
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SCATTERED FOREST SEARCH: SMARTER CODE SPACE
EXPLORATION WITH LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel approach to scaling LLM inference for code generation. We
frame code generation as a black box optimization problem within the code space,
and employ optimization-inspired techniques to enhance exploration. Specifically,
we introduce SCATTERED FOREST SEARCH to enhance solution diversity while
searching for solutions. Our theoretical analysis illustrates how these methods avoid
local optima during optimization. Extensive experiments on HumanEval, MBPP,
APPS, CodeContests, and Leetcode reveal significant performance improvements.
For instance, our method achieves a pass@1 rate of 67.1% on HumanEval+ and
87.2% on HumanEval with GPT-3.5, marking improvements of 8.6% and 4.3%
over the state-of-the-art, while also halving the iterations needed to find the correct
solution. Furthermore, our method scales more efficiently than existing search
techniques, including tree search, line search, and repeated sampling.

1 INTRODUCTION

Figure 1: 2D Visualization of Code
Space represents each point as a possible
code solution. The goal is to efficiently
search this space for the solution with the
best performance, defined by the number
of unit tests passed, as indicated by the
contours above.

Recent work highlights the effectiveness of scaling infer-
ence compute over training compute (Snell et al., 2024;
Brown et al., 2024; Gandhi et al., 2024). The most com-
mon approach by far is to repeatedly sample from the LLM
with the same prompt and filter out the best response using
a verifier, also known as best-of-N sampling (Cobbe et al.,
2021; Lightman et al., 2023). Methods that leverage feed-
back from the verifier to revise previous solutions in a line
or tree-like fashion have also been explored (Feng et al.,
2023; Chen et al., 2024a). Code generation is one such
setting where scaling LLM inference through repeated
sampling has also been effective (Wang et al., 2024; Chen
et al., 2022).

Inference scaling is effective because, given enough at-
tempts, the LLM is likely to sample the correct solution
eventually (Snell et al., 2024; Brown et al., 2024). There-
fore, generating diverse solutions is crucial for effective
exploration. Our experiments show that existing methods
such as best-of-N (BoN) and tree search often produce
similar solutions, leading to insufficient exploration of the
solution space (refer to Sec.3.5). Hence, a sampling and
testing approach that balances exploration and exploitation can greatly improve inference scaling.

To tackle this issue, we propose framing solution generation as a black-box optimization problem
(Golovin et al., 2017) (as illustrated in Figure 1), in which validation tests serve as the black box
and the LLM functions as the optimizer (Yang et al., 2024). Drawing from optimization theory, we
develop SCATTERED FOREST SEARCH (SFS) to efficiently search for code solutions that successfully
pass the maximum number of validation tests. Our method: 1) enhances exploration by enabling the
LLM to propose diverse search directions, 2) improves exploitation by leveraging feedback and prior
search experiences, and 3) initializes various random seed code solutions to ensure broader search
coverage.

*Work done during the internship at NEC Laboratories America. BCorresponding author.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Specifically, SFS contains three key techniques. SCATTERING is a novel technique that dynamically
varies input prompts when sampling from LLMs, driving more diverse and exploratory outputs.
In SCATTERING, the LLM suggests different textual optimization directions and steps, analogous
to gradients in numerical optimization, before advancing towards a new solution. During tree
search refinement, SCATTERING effectively perturbs or mutates previous solutions, resulting in an
evolutionary search process. We further propose FORESTING, the tree search equivalent of multi-start
optimization, where SCATTERING plays a crucial role in diversifying initialization seeds, ensuring
they are well-distributed throughout the search space. This enhances the breadth of exploration while
effectively mitigating clearly incorrect solutions, such as those containing syntax errors.

2 4 6 8 10
Number of solutions generated

0.175

0.200

0.225

0.250

0.275

0.300

0.325

Pr
op

or
tio

n
co

rre
ct

Scaling curves for different methods
Ours
BoN
Line
Tree (MCTS)

Figure 2: Scaling curve for different search
methods. We run each method for 10 iterations
total using gpt-3.5-turbo on APPS and re-
port the proportion of problems where the correct
solution has been discovered at each iteration.

