality of Data Annotations. On a subset of 20 testing videos, we evaluate the automatic pose
detections against human annotations and find that the pseudo ground truth is sufficiently accurate for
our task. We also manually annotate the speaking–listening transition points (i.e., the zero point of the
speaking score) for each speaker, achieving an average temporal error below 0.1 second. Furthermore,
we verify that pose–speaking alignments of all samples are correct.

4 BASELINE: COVOG

To tackle this task, we introduce CovOG, a tailored model built upon the single-person animation
framework AnimateAnyone [16] which leverages Stable Diffusion [4] as base model and ensures
identity consistency through ReferenceNet while incorporating conditional poses by embedding their
features into the latent space via Pose Guider. Expanding on this foundation, CovOG integrates two
key modules: the Multi-Human Pose Encoder (i.e., Pose Guider/Adaptor) and the Interactive Audio
Driver (IAD) as shown in Figure 3. The detail of each module is provided below.

4.1 NETWORK ARCHITECTURE

Overview. The overview of CovOG is shown in Figure 3 (a). Specifically, the multi-human pose
embedding is incorporated into the multi-frame latent noise as pose control before being fed into
DenoisingNet. Additionally, ReferenceNet is introduced for identity control using reference images,
while IAD modules are incorporated to control the facial area based on speech audio.

1https://www.youtube.com/@fallontonight
2https://www.youtube.com/@TheLateLateShow
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Figure 3: Overview of proposed method CovOG. (a) The overall architecure of CovOG. (b)
Implement of Multi-human Pose Encoder used in Pose Adaptor and Pose Guider. (c) Implement of
Interactive Audio Driver to capture the dynamic facial interaction between multiple speakers.

Multi-human Pose Control. To address multi-human pose control, we propose the Multi-human
Pose Encoder (MPE) as Pose Guider as shown in Figure 3 (b). This module begins by utilizing
instance masks to isolate individual human poses. Next, a shared convolutional network Fpose extracts
features from each human pose pi separately. Finally, these features are aggregated to generate a
unified embedding that comprehensively represents the poses of all individuals:

epose =

n∑
i=1

eipose; e
i
pose = Fpose(pi), i = 1, 2, ..., n, (1)

where eipose ∈ Rf,c,w,h stands for pose embedding of each human. This design is motivated by two
key considerations. First, since pose control is independent for each individual, the model extracts and
processes poses separately using a shared convolutional network, which promotes identity-invariant
representations. Second, given that the number of individuals is variable, our design enhances
robustness by allowing the network to manage pose of each human independently rather than being
confined to a fixed number of individual.

Multi-human Identity Control. As the reference image contains multiple identities needed to
be controlled, we propose a Pose Adaptor with the MPE architecture that extracts multi-human
spatial cues. First, the reference pose is input into the Pose Adaptor to obtain a pose embedding.
This embedding is then fused with the latent representation of the corresponding reference image
and fed into ReferenceNet to provide spatial cues for each individual. This approach effectively
accommodates variations in both the positions and the number of individuals across cases.

Multi-human Interactive Audio Control. In split of the complex patterns of interaction mentioned
in Section 3, the speaking scores of individual speakers serve as a good indicator of the underlying
interaction patterns. As shown in Figure 3 (c), we proposed the Interactive Audio Driver(IAD)
to model the alignment between audio features and the corresponding lip movements and facial
expressions. For i-th speaker, we use his speaking score ai ∈ Rf to adjust the audio embedding
eaudio ∈ Rf,m,d. Subsequently, we employ the adjusted audio embedding eiaudio and hidden features
hk from the DenoisingNet to perform a cross-attention Faudio using a facial mask:

hk+1 = hk +

n∑
i=1

Faudio(hk, e
i
audio,maski); eiaudio = eaudio · σ(MLP(ai)), (2)

where the parameters of this module are also shared across all speakers and maski is obtained by the
bounding box computed using three key head landmarks of human i. This design not only ensures
that the model learns an identity-invariant alignment between audio and facial features, but also
models the entire interactive process, thereby achieving a natural transition between listening and
speaking. As shown in Figure 3 (a), the IAD module is inserted after each DenoisingNet block.
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Table 2: Quantitative Comparison and Ablation Study. Experiments are conducted on the
TonightShow for two-human scenarios and the LateLateShow for multi-human scenarios, under both
easy and challenging test. The data from TonightShow consists of conversations with 2 speakers,
while data from LateLateShow includes dialogues involving 2 to 4 speakers. Bold text indicates the
best, while underlined text represents the second best.

