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Abstract

The Minimum Description Length principle, a
model selection framework based on Occam’s ra-
zor, is typically studied through universal codes,
and the associated codelengths. Blier & Ollivier
(2018) studied the MDL principle for deep neu-
ral networks. They compare various codes, and
find that a prequential code, based on neural net-
works trained through stochastic gradient descent,
has shorter codelength than variational and two-
part codes. Recent developments in deep learning
point to a better way to approximate the Bayes
mixture code than the variational code. Specif-
ically Hollmann et al. (2023) present a trans-
former architecture, called Tabular Prior-Data Fit-
ted Networks (TabPFNs), which are trained on
synthetic data generated from a vast array of prior-
likelihood pairs, and is encouraged to learn the
corresponding Bayes posterior predictive distri-
bution. We then use TabPFN to induce a code
through in-context learning and demonstrate on
real world datasets from the OpenML-CC18 suite
that the resulting code is consistently shorter than
the prequential code corresponding to MLPs.

1. Introduction
Minimum Description Length (MDL) (Rissanen, 1978;
Hansen et al., 2001) is a mathematical formulation of Oc-
cam’s razor for statistical models. The MDL principle has
historically been studied through the notion of universal
codes (Rissanen, 1978). Essentially, a code is probability
distribution. Universal coding is a method of losslessly
compressing data without knowledge of the data-generating
distribution. Examples of universal codes include the two-
part code (Rissanen, 1983), the Bayes code (Grünwald et al.,
2005), prequential code (Rissanen, 1984; Dawid, 1984), and
the normalised maximum likelihood (NML) code (Barron
et al., 1998; Myung et al., 2006).

Coding methods differ in the way they compress informa-
tion losslessly. To every coding method is an associated
codelength: the length of the code required by the model to

losslessly describe the data, i.e., the negative log density of
the probability distribute. A shorter codelength implies a
better rate of compression. Relative to the data-generating
distribution, the code with the shortest codelength is con-
sidered optimal. We note that it is impossible to have a
universal code that optimally compresses every possible
data-generating distribution. In other words, what is optimal
from one data-generating distribution may not be optimal
for another.

Blier & Ollivier (2018) study the notion of MDL on deep
neural networks. They considered a prequential plug-in code
where the network weights are learned through stochastic
gradient descent, which we will call the prequential SGD
plug-in code. By looking at different neural networks for
MNIST and CIFAR, they empirically found that a prequen-
tial SGD plug-in code produced much shorter codelengths
than the two-part and variational code.

The variational code, being an approximation of the (uni-
versal) Bayes code was previously considered the state of
the art for deep neural networks. The superiority of the pre-
quential SGD plug-in code relative to the variational code
would seem to suggest that it is also superior to the Bayes
code. But this would be the wrong conclusion to draw. For
highly complex neural networks such as the ones employed
in Blier & Ollivier (2018), variational approximation is very
poor.

In this work, we are motivated to take another look at the
comparison between the prequential SGD plug in code and
the Bayes code, but approximated through more powerful
machinery. Recent work by Müller et al. (2024) showed that
transformers can be trained to perform Bayesian inference.
In particular, a transformer architecture called a Prior-Data
Fitted Network (PFN) trained on prior-likelihood pairs are
able to approximate a Bayes posterior predictive distribution
(PPD) for some dataset given to the PFN at inference time.

We present a codelength induced by TabPFN (a PFN that is
pretrained on synthetic data generated from a vast mixture
of prior-likelihood pairs). The resulting codelength can be
viewed as an approximation to a Bayes code correspond-
ing to some prior-likelihood pair represented by the PFN
weights. The codelengths induced by TabPFN are different
from prequential plug-in codelengths in that there are no
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weights being learned – the model approximates a PPD for
the data through in-context learning.

We perform experiments on OpenML (Vanschoren et al.,
2014) datasets to compare the code induced by TabPFN
to the prequential SGD plug-in code induced by training
various MLPs. We find that the PFN code is consistently
shorter than the prequential SGD plug-in code. The PFN
is able to choose a model for the data with little training
examples, and the choice of model generally does not vary
over more training examples. This is unlike models trained
through SGD, which would require many training examples
to be appropriately trained on the data.

Setting Throughout the main paper we focus exclusively
on classification tasks. We have data of the input-output
type where input x ∈ Rd and output y ∈ {1, . . . ,K}. We
denote the data as x1:n = (x1, . . . , xn) and similarly for
y1:n. In Appendix A, we consider a toy regression example.

2. Prequential SGD-plug in code
In this section, we first briefly review the predictive plug-
in code, also known as the “prequential plug-in” code,
which were introduced independently by Rissanen (1984)
and Dawid (1984). Then we will detail the particular modern
construction employed in Blier & Ollivier (2018) in the
context of deep learning.