Additionally, drawing inspiration from ant
colony optimization and particle swarm opti-
mization, we introduce SCOUTING to enhance
SCATTERING by sharing feedback and experi-
ences across search branches. When one branch
discovers positive (or negative) results by fol-
lowing a specific textual direction, this infor-
mation is relayed to guide future search steps,
encouraging or discouraging exploration in that
direction. Consequently, SCOUTING improves
exploitation by intensifying the search around
promising textual directions. We also provide a
theoretical explanation demonstrating how our
methods enhance exploration and circumvent lo-
cal search regions when sampling from LLMs.

Our parameter-free method is simple yet ef-
fective. It does not require additional training

or labelled data, yet achieves great performance. As illustrated in Figure 2, our method is able to
discover the correct solution significantly faster than the other approaches. We evaluate our method
on five different code generation benchmarks, HumanEval (Chen et al., 2021), MBPP (Austin et al.,
2021), APPS, CodeContests, and Leetcode, showing increased inference time performance across
the board, as well as better inference scaling. Our method also outperforms prior state-of-the-art
techniques on HumanEval+ and MBPP+. Additionally, it generates higher solution diversity than
previous methods, hence balancing exploration and exploitation, resulting in faster discovery of
correct solutions and better scaling.

To sum up, our contributions are as follows:
• We analyze the lack of diversity in current LLM code search processes and frame code generation

as a black-box optimization problem within the language space, emphasizing the need for a
balance between exploration and exploitation.

• We introduce SCATTERED FOREST SEARCH (SFS), composed of techniques SCATTERING
and FORESTING that enhance the search process by encouraging broader exploration of the
code space through textual optimization and seed initialization. We also provide a theoretical
explanation for their effectiveness. Additionally, we present SCOUTING, which further improves
SFS by exploiting promising search directions.

• We demonstrate that our method significantly enhances the accuracy, scalability, and solution
diversity of the search process across widely used code generation benchmarks, including
HumanEval, MBPP, Leetcode, APPS, and CodeContests.

2 BACKGROUND

2.1 PROBLEM DESCRIPTION

In a program synthesis task x = ⟨p,H⟩, the solver is given a prompt p in natural language, which
asks the solver to write code for some object s. The goal is to complete the code implementation of s
such that it passes all the hidden tests H . The solver is not allowed to see the hidden tests. Sometimes,
the solver is also given validation (visible) tests V that they can test their solution s on before they
submit it for evaluation on the hidden tests H . They can also generate their own validation tests V .

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 3: Overview of prior methods used for code generation with LLMs. Points represent
solutions. Hexagons represent initial solutions. Star represents the final selected solution.

Repeated sampling generates
multiple solutions using the
LLM without leveraging feed-
back from previous iterations.

Line search rigidly exploits
feedback and cannot revert to
a previous solution if a new
change worsens the outcome

Tree search is more flexible
but still lacks sufficient explo-
ration, as the generated solu-
tions tend to be very similar.

Usually both hidden and validation tests are in the form of a set of assert statements that test the
functionalities of s. A description of one such code generation task is shown in Appendix B.

A solution s′ is said to be correct if it passes all the hidden tests H . The solver is allowed k
submissions [s]k to the hidden tests. If at least one submission s∗ passes all the hidden tests, then the
task is considered to be solved. Given a set of tasks X , the proportion of tasks ⟨p,H⟩ ∈ X that are
solved by the agent is called the pass@k rate (Chen et al., 2021).

2.2 PRIOR METHODS

A couple of different inference time methods have been tried in prior works to enhance the code
generation capabilities of the LLM, which are shown in Figure 3. We elaborate more on the pros and
cons of each method under a code space optimization framework below:

Best of N (BoN), or repeated sampling, involves sampling multiple independent solutions [s]n, s ∼
LLM(p) from a language model using the same prompt p. The best solution s∗ is then selected based
on a verifier, commonly the number of validation tests passed (Li et al., 2022; Chen et al., 2024a).

