



# MULTI-HUMAN INTERACTIVE TALKING DATASET

004 **Anonymous authors**

005 Paper under double-blind review

## ABSTRACT

010 Existing studies on talking video generation have predominantly focused on single-  
 011 person monologues or isolated facial animations, limiting their applicability to  
 012 realistic multi-human interactions. To bridge this gap, we introduce MIT, a large-  
 013 scale dataset specifically designed for multi-human talking video generation. To  
 014 this end, we develop an automatic pipeline that collects and annotates multi-person  
 015 conversational videos. The resulting dataset comprises 12 hours of high-resolution  
 016 footage, each featuring two to four speakers, with fine-grained annotations of  
 017 body poses and speech interactions. It captures natural conversational dynamics  
 018 in multi-speaker scenario, offering a rich resource for studying interactive visual  
 019 behaviors. To demonstrate the potential of MIT, we furthur propose CovOG, a  
 020 baseline model for this novel task. It integrates a Multi-Human Pose Encoder  
 021 (MPE) to handle varying numbers of speakers by aggregating individual pose  
 022 embeddings, and an Interactive Audio Driver (IAD) to modulate head dynamics  
 023 based on speaker-specific audio features. Together, these components showcase  
 024 the feasibility and challenges of generating realistic multi-human talking videos,  
 025 establishing MIT as a valuable benchmark for future research. *The code and data  
 026 will be fully public available.*

## 1 INTRODUCTION

030 Recent advancements in human-centric video generation [25, 24] have markedly improved the  
 031 synthesis of high-fidelity human videos. Among the most prominent research directions are pose-  
 032 guided animation [5, 29, 16, 49], which enables fine-grained control over full-body movements,  
 033 and audio-driven talking avatar generation [7, 10, 60], which focuses on producing accurate lip  
 034 synchronization and expressive head motion conditioned on speech. Within the domain of audio-  
 035 driven generation, substantial progress has been made in co-speech gesture synthesis [13] and talking  
 036 head animation [38, 45]. The former seeks to align upper-body gestures with spoken content, while  
 037 the latter aims to generate realistic facial expressions, head poses, and lip movements driven by  
 038 audio input, thereby enhancing the expressiveness and naturalness of talking avatars. Despite these  
 039 advances, existing methods predominantly focus on *single-person monologues* or *isolated facial  
 040 regions*, lacking the capacity to model multi-speaker interactions. This limitation significantly  
 041 constrains their applicability in realistic settings such as interviews, panel discussions, or films, where  
 042 natural, multi-party conversations are essential.

043 In contrast to single-speaker scenarios, multi-speaker interactions involve complex dynamics, includ-  
 044 ing turn-taking, fluid role transitions between speaking and listening, and non-verbal communicative  
 045 behaviors such as eye contact and gesturing. Moreover, current datasets [9, 13] and generation frame-  
 046 works [27, 26] are not designed to capture such multi-speaker conversational dynamics. Although  
 047 recent work such as INFP [61] has taken initial steps toward interactive talking-head generation with  
 048 multiple speakers, it remains restricted to facial animation alone. As a result, it fails to incorporate  
 049 full-body behavioral cues critical for modeling realistic social interactions, thereby limiting both the  
 050 quality and application of the generated content.

051 To advance beyond the limitations of single-speaker and facial-only generation, we define a new  
 052 task, Multi-Human Talking Video Generation, which aims to synthesize realistic multi-person  
 053 talking videos conditioned on reference images, body poses, and speech audio, as illustrated in  
 Figure 1. Constructing a dataset suitable for this task is particularly challenging, as it requires  
 the accurate extraction of multi-person conversational scenes, stabilization of camera motion, and

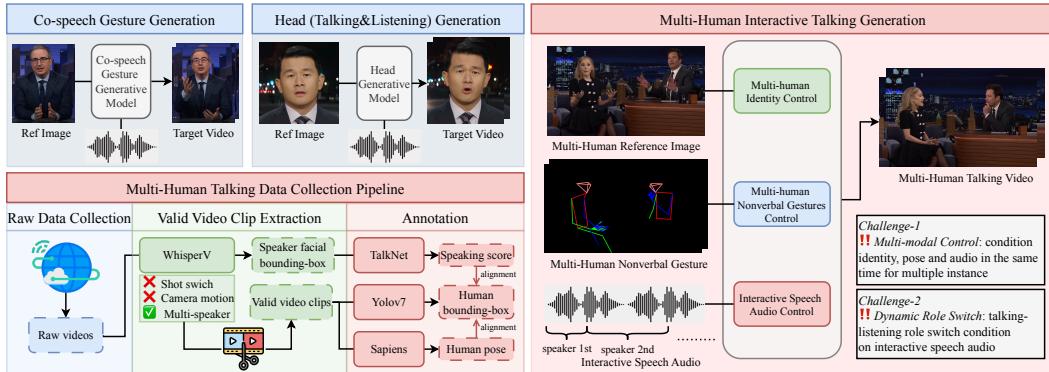


Figure 1: **Single Speaker Generation v.s. Multihuman Interactive Talking Generation and Automatic Data Collection Pipeline.** The pipeline of existing tasks are shown in blue, Co-speech Gesture Generation [13, 26], and Talking or Listening Head Generation [10, 45]. In contrast, Multi-person Interactive Talking Generation enables dynamic speaker interactions by incorporating identity, interactive pose and audio control, as shown in red. And the automatic data collection is shown consisting of raw data collection, valid video clip extraction and annotation.

the removal of occlusions and post-production artifacts. In this paper, we propose an automatic data collection pipeline and use it to build a benchmark for this task. Specifically, we introduce the Multi-human Interactive Talking dataset(MIT), a fine-grained collection of 12 hours of multi-human videos featuring 2–4 speakers with diverse identities. This dataset includes multi-human pose annotations aligned with each speaker’s speaking score label that indicates whether the human is speaking. Furthermore, we propose a baseline model designed for this task, namely CovOG: ConversationOriginal. Built on AnimateAnyone [1], CovOG integrates two key components: the Multi-Human Pose Encoder (MPE) and the Interactive Audio Driver (IAD). The MPE aggregates individual pose embeddings, allowing the model to accommodate a flexible number of human speakers. Meanwhile, the IAD dynamically refines speaker-specific head and pose features using an audio-driven speaking score, ensuring smooth and natural transitions between speaking and listening. Our work aims to lift audio-driven human-centric video generation to a more realistic setting, offering a significant contribution to the field.

To summarize, the contributions of this paper are:

- To the best of our knowledge, we first explore multi-human talking generation which lift exiting audio-driven video generation to a more realistic, universal setting.
- We develop an automatic data collection pipeline and construct the first dataset for multi-human talking video generation, featuring annotations of pose and speech interaction.
- We present a baseline model for this novel task, which supports a flexible number of human speakers and captures the dynamics of speech interactions. We further conduct extensive studies to benchmark our baseline against existing methods and analyze its performance.

## 2 RELATED WORK

### 2.1 HUMAN-CENTRIC VIDEO GENERATION MODEL

Recent advancements in diffusion models [35, 37, 14, 6, 52] have significantly enhanced video generation in terms of length, quality, and controllability. Stable Video Diffusion [4] employs latent diffusion to model video distributions within a latent space, enabling efficient and high-quality video synthesis. Furthermore, DiT-based models [31], such as CogVideoX [51] and MovieGen [36], improve video length and fidelity by diffusion transformers. Building on the advancements of these base models, human-centric video generation [25, 24] has garnered increasing attention due to its significant application potential. Text-driven models, such as Performer [21] and DirectorLLM [39], synthesize diverse human motions based on text prompts. Meanwhile, pose-based methods [11, 5, 29]

108 generate fine-grained controllable motions by leveraging pose sequences and reference images.  
 109 Notably, AnimateAnyone [16] employs ControlNet [53] to maintain identity consistency throughout  
 110 motion synthesis, while MagicAnimate [49] integrates an additional control branch to achieve better  
 111 pose alignment.