The plug-in code relative to a parametric model
{pθ(y|x)|θ ∈ Θ} sequentially codes each outcome yi con-
ditional on xi using an estimator based on all the data
up to that point, θ̂(x1:i−1, y1:i−1). The associated code-
length for input-output pair (xi, yi) is simply the log loss,
− log pθ̂(x1:i−1,y1:i−1)

(yi|xi). The total codelength we will
denote

Lpreq(y1:n | x1:n) =

n∑
i=1

− log pθ̂(x1:i−1,y1:i−1)
(yi | xi).

(1)
Note that the code is conditional on x1:n as we are interested
only in the conditional model. Traditionally pθ(y|x) would
have been a regular statistical model and θ̂ the maximum
likelihood estimator, in which case the predictive plug-in
code is also known as the maximum likelihood plug-in
code.

Fitting this to purpose for modern deep learning, Blier & Ol-
livier (2018) offer two innovations on the classic maximum
likelihood plug-in code which we now describe. If pθ(y|x)
is a probabilistic neural network, it is more natural to let
θ̂ represent the network parameter trained via stochastic
optimization, e.g., stochastic gradient descent (SGD). This
is the first departure.

Next since it is burdensome to retrain the model at each ob-

servation, Blier & Ollivier (2018) suggests to split the obser-
vations into S buckets of observations 1 = t0, . . . , tS = n,
and retrain and compute the incremental codelength at each
bucket. Inserting uniform encoding for the first bucket gives
the batched prequential SGD-plug in code, computed
sequentially:

Lbatched-SGD(y1:ts | x1:ts) = t1 logK

+

s−1∑
i=1

− log pθ̂ti
(yti+1:ti+1 | xti+1:ti+1)

(2)

where θ̂ts is a network parameter trained on x1:ts through
stochastic optimization. We define the final codelength as
Lbatched-SGD(y1:n|x1:n).

In Blier & Ollivier (2018), the batched prequential SGD-
plug in code in (2) was found to produce shorter code-
lengths relative to variational codes corresponding to the
same neural network. However this result is not particularly
surprising given that we know from Graves (2011) that vari-
ational codes tend to be very far from the Bayes mixture
code they are attempting to approximate.

A main motivation in our work is to leverage the new tech-
nique of learning Bayes mixture codes using the prior-data
fitted network (PFN) (Müller et al., 2024), essentially a
transformer trained on exchangeable distributions with an
underlying prior and likelihood. We expect the resulting
approximation to the Bayes mixture code to be far supe-
rior to variational codes, thus offering a more meaningful
comparison to the batched prequential SGD plug-in code.

3. Bayes mixture code via PFNs
Let’s begin with a brief review of prior-data fitted networks
(PFNs). The exposition here follows closely from Müller
et al. (2024). To reduce notational clutter, let us consider
an unsupervised setting where we wish to produce short
codes for observed data y1:n. If we posit a prior-likelihood
pair pθ(y) and π(θ), then the associated Bayes mixture
codelength is

LBayes(y1:n) = − log

∫ n∏
i=1

pθ(yi)π(θ)dθ. (3)

The Bayes mixture code has many desirable qualities but it
is generally intractable. We may employ MCMC sampling
but that proves challenging when θ is high-dimensional.
Furthermore if pθ is a neural network model, it can be very
discomfiting to specify a prior distribution on the neural
network weights θ which have no physical meaning.

PFNs are quite ingenious in that they pose the learning of the
Bayes posterior predictive density (PPD) as an optimisation
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problem. A PFN is trained on a large synthetic dataset
{ym1:n+1}Mm=1 where each ym1:n+1 is drawn from the joint
distribution

p(y1:n+1) :=

∫ n+1∏
i=1

pθ(yi)π(θ) dθ. (4)

Essentially this is a two-step procedure, for each m, first
drawn θm0 ∼ π(θ) and then draw ym1:n+1 conditionally inde-
pendent given θm0 , i.e., ymi are i.i.d. from pθm

0
(y).

Now let Tϕ be a transformer sequence model with weights
ϕ which outputs a predicted distribution over the classes.
Consider the objective function1

argmin
ϕ

M∑
m=1

− log Tϕ(y
m
n+1|ym1:n). (5)

Let ϕ̂ be the minimizer and we call the resulting transformer
a BayesPFN. Then it is straightfoward to show that Tϕ̂ is an
estimate of the Bayes PPD corresponding to the likelihood-
prior pair pθ(y) and π(θ), that is

p(yn+1|y1:n) :=
∫

pθ(yn+1)π(θ|y1:n) dθ,

where π(θ|y1:n) ∝
∏n

i=1 pθ(yi)π(θ) is the posterior distri-
bution.