Line search begins by sampling an initial seed code s0 ∼ LLM(p). It then iteratively refines the
previous solution si−1 based on its test feedback fi−1 (Shinn et al., 2023; Madaan et al., 2023).
This iterative self-refinement leverages test execution feedback to guide the model toward sampling
successful solutions, i.e. si ∼ LLM(p|si−1,fi−1). However, line search is limited by its rigidity –
requiring improvements on the most recent solution, even if the latest edits are incorrect. Thus, it
struggles to effectively explore the search space and is more likely to get stuck in local optima.

Tree search overcomes the rigidity of line search by generating multiple child solutions for each
parent solution, utilizing tree-structured exploration methods such as BFS, DFS, and MCTS (Feng
et al., 2023; Chen et al., 2024a; Hao et al., 2023; Yao et al., 2023; Zhou et al., 2024; Tian et al., 2024).
Given a parent solution si and its feedback fi, the LLM produces k child solutions si0, si1, ..., sik.
Although higher temperatures can produce diverse solutions, in practice, these solutions often
resemble each other because they originate from the same prompt (refer to Sec. 3.5). Consequently,
tree search still faces challenges in fully exploring the search space.

3 METHODOLOGY

Our method incorporates three optimization inspired techniques to enhance both exploration and
exploitation of tree search (MCTS) using LLMs. More details in Appendix C with pseudocode.

3.1 TREE BRANCH SCATTERING

In tree search, children solutions of the same parent solution tend to be highly similar to one another
since the LLM is given the same prompt to generate the children. We encourage more exploration
when generating children solutions by querying the LLM to generate possible improvement directions
[d]n first. The LLM is then instructed to implement a specific direction dj for each child sij that it

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 7: Core techniques used by SFS. Points represent solutions. Hexagons represent initial
solutions. Star represents the final selected solution.

SCATTERING encourages
tree search to explore more
diverse solutions by using
varied directional prompts for
each branch or seed solution

FORESTING boosts explo-
ration by performing tree
search dynamically from mul-
tiple random seed solution
starting points

SCOUTING shares success-
ful search directions across
branches of the search tree,
providing general insights to
better exploit feedback

generates from parent si. This helps us explore different, often orthogonal, improvement directions
that help us explore a wider region of the search space, similar to trust-region methods in numerical
optimization (xiang Yuan, 2015). We refer to this technique as SCATTERING the tree branches.

feedback from
validation tests

→ propose new textual
directions using LLM → choose 1 direction to

implement when branching

Example SCATTERING Directions

Thoughts: The feedback suggests that the main problem is that the function is returning the first element of min-k and max-k
instead of the entire lists.

Direction 1: Modify the return statement to return min-k and max-k instead of (min-k[0], max-k[0], min-k[-1],
max-k[-1]). This will ensure that the function returns the entire lists of minimum and maximum k elements.

Direction 2: Update the function to handle the case when K is greater than the length of the tuple. In this case, return the entire
sorted tuple as both the minimum and maximum k elements.

Furthermore, we employ MCTS and utilize the UCT formula (Eq. 1) to dynamically select directions
for exploration, as illustrated below

UCT (s,d) = Q̂(s,d) + c

√
ln
(∑

b n(s, b)
)

n(s,d)
, (1)

where c is the exploration parameter, n(s,d) is the number of visits of direction d at solution s, and
Q̂(s,d) is the estimated q-value which is updated via backpropogation as follows:

Q̂(si,di+1)
(t+1) ← (1− αnQ̂(si,di+1)

(t) + αn max{Q̂(si,di+1)
(t), Q̂(si+1,di+2)

