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Abstract

Understanding time is a pivotal aspect of hu-
man cognition, essential for fully appreciat-
ing the complexities of the world. Previous
studies typically focus on specific aspects of
time, lacking a comprehensive temporal rea-
soning benchmark. To address this, we pro-
pose TIMEBENCH, a comprehensive hierarchi-
cal temporal reasoning benchmark that covers
a broad spectrum of temporal reasoning phe-
nomena. TIMEBENCH provides a thorough
evaluation for investigating the temporal rea-
soning capabilities of large language models.
We conduct extensive experiments on GPT-4,
LLaMAZ2, and other popular LLMs under vari-
ous settings. Our experimental results indicate
a significant performance gap between the state-
of-the-art LLMs and humans, highlighting that
there is still a considerable distance to cover in
temporal reasoning. LL.Ms exhibit capability
discrepancies across different reasoning tasks.
Furthermore, we thoroughly analyze the impact
of multiple aspects on temporal reasoning and
emphasize the associated challenges. We aspire
for TIMEBENCH to serve as a comprehensive
benchmark, fostering research in temporal rea-
soning. Code and data will be released.

1 Introduction

Time flies over us, but leaves its shadow behind.

Time continually moves forward, threading through
the fabric of people’s lives. Understanding time
is a crucial part of human comprehension of the
world. Envision the blossoming of flowers, and
you’ll associate it with the arrival of spring. The
ponder within it encompasses the intricate interplay
of world knowledge, causality, and event temporal
relationships. Temporal reasoning, in contrast to
reasoning of a singular nature, comes with inher-
ent complexity, encompassing implicit arithmetic,
logical implications, and world knowledge. It is
a form of integrated reasoning built upon foun-
dational reasoning like mathematical and logical
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Figure 1: A brief overview of human and LLMs’ per-
formance on TimeBench. Human scores are annotated.

reasoning (Cobbe et al., 2021; Mishra et al., 2022;
Yu et al., 2020). Recently, large language models
(LLM) have demonstrated remarkable performance
in complex reasoning (Hendrycks et al., 2021; Sri-
vastava et al., 2022; Brown et al., 2020; Chowdhery
et al., 2023; OpenAl, 2023; Touvron et al., 2023),
but their performance in intricate temporal reason-
ing still lacks a definitive conclusion.

Recent research for temporal reasoning typi-
cally focuses only on a few aspects, such as tem-
poral commonsense or temporal question answer-
ing (Zhou et al., 2019; Chen et al., 2021; Dhingra
et al., 2022; Wang and Zhao, 2023). Due to the
inherent complexity of temporal reasoning, it is
challenging to accurately measure models’ tempo-
ral reasoning capabilities based on limited aspects.

To address this issue, we propose TIMEBENCH,
a comprehensive and hierarchical temporal reason-
ing benchmark, which is aligned with intrinsic real-
world scenarios. Specifically, drawing inspiration
from the human cognitive process of transition-
ing from abstraction and concreteness to integra-
tion (Barsalou et al., 2018), we categorize tempo-
ral reasoning into three levels: symbolic temporal
reasoning, commonsense temporal reasoning, and
event temporal reasoning. These levels respectively
represent understanding abstract time expression,



grasping concrete world knowledge, and integrat-
ing and applying this knowledge in real-world sce-
narios. It comprises 10 tasks with 16 sub-tasks,
covering a broad spectrum of temporal reasoning
phenomena. Besides, prior work typically featured
only a singular task form, overly simplistic and
insufficient in capturing the model’s performance.
In contrast, we incorporate four distinct task forms,
offering a more realistic simulation of challenges.

To quantify the temporal reasoning capabili-
ties of contemporary LLMs, we extensively assess
widely-used LLMs, including closed-source mod-
els such as ChatGPT (Ouyang et al., 2022) and
GPT-4 (OpenAl, 2023), as well as open-source like
LLaMAZ2 (Touvron et al., 2023), Vicuna-1.5 (Chi-
ang et al., 2023), Mistral (Jiang et al., 2023),
Baichuan2 (Yang et al., 2023), ChatGLM3 (Zeng
et al., 2023) and FLAN-T5 (Chung et al., 2022).
We conduct experiments under zero-shot and few-
shot settings, combining commonly used reasoning
techniques, chain-of-thought prompting (Kojima
et al., 2022; Wei et al., 2022). The experimental re-
sults suggest that GPT-4 outperforms other models,
showcasing strong temporal reasoning capabilities,
as shown in Figure 1. Nevertheless, there is still a
considerable gap with humans. On the contrary,
open-source models show inferior performance
in temporal reasoning, attributed to shortcomings
in abstract time understanding, temporal relations
modeling, and a lack of temporal commonsense.
In addition, we also observe that chain-of-thought
prompting does not consistently enhance model
performance. These findings indicate that there
is still significant room for improvement in mod-
els’ temporal reasoning capabilities. Moreover, we
conduct an in-depth analysis of the obstacles en-
countered by models in temporal reasoning.

We aspire for temporal reasoning to garner in-
creased attention within the research community.
Our contributions can be summarized as follows:

* We introduce TIMEBENCH, a comprehensive and
hierarchical temporal reasoning benchmark to
quantify the temporal reasoning ability of LLM:s.

* We conduct extensive experiments on a large
number of LLMs, revealing a significant gap be-
tween even sota LLM and humans, indicating
substantial research opportunities in this field.

* By conducting a thorough analysis, we uncover
the dilemmas that models face in temporal rea-
soning and identify potential solutions.

DATE ARITH

Q: What is the time 2 year and 4 month before Mar,
1755
A: Nov, 1752

TiIMEX NLI

Premise: On 28th May 1967, I graduated.
Hypothesis: Before 23rd October 1920, I graduated.
A: Contradiction

Table 1: Examples of symbolic temporal reasoning

2 TIMEBENCH Benchmark

2.1 Benchmark Design Principal

TIMEBENCH focuses on a comprehensive evalua-
tion of the temporal reasoning capabilities of large
language models in challenging and complex sce-
narios. To achieve this goal, we summarize the
difficulties and challenges faced in temporal rea-
soning, categorize them into three levels, and metic-
ulously design tasks that better align with complex
real-world scenarios.

Just as the human cognitive process unfolds from
foundational cognition and conceptual understand-
ing to practical reasoning, we delineate temporal
reasoning into three hierarchical levels. Specifi-
cally, TIMEBENCH categorizes temporal reason-
ing into symbolic, commonsense and event tem-
poral reasoning, covering 10 datasets with a total
of 16 subtasks. (1) Symbolic Temporal Reason-
ing focuses on comprehension of fundamental ab-
stract temporal expressions. (2) Temporal Com-
monsense Reasoning emphasizes the mastery of
temporal principles, concepts and world knowl-
edge. (3) Event Temporal Reasoning concentrates
on modeling the temporal relationships of events
within authentic scenarios. Furthermore, to better
align with real-world scenarios, we employ diverse
question formats.

2.2 Difficulties and Challenges

We outline the necessary capabilities and chal-
lenges encountered from a human cognition per-
spective during temporal reasoning, and language
models confront similar obstacles. Detailed infor-
mation on TIMEBENCH and challenges involved
in each task is presented in Table 7.

TimeX Understanding Time expressions
(TimeX) denote words or phrases that convey
information about time and represent the simplest
and most basic units of expressing time, such



MCTACO

C: Ransome looks after her as well as for young Fern
Simon , who has declared her love for him.

Q: How often do Ransome and Fern talk?

O: each century, once a day, once a century, every night

TIMEDIAL

Dialog: ... Personl: Do you go to work by train every
day  Person2: Yes . I commute <MASK> a week by
train...