Since the marginal likelihood can be written in terms of
the Bayes PPD, as a product of one-step ahead predictive
densities, ∫ n∏

i=1

pθ(yi)π(θ)dθ =

n∏
i=1

p(yi|y1:n)

as soon as we have estimates of the PPD, we can also esti-
mate the Bayes mixture codelength for a new dataset. Specif-
ically, let y1:n be drawn from

∫ ∏n
i=1 pθ(yi)π(θ) dθ, then

we can use Tϕ̂ to approximate the Bayes mixture codelength
as

LBayesPFN(y1:n) :=

n∑
i=1

− log Tϕ̂(yi|y1:i−1). (6)

The conditional version of this is

LBayesPFN(y1:n|x1:n) :=

n∑
i=1

− log Tϕ̂(yi|xi, y1:i−1, xi−1).

(7)

To approximate the Bayes mixture codelength for a new
dataset, we prompt the trained PFN with our data, and the

1The actual PFN objective function is a modification of (5)
where we repeatedly draw i from a list {1, . . . , n} which encour-
ages the PFN to learn p(yi|y1:i−1) :=

∫
pθ(yi)π(θ|y1:i−1) dθ for

i = 1, . . . , n.

PFN chooses a PPD of the data through in-context learning.
Note the PFN parameter ϕ is fixed- any PPD approximated
by the PFN lies latent in the PFN weights.

We check for how well the PFN code approximates the
Bayes code in Appendix A. In particular, we consider a
theoretical setting where an asymptotic approximation of the
Bayes code is available. We consider a two layer regression
network with tanh activations and standard normal noise.
We find that a PFN trained on a the underlying likelihood-
prior has codelength which is a very good approximator to
the theoretical Bayes mixture codelength.

4. TabPFN
Rather than train transformers from scratch on synthetic
datasets sampled from (4) as described above, we instead
use a pretrained PFN known as TabPFN (Hollmann et al.,
2023; 2025). We are still approximating a Bayes mixture
code, but the underlying likelihood-prior pair is quite com-
plex. Being pretrained, the Bayes mixture code induced by
TabPFN is significantly easier to compute because it just
requires forward passes through the network.

The code induced by TabPFN is just as in (6) and (7) but the
transformer is instead the TabPFN. Note neither BayesPFN
nor TabPFN actually explicitly learn an explicit parameter θ
for the data. In fact, any model approximated by PFN will
lie latent in PFN’s (fixed) weights, activated by the “prompt”
(the data that is conditioned on) through in-context learning.
This is different from traditional plug-in codes which learns
the model parameter θ based on the dataset.

In the spirit of (2), we introduce a batched version of the
TabPFN codelength. Recall we split the observations into
S buckets of observations 1 = t0, . . . , tS = n. From
Müller et al. (2024), we note that for some input D =
(x1:n, y1:n, xn+1:N ), then for some xi ∈ xn+1:N the atten-
tion heads of the PFN attends only to (x1:n, y1:n, xi). From
this, we have the sequential batched TabPFN codelength:

Lbatched-TabPFN(y1:ts | x1:ts) = t1 logK−
s−1∑
j=1

tj+1−(tj+1)∑
i=1

log Tϕ̂(yi|xi, y1:tj , x1:tj )

(8)

and we denote the full batched TabPFN code as
Lbatched-TabPFN(y1:n | x1:n).

5. Experiments
We conclude with a set of experiments on real-world data.
Our goal is to compare the batched prequential SGD-plug
in code in (2) and the TabPFN-induced code in (8). Due to
TabPFN’s architectural constraints, we only consider tabular
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classification data for our empirical comparison. But of
course in principle the concept of codelength generalises
to non-tabular data as well. For instance, Blier & Ollivier
(2018) considers CIFAR (Krizhevsky, 2012) and MNIST
(LeCun et al., 2010).

Datasets are obtained from the OpenML (Vanschoren et al.,
2014) suite, as in (Hollmann et al., 2023). Datasets with
missing values are removed. We end up with 24 classifi-
cation datasets. Further information on the datasets can be
found in 1.

Codes The batched prequential SGD plug-in codelength
in (2) is computed on MLPs of three different sizes. We also
compute the batched-TabPFN code. Further implementation
details can be found in Appendix B.

Evaluation For each dataset, we perform evaluations over
5 train-test splits. For a dataset with total number of samples
N , we split into a train set of length n and a test set of
length m. We denote the train set as (xtrain

1:n , y
train
1:n ) and the

test set as (xtest
1:m, ytest

1:m). For stability reasons, we ensure
that an observation of each class is contained in all train
sets, and we also prepend an observation of each class to
the train set to avoid the model assigning probability 0 to a
class it has not seen. The training set is split into buckets
t1 = max(8,K), t2 = 16, t3 = 32, . . . , tS = n.

We compute the negative log-likelihood (NLL) of the fully
trained models. In the prequential SGD plug-in case, this is:
− 1

m

∑m
i=1 log pθ̂(xtrain

1:n,y
train
1:n)

(ytest
i |xtest

i ), and in the TabPFN

case: − 1
m

∑m
i=1 log Tϕ̂(y

test
i |xtest

i , xtrain
1:n , y

train
1:n ).