Method Two Human Multiple Human All Test
SSIM↑ PSNR↑ FVD↓ SSIM↑ PSNR↑ FVD↓ SSIM↑ PSNR↑ FVD↓

Comparison with Previous Methods
AnimateAnyone [16] 0.60 18.98 322.08 0.64 19.96 353.11 0.62 19.47 337.60
ControlSVD [48] 0.31 13.46 1036.96 - - - - - -
CovOG 0.62 19.16 306.01 0.66 20.21 308.68 0.64 19.69 307.35
Ablation Study
CovOG w/o MPE 0.60 18.88 317.41 0.65 20.00 330.50 0.63 19.44 323.96
CovOG w/o IAD 0.61 19.06 313.69 0.65 19.86 347.92 0.63 19.46 330.80

5 EXPERIMENT

5.1 DATASETS AND EVALUATION METRICS

Datasets. In our experiment, we first split the test set from the MIT datasets, which consists of
approximately 200 easy cases and 200 challenging cases sourced from both the TonightShow and the
LateLateShow. The easy cases feature identities present in the training set but with novel pose and
audio control parameters, whereas the challenging cases involve entirely unseen control signals to
represent real application.

Evaluation Metrics. To qualitatively analyze model performance, we utilize Structured Similarity
(SSIM), Peak Signal-to-Noise Ratio (PSNR) and Frechet Inception Distance (FVD) to evaluate the
quality of generated samples. Unlike single-person talking head scenarios, lip alignment cannot be
reliably assessed using LIPS [8] in our setting, as multi-person interactions involve both speaking and
listening roles, often with side-facing views that LIPS is not designed to handle. How to effectively
evaluate lip synchronization in such interactive contexts remains an open problem. To address this
limitation, we complement our evaluation with user studies for visual-audio alignment.

5.2 IMPLEMENTATION

We pretrain our model following the two-stage paradigm proposed in AnimateAnyone [16], ini-
tializing it with weights from [1]. The model is trained on the entire training set, encompassing
videos with varying numbers of speakers. The first stage and the second stage all comprised 30, 000
steps with a resolution of 640×384, frame number of 15 and a batch size of 4 on 4 NVIDIA A6000
GPUs. The Pose Adaptor is integrated into the first stage and remains fixed in the second stage,
while Interactive Audio Driver is incorporated into the second stage with the motion module. During
inference, similar to Hallo2 [10], we utilize the final six frames from the previous inference as
motion frames, incorporating them as the initial six frames of the subsequent inference while keeping
them fixed to ensure the continuity and smoothness of generation. In addition, we obtained audio
embedding using Wav2Vec [2].

5.3 COMPARISON

Quantitative Evaluation. We compare CovOG with two representative controllable video gen-
eration baselines: AnimateAnyone [16] and ControlSVD [48]. While more recent methods have
emerged [32], we select these two due to their simplicity and broad representativeness, which allow
for clearer comparisons. To ensure fairness, AnimateAnyone follows the same inference setup as
CovOG. For ControlSVD, we use pose embeddings as input to ControlNet, initialize from the first
frame, and generate videos autoregressively. As shown in Table 2, CovOG consistently outperforms
both baselines across all metrics. AnimateAnyone struggles with multi-person scenarios, as its
encoder jointly drives all subjects, while CovOG’s MPE models each person independently and
aggregates their effects. Moreover, lacking audio control, AnimateAnyone produces random facial
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motions, whereas CovOG’s IAD leverages personalized audio embeddings to enhance head dynamics
and ensure audio-visual alignment. ControlSVD suffers from autoregressive error accumulation,
leading to degraded quality over time, while CovOG maintains stability throughout generation.

Table 3: User Study. ‘CC’, ‘BC’, and ‘AV-Align’ de-
note ‘character’, ‘background consistency’, and ‘audio-
visual alignment’, respectively. ‘Visual’ indicates over-
all video quality.
Method CC↑ BC↑ AV-Align↑ Visual↑

Comparison with Previous Methods

AnimateAnyone [16] 2.81 3.83 2.66 2.64
ControlSVD [48] 2.57 1.86 1.86 1.57
CovOG 2.93 4.11 3.22 3.34

Ablation Study

CovOG w/o MPE 2.64 3.55 2.79 2.5
CovOG w/o IAD 2.84 3.91 2.66 2.81

User Study. We conduct a user study to
evaluate character consistency, background
consistency, audio-visual alignment, and
overall visual quality. Seven participants
rated 10 randomly selected samples per
method on a 1–5 scale(higher is better),
based on the reference image and speaking
score. As shown in Table 3, CovOG out-
performs other methods across all criteria,
indicating superior control alignment and
visual quality.