(t+1)} (2)

where αn is the weighted average parameter that depends on n(s,d). The backpropogation occurs
along the entire MCTS simulated trajectory τ (t+1) = [s0,d1, s2, ..., s−2,d−1, s−1], where the q-
value for the penultimate state s−1 is updated using the value of the final state (% of validation tests
passed) Q̂(s−2,d−1)

(t+1) ← v(s−1). We take the max of Q̂(si,di+1)
(t) and Q̂(si+1,di+2)

(t+1)

to ensure that if the next solution is worse, the current solution can be used instead. This approach
dynamically selects which direction to explore, prioritizing more promising parent solutions sj over
exploring all directions of a parent solution si. Using UCT to select distinct actions has been effective
in balancing exploration and exploitation in other settings (Browne et al., 2012).

3.2 FOREST SEARCH AND FOREST SCATTERING

Iterative refinement faces the challenge that a very faulty initial seed solution may be difficult
to correct effectively during the search process. An intuitive approach to address this issue is to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

generate multiple seed solutions and perform tree search from each one. We refer to this technique as
FORESTING, in which we generate n seed solutions [s]n and dynamically select which seed function
to evolve from using the UCT formula (Eq. 1). Specifically, for each MCTS simulation, we select
seed function si with the highest UCT value and conduct the simulation from that point. This closely
resembles random seed initialization, a widely and effective approach in optimization literature.

Similar to branch SCATTERING, we can also promote more diverse seed solution generation through
forest SCATTERING by providing the LLM with different instructions prior to generating solutions.
We investigate the impact of various SCATTERING instructions on performance in Sec. 3.5.

Example Forest Seed Instructions

Seed instruction 1: Write the code in a modular and extensible manner, ensuring each function or class has a single responsibility
and can be easily extended or modified without impacting other parts of the system. Prioritize clear interfaces and loose coupling
between components.

Seed instruction 2: Focus on writing highly efficient code with minimal memory usage and fast execution times. Use data structures
and algorithms optimized for performance, and consider edge cases that could lead to bottlenecks. Prioritize speed and resource
efficiency over readability.

Seed instruction 3: Prioritize readability and maintainability in your code. Write clear and descriptive comments, use meaningful
variable and function names, and structure the code in a way that is easy for others to understand and modify. Follow established
coding standards and best practices.

3.3 BRANCH SCOUTING

Inspired by optimization techniques like Ant Colony Optimization and Particle Swarm Optimiza-
tion, we improve solutions by leveraging insights from effective improvement directions. After
generating a new solution s−1 using improvement directions d−1 on s−2, we provide feedback f−1

to the LLM to assess its effectiveness and derive general insights. These insights are stored in global
memory and included in future prompts, enabling shared knowledge of effective improvements across
branches. This enhances feedback exploitation and strengthens our SCATTERING technique.

Example SCOUTING Insights

Insight 1: Modify the return statement to return min-k and max-k instead of (min-k[0], max-k[0], min-k[-1],
max-k[-1]). This will ensure that the function returns the entire lists of minimum and maximum k elements.

Insight 2: Update the function to handle the case when K is greater than the length of the tuple. In this case, return the entire sorted
tuple as both the minimum and maximum k elements.

use insights to gener-
ate directions

→ see if the direction
worked or not

→ update insights based
on feedback

3.4 A THEORETICAL PERSPECTIVE

The proposed techniques—SCATTERING and FORESTING —can be analyzed via the Markov chain
theory, particularly focusing on the concepts of diverse transition kernels, conductance, and mixing
times (Levin & Peres, 2020). We can define the search strategy as a Markov transition kernel P (s, s′)
which denotes the probability of generating a new solution s′ given the current solution s. A chain of
self-refined solutions s0, s1, s2, . . . are generated following the transition kernel P .

In previous methods including line search and tree search, the transition is realized by an LLM π that
is conditioned on the previous solution s and the feedback f = F (s), denoted by π(s′|s,f). The
transition kernel is

Pprevious(s, s
′) = πc(s

′|s, F (s)), (3)

where we use πc to emphasize that the LLM π is prompted to output code. We know π(c) can be
extremely concentrated and outputs highly similar solutions.