O: five days, 25 days, a minute, six days

SITUATEDGEN

Keywords: axis, one day, one month, Earth, Moon
A: Earth rotates on its axis once in one day. It takes
one month for the Moon to rotate on its axis.

Table 2: Examples of commonsense temporal reasoning.

as in August 2008, which is fundamental in
comprehending time.

Temporal Commonsense assesses the under-
standing of temporal world knowledge, including
event order, event duration, event typical time,
and event frequency, which is crucial for language
models to comprehend daily scenarios.

Event-Time Relations evaluates the grounding
ability to establish correspondence between events
and time, enabling the model to comprehend the
development and changes of events as they unfold
over time.

Event-Event Relations not only involve event-
time grounding but also introduce multi-hop rela-
tive connections. Models with this capability can
better handle temporal reasoning in complex sce-
narios involving multiple events.

Implicit Temporal Reasoning involves going
beyond the surface of texts, engaging in deeper
reasoning such as drawing upon temporal common-
sense, identifying implicit temporal factors and
discerning hidden temporal relationships among
events. Implicit temporal reasoning is pivotal in
complex real-world scenarios where events and
time are intricately interwoven.

2.3 Symbolic Temporal Reasoning

To evaluate the language model’s comprehension
of abstract time expressions, we utilize two sym-
bolic reasoning tasks stripped of semantic content:
TimeX arithmetic and TimeX inference. Table 1
shows examples of symbolic temporal reasoning.

TIMEQA

C: ... He worked in Utrecht for the firm of P Smits &
de Wolf from 1864 to 1867 and then returned to ...

Q: Where did Ludwig Mond work between Mar 1866
and Sep 1866?

A: Utrecht

MENATQA

C: ... After the French evacuated Egypt in 1801, Hur-
shid Pasha was named governor of Egypt in 1804.
Muhammad Ali had himself named governor of Egypt in
May 1805 ...

Q: Which position did Hurshid Pasha hold from 1804 to
1806, if Hurshid Pasha tepped down as the governor of
Egypt in 1808?

A: governor of Egypt

TEMPREASON

C: ... Peter Corke works for Queensland University of
Technology from Jan, 2010 to Dec, 2022. Peter Corke
works for Commonwealth Scientific from Jan, 1984 to
Jan, 2009. ...

Q: Which employer did Peter Corke work for before
Queensland University of Technology?

A: Commonwealth Scientific

Table 3: Examples of event temporal reasoning.

TimeX Arithmetic (Tan et al., 2023) assesses
the model’s grasp of abstract date calculation.
When provided with a date, the model needs to
accurately calculate the date a certain amount of
time before or after the given date.

TimeX NLI (Thukral et al., 2021) focuses on
the logical entailment relationships among abstract
TimeX, including three aspects: order (s1), dura-
tion (s2), and duration with unit conversion (s3).

2.4 Commonsense Temporal Reasoning

We measure the model’s mastery of temporal com-
mon and world knowledge, along with its capac-
ity for reasoning based on these insights. Table 2
presents examples of temporal commonsense rea-
soning in QA and generation forms.

MCTACO (Zhou et al., 2019) evaluates diverse
commonsense knowledge from different aspects of
events, including duration, frequency, order, sta-
tionary and typical event time.

DurationQA (Virgo et al., 2022) focuses specif-
ically on temporal commonsense reasoning in the
spectrum of event duration.

TimeDial (Qin et al., 2021) considers temporal
commonsense reasoning in dialogue scenarios and
involves various aspects of commonsense associ-
ated with duration, order, and world knowledge.



SituatedGen (Zhang and Wan, 2023) consid-
ers generative commonsense reasoning in a con-
strained text generation scenario. Given a set of
contrasting keywords, the model needs to choose
appropriate keywords for each sentence and gen-
erate a pair of contrasting sentences that satisfy
temporal commonsense.

2.5 Event Temporal Reasoning

Event temporal reasoning assesses the model’s un-
derstanding of relationships between events and
time in real-world scenarios, as well as its abil-
ity to reasoning under certain temporal or event
constraints. Examples are shown in Table 3.

TimeQA (Chen et al., 2021) requires the model
to answer time-sensitive questions based on con-
text containing numerous time-involved facts. It is
categorized into explicit reasoning and implicit rea-
soning based on time indicators (before, in, etc.).

MenatQA (Wei et al., 2023) introduces temporal
factors to elicit implicit temporal reasoning, includ-
ing time scope change, disruption of facts, and
counterfactual questions, which provides a more
in-depth assessment of implicit reasoning ability
on event-time relations.

TempReason (Tan et al., 2023) removes irrele-
vant context and focuses on implicit temporal rea-
soning within structured facts, investigating the
model’s capability boundaries. It involves event-
time reasoning and event-event reasoning.

TRACIE (Zhou et al., 2021) evaluates the
model’s comprehension of temporal order between
implicit events. The model needs to identify events
implied in the context and then determine their
chronological order.

2.6 Task Format and Evaluation Metrics

We design four different task forms to evaluate
the LLLM’s reasoning in various scenarios. Please
refer to Appendix A.2 for specific task forms and
corresponding evaluation metrics.

3 Methodology

We perform evaluations using the prompt-based
approach, including standard prompting and chain-
of-thought prompting. Experiments are conducted
under both zero-shot and few-shot settings.

Standard Prompting We formulate specific in-
structions for each task. In the zero-shot setting,
models follow the instructions to answer questions.
In the few-shot setting, models are provided with
several question-answer pairs as demonstrations
and emulate those instances to answer questions.

prompt;y = {INSTHQ} (1)
promptif‘s) ={INSTHQi1}{A:1}..{Q} (2

Chain-of-Thought Prompting The instructions
of CoT are the same as standard prompting. In
the zero-shot setting, following Zeroshot CoT (Ko-
jima et al., 2022), we add a reasoning trigger Let’s
think step by step after questions to perform chain-
of-thought reasoning. In the few-shot setting, we
manually annotate CoT demonstrations for each
task to guide the model to reason step-by-step. The
instructions and demonstrations can be found in
the Appendix A.6.

promptge® = {INSTHQ}TRIG} 3)
promptf = {INSTHQi}H{R1}{A1}.{Q} 4

4 Experimental Setup

4.1 Models

We evaluate several popular LLMs, including both
open-source and closed-source models, with param-
eter sizes ranging from 6B to 175B. The complete
list of models can be found in Appendix A.1.

4.2 Implementation Details

We access closed-source models through Azure
OpenAl API 0613-version. For open-source mod-
els, we deploy them locally through FastAPI. We
set the temperature to O for greedy decoding in all
experiments. To improve answer extraction accu-
racy, we use a summarization trigger Therefore, the
answer is to obtain final answers.

S Experimental Results

5.1 Few-shot Results

Table 4 presents the experimental results under
few-shot settings. GPT-4 achieves the best perfor-
mance across three categories, while LLaMA27¢y,
and GPT-3.5 rank in the second tier. However,
there remains a substantial gap of 19.4% between
the most powerful LLM and humans.