## 113 2.2 AUDIO-DRIVEN CHARACTER ANIMATION

115 **Single Portrait Image Animation.** Single portrait image animation, which generates a talking or  
 116 listening head from a given audio and portrait image, has recently gained significant attention. In  
 117 talking head generation, various datasets [38, 9, 41] have been proposed. Notably, MEAD [47] focuses  
 118 on emotion control, offering data across eight emotions with three intensity levels, while CelebV-  
 119 HQ [59] provides diverse identities in realistic settings. Early approaches [33, 44, 54] relied on GAN-  
 120 based models to improve lip synchronization. Recently, diffusion-based models [40, 20, 7, 10, 46]  
 121 have significantly enhanced realism, consistency, and control ability. In listening head modeling,  
 122 RLHG [56] first proposed ViCo dataset and built a sequential auto-encoder to generate non-verbal  
 123 facial feedbacks given the speech audio and portrait image. Recent approaches [18, 30, 12, 27] have  
 124 advanced reaction quality and controllability(*e.g.*, pose and text), by leveraging superior generative  
 125 models(*e.g.*, VQ-VAE) and LLMs.

126 **Single-human Co-speech Generation.** Co-speech generation enhances single-head generation by  
 127 incorporating nonverbal gestures, making the content more expressive. To facilitate research in this  
 128 area, a high-quality dataset, SSGD [13], has been developed, providing co-speech video clips of 10  
 129 speakers along with pose annotations. Early approaches [34, 28, 60, 15] typically follow a two-stage  
 130 pipeline: first, human poses are generated based on speech audio, and subsequently, pose-to-video  
 131 methods (*e.g.*, AnimateAnyone [16]) are employed to synthesize co-speech gesture videos using  
 132 a reference image. More recently, some studies have explored retrieval-based solutions for this  
 133 task. Gesture video reenactment [58, 26] utilizes a short reference video clip (*e.g.*, two minutes) to  
 134 generate stylized gesture videos that align with novel speech inputs, resulting in more faithful and  
 135 visually coherent outputs.

136 **Multi-human Conversation Generation.** Despite notable advancements in audio-driven single-  
 137 human animation, it remains limited in capturing the richness of multi-human interactive conversa-  
 138 tions, which are more common and expressive in real-world applications (*e.g.*, movie dialogues, talk  
 139 show interviews, and live streams). Recently, several studies [45, 57, 43] have explored interactive  
 140 head generation, producing two talking-listening heads in a dyadic manner forming a conversation.  
 141 Notably, INFP [61] introduced a large-scale dataset comprising extensive head-only conversational  
 142 videos between two individuals and proposed an interactive motion guide to facilitate seamless  
 143 talking-listening transitions. These approaches are constrained to generate only two individuals'  
 144 head areas, as they fail to incorporate non-verbal contents such as eye contact, physical interaction,  
 145 thereby restricting their applicability in more dynamic and natural conversational full-body interaction  
 146 settings. Moreover, existing studies primarily focus on ideal turn-taking scenarios, where speakers  
 147 alternate systematically, while challenges such as rapid role-switching and overlapping speech remain  
 148 inadequately addressed. Existing methods fail to address multi-human talking generation in terms of  
 149 full-body interactions and dynamic talking patterns, which requires specific models and datasets to  
 150 capture multi-human interactive talking videos.

## 151 3 MULTI-HUMAN INTERACTIVE TALKING DATSET

152 We present a high-quality dataset for multi-human interactive talking video generation, comprising  
 153 over 12 hours of high-resolution conversational clips with diverse interaction patterns and approx-  
 154 imately 200 distinct identities. The dataset was constructed through a fully automated pipeline,  
 155 facilitating future scale-up with minimal manual intervention. We provide a detailed description of  
 156 this process in the following subsections, covering the data collection methodology (Section 3.1) and  
 157 a analysis of interaction types and annotation statistics (Section 3.2).

### 158 3.1 AUTOMATIC DATA COLLECTION PIPELINE

159 As illustrated in Figure 1, the data collection pipeline comprises three main stages: raw video  
 160 collection, valid clip extraction, and multi-modal annotation. First, conversational videos are collected

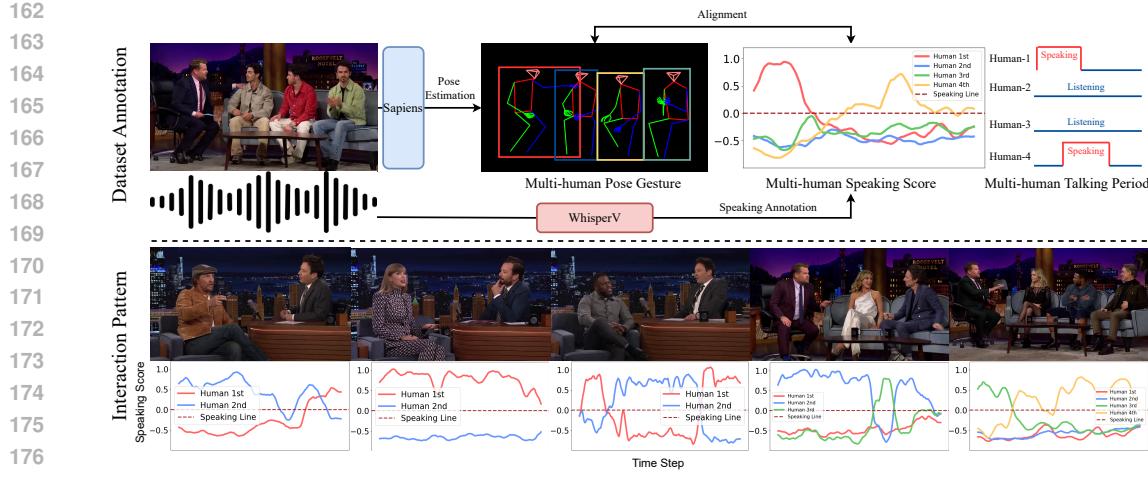


Figure 2: **Multi-human Interactive Talking Dataset.** Sapiens [23] and WhisperV [17] are used to annotate multi-human gesture and interactive speech respectively. MIT dataset captures rich conversation interaction patterns of multi-human, such as talking-listening, tune-talking, over-talking and other complex patterns.

from online platforms. However, most real-world videos undergo post-editing and include multiple shots from different perspectives (*e.g.*, close-up shots of faces and wide shots of the entire scene), which are unsuitable for current video generation models that require temporally consistent visual content. To address this, WhisperV [17] is adopted to segment videos into individual shots and to track facial trajectories of speakers within each shot. Clips featuring multiple active speakers within a single continuous shot are then extracted to preserve interactive dynamics. Finally, foundational perception models are employed to extract speaking scores, human poses, and bounding boxes. The bounding boxes serve as spatial anchors to align multi-modal signals, enabling consistent annotation for each individual speaker.

**Pose Annotation.** As part of the annotation process, 2D skeletal keypoints are extracted using Sapiens-2B [23] in the COCO133 [22] format. A subset of 59 keypoints is selected to represent the head, body, arms, legs, and hands, as illustrated in Figure 2. Specifically, only three keypoints are retained for the head to define its orientation, as finer facial expressions (*e.g.*, lip movement, emotions) are primarily driven by audio. Notably, although the detected pose keypoints are pseudo-labels rather than manually annotated ground truth, they are obtained using a state-of-the-art pose estimation model, similar to SSGD [13]. This provides sufficient accuracy for generation tasks despite the absence of human supervision.