With SCATTERING, we first sample an improvement direction d generated by the LLM with prompt
π(·|s, F (s)). And then prompt LLM π to generate the next solution s′ given the current solution s,
the feedback f = F (s), and the improvement direction d. The transition kernel is

PSCATTERING(s, s
′) =

∑
d

πt(d|s, F (s))πc(s
′|s, F (s),d), (4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where πc is still an extremely concentrated policy and outputs highly similar solutions. However, we
have a text-based “reflection” πt(d|s, F (s)) that can generate highly diverse improvement directions.
In practice, we can observe that indeed the directions are highly diverse.

In Markov chain theory, a diverse transition kernel increases the probability of moving between
different regions of the state space (denoted by S), enhancing the conductance Φ of the chain:

ΦP (S) =

∑
s∈S,s′ ̸∈S µ(s)P (s, s′)

µ(S)
, (5)

where S is a subset and µ is the stationary distribution. More details in Appendix L.

Higher conductance improves the spectral gap γ, which is inversely related to the mixing time of
the Markov chain (see Cheeger’s inequality) (Levin & Peres, 2020), reducing the likelihood of the
chain getting trapped in local regions. More formally speaking, for a local region S, the previous
methods (equation 3) rely on directly generating new responses that can easily stuck in the local
region S (Pprevious(s, s

′) ≈ 0 when s ∈ S and s′ ̸∈ S, thus the conductance Φ is near 0). While our
SCATTERING search (equation 4) can generate highly diverse directions d and lead to new solutions
s′ out of the local region S (PSCATTERING(s, s

′) > 0 if some d gives correct direction).

3.5 EMPIRICAL VALIDATION

2 4 6 8 10
Number of submissions k

0.70

0.75

0.80

0.85

Pa
ss

@
k

ra
te

Pass@k rate for different seed themes
Role
Style
Jabberwocky
None

Figure 11: Pass@k rate for repeated sampling
with different initialization seed types on Hu-
manEval using gpt-3.5-turbo-0613. In-
creasing seed variety with SCATTERING signifi-
cantly improves both Pass@k rate and scaling.

We varied the types of seed instructions used
to generate seed code during BoN sampling to
validate the effects of increasing solution diver-
sity with SCATTERING. In the Jabberwocky
setting, the model was prompted with differ-
ent lines from the humorous nonsense poem
“Jabberwocky” before generating seed code. In
the Style setting the model was prompted with
different coding style instructions such as writ-
ing code in a ‘highly modular way’ or ‘fo-
cus on brevity and clarity’. In the Role set-
ting, the model was prompted with different
software engineer personalities such as ‘You
are an innovator.’ or ‘You are a perfection-
ist’. All input prompts were LLM generated by
gpt-3.5-turbo around a common theme.

We present the pass@k performance of these
seed generation styles in Figure 11, with detailed performance metrics in Tables 1 and 19. This
includes: 1) the pass@any rate, which measures the proportion of problems where the correct solution
was found at any point during the search, 2) the mean validation score, averaged across all candidate
solutions generated (Eq. 12), and 3) the mean BERT cosine similarity between embeddings of
candidate solution pairs, averaged over all problems. Embeddings were taken using CodeBERT, a
pretrained model for understanding code semantically (Feng et al., 2020).

Mean BERT cosine similarity =
1

|X |
∑

⟨p,H⟩∈X

1

|Sp|(|Sp| − 1)

∑
s,s′∈Sp

s ̸=s′

embed(s) · embed(s′)
∥embed(s)∥∥embed(s′)∥

In addition to the metrics we discussed previously, we also include other similarity metrics such as tf-
idf similarity, which measures the average cosine similarity between tf-idf vectors, the Levenshtein
similarity, and the token sequence similarity. See App. J for more details, including examples.