In symbolic temporal reasoning tasks, GPT-4
demonstrates exceptional performance. However,



Symbolic Commonsense Event Temporal Overall
Method  TjpmeXNLI TimeQA  MenatQA  TempR
- o Q p

sl 52 s3 Arith DQA McT. TiD. SitGen Exp. Imp. Sco. Ord. Cif. 12 L3 TRACIE Sym. Comm. Event Avg.
Human 98.0 96.0 92.0 100.0 80.8 87.1 97.8 100.0 93.3 91.1 85.6 87.3 79.9 97.1 953 825 965 914 89.0 915
GPT-4 85.3 73.3 53.3 100.0 64.8 88.3 94.6 88.6 73.7 51.0 72.4 54.8 28.7 924 959 62.8 780 84.1 66.5 73.7
+FS CoT 92.0 84.0 64.0 100.0 55.1 723 934 - 669 52.8 65.3 52.6 259 96.9 94.6 664 850 73.6 652 72.1
GPT-3.5 52.0 68.4 31.6 63.6 67.7 71.2 764 79.1 66.1 48.4 43.2 51.6 179 84.7 780 55.0 539 73.6 55.6 59.7
+FS CoT 51.6 71.8 36.6 84.4 412 381 71.1 -  68.0 47.0 42.5 41.7 37.8 89.9 76.6 502 61.1 50.1 56.7 56.6
LLaMAZ%b 55.0 61.0 37.0 82.0 67.4 853 82.7 749 66.7 48.3 61.4 42.5 33.8 852 854 61.0 588 77.6 60.5 64.4
+FS CoT 52.0 73.0 39.0 79.5 623 79.1 61.1 - 643 43.0 57.7 45.2 53.1 87.5 81.6 67.0 609 675 624 63.0
LLaMAZT3b 50.0 54.0 30.0 29.5 533 66.0 55.6 64.8 59.3 48.6 49.6 434 37.5 78.7 627 58.0 409 59.9 547 52.6
+FS CoT 40.0 61.0 37.0 52.0 59.3 68.8 40.8 - 594 49.1 584 43.8 44.1 78.0 68.2 58.0 475 563 574 545
LLaMAZ}\b 26.0 50.0 30.0 20.0 54.5 59.6 452 62.4 54.4 45.3 49.8 41.9 35.8 64.0 53.3 49.0 315 554 492 463
+FS CoT 37.0 52.0 36.0 255 56.9 67.0 419 -  45.6 36.1 50.9 38.0 57.3 59.7 57.7 50.0 37.6 553 494 474
Baichuaan3b 38.0 48.0 33.0 42.5 54.8 73.0 45.7 64.9 59.4 54.2 52.7 38.0 214 773 63.5 540 404 59.6 52.6 513
+FS CoT 50.0 56.0 34.0 47.0 62.0 693 43.8 - 582 49.6 49.8 40.1 45.6 81.3 65.6 60.0 46.8 584 563 54.2
Baichuan2f, 27.0 66.0 41.0 32.5 59.8 69.4 343 59.8 53.8 50.2 49.6 38.5 22.9 65.9 51.0 550 41.6 558 484 485
+FS CoT 30.0 56.0 340 34.0 57.0 69.5 44.5 - 51.2 40.7 464 32.6 46.3 61.5 64.1 530 385 57.0 49.5 48.1
Misnral;fb 48.0 53.0 38.0 41.0 61.8 76.2 61.8 583 559 453 49.4 47.8 455 76.7 748 53.0 450 64.5 56.1 554
+FS CoT 57.0 63.0 350 54.0 61.8 457 573 - 60.4 46.2 57.2 47.9 332 659 679 57.0 523 549 545 540
ChatGLMI‘S}:b 48.0 70.0 32.0 35.0 51.8 62.6 55.0 61.6 57.2 26.3 35.4 41.5 22.5 76.4 559 58.0 463 57.8 46.7 49.3
+FS CoT 47.0 68.0 32.0 46.0 539 64.3 56.5 - 525 245 350 40.2 22.5 794 60.3 540 483 582 46.1 49.1

Table 4: Experimental results under few-shot settings (standard prompting by default). T denotes the base model
without alignment. Best results in each group are bold and global top-3 results are underlined. Figure 6 provides a
horizontal comparison of the performance of all models. Full results in Appendix A.5.

other models exhibit a significant decline in com-
parison to GPT-4. In commonsense temporal rea-
soning tasks, GPT4 lags behind humans by only
8.0%, indicating its powerful internal knowledge
reservoir. With the model scale shrinking, its
knowledge reservoir also decreases gradually, lead-
ing to a decline in performance. Notably, there is
a significant gap of 25.2% between LLMs and hu-
mans in event temporal reasoning, which suggests
that LLMs encounter major challenges in modeling
intricate event-time relationships.

5.2 Zero-shot Results

Experimental results of alignment models under
zero-shot settings are shown in Table 5. In zero-
shot settings, GPT-4 and GPT-3.5 rank first and
second respectively, and they significantly outper-
form all open-source models by a large margin.
It is noteworthy that open-source models exhibit
a larger performance decline compared to closed-
source models when transitioning from few-shot to
zero-shot scenarios. GPT, Baichuan2 and LLaMA2
suffer drops of 5.6%, 14.6% and 27.2% respec-
tively. We attribute this performance decline to
the quality of alignment. Restricted by their lim-
ited instruction-following capability, open-source
models struggle to fully unleash their performance

60.9 60.0

Symbolic Commonsense Event Overall

Figure 2: Performance gap with and without CoT
prompting. The results are averaged from GPT-4, GPT-
3.5, Baichuan2 3, LLaMA27q, and Mistralz,.

solely through instructions. Therefore, few-shot
prompting is a better approach for stimulating their
temporal reasoning abilities.

5.3 Chain-of-Thought in Temporal Reasoning

Previous research has found that chain-of-thought
prompting can enhance the model’s reasoning abil-
ity (Wei et al., 2022; Kojima et al., 2022). Does
CoT prompting bring consistent improvement in
temporal reasoning? Due to the diversity of tem-
poral reasoning, the above question has not yet
been definitively answered. To investigate this, we
select several popular LLMs and analyze their per-
formance affected by chain-of-thought prompting.