Cross-modal Experiment. To evaluate the
generalization and practical applicability of
our method, we conducted a cross-modal
experiment. Specifically, we randomly se-
lected 20 test cases by combining an iden-
tity image, a pose sequence, and corresponding speech audio from two different source videos, while
ensuring that they involve the same number of speakers. Since ground-truth videos are unavailable
for these cross-modal combinations, we employ VBench [19] to assess the generated results in terms
of temporal consistency and visual quality, as shown in Table 4. The results demonstrate that CovOG
achieves superior generalization both temporally and spatially.

5.4 ABLATION STUDY

Table 4: Cross-modal Experiment. ‘SC’, ‘BC’, ‘AQ’,
and ‘IQ’ denote ‘subject consistency’, ‘background con-
sistency’, ‘aesthetic quality’, and ‘imaging quality’, re-
spectively.

Method SC↑ BC↑ AQ↑ IQ↑
AnimateAnyone [16] 0.945 0.952 0.530 0.564
CovOG 0.952 0.959 0.542 0.603

As shown in Table 2, removing either MPE
or IAD leads to a clear drop in performance
across all metrics. The absence of MPE
results in the most significant decline, as
torso control—essential for multi-person
pose generation—heavily impacts visual
quality. Without IAD, the model lacks suf-
ficient control signals, causing unnatural
head movements due to the absence of au-
dio guidance. User study results in Table 3
further confirm these findings: character
and background consistency degrade without MPE, while audio-visual alignment suffers notably
without IAD. These results validate the complementary roles of MPE for multi-person pose control
and IAD for audio-driven facial synchronization.

5.5 VISUALIZATION ANALYSIS

Qualitative Evaluation. We conduct qualitative evaluations on the MIT test set, as illustrated in
Figure 4, where the first row presents relatively simple cases and the second row includes more
challenging ones. The red and blue bounding boxes indicate the speaker and listener, respectively.
Both methods produce plausible gestures. However, AnimateAnyone tends to generate an averaged
face for both speakers and listeners. For instance, the listener’s mouth remains static, and the speaker
exhibits only limited lip movement. In comparison, CovOG shows a higher degree of interactivity
and closer alignment with the ground truth. The speaker appears more engaged in speech, while the
listener displays responsive expressions such as laughter. This may be attributed to CovOG’s use
of speaking scores to estimate speaking status, enabling adaptive facial expression generation. For
example, when the input audio contains both speech and laughter, the model produces synchronized
lip movements for the speaker and reactive expressions for the listener.
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Figure 4: Qualitative Comparison and Interaction Visualization. Left: The red box indicates the
speaker, and the blue box indicates the listener. Compared to AnimateAnyone, CovOG achieves
superior lip synchronization for speakers and generates more natural, context-aware responses for
listeners. Right: Visualization of the alignment with speaking scores, audio (i.e., subtitles), and pose.

Interaction Visualization. We present the interaction visualization in the result generated by our
CovOG, as shown in Figure 4. The speaking score curve indicates a turn-taking dialogue between
two individuals. Key frames with their corresponding subtitles and the pose condition are displayed,
with pronounced words highlighted in matching colors as in the speakings score curve. The results
demonstrate that CovOG effectively aligns audio with lips and facial expressions for both speaker
and listener, achieving natural interaction dynamics and strong audio-visual synchronization.

5.6 CHALLENGES IN MULTI-HUMAN TALKING SCENARIOS

Here, we outline the key challenges unique to multi-human talking scenarios in comparison to
traditional talking-head and co-speech generation, and discuss the limitations of existing methods.

Multi-huamn Interaction Modeling. In a conversation, a person switches rapidly between speaking
and listening, requiring the model to capture both the transitions and their dynamics. During speaking,
accurate lip–audio synchronization is crucial, while during listening, the model only needs to produce
natural, context-appropriate reactions. This difference in audio-visual patterns between speaking and
listening poses a major challenge for generating realistic interactive speech.

Side-Face Speech Alignment and Identity Consistency. In multi-person conversational scenarios,
speakers frequently turn their heads to engage with others, resulting in side-face appearances during
speech. Accurately modeling lip movements in such cases remains challenging, as most talking head
generation methods are primarily optimized for frontal views [42]. Furthermore, large rotational
movements of the head and upper body pose challenges to maintaining visual consistency, particularly
in facial features.

Limitation of Existing Methods. As discussed above, existing models face limitations in addressing
these challenges. Moreover, talking-head methods are not designed to model full-body interactions,
while co-speech models are often difficult to extend to multi-person scenarios. For instance, most
recent work, TANGO [26] requires a two-minute reference video to construct an interactive au-
dio–frame graph, which is impractical in multi-person conversations where audio–frame pairs are
sparse. This sparsity hinders the feasibility to retrieve keyframes, leading to performance degradation.