**Speaking Score.** In parallel, speaking scores are extracted using TalkNet [3], a model that performs speech activity detection. As illustrated in Figure 2, each individual is associated with a speaking score curve indicating periods of speech and silence. A score approaching 1 indicates active speaking, while a score nearing -1 corresponds to non-speaking states. The figure further illustrates how speaking scores reflect various interaction patterns: clear alternation between high and low scores indicates speaker turns; overlapping high scores across speakers correspond to simultaneous speech; and smooth transitions between high and low values capture speaking–listening dynamics.

**Pose–Speech Alignment.** After obtaining pose annotations and speaking scores—which are independently extracted and thus not inherently aligned—alignment is performed for each individual using human bounding boxes detected by YOLOv7. For each frame, pose annotations are assigned to the individual whose bounding box contains the highest number of keypoints. Similarly, each face track is matched to the individual whose bounding box most frequently overlaps with the facial bounding boxes across frames, leveraging the fact that face tracks are already aligned with speaking scores. By using the human bounding box as a shared spatial reference, both pose and speech annotations are consistently associated with the correct individual.

### 3.2 DATASET ANALYSIS

**Data Source.** Real-world videos often contain camera motion, occlusions, and post-editing artifacts, which are challenging to remove and typically require extensive manual intervention, such as region-

216  
 217 **Table 1: Existing Datasets v.s. MIT.** Compared to previous datasets that focus on single-person  
 218 speech and isolated facial animation, our MIT dataset uniquely features multi-person talking videos  
 219 with full-body interactions.

| 220 <b>Dataset</b> | 221 <b>Num.</b> | 222 <b>Area</b> | 223 <b>Character</b> | 224 <b>Pose</b> | 225 <b>Speak</b> | 226 <b>Res.</b> | 227 <b>Total Len.(h)</b> |
|--------------------|-----------------|-----------------|----------------------|-----------------|------------------|-----------------|--------------------------|
| 221 SSGD [13]      | 222 One         | 223 Body        | 224 Speaking         | 225 ✓           | 226 ✗            | 227 1920x1080   | 228 144                  |
| 221 HDFTD [55]     | 222 One         | 223 Head        | 224 Speaking         | 225 ✗           | 226 ✗            | 227 512x512     | 228 16                   |
| 221 ViCo [56]      | 222 One         | 223 Head        | 224 Listening        | 225 ✗           | 226 ✗            | 227 384x384     | 228 2                    |
| 221 RealTalk[12]   | 222 Two         | 223 Head        | 224 Interactive      | 225 ✗           | 226 ✓            | 227 1280x720    | 228 115                  |
| 221 DyConv [61]    | 222 Two         | 223 Head        | 224 Interactive      | 225 ✗           | 226 ✓            | 227 400x400     | 228 200                  |
| 221 MIT            | 222 Multi       | 223 Body        | 224 Interactive      | 225 ✓           | 226 ✓            | 227 1920x1080   | 228 12                   |

228  
 229 specific inpainting. To mitigate these issues while ensuring diverse and interactive multi-speaker  
 230 scenarios, we curate classic and representative interview videos from two channels—*The Tonight*  
 231 *Show*<sup>1</sup> and *The Late Late Show*<sup>2</sup>—as our data sources. These videos feature interactive multi-speaker  
 232 scenarios that reflect real-world social behaviors, captured with static camera setups and minimal  
 233 occlusions, making them well-suited for training models on interactive talking video generation.  
 234 Despite the limited scene variety, the dataset features complex interactions and diverse identities,  
 235 demonstrating its potential applicability to news, live broadcasting, and cinematic content.

236 **Interaction Pattern.** Multi-human interaction patterns constitute a critical yet challenging aspect  
 237 of generating talking videos with multiple speakers, due to their inherent diversity and complexity.  
 238 The most common pattern is turn-taking, where speakers alternate their roles, as explored in prior  
 239 works [61] for interactive talking head. However, real-world conversations often exhibit more intricate  
 240 dynamics, such as interruptions (over-talking), pauses, and rapid shifts between speaking and listening  
 241 roles. Figure 2 illustrates the diverse interaction patterns captured in the MIT dataset, highlighting its  
 242 suitability for advancing research in multi-human talking video generation.

243 **Dataset Statistics.** A comparison between MIT and existing datasets is presented in Table 1. MIT  
 244 is the only dataset that features multi-human full-body interactions within conversational contexts.  
 245 Although the total duration is limited to 12 hours, the automated data collection pipeline enables  
 246 future scalability, compensating for this limitation.

247 **Quality of Data Annotations.** On a subset of 20 testing videos, we evaluate the automatic pose  
 248 detections against human annotations and find that the pseudo ground truth is sufficiently accurate for  
 249 our task. We also manually annotate the speaking–listening transition points (*i.e.*, the zero point of the  
 250 speaking score) for each speaker, achieving an average temporal error below 0.1 second. Furthermore,  
 251 we verify that pose–speaking alignments of all samples are correct.

## 253 4 BASELINE: COVOG

255 To tackle this task, we introduce CovOG, a tailored model built upon the single-person animation  
 256 framework AnimateAnyone [16] which leverages Stable Diffusion [4] as base model and ensures  
 257 identity consistency through ReferenceNet while incorporating conditional poses by embedding their  
 258 features into the latent space via Pose Guider. Expanding on this foundation, CovOG integrates two  
 259 key modules: the Multi-Human Pose Encoder (*i.e.*, Pose Guider/Adaptor) and the Interactive Audio  
 260 Driver (IAD) as shown in Figure 3. The detail of each module is provided below.

### 262 4.1 NETWORK ARCHITECTURE

264 **Overview.** The overview of CovOG is shown in Figure 3 (a). Specifically, the multi-human pose  
 265 embedding is incorporated into the multi-frame latent noise as pose control before being fed into  
 266 DenoisingNet. Additionally, ReferenceNet is introduced for identity control using reference images,  
 267 while IAD modules are incorporated to control the facial area based on speech audio.

268  
 269 <sup>1</sup><https://www.youtube.com/@fallontonight>

<sup>2</sup><https://www.youtube.com/@TheLateLateShow>

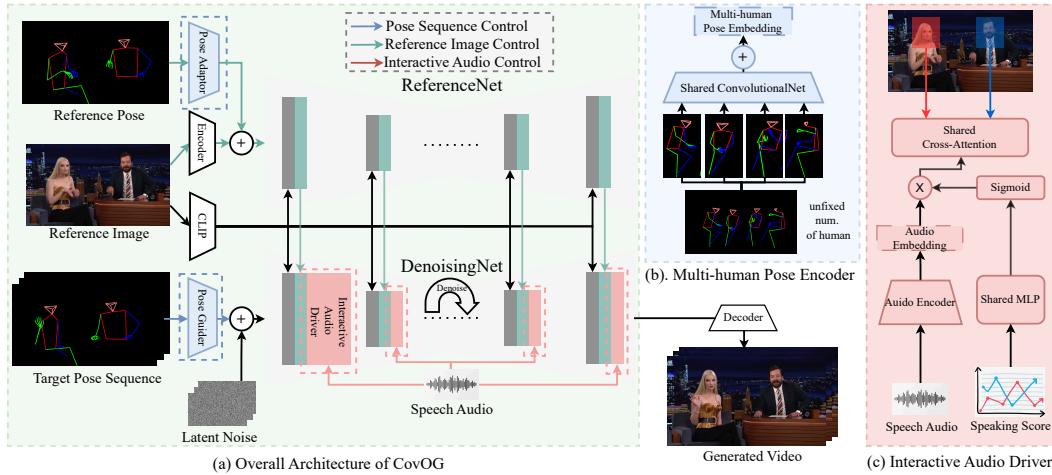


Figure 3: **Overview of proposed method CovOG.** (a) The overall architecure of CovOG. (b) Implement of Multi-human Pose Encoder used in Pose Adaptor and Pose Guider. (c) Implement of Interactive Audio Driver to capture the dynamic facial interaction between multiple speakers.