Symbolic Commonsense Event Temporal Overall

Method TimeXNLI . . . TimeQA  MenatQA TempR
sl 52 3 Arith DQA McT. TiD. SitGen Exp. Imp. Sco. Ord. Cif. 12 L3 TRACIE Sym. Comm. Event Avg.
Human 98.0 96.0 92.0 100.0 80.8 87.1 97.8 100.0 93.3 91.1 85.6 87.3 79.9 97.1 95.3 825 965 914 89.0 91.5
GPT-4 78.6 76.0 50.7 98.0 59.2 80.0 91.1 59.3 60.6 46.5 57.0 57.0 23.1 953 95.0 648 758 724 624 683
+ CoT 80.0 76.0 60.0 92.0 58.1 82.6 89.3 - 613 41.2 54.6 59.6 22.6 97.0 945 580 77.0 76.7 61.1 68.5
GPT-3.5 454 67.6 31.2 97.0 50.5 68.6 69.1 623 70.8 354 40.9 43.9 229 81.2 73.8 574 60.3 62.6 533 574
+ CoT 33.6 64.8 33.6 71.0 232 451 67.0 - 644 351 39.7 429 26.3 57.6 68.1 520 50.8 451 483 483
LLaMA27¢, 44.0 47.0 32.0 78.5 59.2 68.9 57.0 25.0 40.8 40.6 18.9 16.6 12.0 63.5 54.5 48.0 504 525 36.8 44.1
+ CoT 30.0 66.0 28.0 53.5 57.3 67.1 58.6 314 19.5 122 12.7 20.8 37.5 40.5 51.0 444 61.0 282 39.1
LLaMA2,3;, 30.0 49.0 34.0 22.5 38.5 40.6 354 57.9 619 30.5 46.1 36.1 26.9 53.1 69.4 49.0 339 43.1 46.6 42.6
+ CoT 36.0 50.0 38.0 6.0 39.2 51.7 369 - 58.7 389 40.9 32.5 33.6 58.0 684 47.0 325 426 473 424
LLaMA27, 39.0 53.0 30.0 13.0 39.3 41.0 6.3 24.5 49.0 29.0 26.8 21.1 16.0 63.9 479 49.0 338 27.8 378 343
+ CoT 44.0 50.0 33.0 5.0 35.0 400 1.7 - 499 31.6 314 24.5 17.8 569 48.1 460 33.0 256 383 343
Baichuan2,3, 41.0 61.0 37.0 12.5 52.0 634 57.7 52.2 554 34.6 48.8 443 39.5 574 614 49.0 379 56.3 488 48.0
+ CoT 40.0 57.0 31.0 10.0 44.6 619 581 - 41.5 40.9 52.0 38.5 43.2 62.8 64.3 55.0 345 549 49.8 46.7
Baichuan27, 35.0 50.0 37.0 4.5 47.9 553 543 42.0 415 34.7 352 31.2 204 434 47.7 55.0 31.6 499 386 39.7
+ CoT 38.0 43.0 320 1.0 379 58.0 442 - 53.5 38.8 39.9 33.2 29.3 41.2 472 540 285 467 421 394
Vicunal.513, 35.0 50.0 36.0 15.0 39.2 59.1 342 51.8 60.4 37.0 46.8 37.4 23.2 42.1 43.6 46.0 340 46.1 42.1 41.1
+ CoT 42.0 51.0 37.0 3.0 29.8 50.0 33.7 - 569 36.4 38.2 37.7 204 49.0 49.1 51.0 333 378 423 39.0
Vicunal.57;, 37.0 58.0 43.0 5.0 404 525 32.0 47.8 47.1 185 35.7 25.7 17.3 33.0 46.8 54.0 358 432 348 371
+ CoT 36.0 50.0 36.0 1.5 394 492 362 - 409 24.6 26.2 28.5 25.0 27.7 40.3 54.0 309 41.6 334 344
FLANTS:1, 53.0 63.0 43.0 0.0 52.0 65.0 47.7 49.5 61.7 26.8 33.6 52.2 21.8 87.9 839 64.0 398 53.6 54.0 50.3
+ CoT 56.0 66.0 45.0 0.0 49.7 634 427 - 64.4 282 41.6 50.2 30.6 79.5 68.9 550 41.8 519 523 494
Mistralz; 47.0 50.0 43.0 26.5 49.8 58.8 23.2 583 282 21.4 243 22.3 21.7 39.6 31.6 510 41.6 475 300 373
+ CoT 38.0 56.0 35.0 165 36.6 493 193 - 313 224 21.1 249 25.6 34.0 31.2 61.0 364 351 314 335
ChatGLM3¢;, 38.0 50.0 34.0 2.0 34.1 43.6 56.7 389 41.2 31.7 33.8 26.0 32.2 57.0 54.0 50.0 31.0 433 40.7 39.0
+ CoT 27.0 49.0 37.0 0.0 24.8 37.1 448 - 417 254 34.6 28.1 41.2 445 520 480 283 356 394 357

Table 5: Experimental results under zero-shot settings (standart prompting by default). All models are alignment
models (-chat or -instruct). Best results in each group are bold, global top-3 results are underlined.

Chain-of-thought reasoning is not consistently
effective. As illustrated in Figure 2, introducing
zero-shot CoT prompting results in consistent de-
clines, with an overall decrease of 7.4%. In the few-
shot scenario, CoT prompting also fails to yield
consistent improvements, varying depending on the
task. There is a 10.8% improvement in symbolic
reasoning, while a significant decline of 15.2% in
commonsense reasoning. In event temporal reason-
ing, there is a slight improvement of 1.3%. Next,
we will conduct a more detailed analysis of the
impact of CoT on specific tasks.

Impact of CoT prompting across tasks. In or-
der to explore the impact of CoT on various tasks
thoroughly, we delve into the performance changes
of each model across specific tasks within each
category, as illustrated in Figure 3. In the zero-
shot setting, open-source models achieve a slight
improvement in event temporal reasoning with
chain-of-thought prompting, while in other cases,
they face performance degradation. While in the
few-shot setting, almost all models exhibit signifi-
cant improvement in symbolic temporal reasoning,

with a concurrent prevalent decline in common-
sense temporal reasoning. We attribute this to the
knowledge sensitivity inherent in commonsense
reasoning, where step-by-step reasoning cannot
compensate for the lack of knowledge. In event
temporal reasoning, improvements mainly stem
from datasets involving implicit multi-step reason-
ing (MenatQA and TempReason), indicating that
CoT is more effective for complex questions. In
summary, zero-shot CoT consistently has a nega-
tive impact on temporal reasoning. While in few-
shot scenario, CoT has a positive impact on sym-
bolic and complex tasks, while negatively affecting
knowledge-sensitive tasks.

6 Analysis and Discussion'

6.1 Effect of Scaling

We investigated how models scale affects tempo-
ral reasoning capability. The trend is illustrated
in Figure 7. With the scale increasing, there is a
notable performance enhancement. When the pa-
rameter size expands from 7B to 13B, LLaMA2

'We give an error analysis in Appendix A.7.
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Figure 3: AScore between the chain-of-thought prompt-
ing and direct I-O prompting. Top: zero-shot setting,
Bottom: few-shot setting, Left: variation in each task,
Right: averaged variation in the symbolic, common-
sense, event, and overall tasks.

Model ‘ Order Duration Freq. Stationarity Typical | Avg.
GPT-4 76.4] 92.81 83.31 71.4] 5450 | 775
GPT-3.5 50.51 39.8,  55.21 48.41 28.7) | 43.5
BaichuanZI‘l'sb 40.5, S1.81 4371 46.21 29.8] | 42.5
LLaMAZiOb 65.27 72.11  66.31 36.3. 52.7) | 63.0
Mistralib 27.0) 44.41 58.31 38.5] 383 | 425

Table 6: Results in each temporal commonsense aspect
under few-shot setting. Models with § are base models.
Red | and Green 1 represent the performance is lower
or higher than its average performance. Metric is EM.

and Baichuan2 show improvements of 13.0% and
10.5%, respectively. Furthermore, when LLaMA
scales up to 70B, the trend of performance improve-
ment continues without stopping. The overall im-
provement follows a log-linearity with scale. There
are no significant performance differences among
LLaMAZ2, Baichuan2 and ChatGLM3 under simi-
lar parameter specifications, while Mistral shows
impressive prowess, outperforming 13B models
with nearly half the parameters.

6.2 Challenges in Temporal Reasoning

LLMs underperform in (multi-hop) symbolic
reasoning Except for GPT-4, the performance
of all other models in symbol temporal reason-
ing is unsatisfactory. Besides, a noticeable de-
crease is observed in duration-conversion task com-
pared to other atomic tasks (25% in GPT-4 and
27% in LLaMA27). This is because the duration-
conversion task (s3) necessitates a two-step reason-
ing process. It first unifies time units, and subse-
quently engages in numerical comparison, In con-

trast, other atomic tasks (s1, s2 and arith) can be
completed with a single inference. In summary,
LLMs perform poorly in symbolic temporal rea-
soning and exhibit more pronounced declines when
encountering multi-step reasoning.