We also compute the test accuracy of the fully trained mod-
els. Our results are shown in three types of plots, see Figure
1. In the first row, we show the average (over the train-test
splits) sequential codelength against the number of training
examples. In the second plot, we show the final NLL versus
the final codelength as a scatter plot. In the third plot, we
show classification test accuracy versus final codelength as
a scatter plot.

5.1. Results

Due to space, we only show results for three of the 24
datasets in Figure 1. Numerical tables summarizing the dif-
ferent metrics for all 24 datasets can be found in Appendix
B. Analogous plots to Figure 1 for the other 21 datasets can
be found in Appendix C.

Across most of the datasets, we find that the final TabPFN
codelength is consistently shorter than all three final batched
prequential SGD plug-in codelength . We offer some conjec-
tures on why TabPFN is so effective. TabPFN approximates
a Bayesian posterior predictive density for the data through
in-context learning. As TabPFN has been meta-trained on

Figure 1. We study three MLP batched prequential SGD-plug in
codes and the batched TabPFN code across three datasets. Com-
parison of sequential codelengths, averaged over 5 train-test splits
with 95% confidence bands (left), negative log-likelihood (lower
is better) vs final codelength for the five individual train-test splits
(middle) and classification test accuracy vs. final codelength for
the five individual train-test splits (right).

prior-likelihood pairs, the PPD approximated by TabPFN
is contained in the (fixed) weights of the transformer, thus
allowing prompting TabPFN to generalise faster than train-
ing a model from scratch. We also observe that TabPFN
codelength varies less over different train-test splits than the
batched prequential SGD plug-in codelength . This implies
TabPFN choosing a model for the data with little training
examples, and allows for a consistent model for the data
throughout different train-test splits.

We also find that across most datasets, TabPFN manages to
have a lower final NLL and higher test accuracy than the
MLPs. This is aligned with our expectation.

We note that TabPFN does not uniformly outperform
the MLPs. In certain datasets, for instance cmc, car,
mfeat-karhunen, we find that the TabPFN NLL is not
necessarily lower than the MLPs. We hypothesise that this
comes from a fundamental limit of the TabPFN weights- as
the TabPFN weights are fixed, there is a limit to the mod-
els TabPFN can represent, and therefore some models for
data cannot be well represented by TabPFN, compared to
a model explicitly trained on the data. We present the se-
quential NLL of the models for the 24 datasets in Appendix
D. The findings here support our hypothesis: for most of
the 24 datasets considered, TabPFN “settles early”, in that it
apparently chooses a model for the dataset after just a few
in-context examples; the model does not vary much over
more in-context examples. In many instances, this leads to
the MLP “catching up”, and ending up with a NLL that is
much closer, if not better than the TabPFN NLL. This high-
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lights a potential advantage of TabPFN for small sample
size settings.
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A. Sanity check on PFN approximation of the Bayes mixture code
If we use PFNs to approximate the Bayes mixture code corresponding to some likelihood-prior pair, (pθ(y), π(θ)) as
described in Section 3, a natural question is to ask how good the approximated code is. Since we rarely know the Bayes
mixture code in complex models pθ(y), we focus on a toy model that retains some of the essential features of a neural
network but for which asymptotic results from singular learning theory are available to get a “ground-truth” for the Bayes
mixture code-length.

The toy model in question is a two layer regression network with tanh activations and standard normal noise. For x, y ∈ R,
our model is:

pθ(y|x) = N(f(x, θ), 1) (9)

f(x, θ) =

L∑
i=1

ai tanh(bix) (10)

where L is the number of hidden nodes and θ = [a1, ...aL, b1, ...bL] with N(µ, 1) denoting the normal distribution with
mean µ and unit variance.

Singular learning theory tells us, under certain conditions, that given a dataset generated from a fixed parameter vector θ0,
the Bayes mixture codelength can be asymptotically approximated as:

LBayes(y1:n|x1:n) ≃

(
n∑

i=1

− log pθ0(yi|xi)

)
+ λ(θ0) log(n)− (m(θ0)− 1) log log(n) + const.

where λ(θ0) and m(θ0) are coefficients related to the singularities of the parameter set of the model. We will refer to the
first term on the right hand side of this equation, (

∑n
i=1 − log pθ0(yi|xi)) as the empirical entropy.

(Aoyagi & Watanabe) provides these coefficients for this model when we fix θ0 = 0, which is equivalent to sampling y iid
from the standard normal distribution. In this case, the coefficients for our Bayes code approximation can be analytically
derived as:

λ(0) =
L+ i2 + i

4i+ 2

m(0) =

{
2, i2 = L

1, i2 < L

where i is the largest integer such that i2 ≤ L.

BayesPFN To create the PFN model, we generate pretraining datasets by sampling θ from a standard normal prior
distribution

π(θ) = N(0, I)

and drawing x-values from the uniform distribution over the range [−1, 1]. That is,

x ∼ U [−1, 1].