As shown in Table 1, “Role” and “Style” performed best in discovering the correct solution. Surpris-
ingly, even unrelated prompts, like lines from nonsense poems, boosted performance. Overall, all
SCATTERING themes reduced solution similarity while maintaining comparable validation scores,
demonstrating the effectiveness of using varied inputs during the search process.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Effects of different seed instruction SCATTERING themes. 10 seed solutions were
generated using gpt-3.5-turbo for each theme, and we filtered the seeds using 6 generated
validation tests to select the best one to submit for evaluation on the HumanEval benchmark.

Seed theme pass@1 pass@any tf-idf sim. BERT sim. lev. sim. seq. sim. val. score

None 72.5 75.0 0.9013 0.9976 0.8971 0.9361 0.7786
Jabberwocky 74.4 81.9 0.7559 0.9944 0.7749 0.8444 0.7658

Style 79.4 88.1 0.6826 0.9929 0.7119 0.7504 0.7548
Role 81.9 87.5 0.7734 0.9957 0.7907 0.8323 0.7649

4 EXPERIMENTS

We demonstrate that our search method outperforms prior methods by showing that it 1) achieves
higher accuracy, 2) finds correct solutions faster and scales better, and 3) explores more diverse
solutions without sacrificing exploitation of good ones.

4.1 EVALUATION BENCHMARKS

We evaluate our method on several popular code generation benchmarks. HumanEval consists of 164
human-generated Python questions (Chen et al., 2021), and MBPP includes 399 problems (Austin
et al., 2021). The original sets included only 3 to 8 hidden testsH, which researchers found inadequate
for thoroughly evaluating correctness in edge cases. Additional hidden tests were added, resulting in
the HumanEval+ and MBPP+ sets (Liu et al., 2024a).

Both APPS (Hendrycks et al., 2021) and CodeContests (Li et al., 2022) feature challenging
code competition problems. From the 10,000 problems in APPS, we randomly sample 200 for
evaluation due to budget constraints. We adapt the competition format of both datasets to resemble
the HumanEval format for Python evaluation. Leetcode (Guo et al., 2024) includes recent problems
scraped from the website, ensuring that LLMs released before July 2023 have not been trained on
these data.

4.2 ACCURACY

We conduct experiments on a variety of code generation benchmarks as shown in Table 2, where we
see that our method achieves a higher pass@1 rate than other search methods and the base accuracy
(i.e., evaluating the first solution that the LLM model generates). Methods were given the same search
budget (10 solutions), they used 6 self-generated validation tests.

Table 2: Performance of our method compared to prior search methods. Pass@1 performance
reported here. Both solutions and validation tests were generated using gpt-3.5-turbo.

Method / Benchmark HumanEval+ MBPP+ Leetcode APPS CodeContests
Base 58.5% 64.9% 30.0% 16.0% 1.82%
Line 53.0% 61.2% 28.9% 14.5% 1.21%

Tree (MCTS) 59.8% 65.4% 31.7% 18.0% 2.42%
Best of N 65.2% 64.4% 33.3% 19.5% 1.82%

Ours (SFS) 67.1% 65.7% 36.7% 20.5% 4.24%

We also measure the proportion of problems where the correct solution was found (pass@any)
at any point during the search process, as shown in Table 3. We evaluate on HumanEval and
MBPP rather than their plus versions due to computational constraints. HumanEval+ and MBPP+
contain 80x and 35x more tests, respectively, which makes it challenging to verify each generated
solution. The pass@any rate is higher than pass@1 because, even if the correct solution is found,
inaccurate validation tests may lead the algorithm to submit an alternative solution. Our method
achieves significantly higher pass@any rates and demonstrates greater improvements from pass@1
to pass@any, indicating that it can better leverage a more accurate verifier to filter for the correct
solution. We further explore the impact of noisy validation tests in detail in Sec. 4.6.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Pass@any accuracy of our method compared to prior search methods. Both solutions
and validation tests were generated using gpt-3.5-turbo. We run each method for 10 iterations.

