
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Rethinking Description Length: A TabPFN-Based Approximation of Bayesian
Mixture Codes

Anonymous Authors1

Abstract

The Minimum Description Length principle, a
model selection framework based on Occam’s ra-
zor, is typically studied through universal codes,
and the associated codelengths. Blier & Ollivier
(2018) studied the MDL principle for deep neu-
ral networks. They compare various codes, and
find that a prequential code, based on neural net-
works trained through stochastic gradient descent,
has shorter codelength than variational and two-
part codes. Recent developments in deep learning
point to a better way to approximate the Bayes
mixture code than the variational code. Specif-
ically Hollmann et al. (2023) present a trans-
former architecture, called Tabular Prior-Data Fit-
ted Networks (TabPFNs), which are trained on
synthetic data generated from a vast array of prior-
likelihood pairs, and is encouraged to learn the
corresponding Bayes posterior predictive distri-
bution. We then use TabPFN to induce a code
through in-context learning and demonstrate on
real world datasets from the OpenML-CC18 suite
that the resulting code is consistently shorter than
the prequential code corresponding to MLPs.

1. Introduction
Minimum Description Length (MDL) (Rissanen, 1978;
Hansen et al., 2001) is a mathematical formulation of Oc-
cam’s razor for statistical models. The MDL principle has
historically been studied through the notion of universal
codes (Rissanen, 1978). Essentially, a code is probability
distribution. Universal coding is a method of losslessly
compressing data without knowledge of the data-generating
distribution. Examples of universal codes include the two-
part code (Rissanen, 1983), the Bayes code (Grünwald et al.,
2005), prequential code (Rissanen, 1984; Dawid, 1984), and
the normalised maximum likelihood (NML) code (Barron
et al., 1998; Myung et al., 2006).

Coding methods differ in the way they compress informa-
tion losslessly. To every coding method is an associated
codelength: the length of the code required by the model to

losslessly describe the data, i.e., the negative log density of
the probability distribute. A shorter codelength implies a
better rate of compression. Relative to the data-generating
distribution, the code with the shortest codelength is con-
sidered optimal. We note that it is impossible to have a
universal code that optimally compresses every possible
data-generating distribution. In other words, what is optimal
from one data-generating distribution may not be optimal
for another.

Blier & Ollivier (2018) study the notion of MDL on deep
neural networks. They considered a prequential plug-in code
where the network weights are learned through stochastic
gradient descent, which we will call the prequential SGD
plug-in code. By looking at different neural networks for
MNIST and CIFAR, they empirically found that a prequen-
tial SGD plug-in code produced much shorter codelengths
than the two-part and variational code.

The variational code, being an approximation of the (uni-
versal) Bayes code was previously considered the state of
the art for deep neural networks. The superiority of the pre-
quential SGD plug-in code relative to the variational code
would seem to suggest that it is also superior to the Bayes
code. But this would be the wrong conclusion to draw. For
highly complex neural networks such as the ones employed
in Blier & Ollivier (2018), variational approximation is very
poor.

In this work, we are motivated to take another look at the
comparison between the prequential SGD plug in code and
the Bayes code, but approximated through more powerful
machinery. Recent work by Müller et al. (2024) showed that
transformers can be trained to perform Bayesian inference.
In particular, a transformer architecture called a Prior-Data
Fitted Network (PFN) trained on prior-likelihood pairs are
able to approximate a Bayes posterior predictive distribution
(PPD) for some dataset given to the PFN at inference time.

We present a codelength induced by TabPFN (a PFN that is
pretrained on synthetic data generated from a vast mixture
of prior-likelihood pairs). The resulting codelength can be
viewed as an approximation to a Bayes code correspond-
ing to some prior-likelihood pair represented by the PFN
weights. The codelengths induced by TabPFN are different
from prequential plug-in codelengths in that there are no

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

weights being learned – the model approximates a PPD for
the data through in-context learning.

We perform experiments on OpenML (Vanschoren et al.,
2014) datasets to compare the code induced by TabPFN
to the prequential SGD plug-in code induced by training
various MLPs. We find that the PFN code is consistently
shorter than the prequential SGD plug-in code. The PFN
is able to choose a model for the data with little training
examples, and the choice of model generally does not vary
over more training examples. This is unlike models trained
through SGD, which would require many training examples
to be appropriately trained on the data.

Setting Throughout the main paper we focus exclusively
on classification tasks. We have data of the input-output
type where input x ∈ Rd and output y ∈ {1, . . . ,K}. We
denote the data as x1:n = (x1, . . . , xn) and similarly for
y1:n. In Appendix A, we consider a toy regression example.

2. Prequential SGD-plug in code
In this section, we first briefly review the predictive plug-
in code, also known as the “prequential plug-in” code,
which were introduced independently by Rissanen (1984)
and Dawid (1984). Then we will detail the particular modern
construction employed in Blier & Ollivier (2018) in the
context of deep learning.

The plug-in code relative to a parametric model
{pθ(y|x)|θ ∈ Θ} sequentially codes each outcome yi con-
ditional on xi using an estimator based on all the data
up to that point, θ̂(x1:i−1, y1:i−1). The associated code-
length for input-output pair (xi, yi) is simply the log loss,
− log pθ̂(x1:i−1,y1:i−1)

(yi|xi). The total codelength we will
denote

Lpreq(y1:n | x1:n) =

n∑
i=1

− log pθ̂(x1:i−1,y1:i−1)
(yi | xi).