The y-values are sampled from the model given in Eq 9. Our PFN is trained on data {xm
1:n, y

m
1:n} for m = 1, . . . ,M where

n = 1500. The number of training datasets M was chosen per PFN to achieve convergence, but was typical between 80,000
and 6,000,000. For architecture details on the transformer used for the BayesPFNs, see Figure 3.

An important difference between the theory and the implementation is that the PFN model cannot model a truly continuous
density function as its output. This is solved in (Müller et al., 2024) by using a Riemann distribution: discretising the output
distribution into buckets and predicting the probability of the output distribution falling within each bucket. However, due to
the nonlinarity of the log function, this discretisation will skew our estimation of the codelength away from the continuous
case.
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To account for this, we convert the continuous term in the empirical entropy into an identically bucketed discrete distribution
by averaging the true data pdf over each bucket. We found that in practice this reduced the gap between the theoretical
approximation and the calculated codelength.

Mathematically, this means our BayesPFN codelength is∑
i

− log Tϕ̂(yi ∈ [bi, bi+1]|x≤i, y<i)

and the empirical entropy is ∑
i

− log(P (yi ∈ [bi, bi+1]|xi)

where [bi, bi+1] is the bucket the i-th data point falls into and P is the measure under pθ0 where θ0 = 0.

Thus let’s define a normalized BayesPFN codelength:

L̄BayesPFN(y1:n|x1:n) =
∑
i

− log Tϕ̂(yi ∈ [bi, bi+1]|x≤i, y<i)−
∑
i

− log(P (yi ∈ [bi, bi+1]|xi) (11)

Assessing the approximation quality of the Bayes PFN Let {y1:n, x1:n}, n = 1500 be a dataset generated according to
Eq 9 with θ0 = 0. We call this an evaluation dataset.

To see whether L̄BayesPFN(y1:n|x1:n) is a good approximation of the Bayes mixture code corresponding to pθ0 , π(θ), we
compare it to

λ(θ0) log(n)− (m(θ0)− 1) log log(n)

This will be referred to as the theoretical approximation.

Our experiments involved training 4 BayesPFN models on tanh priors with differing numbers of hidden nodes. The specific
architecture of the BayesPFN is given in Figure 3. For each model, we then generated 100 evaluation datasets and computed
the BayesPFN codelength curve on each dataset (as a function of dataset length). Finally, we subtracted the empirical
entropy for the associated dataset from each curve and averaged across datasets to get the normalised BayesPFN codelength
curves.

A.1. Results

Figure 2 plots the normalised BayesPFN codelength in experiments. These plots have iid evaluation data but differ in the
datasets used to train the BayesPFN. In particular, each plot uses a different number of hidden nodes in the tanh network
when generating data.

The plot shows the average codelength across 100 eval datasets at each prequential dataset length. The shared area shows
a 95% confidence interval for the mean (i.e. +/- 1.96 standard error). The heading of each graph provides the number of
hidden nodes along with the λ(θ0) given by Aoyagi & Watanabe.

We perform regression to assess the quality of the approximation over a range of n’s for n > 100. We chose not to fit both
parameters are log(n) and log log(n) are highly correlated on the data range. We perform the following regressions:

1. Regressing L̄BayesPFN(y1:n|x1:n) against log n and an intercept.

2. When m(θ0) ̸= 1, regressing L̄BayesPFN(y1:n|x1:n) + (m(θ0)− 1) log log n against log n and an intercept.

In both cases, when fitting we exclude a number of datapoints from the beginning as the approximation is known to only
hold asymptotically for large n. The regression fit is somewhat sensitive to the threshold for n that is considered, but we
found the results are relatively stable for n > 10. In this case, we chose to exclude the first 32 = 101.5 datapoints.

Across the settings in Figure 2 we first see a strong logarithmic trend as predicted by the theory. We also see that BayesPFN
is decent at recovering the true λ.
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Figure 2. L̄BayesPFN(y1:n|x1:n) as a function of n, mean plus or minus 1.96*standard error. Both fit lines are provided alongside estimated
λ(θ0). Each subplot shows a different PFN training dataset generated by different number of hidden nodes of tanh network.
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TransformerModel(
(transformer_encoder): TransformerEncoderDiffInit(

(layers): ModuleList(
(0-3): 4 x TransformerEncoderLayer(

(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True)

)
(linear1): Linear(in_features=256, out_features=512, bias=True)
(dropout): Dropout(p=0.0, inplace=False)
(linear2): Linear(in_features=512, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.0, inplace=False)
(dropout2): Dropout(p=0.0, inplace=False)

)
)

)
(encoder): Sequential(

(0): Normalize()
(1): Linear(in_features=1, out_features=256, bias=True)

)
(y_encoder): Linear(in_features=1, out_features=256, bias=True)
(pos_encoder): NoPositionalEncoding()
(decoder_dict): ModuleDict(

(standard): Sequential(
(0): Linear(in_features=256, out_features=512, bias=True)
(1): GELU(approximate=’none’)
(2): Linear(in_features=512, out_features=303, bias=True)

)
)
(criterion): FullSupportBarDistribution()

)

Figure 3. Architecture of the model used for section A. This model has 2.4M total parameters.
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B. Experimental details and additional results
We first describe the implementation details of the MLP codelengths. We use Scikit-learn (Pedregosa et al., 2011) to train
the MLPs, with Adam (Kingma & Ba, 2017) as our stochastic optimizer for training the MLP.