**Multi-human Pose Control.** To address multi-human pose control, we propose the Multi-human Pose Encoder (MPE) as Pose Guider as shown in Figure 3 (b). This module begins by utilizing instance masks to isolate individual human poses. Next, a shared convolutional network  $\mathcal{F}_{\text{pose}}$  extracts features from each human pose  $p_i$  separately. Finally, these features are aggregated to generate a unified embedding that comprehensively represents the poses of all individuals:

$$e_{\text{pose}} = \sum_{i=1}^n e_{\text{pose}}^i; e_{\text{pose}}^i = \mathcal{F}_{\text{pose}}(p_i), i = 1, 2, \dots, n, \quad (1)$$

where  $e_{\text{pose}}^i \in \mathbb{R}^{f, c, w, h}$  stands for pose embedding of each human. This design is motivated by two key considerations. First, since pose control is independent for each individual, the model extracts and processes poses separately using a shared convolutional network, which promotes identity-invariant representations. Second, given that the number of individuals is variable, our design enhances robustness by allowing the network to manage pose of each human independently rather than being confined to a fixed number of individual.

**Multi-human Identity Control.** As the reference image contains multiple identities needed to be controlled, we propose a Pose Adaptor with the MPE architecture that extracts multi-human spatial cues. First, the reference pose is input into the Pose Adaptor to obtain a pose embedding. This embedding is then fused with the latent representation of the corresponding reference image and fed into ReferenceNet to provide spatial cues for each individual. This approach effectively accommodates variations in both the positions and the number of individuals across cases.

**Multi-human Interactive Audio Control.** In split of the complex patterns of interaction mentioned in Section 3, the speaking scores of individual speakers serve as a good indicator of the underlying interaction patterns. As shown in Figure 3 (c), we proposed the Interactive Audio Driver(IAD) to model the alignment between audio features and the corresponding lip movements and facial expressions. For  $i$ -th speaker, we use his speaking score  $a^i \in \mathbb{R}^f$  to adjust the audio embedding  $e_{\text{audio}} \in \mathbb{R}^{f, m, d}$ . Subsequently, we employ the adjusted audio embedding  $e_{\text{audio}}^i$  and hidden features  $h_k$  from the DenoisingNet to perform a cross-attention  $\mathcal{F}_{\text{audio}}$  using a facial mask:

$$h_{k+1} = h_k + \sum_{i=1}^n \mathcal{F}_{\text{audio}}(h_k, e_{\text{audio}}^i, \text{mask}_i); e_{\text{audio}}^i = e_{\text{audio}} \cdot \sigma(\text{MLP}(a^i)), \quad (2)$$

where the parameters of this module are also shared across all speakers and  $\text{mask}_i$  is obtained by the bounding box computed using three key head landmarks of human  $i$ . This design not only ensures that the model learns an identity-invariant alignment between audio and facial features, but also models the entire interactive process, thereby achieving a natural transition between listening and speaking. As shown in Figure 3 (a), the IAD module is inserted after each DenoisingNet block.

324  
 325 **Table 2: Quantitative Comparison and Ablation Study.** Experiments are conducted on the  
 326 *TonightShow* for two-human scenarios and the *LateLateShow* for multi-human scenarios, under both  
 327 easy and challenging test. The data from *TonightShow* consists of conversations with 2 speakers,  
 328 while data from *LateLateShow* includes dialogues involving 2 to 4 speakers. Bold text indicates the  
 329 best, while underlined text represents the second best.

| Method                                  | Two Human   |              |               | Multiple Human |              |               | All Test    |              |               |
|-----------------------------------------|-------------|--------------|---------------|----------------|--------------|---------------|-------------|--------------|---------------|
|                                         | SSIM↑       | PSNR↑        | FVD↓          | SSIM↑          | PSNR↑        | FVD↓          | SSIM↑       | PSNR↑        | FVD↓          |
| <i>Comparison with Previous Methods</i> |             |              |               |                |              |               |             |              |               |
| AnimateAnyone [16]                      | 0.60        | 18.98        | 322.08        | 0.64           | 19.96        | 353.11        | 0.62        | <u>19.47</u> | 337.60        |
| ControlSVD [48]                         | 0.31        | 13.46        | 1036.96       | -              | -            | -             | -           | -            | -             |
| <b>CovOG</b>                            | <b>0.62</b> | <b>19.16</b> | <b>306.01</b> | <b>0.66</b>    | <b>20.21</b> | <b>308.68</b> | <b>0.64</b> | <b>19.69</b> | <b>307.35</b> |
| <i>Ablation Study</i>                   |             |              |               |                |              |               |             |              |               |
| CovOG w/o MPE                           | 0.60        | 18.88        | 317.41        | 0.65           | 20.00        | 330.50        | 0.63        | 19.44        | 323.96        |
| CovOG w/o IAD                           | 0.61        | 19.06        | 313.69        | 0.65           | 19.86        | 347.92        | 0.63        | 19.46        | 330.80        |

## 339 5 EXPERIMENT

### 340 5.1 DATASETS AND EVALUATION METRICS

341 **Datasets.** In our experiment, we first split the test set from the MIT datasets, which consists of  
 342 approximately 200 easy cases and 200 challenging cases sourced from both the *TonightShow* and the  
 343 *LateLateShow*. The easy cases feature identities present in the training set but with novel pose and  
 344 audio control parameters, whereas the challenging cases involve entirely unseen control signals to  
 345 represent real application.

346 **Evaluation Metrics.** To qualitatively analyze model performance, we utilize Structured Similarity  
 347 (SSIM), Peak Signal-to-Noise Ratio (PSNR) and Frechet Inception Distance (FVD) to evaluate the  
 348 quality of generated samples. Unlike single-person talking head scenarios, lip alignment cannot be  
 349 reliably assessed using LIPS [8] in our setting, as multi-person interactions involve both speaking and  
 350 listening roles, often with side-facing views that LIPS is not designed to handle. How to effectively  
 351 evaluate lip synchronization in such interactive contexts remains an open problem. To address this  
 352 limitation, we complement our evaluation with user studies for visual-audio alignment.

### 353 5.2 IMPLEMENTATION

354 We pretrain our model following the two-stage paradigm proposed in AnimateAnyone [16], ini-  
 355 tializing it with weights from [1]. The model is trained on the entire training set, encompassing  
 356 videos with varying numbers of speakers. The first stage and the second stage all comprised 30,000  
 357 steps with a resolution of  $640 \times 384$ , frame number of 15 and a batch size of 4 on 4 NVIDIA A6000  
 358 GPUs. The Pose Adaptor is integrated into the first stage and remains fixed in the second stage,  
 359 while Interactive Audio Driver is incorporated into the second stage with the motion module. During  
 360 inference, similar to Hallo2 [10], we utilize the final six frames from the previous inference as  
 361 motion frames, incorporating them as the initial six frames of the subsequent inference while keeping  
 362 them fixed to ensure the continuity and smoothness of generation. In addition, we obtained audio  
 363 embedding using Wav2Vec [2].