(1)
Note that the code is conditional on x1:n as we are interested
only in the conditional model. Traditionally pθ(y|x) would
have been a regular statistical model and θ̂ the maximum
likelihood estimator, in which case the predictive plug-in
code is also known as the maximum likelihood plug-in
code.

Fitting this to purpose for modern deep learning, Blier & Ol-
livier (2018) offer two innovations on the classic maximum
likelihood plug-in code which we now describe. If pθ(y|x)
is a probabilistic neural network, it is more natural to let
θ̂ represent the network parameter trained via stochastic
optimization, e.g., stochastic gradient descent (SGD). This
is the first departure.

Next since it is burdensome to retrain the model at each ob-

servation, Blier & Ollivier (2018) suggests to split the obser-
vations into S buckets of observations 1 = t0, . . . , tS = n,
and retrain and compute the incremental codelength at each
bucket. Inserting uniform encoding for the first bucket gives
the batched prequential SGD-plug in code, computed
sequentially:

Lbatched-SGD(y1:ts | x1:ts) = t1 logK

+

s−1∑
i=1

− log pθ̂ti
(yti+1:ti+1 | xti+1:ti+1)

(2)

where θ̂ts is a network parameter trained on x1:ts through
stochastic optimization. We define the final codelength as
Lbatched-SGD(y1:n|x1:n).

In Blier & Ollivier (2018), the batched prequential SGD-
plug in code in (2) was found to produce shorter code-
lengths relative to variational codes corresponding to the
same neural network. However this result is not particularly
surprising given that we know from Graves (2011) that vari-
ational codes tend to be very far from the Bayes mixture
code they are attempting to approximate.

A main motivation in our work is to leverage the new tech-
nique of learning Bayes mixture codes using the prior-data
fitted network (PFN) (Müller et al., 2024), essentially a
transformer trained on exchangeable distributions with an
underlying prior and likelihood. We expect the resulting
approximation to the Bayes mixture code to be far supe-
rior to variational codes, thus offering a more meaningful
comparison to the batched prequential SGD plug-in code.

3. Bayes mixture code via PFNs
Let’s begin with a brief review of prior-data fitted networks
(PFNs). The exposition here follows closely from Müller
et al. (2024). To reduce notational clutter, let us consider
an unsupervised setting where we wish to produce short
codes for observed data y1:n. If we posit a prior-likelihood
pair pθ(y) and π(θ), then the associated Bayes mixture
codelength is

LBayes(y1:n) = − log

∫ n∏
i=1

pθ(yi)π(θ)dθ. (3)

The Bayes mixture code has many desirable qualities but it
is generally intractable. We may employ MCMC sampling
but that proves challenging when θ is high-dimensional.
Furthermore if pθ is a neural network model, it can be very
discomfiting to specify a prior distribution on the neural
network weights θ which have no physical meaning.

PFNs are quite ingenious in that they pose the learning of the
Bayes posterior predictive density (PPD) as an optimisation

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

problem. A PFN is trained on a large synthetic dataset
{ym1:n+1}Mm=1 where each ym1:n+1 is drawn from the joint
distribution

p(y1:n+1) :=

∫ n+1∏
i=1

pθ(yi)π(θ) dθ. (4)

Essentially this is a two-step procedure, for each m, first
drawn θm0 ∼ π(θ) and then draw ym1:n+1 conditionally inde-
pendent given θm0 , i.e., ymi are i.i.d. from pθm

0
(y).

Now let Tϕ be a transformer sequence model with weights
ϕ which outputs a predicted distribution over the classes.
Consider the objective function1

argmin
ϕ

M∑
m=1

− log Tϕ(y
m
n+1|ym1:n). (5)

Let ϕ̂ be the minimizer and we call the resulting transformer
a BayesPFN. Then it is straightfoward to show that Tϕ̂ is an
estimate of the Bayes PPD corresponding to the likelihood-
prior pair pθ(y) and π(θ), that is

p(yn+1|y1:n) :=
∫

pθ(yn+1)π(θ|y1:n) dθ,

where π(θ|y1:n) ∝
∏n

i=1 pθ(yi)π(θ) is the posterior distri-
bution.

Since the marginal likelihood can be written in terms of
the Bayes PPD, as a product of one-step ahead predictive
densities, ∫ n∏

i=1

pθ(yi)π(θ)dθ =

n∏
i=1

p(yi|y1:n)

as soon as we have estimates of the PPD, we can also esti-
mate the Bayes mixture codelength for a new dataset. Specif-
ically, let y1:n be drawn from

∫ ∏n
i=1 pθ(yi)π(θ) dθ, then

we can use Tϕ̂ to approximate the Bayes mixture codelength
as

LBayesPFN(y1:n) :=

n∑
i=1

− log Tϕ̂(yi|y1:i−1). (6)

The conditional version of this is

LBayesPFN(y1:n|x1:n) :=

n∑
i=1

− log Tϕ̂(yi|xi, y1:i−1, xi−1).

(7)

To approximate the Bayes mixture codelength for a new
dataset, we prompt the trained PFN with our data, and the

1The actual PFN objective function is a modification of (5)
where we repeatedly draw i from a list {1, . . . , n} which encour-
ages the PFN to learn p(yi|y1:i−1) :=

∫
pθ(yi)π(θ|y1:i−1) dθ for

i = 1, . . . , n.

PFN chooses a PPD of the data through in-context learning.
Note the PFN parameter ϕ is fixed- any PPD approximated
by the PFN lies latent in the PFN weights.