The tuned MLP was hyperparameter tuned through grid search with the following parameter grid:

1. Hidden layer sizes = [(32, ), (64, ), (32, 32), (64, 64), (32, 32, 32), (64, 64, 64), (128, 64, 32)]

2. Learning rate = [0.0001, 0.001, 0.01]

3. L2 regularisation term = [0.00001, 0.0001, 0.001]

through training a “tuned” multilayer perceptron (MLP), implementation details can be found in Appendix B. The hyperpa-
rameters for the MLP are tuned through grid search. We also compute the batched prequential SGD plug-in codelength on a
smaller MLP and a larger MLP relative to the tuned MLP, with hyperparameters based on the tuned MLP. These three MLP
codes are compared to the batched TabPFN code in (8).

The MLPs are trained through minimising the log loss, i.e., the cross entropy loss. At the beginning, it is the training data
does not contain examples from a particular class. When computing the codelength, if the MLP assigns probability zero to
the true class of some observation, the contribution to the codelength will become infinity (since − log(0) = ∞). To avoid
this, we added some small value ϵ = 1 × 10−15 to the probability of the true class. This may explain some of the large
jumps in the prequential plug-in codelengths seen in some figures in Appendix C. We note that TabPFN generally does not
run into this issue and in general works well for low n. Perhaps this is due to the fact that it approximates a PPD, and so
generally does not have overconfidence issues.

To avoid a model assigning probability zero to a class it hasn’t seen during training, we prepend an observation of every
class to the start of the training set.

To train the underparametrised MLP, we either remove the final hidden layer in the case where the tuned model has more
than one hidden layer, otherwise we divide the number of nodes in the hidden layer by 2. To obtain the overparametrised
MLP, we add an extra hidden layer to the MLP with the same number of nodes as the final layer of the tuned model. Note
that the MLPs are retrained for each new batch. We do not perform partial fitting on observations from the new batch.

TabPFNv1 was used to compute the TabPFN codelength.

Dataset Details We use the same OpenML (Vanschoren et al., 2014) datasets from the OpenML-CC18 suite as in Hollmann
et al. (2023). Dataset details are shown in Table 1. We note that the dataset details were also presented in Hollmann et al.
(2023).

The OpenML-CC18 suite is specifically collated to not include simulated/artificial datasets. Datasets range from a sample
size of 522 to 2000. Note the datasets were specifically chosen not to exceed this sample size limit, due to stability factors
for TabPFN. The code for obtaining the datasets were based on the code from the original paper.

Further results We present further results in tables 2, 3, 4. The tables contain the respective final metric averaged over 5
train-test splits for all 24 datasets. We note that Hollmann et al. (2023) presents the AUC-OVO scores for each dataset.

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Table 1. Summary of OpenML datasets used in experiments

OpenML ID Sample Size Number of Features Number of Classes

analcatdata authorship 458 841 71 4
analcatdata dmft 469 797 5 6
balance-scale 11 625 5 3
banknote-authentication 1462 1372 5 2
blood-transfusion-service-center 1464 748 5 2
car 40975 1728 7 4
climate-model-simulation-crashes 40994 540 19 2
cmc 23 1473 10 3
credit-g 31 1000 21 2
diabetes 37 768 9 2
ilpd 1480 583 11 2
kc2 1063 522 22 2
mfeat-fourier 14 2000 77 10
mfeat-karhunen 16 2000 65 10
mfeat-morphological 18 2000 7 10
mfeat-zernike 22 2000 48 10
pc1 1068 1109 22 2
pc3 1050 1563 38 2
pc4 1049 1458 38 2
qsar-biodeg 1494 1055 42 2
steel-plates-fault 40982 1941 28 7
tic-tac-toe 50 958 10 2
vehicle 54 846 19 4
wdbc 1510 569 31 2
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Table 2. Average final codelength (Mean ± Std) over 5 different train-test splits.