6 CONCLUSION

In this paper, we introduce the Multi-human Interactive Talking (MIT) dataset, the first large-scale
benchmark for multi-person talking video generation. To demonstrate its utility, we propose CovOG,
a baseline model that integrates pose and audio cues to generate natural multi-human talking videos.
We hope this dataset fosters further research in more challenging human-centric video generation.

9
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7 CHECKLIST

7.1 THE USE OF LARGE LANGUAGE MODELS

In our work, LLMs are used for following aspects:

• Using an LLM to help with paper writing. We use GPT5 to help optimize language, correct
grammar and write LATEX table code.

• Using an LLM as a research assistant. We use GPT5 to help search related works.
• Using an LLM in our methods and experiment. This is described in the paper.

7.2 ETHICS STATEMENT
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8 TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

Please refer to the supplementary webpage for video results.

8.1 DISCUSSION ABOUT BASELINE MODELS

Most existing studies primarily focus on talking-head generation or co-speech gesture synthesis.
However, extending these methods to multi-human talking video generation presents significant
challenges. In the following discussion, we elaborate on these limitations to clarify why only two
representative baseline models are selected for comparison in the experimental section.

Interactive Audio. Unlike monologue scenarios with a single speaker, the audio in our setting
involves multiple speakers, introducing a fundamental challenge: the model must accurately align
each speaker’s speech to the corresponding character in the video. Directly adapting existing methods
proves difficult, as many are built upon assumptions of speaker continuity or global coherence.
Consequently, key design components in prior models, such as Hallo2 [10] and TANGO [26], become
ineffective in multi-speaker contexts. Specifically, TANGO constructs a graph for each speaker
using approximately two minutes of reference video, where each node represents a video frame
paired with a corresponding audio clip. This design enables the model to retrieve keyframes from the
graph and generate transitions using an architecture similar to AnimateAnyone [16]. While effective
in single-speaker scenarios, this approach faces critical limitations in multi-speaker contexts. The
one-to-one correspondence between frames and audio segments becomes less reliable, and the graph
becomes inherently sparse due to interactive audio patterns. As a result, it fails to support effective
keyframe retrieval in multi-human settings.

Mutli-human Pose and Identity Control. This still remains a highly challenging task in controllable
video generation. Although some recent works have explored this problem [50], they do not support
audio-driven lip synchronization and still apply the ControlNet [53] architecture.

Overall, since most recent related works mainly apply ControlNet architecture we select Ani-
mateAnyone (ControlNet for SD)[16] and ControlSVD[48] as baseline models, as they respectively
represent the most relevant paradigms in single-human audio-driven generation and multi-human
pose-conditioned synthesis, making them sufficient for evaluating performance in our multi-human
interactive setting.

8.2 DISCUSSION ON EVALUATION METRICS

We evaluate model performance using both frame-level image quality and overall video quality
metrics with respect to the ground-truth video. In addition, we conduct user studies and cross-
modal experiments to assess lip synchronization and human–background consistency. However,
unlike previous works on talking-head generation and co-speech gesture synthesis, we do not report
quantitative lip alignment metrics [8]. This is because existing lip-sync metrics typically assume a
single active speaker, which does not apply to our setting involving multiple speakers and interactive
audio. The interleaved nature of speech in multi-human conversations makes such evaluations
unreliable. Designing appropriate metrics for evaluating lip synchronization in multi-human scenarios
remains an open research problem.

8.3 FUTURE WORK AND POTENTIAL IMPACT

Multi-human Talking Pose Generation. Our dataset also facilitates the study of multi-human pose
generation in conversational contexts—an underexplored yet meaningful task. It offers an opportunity
to investigate how generative models can capture human social dynamics. From a psychological
perspective, this line of research may not only inform model design but also provide computational
insights into nonverbal communication and social behavior.

Dataset Scale-up. With the proposed automatic annotation pipeline, we aim to scale up the dataset
to cover more diverse scenarios, such as movies, live streams, and news broadcasts. This expansion
will enable broader applications and support research under more varied and realistic settings.

Multi-view Talking Video Generation. We also plan to extend the dataset to include multi-view
recordings, incorporating both wide-angle full-body interactions and close-up talking-head shots, as
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commonly found in post-edited videos. This enhancement enables the exploration of multi-human
generation in a multi-view setting, which better reflects real-world scenarios. In practical applications,
human conversations are often captured from multiple viewpoints, making it essential for generative
models to handle view-dependent rendering and ensure spatial and temporal coherence across views.
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