We check for how well the PFN code approximates the
Bayes code in Appendix A. In particular, we consider a
theoretical setting where an asymptotic approximation of the
Bayes code is available. We consider a two layer regression
network with tanh activations and standard normal noise.
We find that a PFN trained on a the underlying likelihood-
prior has codelength which is a very good approximator to
the theoretical Bayes mixture codelength.

4. TabPFN
Rather than train transformers from scratch on synthetic
datasets sampled from (4) as described above, we instead
use a pretrained PFN known as TabPFN (Hollmann et al.,
2023; 2025). We are still approximating a Bayes mixture
code, but the underlying likelihood-prior pair is quite com-
plex. Being pretrained, the Bayes mixture code induced by
TabPFN is significantly easier to compute because it just
requires forward passes through the network.

The code induced by TabPFN is just as in (6) and (7) but the
transformer is instead the TabPFN. Note neither BayesPFN
nor TabPFN actually explicitly learn an explicit parameter θ
for the data. In fact, any model approximated by PFN will
lie latent in PFN’s (fixed) weights, activated by the “prompt”
(the data that is conditioned on) through in-context learning.
This is different from traditional plug-in codes which learns
the model parameter θ based on the dataset.

In the spirit of (2), we introduce a batched version of the
TabPFN codelength. Recall we split the observations into
S buckets of observations 1 = t0, . . . , tS = n. From
Müller et al. (2024), we note that for some input D =
(x1:n, y1:n, xn+1:N), then for some xi ∈ xn+1:N the atten-
tion heads of the PFN attends only to (x1:n, y1:n, xi). From
this, we have the sequential batched TabPFN codelength:

Lbatched-TabPFN(y1:ts | x1:ts) = t1 logK−
s−1∑
j=1

tj+1−(tj+1)∑
i=1

log Tϕ̂(yi|xi, y1:tj , x1:tj)

(8)

and we denote the full batched TabPFN code as
Lbatched-TabPFN(y1:n | x1:n).

5. Experiments
We conclude with a set of experiments on real-world data.
Our goal is to compare the batched prequential SGD-plug
in code in (2) and the TabPFN-induced code in (8). Due to
TabPFN’s architectural constraints, we only consider tabular

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

classification data for our empirical comparison. But of
course in principle the concept of codelength generalises
to non-tabular data as well. For instance, Blier & Ollivier
(2018) considers CIFAR (Krizhevsky, 2012) and MNIST
(LeCun et al., 2010).

Datasets are obtained from the OpenML (Vanschoren et al.,
2014) suite, as in (Hollmann et al., 2023). Datasets with
missing values are removed. We end up with 24 classifi-
cation datasets. Further information on the datasets can be
found in 1.

Codes The batched prequential SGD plug-in codelength
in (2) is computed on MLPs of three different sizes. We also
compute the batched-TabPFN code. Further implementation
details can be found in Appendix B.

Evaluation For each dataset, we perform evaluations over
5 train-test splits. For a dataset with total number of samples
N , we split into a train set of length n and a test set of
length m. We denote the train set as (xtrain

1:n , y
train
1:n) and the

test set as (xtest
1:m, ytest

1:m). For stability reasons, we ensure
that an observation of each class is contained in all train
sets, and we also prepend an observation of each class to
the train set to avoid the model assigning probability 0 to a
class it has not seen. The training set is split into buckets
t1 = max(8,K), t2 = 16, t3 = 32, . . . , tS = n.

We compute the negative log-likelihood (NLL) of the fully
trained models. In the prequential SGD plug-in case, this is:
− 1

m

∑m
i=1 log pθ̂(xtrain

1:n,y
train
1:n)

(ytest
i |xtest

i), and in the TabPFN

case: − 1
m

∑m
i=1 log Tϕ̂(y

test
i |xtest

i , xtrain
1:n , y

train
1:n).

We also compute the test accuracy of the fully trained mod-
els. Our results are shown in three types of plots, see Figure
1. In the first row, we show the average (over the train-test
splits) sequential codelength against the number of training
examples. In the second plot, we show the final NLL versus
the final codelength as a scatter plot. In the third plot, we
show classification test accuracy versus final codelength as
a scatter plot.

5.1. Results

Due to space, we only show results for three of the 24
datasets in Figure 1. Numerical tables summarizing the dif-
ferent metrics for all 24 datasets can be found in Appendix
B. Analogous plots to Figure 1 for the other 21 datasets can
be found in Appendix C.

Across most of the datasets, we find that the final TabPFN
codelength is consistently shorter than all three final batched
prequential SGD plug-in codelength . We offer some conjec-
tures on why TabPFN is so effective. TabPFN approximates
a Bayesian posterior predictive density for the data through
in-context learning. As TabPFN has been meta-trained on

Figure 1. We study three MLP batched prequential SGD-plug in
codes and the batched TabPFN code across three datasets. Com-
parison of sequential codelengths, averaged over 5 train-test splits
with 95% confidence bands (left), negative log-likelihood (lower
is better) vs final codelength for the five individual train-test splits
(middle) and classification test accuracy vs. final codelength for
the five individual train-test splits (right).

prior-likelihood pairs, the PPD approximated by TabPFN
is contained in the (fixed) weights of the transformer, thus
allowing prompting TabPFN to generalise faster than train-
ing a model from scratch. We also observe that TabPFN
codelength varies less over different train-test splits than the
batched prequential SGD plug-in codelength . This implies
TabPFN choosing a model for the data with little training
examples, and allows for a consistent model for the data
throughout different train-test splits.