TabPFN Underparameterized MLP Tuned MLP Overparameterized MLP

kc2 171.24 ± 7.77 1904.68 ± 72.95 1637.03 ± 310.74 2029.81 ± 617.73
climate-mode... 83.29 ± 3.43 115.17 ± 18.44 162.64 ± 48.64 154.25 ± 13.95
wdbc 48.27 ± 4.64 994.93 ± 627.92 152.92 ± 38.19 109.94 ± 8.48
ilpd 254.11 ± 8.66 824.32 ± 336.24 770.14 ± 400.50 730.51 ± 196.63
balance-scal... 95.84 ± 6.31 129.63 ± 13.60 174.55 ± 30.22 122.15 ± 16.24
blood-transf... 304.08 ± 8.27 1409.04 ± 1042.77 582.88 ± 114.34 999.80 ± 439.98
diabetes 314.99 ± 9.21 1140.89 ± 299.83 819.65 ± 197.18 974.18 ± 119.40
analcatdata-... 65.18 ± 3.07 155.08 ± 71.00 82.66 ± 23.94 95.39 ± 18.14
vehicle 334.36 ± 12.16 1171.38 ± 224.16 1055.94 ± 399.86 833.58 ± 117.09
tic-tac-toe 313.94 ± 17.71 596.18 ± 86.72 644.31 ± 128.16 823.47 ± 62.28
credit-g 419.55 ± 5.72 3238.78 ± 1823.81 1472.95 ± 1404.88 1456.67 ± 447.08
qsar-biodeg 310.43 ± 11.20 539.49 ± 126.48 522.69 ± 107.17 714.42 ± 51.96
pc1 189.26 ± 5.60 3217.83 ± 1898.35 1444.45 ± 581.37 1868.22 ± 599.55
banknote-aut... 20.47 ± 1.80 40.38 ± 5.26 43.09 ± 17.84 28.15 ± 11.60
pc4 277.40 ± 6.13 2672.05 ± 422.12 3156.71 ± 989.59 2873.96 ± 1293.90
cmc 1127.63 ± 10.29 1403.76 ± 258.64 1486.28 ± 222.51 1574.84 ± 371.55
pc3 361.62 ± 16.35 3539.02 ± 1257.38 3058.74 ± 514.67 3424.38 ± 1197.76
car 242.12 ± 17.47 329.58 ± 26.43 360.53 ± 57.36 443.20 ± 146.91
steel-plates... 1219.17 ± 30.01 23505.19 ± 1583.03 19091.50 ± 2633.55 23465.63 ± 1366.93
mfeat-zernik... 870.49 ± 14.15 5095.67 ± 1369.26 2842.34 ± 493.48 3340.28 ± 1135.40
mfeat-karhun... 599.30 ± 10.01 490.92 ± 107.40 626.31 ± 187.26 504.15 ± 14.05
mfeat-morpho... 1215.47 ± 28.82 20765.56 ± 1694.45 9244.82 ± 7835.24 10705.06 ± 3276.82
mfeat-fourie... 1064.48 ± 32.69 1506.16 ± 146.38 1425.96 ± 211.49 1731.72 ± 185.84
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Table 3. Average Negative Log-likelihood of the final model (Mean ± Std) over 5 different train-test splits.

TabPFN Underparameterized MLP Tuned MLP Overparameterized MLP

kc2 38.20 ± 2.22 810.74 ± 50.32 430.16 ± 179.58 475.53 ± 248.09
climate-mode... 13.75 ± 3.94 20.02 ± 5.47 30.02 ± 5.73 32.70 ± 9.99
wdbc 6.72 ± 3.88 22.82 ± 3.96 23.92 ± 4.94 25.97 ± 3.61
ilpd 58.88 ± 4.60 64.89 ± 8.55 64.48 ± 5.60 68.62 ± 11.59
balance-scal... 3.83 ± 1.93 9.58 ± 0.87 8.42 ± 5.24 9.37 ± 6.92
blood-transf... 66.38 ± 2.26 99.70 ± 44.67 84.69 ± 18.70 113.31 ± 41.53
diabetes 81.42 ± 6.06 110.17 ± 16.92 100.18 ± 7.89 96.52 ± 4.60
analcatdata-... 1.53 ± 0.95 7.03 ± 4.86 4.80 ± 5.19 4.09 ± 4.31
vehicle 50.57 ± 6.05 161.86 ± 28.16 136.02 ± 16.85 115.31 ± 15.65
tic-tac-toe 44.81 ± 3.53 56.60 ± 22.12 73.70 ± 39.34 77.06 ± 34.03
credit-g 98.48 ± 5.16 812.88 ± 532.16 275.11 ± 299.76 222.64 ± 79.57
qsar-biodeg 75.03 ± 12.27 85.90 ± 17.46 89.11 ± 10.16 98.03 ± 8.68
pc1 36.34 ± 2.13 323.44 ± 63.73 353.82 ± 166.70 377.09 ± 201.18
banknote-aut... 0.13 ± 0.07 2.31 ± 0.80 2.50 ± 2.85 0.48 ± 0.14
pc4 54.73 ± 5.25 529.77 ± 118.43 380.41 ± 287.70 765.68 ± 109.57
cmc 267.74 ± 5.26 270.21 ± 4.98 269.76 ± 5.97 268.46 ± 6.22
pc3 79.82 ± 5.85 476.16 ± 109.85 378.89 ± 208.19 891.88 ± 756.57
car 19.51 ± 2.71 10.89 ± 4.46 10.19 ± 3.50 12.57 ± 9.80
steel-plates... 213.17 ± 15.35 5017.82 ± 313.20 4303.54 ± 2069.24 5320.40 ± 283.54
mfeat-zernik... 141.02 ± 15.50 423.68 ± 164.21 248.37 ± 59.40 312.44 ± 81.80
mfeat-karhun... 53.79 ± 8.70 50.01 ± 15.92 62.53 ± 25.83 52.45 ± 18.68
mfeat-morpho... 254.25 ± 6.31 3538.51 ± 1578.29 675.60 ± 191.55 1748.34 ± 755.62
mfeat-fourie... 171.60 ± 16.09 255.61 ± 65.48 221.58 ± 14.25 291.94 ± 114.54
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Table 4. Average classification test accuracy (Mean ± Std) over 5 different train-test splits.