### 364 5.3 COMPARISON

365 **Quantitative Evaluation.** We compare CovOG with two representative controllable video gen-  
 366 eration baselines: AnimateAnyone [16] and ControlSVD [48]. While more recent methods have  
 367 emerged [32], we select these two due to their simplicity and broad representativeness, which allow  
 368 for clearer comparisons. To ensure fairness, AnimateAnyone follows the same inference setup as  
 369 CovOG. For ControlSVD, we use pose embeddings as input to ControlNet, initialize from the first  
 370 frame, and generate videos autoregressively. As shown in Table 2, CovOG consistently outperforms  
 371 both baselines across all metrics. AnimateAnyone struggles with multi-person scenarios, as its  
 372 encoder jointly drives all subjects, while CovOG’s MPE models each person independently and  
 373 aggregates their effects. Moreover, lacking audio control, AnimateAnyone produces random facial

378 motions, whereas CovOG’s IAD leverages personalized audio embeddings to enhance head dynamics  
 379 and ensure audio-visual alignment. ControlSVD suffers from autoregressive error accumulation,  
 380 leading to degraded quality over time, while CovOG maintains stability throughout generation.  
 381

382 **User Study.** We conduct a user study to  
 383 evaluate character consistency, background  
 384 consistency, audio-visual alignment, and  
 385 overall visual quality. Seven participants  
 386 rated 10 randomly selected samples per  
 387 method on a 1–5 scale (higher is better),  
 388 based on the reference image and speaking  
 389 score. As shown in Table 3, CovOG out-  
 390 performs other methods across all criteria,  
 391 indicating superior control alignment and  
 392 visual quality.

393 **Cross-modal Experiment.** To evaluate the  
 394 generalization and practical applicability of  
 395 our method, we conducted a cross-modal  
 396 experiment. Specifically, we randomly se-  
 397 lected 20 test cases by combining an iden-  
 398 tity image, a pose sequence, and corresponding speech audio from two different source videos, while  
 399 ensuring that they involve the same number of speakers. Since ground-truth videos are unavailable  
 400 for these cross-modal combinations, we employ VBench [19] to assess the generated results in terms  
 401 of temporal consistency and visual quality, as shown in Table 4. The results demonstrate that CovOG  
 402 achieves superior generalization both temporally and spatially.

#### 403 404 5.4 ABLATION STUDY

405 As shown in Table 2, removing either MPE  
 406 or IAD leads to a clear drop in performance  
 407 across all metrics. The absence of MPE  
 408 results in the most significant decline, as  
 409 torso control—essential for multi-person  
 410 pose generation—heavily impacts visual  
 411 quality. Without IAD, the model lacks suf-  
 412 ficient control signals, causing unnatural  
 413 head movements due to the absence of au-  
 414 dio guidance. User study results in Table 3  
 415 further confirm these findings: character  
 416 and background consistency degrade without MPE, while audio-visual alignment suffers notably  
 417 without IAD. These results validate the complementary roles of MPE for multi-person pose control  
 418 and IAD for audio-driven facial synchronization.

#### 419 420 5.5 VISUALIZATION ANALYSIS

422 **Qualitative Evaluation.** We conduct qualitative evaluations on the MIT test set, as illustrated in  
 423 Figure 4, where the first row presents relatively simple cases and the second row includes more  
 424 challenging ones. The red and blue bounding boxes indicate the speaker and listener, respectively.  
 425 Both methods produce plausible gestures. However, AnimateAnyone tends to generate an **averaged**  
 426 **face** for both speakers and listeners. For instance, the listener’s mouth remains static, and the speaker  
 427 exhibits only limited lip movement. In comparison, CovOG shows a higher degree of interactivity  
 428 and closer alignment with the ground truth. The speaker appears more engaged in speech, while the  
 429 listener displays responsive expressions such as laughter. This may be attributed to CovOG’s use  
 430 of speaking scores to estimate speaking status, enabling adaptive facial expression generation. For  
 431 example, when the input audio contains both speech and laughter, the model produces synchronized  
 432 lip movements for the speaker and reactive expressions for the listener.

Table 3: **User Study.** ‘CC’, ‘BC’, and ‘AV-Align’ de-  
 note ‘character’, ‘background consistency’, and ‘audio-  
 visual alignment’, respectively. ‘Visual’ indicates over-  
 all video quality.

| Method                                  | CC↑         | BC↑         | AV-Align↑   | Visual↑     |
|-----------------------------------------|-------------|-------------|-------------|-------------|
| <i>Comparison with Previous Methods</i> |             |             |             |             |
| AnimateAnyone [16]                      | 2.81        | 3.83        | 2.66        | 2.64        |
| ControlSVD [48]                         | 2.57        | 1.86        | 1.86        | 1.57        |
| <b>CovOG</b>                            | <b>2.93</b> | <b>4.11</b> | <b>3.22</b> | <b>3.34</b> |
| <i>Ablation Study</i>                   |             |             |             |             |
| CovOG w/o MPE                           | 2.64        | 3.55        | 2.79        | 2.5         |
| CovOG w/o IAD                           | <u>2.84</u> | <u>3.91</u> | 2.66        | <u>2.81</u> |

Table 4: **Cross-modal Experiment.** ‘SC’, ‘BC’, ‘AQ’, and ‘IQ’ denote ‘subject consistency’, ‘background consistency’, ‘aesthetic quality’, and ‘imaging quality’, respectively.

| Method             | SC↑          | BC↑          | AQ↑          | IQ↑          |
|--------------------|--------------|--------------|--------------|--------------|
| AnimateAnyone [16] | 0.945        | 0.952        | 0.530        | 0.564        |
| <b>CovOG</b>       | <b>0.952</b> | <b>0.959</b> | <b>0.542</b> | <b>0.603</b> |

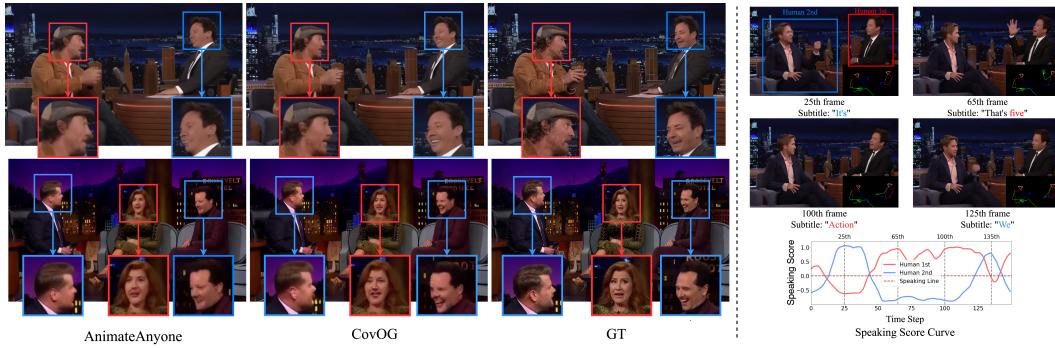


Figure 4: **Qualitative Comparison and Interaction Visualization.** Left: The red box indicates the speaker, and the blue box indicates the listener. Compared to AnimateAnyone, CovOG achieves superior lip synchronization for speakers and generates more natural, context-aware responses for listeners. Right: Visualization of the alignment with speaking scores, audio (*i.e.*, subtitles), and pose.

**Interaction Visualization.** We present the interaction visualization in the result generated by our CovOG, as shown in Figure 4. The speaking score curve indicates a turn-taking dialogue between two individuals. Key frames with their corresponding subtitles and the pose condition are displayed, with pronounced words highlighted in matching colors as in the speaking score curve. The results demonstrate that CovOG effectively aligns audio with lips and facial expressions for both speaker and listener, achieving natural interaction dynamics and strong audio-visual synchronization.

## 5.6 CHALLENGES IN MULTI-HUMAN TALKING SCENARIOS

Here, we outline the key challenges unique to multi-human talking scenarios in comparison to traditional talking-head and co-speech generation, and discuss the limitations of existing methods.

**Multi-human Interaction Modeling.** In a conversation, a person switches rapidly between speaking and listening, requiring the model to capture both the transitions and their dynamics. During speaking, accurate lip-audio synchronization is crucial, while during listening, the model only needs to produce natural, context-appropriate reactions. This difference in audio-visual patterns between speaking and listening poses a major challenge for generating realistic interactive speech.