We also find that across most datasets, TabPFN manages to
have a lower final NLL and higher test accuracy than the
MLPs. This is aligned with our expectation.

We note that TabPFN does not uniformly outperform
the MLPs. In certain datasets, for instance cmc, car,
mfeat-karhunen, we find that the TabPFN NLL is not
necessarily lower than the MLPs. We hypothesise that this
comes from a fundamental limit of the TabPFN weights- as
the TabPFN weights are fixed, there is a limit to the mod-
els TabPFN can represent, and therefore some models for
data cannot be well represented by TabPFN, compared to
a model explicitly trained on the data. We present the se-
quential NLL of the models for the 24 datasets in Appendix
D. The findings here support our hypothesis: for most of
the 24 datasets considered, TabPFN “settles early”, in that it
apparently chooses a model for the dataset after just a few
in-context examples; the model does not vary much over
more in-context examples. In many instances, this leads to
the MLP “catching up”, and ending up with a NLL that is
much closer, if not better than the TabPFN NLL. This high-

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

lights a potential advantage of TabPFN for small sample
size settings.

References
Aoyagi, M. and Watanabe, S. Resolution of singularities

and the generalization error with bayesian estimation for
layered neural network. Ieice Transactions - IEICE, 10.

Barron, A., Rissanen, J., and Yu, B. The minimum de-
scription length principle in coding and modeling. IEEE
Transactions on Information Theory, 44(6):2743–2760,
1998. doi: 10.1109/18.720554.

Blier, L. and Ollivier, Y. The Description Length of Deep
Learning Models, November 2018.

Dawid, A. P. Present position and potential developments:
Some personal views: Statistical theory: The prequen-
tial approach. Journal of the Royal Statistical Soci-
ety. Series A (General), 147(2):278–292, 1984. ISSN
00359238, 23972327. URL http://www.jstor.
org/stable/2981683.

Graves, A. Practical variational inference for neural net-
works. In Shawe-Taylor, J., Zemel, R., Bartlett, P.,
Pereira, F., and Weinberger, K. (eds.), Advances in Neu-
ral Information Processing Systems, volume 24. Curran
Associates, Inc., 2011.

Grünwald, P. D., Myung, J. I., and Pitt, M. A. Advances in
Minimum Description Length: Theory and Applications.
The MIT Press, February 2005. ISBN 978-0-262-27446-
3. doi: 10.7551/mitpress/1114.001.0001.

Hansen, M. H., , and Yu, B. Model Selection and the Princi-
ple of Minimum Description Length. Journal of the Amer-
ican Statistical Association, 96(454):746–774, June 2001.
ISSN 0162-1459. doi: 10.1198/016214501753168398.
URL https://doi.org/10.1198/
016214501753168398. Publisher: ASA Website
eprint: https://doi.org/10.1198/016214501753168398.

Hollmann, N., Müller, S., Eggensperger, K., and Hutter,
F. TabPFN: A Transformer That Solves Small Tabular
Classification Problems in a Second, September 2023.

Hollmann, N., Müller, S., Purucker, L., Krishnakumar, A.,
Körfer, M., Hoo, S. B., Schirrmeister, R. T., and Hutter,
F. Accurate predictions on small data with a tabular foun-
dation model. Nature, 637(8045):319–326, January 2025.
ISSN 1476-4687. doi: 10.1038/s41586-024-08328-6.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic
Optimization, January 2017. URL http://arxiv.
org/abs/1412.6980. arXiv:1412.6980 [cs].

Krizhevsky, A. Learning multiple layers of features from
tiny images. University of Toronto, 05 2012.

LeCun, Y., Cortes, C., and Burges, C. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

Müller, S., Hollmann, N., Arango, S. P., Grabocka, J., and
Hutter, F. Transformers Can Do Bayesian Inference,
August 2024.

Myung, J. I., Navarro, D. J., and Pitt, M. A. Model
selection by normalized maximum likelihood. Jour-
nal of Mathematical Psychology, 50(2):167–179, April
2006. ISSN 0022-2496. doi: 10.1016/j.jmp.2005.06.
008. URL https://www.sciencedirect.com/
science/article/pii/S0022249605000532.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in python. J. Mach. Learn.
Res., 12(null):2825–2830, November 2011. ISSN 1532-
4435.

Rissanen, J. Modeling by shortest data description.
Automatica, 14(5):465–471, September 1978. ISSN
0005-1098. doi: 10.1016/0005-1098(78)90005-5.
URL https://www.sciencedirect.com/
science/article/pii/0005109878900055.

Rissanen, J. A universal prior for integers and estimation
by minimum description length. The Annals of Statistics,
11(2):416–431, 1983. ISSN 00905364, 21688966. URL
http://www.jstor.org/stable/2240558.

Rissanen, J. Universal coding, information, prediction, and
estimation. IEEE Transactions on Information Theory,
30(4):629–636, 1984. doi: 10.1109/TIT.1984.1056936.

Vanschoren, J., Rijn, J. N. v., Bischl, B., and Torgo, L.
OpenML: networked science in machine learning. ACM
SIGKDD Explorations Newsletter, 15(2):49–60, June
2014. ISSN 1931-0145, 1931-0153. doi: 10.1145/
2641190.2641198. URL http://arxiv.org/abs/
1407.7722. arXiv:1407.7722 [cs].