Method / Benchmark HumanEval MBPP Leetcode APPS CodeContests
Line 83.1% 82.9% 33.3% 22.0% 2.99%

Tree (MCTS) 76.9% 79.6% 33.9% 21.5% 2.42%
Best of N 75.6% 77.3% 33.9% 23.0% 3.03%

Ours (SFS) 89.0% 86.1% 39.4% 32.5% 6.06%

We also compare to existing state-of-the-art works as shown in Table 4 and 5. In Table 4 setting,
validation tests are self-generated, and cap our solution budget at 40 generations max, same as in
prior literature (Zhou et al., 2024). In Table 5, a subset of the ground truth hidden tests are given (3
for HumanEval, 1 for MBPP) (Zhong et al., 2024), and we compare against similar methods under
this setting. We see that our method achieves higher performance in both settings.

Table 4: Comparison to prior works when
ground truth tests are not given. We report
Pass@1 performance with GPT-3.5.

Benchmark HumanEval MBPP
CoT (Wei et al., 2022) 46.9 54.9

ReAct (Yao et al., 2022) 56.9 67.0
Reflexion (Shinn et al., 2023) 68.1 70.0

ToT (Yao et al., 2023) 54.4 65.8
RAP (Hao et al., 2023) 63.1 71.4

LATSa (Zhou et al., 2024) 75.6 79.6

Ours (SFS) 82.5 81.7

aran under our setup, see App. E for similar setup

Table 5: Comparison to prior works when a
subset of ground truth tests are given. We report
Pass@1 performance with GPT-3.5.

Benchmark HumanEval MBPP
Tests given 3 1

SD (+Expl.)
(Chen et al., 2023)

81.1 74.4

SD (+Trace)
(Chen et al., 2023)

80.5 72.6

LDB
(Zhong et al., 2024)

82.9 76.0

Ours (SFS) 87.2 91.3

4.3 SCALABILITY

0 5 10 15 20 25 30 35
Number of solutions generated

0.70

0.75

0.80

0.85

0.90

Pr
op

or
tio

n
co

rre
ct

Scaling curve with # solutions
Ours
Line
Tree (MCTS)
BoN

500 1000 1500 2000 2500
Number of output tokens used

0.4

0.5

0.6

0.7

0.8

Pr
op

or
tio

n
co

rre
ct

Scaling curve with output tokens

Ours
Line
Tree (MCTS)
BoN

Figure 12: Scaling curves for different search methods. Left: Proportion of problems solved vs.
number of solutions generated. Right: Proportion of problems solved vs. number of tokens used.
Results are from gpt-3.5-turbo on HumanEval. Our method shows consistent improvement
up to 20 solutions. Other methods plateau and do not catch up to SFS even with additional scaling.
Additional curves can be found in Sec. D, including curves for other datasets.

We report the average number of iterations (solutions generated) it takes before the search algorithm
discovers the correct solution in Table 6. Iters. (incl) is the average number of iterations it takes
including problems where the algorithm succeeds on the first try. Iters. (excl) is the average number
of iterations it takes excluding first try successes, where the search algorithm is actually used to find
the correct solution. On both metrics, our method demonstrates the ability to discover the correct
solution much more quickly than the other methods. Moreover, we see in Figure 2 and 12 that our
method also scales better than the other methods on all datasets. Our method scales efficiently with
higher budgets, improving up to 20 solutions while others plateau as shown in Figure 18.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 6: Metrics for different search methods. We run search methods for 10 iters. each using
gpt-3.5-turbo on HumanEval. Our method generates more diverse solutions and discovers the
correct solution faster. We also compare against a genetic algorithm (Romera-Paredes et al., 2024)

Method pass@1 pass@any BERT sim. val. score iters. (incl) iters. (excl)

Line 68.1% 83.1% 0.9992 0.795 2.09 7.13
Tree (MCTS) 75.6% 76.9% 0.9998 0.827 2.38 8.09