**Side-Face Speech Alignment and Identity Consistency.** In multi-person conversational scenarios, speakers frequently turn their heads to engage with others, resulting in side-face appearances during speech. Accurately modeling lip movements in such cases remains challenging, as most talking head generation methods are primarily optimized for frontal views [42]. Furthermore, large rotational movements of the head and upper body pose challenges to maintaining visual consistency, particularly in facial features.

**Limitation of Existing Methods.** As discussed above, existing models face limitations in addressing these challenges. Moreover, talking-head methods are not designed to model full-body interactions, while co-speech models are often difficult to extend to multi-person scenarios. For instance, most recent work, TANGO [26] requires a two-minute reference video to construct an interactive audio-frame graph, which is impractical in multi-person conversations where audio-frame pairs are sparse. This sparsity hinders the feasibility to retrieve keyframes, leading to performance degradation.

## 6 CONCLUSION

In this paper, we introduce the Multi-human Interactive Talking (MIT) dataset, the first large-scale benchmark for multi-person talking video generation. To demonstrate its utility, we propose CovOG, a baseline model that integrates pose and audio cues to generate natural multi-human talking videos. We hope this dataset fosters further research in more challenging human-centric video generation.

486 REFERENCES  
487

- 488 [1] Moore-animateanyone. GitHub repository. URL <https://github.com/MooreThreads/Moore-AnimateAnyone>.  
489
- 490 [2] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0:  
491 A framework for self-supervised learning of speech representations. *Advances in neural*  
492 *information processing systems*, 33:12449–12460, 2020.  
493
- 494 [3] Stanislav Beliaev, Yurii Rebryk, and Boris Ginsburg. Talknet: Fully-convolutional non-  
495 autoregressive speech synthesis model. *arXiv preprint arXiv:2005.05514*, 2020.  
496
- 497 [4] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Do-  
498 minik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion:  
499 Scaling latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.  
500
- 501 [5] Di Chang, Yichun Shi, Quankai Gao, Jessica Fu, Hongyi Xu, Guoxian Song, Qing Yan, Xiao  
502 Yang, and Mohammad Soleymani. Magicdance: Realistic human dance video generation with  
503 motions & facial expressions transfer. *CoRR*, 2023.  
504
- 505 [6] Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo  
506 Xing, Yaofang Liu, Qifeng Chen, Xintao Wang, et al. Videocrafter1: Open diffusion models for  
507 high-quality video generation. *arXiv preprint arXiv:2310.19512*, 2023.  
508
- 509 [7] Zhiyuan Chen, Jiajiong Cao, Zhiqian Chen, Yuming Li, and Chenguang Ma. Echomimic:  
510 Lifelike audio-driven portrait animations through editable landmark conditions. *arXiv preprint*  
511 *arXiv:2407.08136*, 2024.  
512
- 513 [8] Joon Son Chung and Andrew Zisserman. Out of time: automated lip sync in the wild. In  
514 *Computer Vision–ACCV 2016 Workshops: ACCV 2016 International Workshops, Taipei, Taiwan,*  
515 *November 20–24, 2016, Revised Selected Papers, Part II 13*, pages 251–263. Springer, 2017.  
516
- 517 [9] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman. Voxceleb2: Deep speaker recognition.  
518 *arXiv preprint arXiv:1806.05622*, 2018.  
519
- 520 [10] Jiahao Cui, Hui Li, Yao Yao, Hao Zhu, Hanlin Shang, Kairui Cheng, Hang Zhou, Siyu Zhu,  
521 and Jingdong Wang. Hallo2: Long-duration and high-resolution audio-driven portrait image  
522 animation. *arXiv preprint arXiv:2410.07718*, 2024.  
523
- 524 [11] Mengyang Feng, Jinlin Liu, Kai Yu, Yuan Yao, Zheng Hui, Xiefan Guo, Xianhui Lin, Haolan  
525 Xue, Chen Shi, Xiaowen Li, et al. Dreamoving: A human dance video generation framework  
526 based on diffusion models. *arXiv preprint arXiv:2312.05107*, 2023.  
527
- 528 [12] Scott Geng, Revant Teotia, Purva Tendulkar, Sachit Menon, and Carl Vondrick. Affective faces  
529 for goal-driven dyadic communication. *arXiv preprint arXiv:2301.10939*, 2023.  
530
- 531 [13] Shiry Ginosar, Amir Bar, Gefen Kohavi, Caroline Chan, Andrew Owens, and Jitendra Ma-  
532 lik. Learning individual styles of conversational gesture. In *Proceedings of the IEEE/CVF*  
533 *Conference on Computer Vision and Pattern Recognition*, pages 3497–3506, 2019.  
534
- 535 [14] Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh  
536 Agrawala, Dahu Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image  
537 diffusion models without specific tuning. *arXiv preprint arXiv:2307.04725*, 2023.  
538
- 539 [15] Xu He, Qiaochu Huang, Zhensong Zhang, Zhiwei Lin, Zhiyong Wu, Sicheng Yang, Minglei  
540 Li, Zhiyi Chen, Songcen Xu, and Xiaofei Wu. Co-speech gesture video generation via motion-  
541 decoupled diffusion model. In *Proceedings of the IEEE/CVF Conference on Computer Vision*  
542 *and Pattern Recognition*, pages 2263–2273, 2024.  
543
- 544 [16] Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character  
545 animation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*  
546 *Recognition*, pages 8153–8163, 2024.  
547

- 540 [17] Siyuan Hu, Kevin Qinghong Lin, Difei Gao, and Mike Zheng Shou. Whisperv. GitHub  
 541 repository, 2023. URL <https://github.com/showlab/whisperV>.
- 542
- 543 [18] Ailin Huang, Zhewei Huang, and Shuchang Zhou. Perceptual conversational head generation  
 544 with regularized driver and enhanced renderer. In *Proceedings of the 30th ACM international  
 545 conference on multimedia*, pages 7050–7054, 2022.
- 546 [19] Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang,  
 547 Tianxing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark  
 548 suite for video generative models. In *Proceedings of the IEEE/CVF Conference on Computer  
 549 Vision and Pattern Recognition*, pages 21807–21818, 2024.
- 550
- 551 [20] Jianwen Jiang, Chao Liang, Jiaqi Yang, Gaojie Lin, Tianyun Zhong, and Yanbo Zheng.  
 552 Loopy: Taming audio-driven portrait avatar with long-term motion dependency. *arXiv preprint  
 553 arXiv:2409.02634*, 2024.
- 554 [21] Yuming Jiang, Shuai Yang, Tong Liang Koh, Wayne Wu, Chen Change Loy, and Ziwei Liu.  
 555 Text2performer: Text-driven human video generation. In *Proceedings of the IEEE/CVF Interna-  
 556 tional Conference on Computer Vision*, pages 22747–22757, 2023.
- 557
- 558 [22] Sheng Jin, Lumin Xu, Jin Xu, Can Wang, Wentao Liu, Chen Qian, Wanli Ouyang, and Ping  
 559 Luo. Whole-body human pose estimation in the wild. In *Computer Vision–ECCV 2020: 16th  
 560 European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16*, pages  
 561 196–214. Springer, 2020.
- 562 [23] Rawal Khirodkar, Timur Bagautdinov, Julieta Martinez, Su Zhaoen, Austin James, Peter  
 563 Selednik, Stuart Anderson, and Shunsuke Saito. Sapiens: Foundation for human vision models.  
 564 In *European Conference on Computer Vision*, pages 206–228. Springer, 2024.
- 565
- 566 [24] Wentao Lei, Jinting Wang, Fengji Ma, Guanjie Huang, and Li Liu. A comprehensive survey on  
 567 human video generation: Challenges, methods, and insights. *arXiv preprint arXiv:2407.08428*,  
 568 2024.
- 569 [25] Hui Li, Mingwang Xu, Yun Zhan, Shan Mu, Jiaye Li, Kaihui Cheng, Yuxuan Chen, Tan Chen,  
 570 Mao Ye, Jingdong Wang, et al. Openhumanvid: A large-scale high-quality dataset for enhancing  
 571 human-centric video generation. *arXiv preprint arXiv:2412.00115*, 2024.
- 572
- 573 [26] Haiyang Liu, Xingchao Yang, Tomoya Akiyama, Yuantian Huang, Qiaoge Li, Shigeru Kuriyama,  
 574 and Takafumi Taketomi. Tango: Co-speech gesture video reenactment with hierarchical audio  
 575 motion embedding and diffusion interpolation. *arXiv preprint arXiv:2410.04221*, 2024.
- 576
- 577 [27] Xi Liu, Ying Guo, Cheng Zhen, Tong Li, Yingying Ao, and Pengfei Yan. Customlistener:  
 578 Text-guided responsive interaction for user-friendly listening head generation. In *Proceedings  
 579 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2415–2424,  
 2024.
- 580
- 581 [28] Xian Liu, Qianyi Wu, Hang Zhou, Yinghao Xu, Rui Qian, Xinyi Lin, Xiaowei Zhou, Wayne Wu,  
 582 Bo Dai, and Bolei Zhou. Learning hierarchical cross-modal association for co-speech gesture  
 583 generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern  
 584 Recognition*, pages 10462–10472, 2022.
- 585
- 586 [29] Yue Ma, Yingqing He, Xiaodong Cun, Xintao Wang, Siran Chen, Xiu Li, and Qifeng Chen.  
 587 Follow your pose: Pose-guided text-to-video generation using pose-free videos. In *Proceedings  
 588 of the AAAI Conference on Artificial Intelligence*, volume 38, pages 4117–4125, 2024.
- 589
- 590 [30] Evonne Ng, Hanbyul Joo, Liwen Hu, Hao Li, Trevor Darrell, Angjoo Kanazawa, and Shiry  
 591 Ginosar. Learning to listen: Modeling non-deterministic dyadic facial motion. In *Proceedings  
 592 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 20395–20405,  
 593 2022.
- 594
- 595 [31] William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings  
 596 of the IEEE/CVF International Conference on Computer Vision*, pages 4195–4205, 2023.