5

http://www.jstor.org/stable/2981683
http://www.jstor.org/stable/2981683
https://doi.org/10.1198/016214501753168398
https://doi.org/10.1198/016214501753168398
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.sciencedirect.com/science/article/pii/S0022249605000532
https://www.sciencedirect.com/science/article/pii/S0022249605000532
https://www.sciencedirect.com/science/article/pii/0005109878900055
https://www.sciencedirect.com/science/article/pii/0005109878900055
http://www.jstor.org/stable/2240558
http://arxiv.org/abs/1407.7722
http://arxiv.org/abs/1407.7722

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

A. Sanity check on PFN approximation of the Bayes mixture code
If we use PFNs to approximate the Bayes mixture code corresponding to some likelihood-prior pair, (pθ(y), π(θ)) as
described in Section 3, a natural question is to ask how good the approximated code is. Since we rarely know the Bayes
mixture code in complex models pθ(y), we focus on a toy model that retains some of the essential features of a neural
network but for which asymptotic results from singular learning theory are available to get a “ground-truth” for the Bayes
mixture code-length.

The toy model in question is a two layer regression network with tanh activations and standard normal noise. For x, y ∈ R,
our model is:

pθ(y|x) = N(f(x, θ), 1) (9)

f(x, θ) =

L∑
i=1

ai tanh(bix) (10)

where L is the number of hidden nodes and θ = [a1, ...aL, b1, ...bL] with N(µ, 1) denoting the normal distribution with
mean µ and unit variance.

Singular learning theory tells us, under certain conditions, that given a dataset generated from a fixed parameter vector θ0,
the Bayes mixture codelength can be asymptotically approximated as:

LBayes(y1:n|x1:n) ≃

(
n∑

i=1

− log pθ0(yi|xi)

)
+ λ(θ0) log(n)− (m(θ0)− 1) log log(n) + const.

where λ(θ0) and m(θ0) are coefficients related to the singularities of the parameter set of the model. We will refer to the
first term on the right hand side of this equation, (

∑n
i=1 − log pθ0(yi|xi)) as the empirical entropy.

(Aoyagi & Watanabe) provides these coefficients for this model when we fix θ0 = 0, which is equivalent to sampling y iid
from the standard normal distribution. In this case, the coefficients for our Bayes code approximation can be analytically
derived as:

λ(0) =
L+ i2 + i

4i+ 2

m(0) =

{
2, i2 = L

1, i2 < L

where i is the largest integer such that i2 ≤ L.

BayesPFN To create the PFN model, we generate pretraining datasets by sampling θ from a standard normal prior
distribution

π(θ) = N(0, I)

and drawing x-values from the uniform distribution over the range [−1, 1]. That is,

x ∼ U [−1, 1].

The y-values are sampled from the model given in Eq 9. Our PFN is trained on data {xm
1:n, y

m
1:n} for m = 1, . . . ,M where

n = 1500. The number of training datasets M was chosen per PFN to achieve convergence, but was typical between 80,000
and 6,000,000. For architecture details on the transformer used for the BayesPFNs, see Figure 3.

An important difference between the theory and the implementation is that the PFN model cannot model a truly continuous
density function as its output. This is solved in (Müller et al., 2024) by using a Riemann distribution: discretising the output
distribution into buckets and predicting the probability of the output distribution falling within each bucket. However, due to
the nonlinarity of the log function, this discretisation will skew our estimation of the codelength away from the continuous
case.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

To account for this, we convert the continuous term in the empirical entropy into an identically bucketed discrete distribution
by averaging the true data pdf over each bucket. We found that in practice this reduced the gap between the theoretical
approximation and the calculated codelength.

Mathematically, this means our BayesPFN codelength is∑
i

− log Tϕ̂(yi ∈ [bi, bi+1]|x≤i, y<i)

and the empirical entropy is ∑
i

− log(P (yi ∈ [bi, bi+1]|xi)

where [bi, bi+1] is the bucket the i-th data point falls into and P is the measure under pθ0 where θ0 = 0.

Thus let’s define a normalized BayesPFN codelength:

L̄BayesPFN(y1:n|x1:n) =
∑
i

− log Tϕ̂(yi ∈ [bi, bi+1]|x≤i, y<i)−
∑
i

− log(P (yi ∈ [bi, bi+1]|xi) (11)

Assessing the approximation quality of the Bayes PFN Let {y1:n, x1:n}, n = 1500 be a dataset generated according to
Eq 9 with θ0 = 0. We call this an evaluation dataset.

To see whether L̄BayesPFN(y1:n|x1:n) is a good approximation of the Bayes mixture code corresponding to pθ0 , π(θ), we
compare it to

λ(θ0) log(n)− (m(θ0)− 1) log log(n)

This will be referred to as the theoretical approximation.

Our experiments involved training 4 BayesPFN models on tanh priors with differing numbers of hidden nodes. The specific
architecture of the BayesPFN is given in Figure 3. For each model, we then generated 100 evaluation datasets and computed
the BayesPFN codelength curve on each dataset (as a function of dataset length). Finally, we subtracted the empirical
entropy for the associated dataset from each curve and averaged across datasets to get the normalised BayesPFN codelength
curves.

A.1. Results

Figure 2 plots the normalised BayesPFN codelength in experiments. These plots have iid evaluation data but differ in the
datasets used to train the BayesPFN. In particular, each plot uses a different number of hidden nodes in the tanh network
when generating data.

The plot shows the average codelength across 100 eval datasets at each prequential dataset length. The shared area shows
a 95% confidence interval for the mean (i.e. +/- 1.96 standard error). The heading of each graph provides the number of
hidden nodes along with the λ(θ0) given by Aoyagi & Watanabe.