TabPFN Underparameterized MLP Tuned MLP Overparameterized MLP

kc2 0.85 ± 0.02 0.22 ± 0.01 0.77 ± 0.06 0.72 ± 0.10
climate-mode... 0.96 ± 0.01 0.95 ± 0.01 0.94 ± 0.02 0.94 ± 0.01
wdbc 0.98 ± 0.01 0.93 ± 0.01 0.91 ± 0.03 0.92 ± 0.02
ilpd 0.73 ± 0.02 0.70 ± 0.04 0.70 ± 0.02 0.71 ± 0.01
balance-scal... 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.02 0.98 ± 0.01
blood-transf... 0.80 ± 0.03 0.77 ± 0.01 0.73 ± 0.06 0.72 ± 0.08
diabetes 0.74 ± 0.02 0.67 ± 0.01 0.66 ± 0.02 0.66 ± 0.02
analcatdata-... 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.00
vehicle 0.85 ± 0.02 0.58 ± 0.08 0.66 ± 0.03 0.68 ± 0.04
tic-tac-toe 0.93 ± 0.01 0.90 ± 0.02 0.90 ± 0.02 0.90 ± 0.03
credit-g 0.76 ± 0.02 0.61 ± 0.14 0.64 ± 0.12 0.57 ± 0.11
qsar-biodeg 0.87 ± 0.02 0.85 ± 0.03 0.85 ± 0.02 0.86 ± 0.01
pc1 0.93 ± 0.00 0.89 ± 0.04 0.91 ± 0.03 0.87 ± 0.11
banknote-aut... 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
pc4 0.92 ± 0.01 0.85 ± 0.03 0.80 ± 0.04 0.82 ± 0.11
cmc 0.55 ± 0.02 0.54 ± 0.01 0.55 ± 0.02 0.55 ± 0.01
pc3 0.90 ± 0.01 0.86 ± 0.03 0.89 ± 0.01 0.69 ± 0.17
car 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.01
steel-plates... 0.78 ± 0.01 0.44 ± 0.03 0.37 ± 0.08 0.40 ± 0.03
mfeat-zernik... 0.83 ± 0.01 0.80 ± 0.01 0.81 ± 0.01 0.79 ± 0.01
mfeat-karhun... 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
mfeat-morpho... 0.74 ± 0.01 0.25 ± 0.08 0.34 ± 0.19 0.18 ± 0.06
mfeat-fourie... 0.83 ± 0.01 0.84 ± 0.01 0.83 ± 0.01 0.82 ± 0.01
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C. Additional results that complement Figure 1
Here we show the same result as in Figure 1 for all 24 OpenML datasets we considered.
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D. Tracking NLL as context length grows
As we perform our training in buckets, it is interesting to look at the rate in which our models learn. A hypothesis is that TabPFN
‘in-context learns’ a PPD for the data early on, and doesn’t vary its choice of model much over more training examples. To test this, we
compute the NLL of the models after training on each bucket. After training on the new examples from the new bucket, we compute the
NLL on the model in the prequential SGD plug-in case:

NLLs = − 1

m

m∑
i=1

log pθ̂
(xtrain

1:ts
,ytrain

1:ts)
(ytest

i |xtest
i ), s = 1, . . . , S

and the TabPFN case:

NLLs = − 1

m

m∑
i=1

log Tϕ̂(y
test
i |xtest

i , xtrain
1:ts , y

train
1:ts), s = 1, . . . , S

We plot the sequential NLL of TabPFN and the MLPs for each dataset. In many cases, we see that the sequential NLL stabilises very
quickly for TabPFN, indicating TabPFN was able to choose a model (i.e a PPD) for the data with little in-context examples. This is unlike
the MLPs, which require many more training examples to achieve a low NLL.
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