- 594 [32] Bohao Peng, Jian Wang, Yuechen Zhang, Wenbo Li, Ming-Chang Yang, and Jiaya Jia. Controlnext: Powerful and efficient control for image and video generation. *arXiv preprint arXiv:2408.06070*, 2024.
- 595
- 596
- 597 [33] KR Prajwal, Rudrabha Mukhopadhyay, Vinay P Namboodiri, and CV Jawahar. A lip sync expert is all you need for speech to lip generation in the wild. In *Proceedings of the 28th ACM international conference on multimedia*, pages 484–492, 2020.
- 598
- 599
- 600
- 601 [34] Shenhan Qian, Zhi Tu, Yihao Zhi, Wen Liu, and Shenghua Gao. Speech drives templates: Co-602 speech gesture synthesis with learned templates. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 11077–11086, 2021.
- 603
- 604
- 605 [35] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-606 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 10684–10695, 2022.
- 607
- 608
- 609 [36] Mohammad Shahab Sepehri, Zalan Fabian, Maryam Soltanolkotabi, and Mahdi Soltanolkotabi. 610 Mediconfusion: Can you trust your ai radiologist? probing the reliability of multimodal medical 611 foundation models. *arXiv preprint arXiv:2409.15477*, 2024.
- 612
- 613 [37] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, 614 Harry Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without 615 text-video data. *arXiv preprint arXiv:2209.14792*, 2022.
- 616
- 617 [38] Joon Son Chung, Andrew Senior, Oriol Vinyals, and Andrew Zisserman. Lip reading sentences 618 in the wild. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, 619 pages 6447–6456, 2017.
- 620
- 621 [39] Kunpeng Song, Tingbo Hou, Zecheng He, Haoyu Ma, Jialiang Wang, Animesh Sinha, Sam Tsai, 622 Yaqiao Luo, Xiaoliang Dai, Li Chen, et al. Directorllm for human-centric video generation. 623 *arXiv preprint arXiv:2412.14484*, 2024.
- 624
- 625 [40] Michał Stypulkowski, Konstantinos Vougioukas, Sen He, Maciej Zięba, Stavros Petridis, and 626 Maja Pantic. Diffused heads: Diffusion models beat gans on talking-face generation. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 627 5091–5100, 2024.
- 628
- 629 [41] Kim Sung-Bin, Lee Chae-Yeon, Gihun Son, Oh Hyun-Bin, Janghoon Ju, Suekyeong Nam, 630 and Tae-Hyun Oh. Multitalk: Enhancing 3d talking head generation across languages with 631 multilingual video dataset. *arXiv preprint arXiv:2406.14272*, 2024.
- 632
- 633 [42] Shuai Tan, Bin Ji, Mengxiao Bi, and Ye Pan. Edtalk: Efficient disentanglement for emotional 634 talking head synthesis. In *European Conference on Computer Vision*, pages 398–416. Springer, 635 2024.
- 636
- 637 [43] Minh Tran, Di Chang, Maksim Siniukov, and Mohammad Soleymani. Dyadic interaction 638 modeling for social behavior generation. *arXiv preprint arXiv:2403.09069*, 2024.
- 639
- 640 [44] Konstantinos Vougioukas, Stavros Petridis, and Maja Pantic. Realistic speech-driven facial 641 animation with gans. *International Journal of Computer Vision*, 128(5):1398–1413, 2020.
- 642
- 643 [45] Duomin Wang, Bin Dai, Yu Deng, and Baoyuan Wang. Agentavatar: Disentangling planning, 644 driving and rendering for photorealistic avatar agents. *arXiv preprint arXiv:2311.17465*, 2023.
- 645
- 646 [46] Haotian Wang, Yuzhe Weng, Yueyan Li, Zilu Guo, Jun Du, Shutong Niu, Jiefeng Ma, Shan He, 647 Xiaoyan Wu, Qiming Hu, et al. Emotivetalk: Expressive talking head generation through audio 648 information decoupling and emotional video diffusion. *arXiv preprint arXiv:2411.16726*, 2024.
- 649
- 650 [47] Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wayne Wu, Chen Qian, Ran He, 651 Yu Qiao, and Chen Change Loy. Mead: A large-scale audio-visual dataset for emotional 652 talking-face generation. In *European Conference on Computer Vision*, pages 700–717. Springer, 653 2020.