We perform regression to assess the quality of the approximation over a range of n’s for n > 100. We chose not to fit both
parameters are log(n) and log log(n) are highly correlated on the data range. We perform the following regressions:

1. Regressing L̄BayesPFN(y1:n|x1:n) against log n and an intercept.

2. When m(θ0) ̸= 1, regressing L̄BayesPFN(y1:n|x1:n) + (m(θ0)− 1) log log n against log n and an intercept.

In both cases, when fitting we exclude a number of datapoints from the beginning as the approximation is known to only
hold asymptotically for large n. The regression fit is somewhat sensitive to the threshold for n that is considered, but we
found the results are relatively stable for n > 10. In this case, we chose to exclude the first 32 = 101.5 datapoints.

Across the settings in Figure 2 we first see a strong logarithmic trend as predicted by the theory. We also see that BayesPFN
is decent at recovering the true λ.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Figure 2. L̄BayesPFN(y1:n|x1:n) as a function of n, mean plus or minus 1.96*standard error. Both fit lines are provided alongside estimated
λ(θ0). Each subplot shows a different PFN training dataset generated by different number of hidden nodes of tanh network.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

TransformerModel(
(transformer_encoder): TransformerEncoderDiffInit(

(layers): ModuleList(
(0-3): 4 x TransformerEncoderLayer(

(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True)

)
(linear1): Linear(in_features=256, out_features=512, bias=True)
(dropout): Dropout(p=0.0, inplace=False)
(linear2): Linear(in_features=512, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.0, inplace=False)
(dropout2): Dropout(p=0.0, inplace=False)

)
)

)
(encoder): Sequential(

(0): Normalize()
(1): Linear(in_features=1, out_features=256, bias=True)

)
(y_encoder): Linear(in_features=1, out_features=256, bias=True)
(pos_encoder): NoPositionalEncoding()
(decoder_dict): ModuleDict(

(standard): Sequential(
(0): Linear(in_features=256, out_features=512, bias=True)
(1): GELU(approximate=’none’)
(2): Linear(in_features=512, out_features=303, bias=True)

)
)
(criterion): FullSupportBarDistribution()

)

Figure 3. Architecture of the model used for section A. This model has 2.4M total parameters.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

B. Experimental details and additional results
We first describe the implementation details of the MLP codelengths. We use Scikit-learn (Pedregosa et al., 2011) to train
the MLPs, with Adam (Kingma & Ba, 2017) as our stochastic optimizer for training the MLP.

The tuned MLP was hyperparameter tuned through grid search with the following parameter grid:

1. Hidden layer sizes = [(32,), (64,), (32, 32), (64, 64), (32, 32, 32), (64, 64, 64), (128, 64, 32)]

2. Learning rate = [0.0001, 0.001, 0.01]

3. L2 regularisation term = [0.00001, 0.0001, 0.001]

through training a “tuned” multilayer perceptron (MLP), implementation details can be found in Appendix B. The hyperpa-
rameters for the MLP are tuned through grid search. We also compute the batched prequential SGD plug-in codelength on a
smaller MLP and a larger MLP relative to the tuned MLP, with hyperparameters based on the tuned MLP. These three MLP
codes are compared to the batched TabPFN code in (8).

The MLPs are trained through minimising the log loss, i.e., the cross entropy loss. At the beginning, it is the training data
does not contain examples from a particular class. When computing the codelength, if the MLP assigns probability zero to
the true class of some observation, the contribution to the codelength will become infinity (since − log(0) = ∞). To avoid
this, we added some small value ϵ = 1 × 10−15 to the probability of the true class. This may explain some of the large
jumps in the prequential plug-in codelengths seen in some figures in Appendix C. We note that TabPFN generally does not
run into this issue and in general works well for low n. Perhaps this is due to the fact that it approximates a PPD, and so
generally does not have overconfidence issues.

To avoid a model assigning probability zero to a class it hasn’t seen during training, we prepend an observation of every
class to the start of the training set.

To train the underparametrised MLP, we either remove the final hidden layer in the case where the tuned model has more
than one hidden layer, otherwise we divide the number of nodes in the hidden layer by 2. To obtain the overparametrised
MLP, we add an extra hidden layer to the MLP with the same number of nodes as the final layer of the tuned model. Note
that the MLPs are retrained for each new batch. We do not perform partial fitting on observations from the new batch.

TabPFNv1 was used to compute the TabPFN codelength.

Dataset Details We use the same OpenML (Vanschoren et al., 2014) datasets from the OpenML-CC18 suite as in Hollmann
et al. (2023). Dataset details are shown in Table 1. We note that the dataset details were also presented in Hollmann et al.
(2023).

The OpenML-CC18 suite is specifically collated to not include simulated/artificial datasets. Datasets range from a sample
size of 522 to 2000. Note the datasets were specifically chosen not to exceed this sample size limit, due to stability factors
for TabPFN. The code for obtaining the datasets were based on the code from the original paper.