Mastery of commonsense knowledge varies in
LLMs We analyze models’ performance across
various commonsense aspects, as shown in Table 6.
We regard the model’s average performance in com-
monsense reasoning tasks as the baseline. If the
model outperforms the baseline in a specific as-
pect, it suggests greater proficiency in this type
of knowledge, and vice versa. The findings indi-
cate that LLMs generally demonstrate good knowl-
edge of event duration and frequency, while their
comprehension of event order and typical events is
relatively weaker. The uneven mastery of common-
sense knowledge significantly affects the model’s
reasoning performance, especially when dealing
with complex questions that involve multiple types
of knowledge. Retrieval-augmented reasoning of-
fers a promising avenue to alleviate the model’s
knowledge scarcity.

LLMs exhibit poor implicit temporal reason-
ing capabilities. When comparing the explicit
and implicit event temporal reasoning (TimeQA-
explicit versus others), we observe a significant
decrease in the model’s performance in implicit
reasoning. Additionally, on TRACIE with numer-
ous implied events, most models only surpass a
random baseline (50.0). Even GPT-4 achieves a
mere 66.4% accuracy, which implies that the LLM
struggles with modeling implicit temporal relation-
ships. We consider it helpful to explicitly model
the temporal relationships between events and time
expressions, for instance constructing timelines or
temporal graphs.

LLMs are good factual reasoners rather than
factual extractors When humans engage in tem-
poral reasoning, it generally involves two steps:
first, extracting time-fact pairs from the context,
and then performing fact-based reasoning. Tem-
pReason provides extracted facts for conducting
fact-based reasoning. By comparing the model’s
performance in context-based (TimeQA) and fact-
based (TempReason) reasoning, we identify the bot-
tleneck in event temporal reasoning. LLMs excel in
TempReason, signifying their strong capability in
fact-based reasoning. However, their performance
in context-based reasoning is significantly weaker
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Figure 4: Performance difference between base and
alignment models under few-shot setting. Baichuan2
and LLaMA? are aligned with SFT and RLHF. Vicuna,
Mistral and ChatGLM3 are aligned with only SFT.

than the former. This suggests that errors occur dur-
ing the process of extracting facts from the context.
We attribute this gap to the model’s deficiency in
factual extraction capabilities. Thus, we consider
LLMs to be strong factual reasoners rather than
factual extractors in event temporal reasoning.

6.3 Alignment Impairs Temporal Reasoning

In the experiments mentioned earlier (Table 5), we
observe a sharp decline in zero-shot performance
of alignment models. To investigate whether align-
ment is responsible for the decline in temporal rea-
soning, we conduct experiments on alignment mod-
els under few-shot settings. The full experimental
results can be found in Table 9. Figure 4 illus-
trates the overall performance decline after align-
ment. With the exception of Baichuan2, rest of
the models are severely impaired, with catastrophic
decline of up to 22%. By manually analyzing er-
ror cases, we conclude three reasons: (1) Align-
ment reduces the model’s usability, causing it to
tend towards refusal to answer when confronted
with knowledge-sensitive questions. (2) Alignment
damages the model’s in-context learning capability,
resulting in situations where the model deviates
from the demonstrations. Furthermore, we believe
the lack of temporal reasoning-related training data
in alignment exacerbates this, resulting in dispar-
ities between different reasoning capabilities (e.g.
mathematical reasoning v.s. temporal reasoning).

7 Related Work

7.1 Temporal Reasoning

Numerous research efforts address diverse chal-
lenges in temporal reasoning. Early research
mainly relies on TimeML (Pustejovsky et al., 2003),
focusing TimeX extraction and temporal relation
extraction (Verhagen et al., 2007, 2010; UzZaman

et al., 2013; Llorens et al., 2015; Miller et al., 2015;
Mathur et al., 2021; Vashishtha et al., 2019). The
advent of pre-trained language models (PLMs) has
brought about commonsense reasoning as a tool
to explore the world knowledge in models (Zhou
et al., 2019; Qin et al., 2021; Dhingra et al., 2022).
Recently, much attention has shifted towards event
temporal reasoning (Chen et al., 2021; Tan et al.,
2023; Zhu et al., 2023; Son and Oh, 2023; Chu
et al., 2023b). Besides, Wang and Zhao (2023) in-
troduces a unified form for assessing the temporal
understanding capability of language models.

Distinguished from other datasets and bench-
marks, TIMEBENCH is multispectral, and closely
aligned with intricate real-world scenarios, offer-
ing a comprehensive and hierarchical evaluation of
LLM’s temporal reasoning abilities.

7.2 Large-scaled Language Model

In recent years, there has been rapid progress
in the research of large-scale language models
(LLM) (Zhao et al., 2023). They exhibit outstand-
ing performance across a multitude of tasks without
the need for fine-tuning (Brown et al., 2020; Ko-
jima et al., 2022). Furthermore, they have achieved
astonishing results in complex reasoning tasks,
such as mathematical reasoning (Cobbe et al., 2021;
Mishra et al., 2022) and logical reasoning (Yu et al.,
2020; Liu et al., 2023). Moreover, some studies
suggest that the chain-of-thought prompting can
further enhance the model’s capabilities in com-
plex reasoning scenarios (Wei et al., 2022; Kojima
et al., 2022; Chu et al., 2023a; Zhang et al., 2023).

8 Conclusion

Temporal reasoning entails inherent diversity and
complexity. The lack of a comprehensive bench-
mark makes it challenging to quantify LLMs’ tem-
poral reasoning capabilities. In this work, we
present TIMEBENCH, a comprehensive and hier-
archical benchmark for LLM temporal reasoning,
tailored to mirror temporal reasoning in complex
real-world scenarios. We conduct extensive experi-
ments on state-of-the-art LLMs to investigate their
temporal reasoning capabilities. Our findings indi-
cate a substantial gap between state-of-the-art LLM
and human performance, emphasizing the need for
further research in this area. Moreover, we provide
a meticulous analysis and discussion, outlining the
current challenges that models face and suggesting
potential directions for improvement.



Limitations

TimeBench is a comprehensive benchmark to quan-
tify the temporal reasoning capabilities of LL.Ms.
While we have taken various factors into account,
there are a few limitations. Firstly, the research
language of TimeBench is solely English, and we
are considering the possibility of exploring appro-
priate data to establish benchmarks for temporal
reasoning abilities in other languages. Secondly,
in our evaluations, we only employ zero-shot and
few-shot methods. In future work, we plan to in-
corporate fine-tuning methods to provide a more
comprehensive analysis.
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Figure 5: Sunburst figure of category, task and subtask
in TIMEBENCH. The degree of arc indicates the ratio
of data.

A Appendix

A.1 Models

ChatGPT-3.5/GPT-4 (Ouyang et al., 2022; Ope-
nAl, 2023) ChatGPT is a chat model aligned
through SFT and RLHF based on GPT-3 (Brown
etal., 2020). GPT-4 is an upgraded version of Chat-
GPT with enhanced reasoning capabilities, making
it the most powerful LLM. Unless otherwise stated,
ChatGPT refers to gpt-3.5-turbo-0613 and GPT-4
refers to gpt-4-0613.

Llama2/Vicuna-1.5 (Touvron et al., 2023; Chi-
ang et al., 2023) LLaMAZ2 is an open foundation
model trained on 2T tokens with efficient grouped-
query attention (Ainslie et al., 2023). LLaMA?2-
chat is the official aligned model with SFT and
RLHF, and Vicuna-1.5 is an unofficial aligned
model with SFT only.

Baichuan2 (Yang et al., 2023) is an open foun-
dation model pre-trained on 2.6T tokens and
outperforms LLaMA2 on several benchmarks.
Baichuan2-chat is the official aligned model with
SFT and RLHF.