- 648 [48] Weijia Wu, Zhuang Li, Yuchao Gu, Rui Zhao, Yefei He, David Junhao Zhang, Mike Zheng  
 649 Shou, Yan Li, Tingting Gao, and Di Zhang. Draganything: Motion control for anything using  
 650 entity representation. In *European Conference on Computer Vision*, pages 331–348, 2024.
- 651  
 652 [49] Zhongcong Xu, Jianfeng Zhang, Jun Hao Liew, Hanshu Yan, Jia-Wei Liu, Chenxu Zhang, Jiashi  
 653 Feng, and Mike Zheng Shou. Magicanimate: Temporally consistent human image animation  
 654 using diffusion model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*  
 655 *Pattern Recognition*, pages 1481–1490, 2024.
- 656 [50] Jingyun Xue, Hongfa Wang, Qi Tian, Yue Ma, Andong Wang, Zhiyuan Zhao, Shaobo Min, Wen-  
 657 zhe Zhao, Kaihao Zhang, Heung-Yeung Shum, et al. Follow-your-pose v2: Multiple-condition  
 658 guided character image animation for stable pose control. *arXiv preprint arXiv:2406.03035*,  
 659 2024.
- 660 [51] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming  
 661 Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion  
 662 models with an expert transformer. *CoRR*, 2024.
- 663  
 664 [52] David Junhao Zhang, Jay Zhangjie Wu, Jia-Wei Liu, Rui Zhao, Lingmin Ran, Yuchao Gu,  
 665 Difei Gao, and Mike Zheng Shou. Show-1: Marrying pixel and latent diffusion models for  
 666 text-to-video generation. *International Journal of Computer Vision*, pages 1–15, 2024.
- 667 [53] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image  
 668 diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer*  
 669 *Vision*, pages 3836–3847, 2023.
- 670  
 671 [54] Wenxuan Zhang, Xiaodong Cun, Xuan Wang, Yong Zhang, Xi Shen, Yu Guo, Ying Shan, and  
 672 Fei Wang. Sadtalker: Learning realistic 3d motion coefficients for stylized audio-driven single  
 673 image talking face animation. In *Proceedings of the IEEE/CVF Conference on Computer Vision*  
 674 and *Pattern Recognition*, pages 8652–8661, 2023.
- 675 [55] Zhimeng Zhang, Lincheng Li, Yu Ding, and Changjie Fan. Flow-guided one-shot talking  
 676 face generation with a high-resolution audio-visual dataset. In *Proceedings of the IEEE/CVF*  
 677 *Conference on Computer Vision and Pattern Recognition*, pages 3661–3670, 2021.
- 678 [56] Mohan Zhou, Yalong Bai, Wei Zhang, Ting Yao, Tiejun Zhao, and Tao Mei. Responsive  
 679 listening head generation: a benchmark dataset and baseline. In *European Conference on*  
 680 *Computer Vision*, pages 124–142. Springer, 2022.
- 681  
 682 [57] Mohan Zhou, Yalong Bai, Wei Zhang, Ting Yao, and Tiejun Zhao. Interactive conversational  
 683 head generation. *arXiv preprint arXiv:2307.02090*, 2023.
- 684 [58] Yang Zhou, Jimei Yang, Dingzeyu Li, Jun Saito, Deepali Aneja, and Evangelos Kalogerakis.  
 685 Audio-driven neural gesture reenactment with video motion graphs. In *Proceedings of the*  
 686 *IEEE/CVF conference on computer vision and pattern recognition*, pages 3418–3428, 2022.
- 687  
 688 [59] Hao Zhu, Wayne Wu, Wentao Zhu, Liming Jiang, Siwei Tang, Li Zhang, Ziwei Liu, and  
 689 Chen Change Loy. CelebV-hq: A large-scale video facial attributes dataset. In *European*  
 690 *conference on computer vision*, pages 650–667. Springer, 2022.
- 691 [60] Lingting Zhu, Xian Liu, Xuanyu Liu, Rui Qian, Ziwei Liu, and Lequan Yu. Taming diffusion  
 692 models for audio-driven co-speech gesture generation. In *Proceedings of the IEEE/CVF*  
 693 *Conference on Computer Vision and Pattern Recognition*, pages 10544–10553, 2023.
- 694  
 695 [61] Yongming Zhu, Longhao Zhang, Zhengkun Rong, Tianshu Hu, Shuang Liang, and Zhipeng  
 696 Ge. InfP: Audio-driven interactive head generation in dyadic conversations. *arXiv preprint*  
 697 *arXiv:2412.04037*, 2024.
- 698  
 699  
 700  
 701

702    **7 CHECKLIST**  
703

704    **7.1 THE USE OF LARGE LANGUAGE MODELS**  
705

706    In our work, LLMs are used for following aspects:  
707

- 708    • Using an LLM to help with paper writing. We use GPT5 to help optimize language, correct  
709    grammar and write L<sup>A</sup>T<sub>E</sub>X table code.
- 710    • Using an LLM as a research assistant. We use GPT5 to help search related works.
- 711    • Using an LLM in our methods and experiment. This is described in the paper.  
712

713    **7.2 ETHICS STATEMENT**  
714

715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755

756 8 TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL  
757758 Please refer to the supplementary webpage for video results.  
759760 8.1 DISCUSSION ABOUT BASELINE MODELS  
761762 Most existing studies primarily focus on talking-head generation or co-speech gesture synthesis.  
763 However, extending these methods to multi-human talking video generation presents significant  
764 challenges. In the following discussion, we elaborate on these limitations to clarify why only two  
765 representative baseline models are selected for comparison in the experimental section.766 **Interactive Audio.** Unlike monologue scenarios with a single speaker, the audio in our setting  
767 involves multiple speakers, introducing a fundamental challenge: the model must accurately align  
768 each speaker’s speech to the corresponding character in the video. Directly adapting existing methods  
769 proves difficult, as many are built upon assumptions of speaker continuity or global coherence.  
770 Consequently, key design components in prior models, such as Hallo2 [10] and TANGO [26], become  
771 ineffective in multi-speaker contexts. Specifically, TANGO constructs a graph for each speaker  
772 using approximately two minutes of reference video, where each node represents a video frame  
773 paired with a corresponding audio clip. This design enables the model to retrieve keyframes from the  
774 graph and generate transitions using an architecture similar to AnimateAnyone [16]. While effective  
775 in single-speaker scenarios, this approach faces critical limitations in multi-speaker contexts. The  
776 one-to-one correspondence between frames and audio segments becomes less reliable, and the graph  
777 becomes inherently sparse due to interactive audio patterns. As a result, it fails to support effective  
778 keyframe retrieval in multi-human settings.779 **Multi-human Pose and Identity Control.** This still remains a highly challenging task in controllable  
780 video generation. Although some recent works have explored this problem [50], they do not support  
781 audio-driven lip synchronization and still apply the ControlNet [53] architecture.782 Overall, since most recent related works mainly apply ControlNet architecture we select Ani-  
783 mateAnyone (ControlNet for SD)[16] and ControlSVD[48] as baseline models, as they respectively  
784 represent the most relevant paradigms in single-human audio-driven generation and multi-human  
785 pose-conditioned synthesis, making them sufficient for evaluating performance in our multi-human  
786 interactive setting.787 8.2 DISCUSSION ON EVALUATION METRICS  
788789 We evaluate model performance using both frame-level image quality and overall video quality  
790 metrics with respect to the ground-truth video. In addition, we conduct user studies and cross-  
791 modal experiments to assess lip synchronization and human–background consistency. However,  
792 unlike previous works on talking-head generation and co-speech gesture synthesis, we do not report  
793 quantitative lip alignment metrics [8]. This is because existing lip-sync metrics typically assume a  
794 single active speaker, which does not apply to our setting involving multiple speakers and interactive  
795 audio. The *interleaved* nature of speech in multi-human conversations makes such evaluations  
796 unreliable. Designing appropriate metrics for evaluating lip synchronization in multi-human scenarios  
797 remains an open research problem.798 8.3 FUTURE WORK AND POTENTIAL IMPACT  
799800 **Multi-human Talking Pose Generation.** Our dataset also facilitates the study of multi-human pose  
801 generation in conversational contexts—an underexplored yet meaningful task. It offers an opportunity  
802 to investigate how generative models can capture human social dynamics. From a psychological  
803 perspective, this line of research may not only inform model design but also provide computational  
804 insights into nonverbal communication and social behavior.805 **Dataset Scale-up.** With the proposed automatic annotation pipeline, we aim to scale up the dataset  
806 to cover more diverse scenarios, such as movies, live streams, and news broadcasts. This expansion  
807 will enable broader applications and support research under more varied and realistic settings.808 **Multi-view Talking Video Generation.** We also plan to extend the dataset to include multi-view  
809 recordings, incorporating both wide-angle full-body interactions and close-up talking-head shots, as

810 commonly found in post-edited videos. This enhancement enables the exploration of multi-human  
811 generation in a multi-view setting, which better reflects real-world scenarios. In practical applications,  
812 human conversations are often captured from multiple viewpoints, making it essential for generative  
813 models to handle view-dependent rendering and ensure spatial and temporal coherence across views.  
814  
815  
816  
817  
818  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863