Further results We present further results in tables 2, 3, 4. The tables contain the respective final metric averaged over 5
train-test splits for all 24 datasets. We note that Hollmann et al. (2023) presents the AUC-OVO scores for each dataset.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Table 1. Summary of OpenML datasets used in experiments

OpenML ID Sample Size Number of Features Number of Classes

analcatdata authorship 458 841 71 4
analcatdata dmft 469 797 5 6
balance-scale 11 625 5 3
banknote-authentication 1462 1372 5 2
blood-transfusion-service-center 1464 748 5 2
car 40975 1728 7 4
climate-model-simulation-crashes 40994 540 19 2
cmc 23 1473 10 3
credit-g 31 1000 21 2
diabetes 37 768 9 2
ilpd 1480 583 11 2
kc2 1063 522 22 2
mfeat-fourier 14 2000 77 10
mfeat-karhunen 16 2000 65 10
mfeat-morphological 18 2000 7 10
mfeat-zernike 22 2000 48 10
pc1 1068 1109 22 2
pc3 1050 1563 38 2
pc4 1049 1458 38 2
qsar-biodeg 1494 1055 42 2
steel-plates-fault 40982 1941 28 7
tic-tac-toe 50 958 10 2
vehicle 54 846 19 4
wdbc 1510 569 31 2

11

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

Table 2. Average final codelength (Mean ± Std) over 5 different train-test splits.

TabPFN Underparameterized MLP Tuned MLP Overparameterized MLP

kc2 171.24 ± 7.77 1904.68 ± 72.95 1637.03 ± 310.74 2029.81 ± 617.73
climate-mode... 83.29 ± 3.43 115.17 ± 18.44 162.64 ± 48.64 154.25 ± 13.95
wdbc 48.27 ± 4.64 994.93 ± 627.92 152.92 ± 38.19 109.94 ± 8.48
ilpd 254.11 ± 8.66 824.32 ± 336.24 770.14 ± 400.50 730.51 ± 196.63
balance-scal... 95.84 ± 6.31 129.63 ± 13.60 174.55 ± 30.22 122.15 ± 16.24
blood-transf... 304.08 ± 8.27 1409.04 ± 1042.77 582.88 ± 114.34 999.80 ± 439.98
diabetes 314.99 ± 9.21 1140.89 ± 299.83 819.65 ± 197.18 974.18 ± 119.40
analcatdata-... 65.18 ± 3.07 155.08 ± 71.00 82.66 ± 23.94 95.39 ± 18.14
vehicle 334.36 ± 12.16 1171.38 ± 224.16 1055.94 ± 399.86 833.58 ± 117.09
tic-tac-toe 313.94 ± 17.71 596.18 ± 86.72 644.31 ± 128.16 823.47 ± 62.28
credit-g 419.55 ± 5.72 3238.78 ± 1823.81 1472.95 ± 1404.88 1456.67 ± 447.08
qsar-biodeg 310.43 ± 11.20 539.49 ± 126.48 522.69 ± 107.17 714.42 ± 51.96
pc1 189.26 ± 5.60 3217.83 ± 1898.35 1444.45 ± 581.37 1868.22 ± 599.55
banknote-aut... 20.47 ± 1.80 40.38 ± 5.26 43.09 ± 17.84 28.15 ± 11.60
pc4 277.40 ± 6.13 2672.05 ± 422.12 3156.71 ± 989.59 2873.96 ± 1293.90
cmc 1127.63 ± 10.29 1403.76 ± 258.64 1486.28 ± 222.51 1574.84 ± 371.55
pc3 361.62 ± 16.35 3539.02 ± 1257.38 3058.74 ± 514.67 3424.38 ± 1197.76
car 242.12 ± 17.47 329.58 ± 26.43 360.53 ± 57.36 443.20 ± 146.91
steel-plates... 1219.17 ± 30.01 23505.19 ± 1583.03 19091.50 ± 2633.55 23465.63 ± 1366.93
mfeat-zernik... 870.49 ± 14.15 5095.67 ± 1369.26 2842.34 ± 493.48 3340.28 ± 1135.40
mfeat-karhun... 599.30 ± 10.01 490.92 ± 107.40 626.31 ± 187.26 504.15 ± 14.05
mfeat-morpho... 1215.47 ± 28.82 20765.56 ± 1694.45 9244.82 ± 7835.24 10705.06 ± 3276.82
mfeat-fourie... 1064.48 ± 32.69 1506.16 ± 146.38 1425.96 ± 211.49 1731.72 ± 185.84

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Table 3. Average Negative Log-likelihood of the final model (Mean ± Std) over 5 different train-test splits.