Mistral (Jiang et al., 2023) is a 7B open founda-
tion model incorporating efficient grouped-query
attention (Ainslie et al., 2023) and sliding windows
attention (Beltagy et al., 2020). It achieves the
strongest performance among models of its size,
even surpassing LLaMA?2-13B. Mistral-instruct is
the officially aligned model with SFT only.
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ChatGLM3 (Zeng et al., 2023) is an open-
source bilingual model for Chinese and English,
exhibiting competitive performance in models with
sizes under 10B.

FLAN-TS (Chung et al., 2022) is an open-
source instruction-following model built on top
of TS5 (Raffel et al., 2020) through instruction fine-
tuning.

A.2 Task Formats and Evaluation Metrics

Multi-choice & Multi-answer Questions MCQ
tasks require models to select the only correct an-
swer from the options. However, this task form
has shortcuts and may not truly reflect the model’s
capability. To address this, we use the MCMAQ
form, where the model needs to select all possi-
ble correct answers from the options. In our task,
each question includes four options, with two of
them being correct. Task: MCTACO, DurationQA,
TimeDial.

Natural Language Inference is the task of deter-
mining the logical relationship between two pieces
of text. Specifically, given a premise and a hy-
pothesis, the model needs to determine whether the
hypothesis can be inferred from the premise and
output entailment, contradiction, or neutral. Our
tasks focus on the entailment in temporal domains.
Tasks: TimeX-NLI, TRACIE.

Free-form Reading Comprehension requires
models to answer questions based on the provided
context, and the answer is free-form without pre-
defined restrictions. Tasks: TimeQA, MenatQA,
TempReason, Date Calculation.

Constrained Text Generation refers to the task
of generating text under certain constraints. Our
task is keyword-constrained text generation, where
the model takes keywords as input and outputs
sentences that include those keywords. Task: Situ-
atedGen.

Metrics We adopt the evaluation metrics from
previous work. Accuracy is used for NLI and date
calculation tasks. MAMCQ tasks are measured
using option-based EM and F1. FRC tasks (w/o
date calc.) are evaluated with token-based EM and
F1. For CTG tasks, we use composite generation
metrics, with more details in Appendix A.4.
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A.3 Benchmark Details

We present the subtasks for each dataset in
TIMEBENCH, including data quantities, task for-
mats, challenges faced by each task, and the capa-
bilities required by models, as shown in Table 7.

A.4 Metrics for CTG

Following SituatedGen (Zhang and Wan, 2023),
we use BLEU-4 (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), ROUGE-
L (Lin, 2004), CIDEr (Vedantam et al., 2015), and
MATCH (Zhang and Wan, 2023) scores to metric
the results of Constrained Text Generation.?

The overall score is calculated as the sum of the
above scores. We set the weight of CIDEr to 1/10
for balance when summing.

S = BLEU-4 + METEOR + ROUGE-L
+ CIDER/10 + MATCH

We utilize pycocoevalcap package to calucate BLEU-4,
METEOR, ROUGE-L, CIDEr.
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As the overall score S does not represent a per-
centile, we proceeded to normalize the models’
scores to align with humans’ relative performance
levels.

A.5 Full Results

The overall score is derived from the average of all
corresponding metrics. For brevity, we omit some
F1 scores in the main tables in the main text. Please
refer to Table 9 for the full experimental results,
and detailed metrics for SituatedGen can be found
in Table 8.

A.6 Prompts

The prompt instructions are showcased in Figure 9.
The demonstrations can be found from Figure 10
to Figure 18.

A.7 Error Analysis

We manually analyze 100 errors for each subtask of
three categories on GPT-4, GPT-3.5 and LLaMa2-
baserqy, as shown in Figure 8.

Symbolic Reasoning We categorize symbolic
reasoning errors into five groups: (a) Expression:
The model provides an incorrect time calculation
expression. (b) Computation: The model provides
the correct time calculation expression, but there is
a calculation error. (¢) Conversion: The model has
an error in the conversion of time units. (d) Com-
parison: The model has an error when comparing
two time-expressions (or intervals). (e) Combina-
tion: The model encountered errors in the combi-
nation of multiple above operations. LLMs exhibit
numerous computation, conversion, and compari-
son errors, which suggests a substantial deficiency
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Figure 8: Error analysis for Symbolic, Commonsense, and Event Temporal. We select 100 test samples from each
subtask for GPT-4, GPT-3.5 and LLaMa2-baserqp.

in their understanding of fundamental temporal ex-
pressions. Besides, more errors occurred in combi-
nation questions, indicating that time-related multi-
step reasoning remains a major challenge for cur-
rent models.

Commonsense Reasoning We categorize the er-
rors of commonsense reasoning into two groups:
(a) No Answer: The model fails to provide a final
answer. (b) Reasoning Error: The model encoun-
ters reasoning errors, which can be subdivided into
five types of knowledge-related errors. We observe
that GPT series models have a higher No Answer
rate, while LLaMA is always able to provide an-
swers. We believe that this phenomenon is caused
by two factors. On the one hand, the model lacks
relevant commonsense knowledge to answer this
question, and on the other hand, RLHF makes the
model choose to refuse to answer when encoun-
tering questions beyond the knowledge boundary.
Retrieval-augmented reasoning can alleviate the
problem of knowledge scarcity to a certain extent.

Event Temporal Reasoning We categorize the
errors of commonsense reasoning into four groups:
(a) No Answer: The model is unable to find the
answer in the context. (b) Reasoning Error: The
model encounters reasoning errors. (c) Halluci-
nation: The model’s prediction does not exist in
the context, known as hallucination reasoning. (d)
Metric: The model’s prediction is correct, but the
metric is limited by the evaluation criteria.
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Dataset Format # Challenges

Symbolic
TimeX Arith FRC 4,000 TimeX Arithmetic
TimeX NLI NLI 6,965 TimeX Causality

- Order - 2,213 order

- Duration - 2,332 duration

- Conversion - 2,420 duration + time unit conversion
Commonsense
MCTACO MCMAQ 852 Temporal Commonsense
TimeDial MCMAQ 1,446 Temporal Commonsense
DurationQA MCMAQ 687 Event Duration
SituatedGen CTG 115 Temporal Commonsense
Event
TimeQA FRC 1,000 Context-based Reasoning

- Explicit - 500 explicit, event-time reasoning

- Implicit - 500 implicit, event-time reasoning
MenatQA FRC 1,599 Implicit, Context-based Reasoning

- Order - 400 event-time reasoning

- Scope - 400 event-time reasoning

- Counterfactual - 400 event-time reasoning
TempReason FRC 1,876 Implicit, Fact-based Reasoning

-12 (e2t) - 839 event-time reasoning

-13 (e2e) - 1,037 event-event reasoning
TRACIE NLI 500 Implicit, Implied Event-Event Reasoning
In total | 19,000

Table 7: The task formats and challenges in TIMEBENCH.
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Method | BLEU-4 METEOR ROUGE-L CIDEr MATCH | Overall Norm

Human \ 39.9 40.4 56.3 397 98.1 \ 2744 100.0
GPT-4 8.23 31.27 28.84 3845 9041 | 16259 59.25
+FS 28.64 38.99 55.69 298.64 90.11 | 243.29 88.66
GPT-3.5 13.38 30.12 35.91 12541  78.76 | 170.70 62.21
+FS 27.24 33.77 51.18 28275 7654 | 217.01 79.08
LLaMA27;, 5.15 13.62 15.83 22.07 31.79 68.60  25.00
+FS 19.10 29.09 41.74 17136 6529 | 17235 62.81
LLaMA2;3, 4.66 21.43 20.80 1772 61.62 | 110.28 40.19
+FS 15.15 27.49 37.55 138.13 6494 | 15893 57.92
LLaMA27, 2.77 13.46 14.69 1434  34.83 67.18 24.48
+FS 6.90 15.82 21.77 5299  33.81 83.60 30.47
Baichuan2;s;, 8.33 25.86 30.07 82.63  70.63 | 143.15 52.17
+FS 15.79 30.23 40.96 169.14  71.01 17491 63.74
Baichuan27, 5.17 21.99 23.73 4480  59.85 | 115.22 41.99
+FS 15.06 23.45 32.29 137.94  52.04 | 136.64 49.79
Vicunal.5;3;, 7.73 26.35 29.15 69.16 7191 142.06 51.77
+FS 6.85 18.66 25.99 9296  46.19 | 106.99 38.99
Vicunal.57, 6.29 24.34 26.91 4690  68.84 | 131.07 47.77
+FS 20.71 30.19 45.20 203.20 67.58 | 184.00 67.05
FLAN-T5 16.20 24.43 29.38 95.17  56.38 | 13591 49.53
+FS 12.88 30.38 36.27 9220 7644 | 165.19 60.20
Mistral7, 5.82 22.89 24.19 44.03 63.74 | 121.03 44.11
+FS 18.96 29.02 43.15 185.61 6324 | 172.93 63.02
ChatGLM3g, 6.56 21.11 21.96 41.48 53.02 | 106.80 38.92
+FS 10.53 24.17 33.44 12450 5694 | 137.53 50.12
LLaMAZ%b 22.34 33.03 50.93 24331 7496 | 20559 74.92
LLaMAZL,)b 17.54 29.44 4521 200.14  65.64 | 177.84 64.81
LLaMAZ% 17.49 28.33 45.24 202.08 5998 | 171.25 62.41
Baichuan2{3b 17.86 29.75 4428 198.83 6635 | 178.12 64.91
Baichuanzib 15.30 27.54 41.80 17159 6240 | 16420 59.84
Mistralib 14.54 27.39 41.72 168.89 5942 | 159.96 58.30
ChatGLM3g;b 17.11 29.35 40.74 15649  66.18 | 169.02 61.60

Table 8: Full results of SituatedGen. Aligned models are under zero-shot setting by default. The top-3 results are
bold. Methods with T are base models without alignment, under few-shot setting. We consider human performance
as 100 points and normalize models’ results accordingly.
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DURATIONQA, MCTACO

Answer the following question, select all the possible correct options, and each question has at least one correct option.
Context: {}

Question: {}

Options: {}

Answer:

TIMEDIAL

There is a two-person dialogue with several options.

Choose all appropriate options to substitute the <mask> in the dialogue, and each question has at least one correct
option.

Dialogue: {}

Options: {}

Answer:

TRACIE

Read the following story and hypothesis, determine whether the hypothesis can be inferred from the story.
You need to understand the implicit temporal relationships between events to make judgments.

Story: {}

Hypothesis: {}

Options: A. Entailment B. Contradiction

Answer:

-
(.

SITUATEDGEN

Generate a pair of contrastive sentences with the given set of keywords.
Keywords: {}

DATE ARITHMETIC

Question: {}? Answer:

-
-

TIMEQA

I will give you a question with context.

You need to answer my question based on the context.

If you can infer the answer from the context, then output your answer. Otherwise, if there is no answer, output [unan-
swerable].

Context: {}
Question: {}
Answer:

TEMPREASON

I will give you a question with context.
You need to answer my question based on the context.

Context: {}
Question: {}
Answer:

MENATQA

Get answers for the question based on the contxt, where answers derived from substrings in the context or categorized
as [unanswerable].

Context: {}
Question: {}
Answer:

-
-

TIMEX-NLI

Read the following statements about time and determine if the hypothesis can be inferred from the premise.
Premise: {}

Hypothesis: {}

Options: A. Entailment B. Contradiction C. Neutral

Answer:

-
(.

Figure 9: Zeroshot instructions and input formats.
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CoT Demonstration of TIMEX-NLI (3-shot, order)

Answer the following question, select all the possible correct options, and each question has at least one correct option.

Premise: On Wednesday, they got married.

Hypothesis: Before Friday, they got married.

Options: A. Entailment B. Contradiction C. Neutral

Answer: Wednesday is before Friday. As a result, we can infer that if something happens on Wednesday, it definitely
happens before Friday. Therefore, the answer is A. Entailment.

Premise: We went to Disneyland on Monday.

Hypothesis: We went to Disneyland after Wednesday.

Options: A. Entailment B. Contradiction C. Neutral

Answer: Monday is before Wednesday. As a result, We can infer that if something happens on Monday, it definitely
can not happen after Wednesday. Therefore, the answer is B. Contradiction.

Premise: The failing company issued major layoffs after Tuesday.

Hypothesis: The failing company issued major layoffs after Thursday.

Options: A. Entailment B. Contradiction C. Neutral

Answer: Tuesday is before Thursday. If something happened after Tuesday, we cannot be certain whether it occurred
after Thursday. Therefore, the answer is C. Neutral.

Figure 10: Chain-of-Thought demonstrations of TimeX-NLI (s1-order).

CoT Demonstration of DATE ARITHMETIC (4-shot)

Question: What is the time 4 year and 1 month after Apr, 2000?
Answer: First, 4 years after 2000 is 2004. Next, 1 month after April is May. Therefore, 4 year and 1 month after Apr,
2000 is May, 2004.

Question: What is the time 3 year and 4 month before Jun, 1840?
Answer: First, subtracting 3 years from 1840 gives 1837. Next, subtracting 4 months from June gives February.
Therefore, 3 year and 4 month before Jun, 1840 is Feb, 1837.

Question: What is the time 7 year and 11 month after Feb, 1819?
Answer: First, 7 years after 1819 is 1826. Next, 11 months after February is January of the next year. Therefore, 7
years and 11 months after Feb, 1819 is Jan, 1827.

Question: What is the time 6 year and 9 month before Jan, 12347
Answer: First, subtracting 6 years from 1234 gives 1228. Next, subtracting 9 months from January gives April of the
previous year. Therefore, 6 year and 9 month before Jan, 1234 is Apr, 1227.

Figure 11: Chain-of-Thought demonstrations of Date Arithmetic.

CoT Demonstration of TRACIE (4-shot)

Read the following story and hypothesis, determine whether the hypothesis can be inferred from the story.
You need to understand the implicit temporal relationships between events to make judgments

Story: Joe was a police officer. Joe was patrolling the streets of the city in his cruiser. Suddenly, Joe was alerted

to a crime happening near him by dispatch.Joe responded to the scene and found a bank robber fleeing on foot. Joe
arrested the criminal and was promoted.

Hypothesis: Joe put on his police uniform. starts after Joe arrest the criminal

Options: A. Entailment B. Contradiction

Answer: From the story we know Joe was patrolling. In the work state, Joe has already put on the police uniform. So
we can infer that Joe put on his police uniform before arresting the criminal. This conflicts with hypothesis. Therefore,
the answer is B. Contradiction.

Figure 12: Chain-of-Thought demonstrations of TRACIE.
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CoT Demonstration of DURATIONQA (4-shot)

Answer the following question, select all the possible correct options, and each question has at least one correct option.

Context: actually i have an project on it so please give me as much as you have information about migratory birds in
punjab

Question: How long did it take for them to have information about migratory birds in punjab?

Options: A. several months B. 12 weeks C. a few minutes D. almost instantly

Answer: This is a conversation scenario. In the conversation, providing relevant information about migratory birds in
punjab to him is in real-time and takes very little time. Therefore, the answer is C. a few minutes, D. almost instantly.