TabPFN Underparameterized MLP Tuned MLP Overparameterized MLP

kc2 38.20 ± 2.22 810.74 ± 50.32 430.16 ± 179.58 475.53 ± 248.09
climate-mode... 13.75 ± 3.94 20.02 ± 5.47 30.02 ± 5.73 32.70 ± 9.99
wdbc 6.72 ± 3.88 22.82 ± 3.96 23.92 ± 4.94 25.97 ± 3.61
ilpd 58.88 ± 4.60 64.89 ± 8.55 64.48 ± 5.60 68.62 ± 11.59
balance-scal... 3.83 ± 1.93 9.58 ± 0.87 8.42 ± 5.24 9.37 ± 6.92
blood-transf... 66.38 ± 2.26 99.70 ± 44.67 84.69 ± 18.70 113.31 ± 41.53
diabetes 81.42 ± 6.06 110.17 ± 16.92 100.18 ± 7.89 96.52 ± 4.60
analcatdata-... 1.53 ± 0.95 7.03 ± 4.86 4.80 ± 5.19 4.09 ± 4.31
vehicle 50.57 ± 6.05 161.86 ± 28.16 136.02 ± 16.85 115.31 ± 15.65
tic-tac-toe 44.81 ± 3.53 56.60 ± 22.12 73.70 ± 39.34 77.06 ± 34.03
credit-g 98.48 ± 5.16 812.88 ± 532.16 275.11 ± 299.76 222.64 ± 79.57
qsar-biodeg 75.03 ± 12.27 85.90 ± 17.46 89.11 ± 10.16 98.03 ± 8.68
pc1 36.34 ± 2.13 323.44 ± 63.73 353.82 ± 166.70 377.09 ± 201.18
banknote-aut... 0.13 ± 0.07 2.31 ± 0.80 2.50 ± 2.85 0.48 ± 0.14
pc4 54.73 ± 5.25 529.77 ± 118.43 380.41 ± 287.70 765.68 ± 109.57
cmc 267.74 ± 5.26 270.21 ± 4.98 269.76 ± 5.97 268.46 ± 6.22
pc3 79.82 ± 5.85 476.16 ± 109.85 378.89 ± 208.19 891.88 ± 756.57
car 19.51 ± 2.71 10.89 ± 4.46 10.19 ± 3.50 12.57 ± 9.80
steel-plates... 213.17 ± 15.35 5017.82 ± 313.20 4303.54 ± 2069.24 5320.40 ± 283.54
mfeat-zernik... 141.02 ± 15.50 423.68 ± 164.21 248.37 ± 59.40 312.44 ± 81.80
mfeat-karhun... 53.79 ± 8.70 50.01 ± 15.92 62.53 ± 25.83 52.45 ± 18.68
mfeat-morpho... 254.25 ± 6.31 3538.51 ± 1578.29 675.60 ± 191.55 1748.34 ± 755.62
mfeat-fourie... 171.60 ± 16.09 255.61 ± 65.48 221.58 ± 14.25 291.94 ± 114.54

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Table 4. Average classification test accuracy (Mean ± Std) over 5 different train-test splits.

TabPFN Underparameterized MLP Tuned MLP Overparameterized MLP

kc2 0.85 ± 0.02 0.22 ± 0.01 0.77 ± 0.06 0.72 ± 0.10
climate-mode... 0.96 ± 0.01 0.95 ± 0.01 0.94 ± 0.02 0.94 ± 0.01
wdbc 0.98 ± 0.01 0.93 ± 0.01 0.91 ± 0.03 0.92 ± 0.02
ilpd 0.73 ± 0.02 0.70 ± 0.04 0.70 ± 0.02 0.71 ± 0.01
balance-scal... 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.02 0.98 ± 0.01
blood-transf... 0.80 ± 0.03 0.77 ± 0.01 0.73 ± 0.06 0.72 ± 0.08
diabetes 0.74 ± 0.02 0.67 ± 0.01 0.66 ± 0.02 0.66 ± 0.02
analcatdata-... 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.00
vehicle 0.85 ± 0.02 0.58 ± 0.08 0.66 ± 0.03 0.68 ± 0.04
tic-tac-toe 0.93 ± 0.01 0.90 ± 0.02 0.90 ± 0.02 0.90 ± 0.03
credit-g 0.76 ± 0.02 0.61 ± 0.14 0.64 ± 0.12 0.57 ± 0.11
qsar-biodeg 0.87 ± 0.02 0.85 ± 0.03 0.85 ± 0.02 0.86 ± 0.01
pc1 0.93 ± 0.00 0.89 ± 0.04 0.91 ± 0.03 0.87 ± 0.11
banknote-aut... 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
pc4 0.92 ± 0.01 0.85 ± 0.03 0.80 ± 0.04 0.82 ± 0.11
cmc 0.55 ± 0.02 0.54 ± 0.01 0.55 ± 0.02 0.55 ± 0.01
pc3 0.90 ± 0.01 0.86 ± 0.03 0.89 ± 0.01 0.69 ± 0.17
car 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.01
steel-plates... 0.78 ± 0.01 0.44 ± 0.03 0.37 ± 0.08 0.40 ± 0.03
mfeat-zernik... 0.83 ± 0.01 0.80 ± 0.01 0.81 ± 0.01 0.79 ± 0.01
mfeat-karhun... 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
mfeat-morpho... 0.74 ± 0.01 0.25 ± 0.08 0.34 ± 0.19 0.18 ± 0.06
mfeat-fourie... 0.83 ± 0.01 0.84 ± 0.01 0.83 ± 0.01 0.82 ± 0.01

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

C. Additional results that complement Figure 1
Here we show the same result as in Figure 1 for all 24 OpenML datasets we considered.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

D. Tracking NLL as context length grows
As we perform our training in buckets, it is interesting to look at the rate in which our models learn. A hypothesis is that TabPFN
‘in-context learns’ a PPD for the data early on, and doesn’t vary its choice of model much over more training examples. To test this, we
compute the NLL of the models after training on each bucket. After training on the new examples from the new bucket, we compute the
NLL on the model in the prequential SGD plug-in case:

NLLs = − 1

m

m∑
i=1

log pθ̂
(xtrain

1:ts
,ytrain

1:ts)
(ytest

i |xtest
i), s = 1, . . . , S

and the TabPFN case:

NLLs = − 1

m

m∑
i=1

log Tϕ̂(y
test
i |xtest

i , xtrain
1:ts , y

train
1:ts), s = 1, . . . , S

We plot the sequential NLL of TabPFN and the MLPs for each dataset. In many cases, we see that the sequential NLL stabilises very
quickly for TabPFN, indicating TabPFN was able to choose a model (i.e a PPD) for the data with little in-context examples. This is unlike
the MLPs, which require many more training examples to achieve a low NLL.

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

26

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

27

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

28

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

29

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

30

1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

31

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759

32