Context: Hope she stops laying eggs because she will get really skinny !

Question: How long did it take for her to lay eggs?

Options: A. 1 week B. 22 hours C. 2 years D. 4 years

Answer: According to commonsense knowledge, the time it takes for birds to lay eggs typically varies from one day
to several days. Therefore, the answer is A. 1 week, B. 22 hours.

Figure 13: Chain-of-Thought demonstrations of DurationQA.

CoT Demonstration of MCTACO (4-shot)

Answer the following question, select all the possible correct options, and each question has at least one correct option.

Context: She ordered the tastiest kind of each vegetable and the prettiest kind of each flower.

Question: How often does she order vegetables and flowers?

Options: A. once a second B. three days a week C. every 10 centuries D. once a week

Answer: According to commonsense knowledge, ordering vegetables and flowers typically happens on a regular basis,
usually every few days. Therefore, the answer is B. three days a week, D. once a week.

Context: Wallace, 38, called Gastonia home from the age of 8 until she graduated from Hunter Huss High School in
1983.

Question: When did Wallace wake up for high school?

Options: A. at 6 am B. at 1 am C. 7:00 AM D. at 6 pm

Answer: According to commonsense knowledge, waking up for high school typically happens in the morning, usually
between 6 AM and 8 AM. Therefore, the answer is A. at 6 am, C. 7:00 AM.

Figure 14: Chain-of-Thought demonstrations of MCTACO.
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CoT Demonstration of TIMEDIAL (4-shot)

There is a two-person dialogue with several options.
Choose all appropriate options to substitute the <mask> in the dialogue, and each question has at least one correct
option.

Dialogue:

A:What schools have you attended ?

B: I finished Young Primary School in 1998 , and entered Xi * an Middle School that same September . I graduated
from there in <MASK> , and that September I entered Wuhan University , where I’'m studying now .

A: How do you think the education you have received will contribute to your work in this company ?

B: I think I have a good understanding of fundamentals in the areas your company deals with , and I can go on from
here to build up the specific skills and knowledge I need to do my job well .

A: Your graduation thesis was on Medical Application of Laser , right ? What were your conclusions ?

B: Yes . I did some work on that , and I found out some really interesting things about the conductivity of liquid
helium . I was sure I had a great discovery until my teacher told me the same discovery already made twenty years
ago . I think the most important thing , I learnt though , was the importance of keeping good records .

Options: A. 1998 B. July of 2004 C. March of 2003 D. twenty years ago

Answer: Based on the dialogue, B entered middle school in Sep 1998. According to commonsense knowledge, it
usually takes around 6 years from entering middle school to graduating from high school (and entering university).
Adding 6 years to 1998 would be 2004, so the answer should be around the year 2004. Therefore, the answer is B.
July of 2004, C. March of 2003.

|

Figure 15: Chain-of-Thought demonstrations of TimeDial.

CoT Demonstration of TIMEQA, MENATQA (2-shot, implicit)

I will give you a question with context.

You need to answer my question based on the context.

If you can infer the answer from the context, then output your answer. Otherwise, if there is no answer, output
[unanswerable]

Context: Theo-Ben Gurirab Theo-Ben Gurirab ( 23 January 1938 2013 14 July 2018 ) was a Namibian politician
who served in various senior government positions . He served as the second Prime Minister of Namibia from 28
August 2002 to 20 March 2005 , following the demotion and subsequent resignation of Hage Geingob . Previously
he was the countrys first Minister of Foreign Affairs from 1990 to 2002 , and was President of the United Nations
General Assembly from 1999 to 2000 . He was Speaker of the National Assembly of Namibia from 2005 to 2015 ,
when he was replaced by Peter Katjavivi . Gurirab ultimately resigned from politics in 2015 . Death . Gurirab died at
a Windhoek hospital on 14 July 2018 of natural causes . He is buried at Heroes Acre .

Question: Theo-Ben Gurirab took which position after Jan 2007?

Answer: Based on the context, we can summarize the following facts: Theo-Ben Gurirab served as second Prime
Minister of Namibia from August 2002 to March 2005. Prior to that, he was the countrys first Minister of Foreign
Affairs from 1990 to 2002 and and was President of the United Nations General Assembly from 1999 to 2000. From
2005 to 2015, he held the position of Speaker of the National Assembly of Namibia. He resigned from politics in 2015
and passed away in July 2018. According to the aforementioned facts, he took the position of Speaker of the National
Assembly of Namibia in January 2007. Therefore, the answer is Speaker of the National Assembly of Namibia.

(.

Figure 16: Chain-of-Thought demonstrations of TimeQA, MenatQA, implicit reasoning.
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CoT Demonstration of TEMPREASON (4-shot, event-time)

I will give you a question with context.
You need to answer my question based on the context.

Context (facts): Gian Piero Gasperini is the head coach of Atalanta B.C. from Jun, 2016 to Dec, 2022.
Edoardo Reja is the head coach of Atalanta B.C. from Mar, 2015 to Jun, 2016.

Stefano Colantuono is the head coach of Atalanta B.C. from Jun, 2010 to Mar, 2015.

Bortolo Mutti is the head coach of Atalanta B.C. from Jan, 2010 to Jun, 2010.

Emiliano Mondonico is the head coach of Atalanta B.C. from Jul, 1987 to Jun, 1990.

Marcello Lippi is the head coach of Atalanta B.C. from Jul, 1992 to Jun, 1993.

Angelo Gregucci is the head coach of Atalanta B.C. from Jul, 2009 to Sep, 2009.

Luigi Delneri is the head coach of Atalanta B.C. from Jul, 2007 to Jun, 2009.

Ottavio Bianchi is the head coach of Atalanta B.C. from Jul, 1981 to Jun, 1983.

Antonio Conte is the head coach of Atalanta B.C. from Sep, 2009 to Jan, 2010.

Nedo Sonetti is the head coach of Atalanta B.C. from Jul, 1983 to Jun, 1987.

Valter Bonacina is the head coach of Atalanta B.C. from Jan, 2010 to Jan, 2010.

Question: Who was the head coach of the team Atalanta B.C. in Feb, 2016?

Answer: According to the context, Edoardo Reja was the head coach of Atalanta B.C. from Mar, 2015 to Jun, 2016.
In Feb 2016, the head coach of the team Atalanta B.C. is Edoardo Reja. Therefore, the answer is Edoardo Reja.

(.

Figure 17: Chain-of-Thought demonstrations of TempReason, event-time reasoning.

CoT Demonstration of TEMPREASON (4-shot, event-event)

I will give you a question with context.
You need to answer my question based on the context.

Context (facts): Nicholas Macpherson holds the position of Member of the House of Lords from Oct, 2016 to Dec,
2022.

Nicholas Macpherson holds the position of Principal Private Secretary to the Chancellor of the Exchequer from Jan,
1993 to Jan, 1997.

Nicholas Macpherson holds the position of Permanent Secretary to the Treasury from Aug, 2005 to Jan, 2016.
Question: Which position did Nicholas Macpherson hold before Member of the House of Lords?

Answer: According to the context, Nicholas Macpherson holds the position of Permanent Secretary to the Treasury
from Aug, 2005 to Jan, 2016. Afterthat, Nicholas Macpherson holds the position of Member of the House of Lords
from Oct, 2016 to Dec, 2022. Nicholas Macpherson hold the position of Permanent Secretary to the Treasury before
Member of the House of Lords. Therefore, the answer is Permanent Secretary to the Treasury."

.

Figure 18: Chain-of-Thought demonstrations of TempReason, event-event reasoning.
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