Best of N 73.8% 75.6% 0.9983 0.774 2.59 9.00
Genetic 74.4% 75.6% 0.9994 0.815 3.04 10.36

Ours (SFS) 82.5% 89.0% 0.9945 0.813 1.67 5.06

4.4 SOLUTION DIVERSITY

We see in Table 6 that our proposed search method is able to propose more diverse candidate solutions
with a lower semantic similarity score, while maintaining high quality search with by generating
solutions with high validation scores. This shows that our methods help both exploration and
exploitation without sacrificing too much of one for the other. Detailed stats shown in App. G.

4.5 ABLATION ON TECHNIQUES

We performed an ablation study on the three introduced techniques as shown in Table 7 (and App.
H), all of which enhanced performance and efficiency, with SCATTERING yielding the highest gains.

Table 7: Ablation metrics for techniques used in our method. We run search methods for 10
iterations each using gpt-3.5-turbo on HumanEval.

Ablation pass@1 pass@any BERT sim. val. score iters. (incl) iters. (excl)

Everything 82.5% 89.0% 0.9945 0.813 1.68 5.06
No SCATTERING 75.6% 78.1% 0.9982 0.802 2.43 8.82
No FORESTING 79.4% 86.3% 0.9982 0.817 2.05 6.56
No SCOUTING 81.9% 86.3% 0.9942 0.792 2.12 6.05

Table 8: Performance on benchmarks when the ground truth tests are given. We run 10 iterations
with our method using gpt-3.5-turbo-0613 on HumanEval. When the tests are accurate, we
can achieve even higher performance, even if only a subset is given.

Tests given pass@1 pass@any BERT sim. val. score iters. (incl) iters. (excl)

No tests given 82.5% 89.0% 0.9945 0.813 1.68 5.06
3 tests given 87.2% 90.2% 0.9952 0.862 2.34 6.86

All tests given 89.0% 90.2% 0.9949 0.864 2.04 5.88

4.6 VERIFIER (VALIDATION TEST) ACCURACY

Figure 13: Confusion matrix for
self-generated validation tests with
gpt-3.5-turbo-0613 using our
method.

Previous work emphasized the importance of a reliable
verifier (Liu et al., 2024a; Chen et al., 2022; Zhang et al.,
2023a). In our case, we use self-generated validation tests
noisy as a black-box verifer. Figure 13 shows the con-
fusion matrix for whether self-generated validation tests
accurately predict solution correctness. The false negative
rate of 27.5% highlights misalignment between validation
and ground truth tests. We performed an ablation study
comparing performance when given different numbers of
ground-truth tests as validation (Table 8). While finding
the best verifier is not our focus, the results show a sig-
nificant impact of verifier accuracy on pass@1. There
are strong interactions between the search method and
evaluation metric—just one ground-truth validation test
dramatically improves performance in Table 5. However,
the 33.75% inaccuracy of validation tests do not affect the
pass@any rate much as shown in Table 8, which demon-
strates the robustness of our method to validation noise.
Detailed metrics shown in App. I.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.7 ABLATION ON MODEL

2 4 6 8 10
Number of submissions k

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Pa
ss

@
k

ra
te

Scaling curves for different models

llama-3.1-8b
gpt-3.5
4o-mini
4o

Figure 14: Scaling curve for different LLM-
models. We run our method on each model for
10 iterations on HumanEval and report the propor-
tion of problems where the correct solution has
been discovered at each iteration.

Fig. 14 shows weaker models scale better with
our method, highlighting a trade-off: better-
trained models scale worse with inference com-
pute. This suggests inference-time scaling com-
pensates for limited training quality, benefiting
weaker models. Detailed stats are in App. F.
5 ADDITIONAL RELATED WORK

Code generation with large language models.
Some works focus on either training their own
model (Guo et al., 2024) or fine tuning existing
models to adapt them towards code related tasks
(Roziere et al., 2023; Jain et al., 2023; Roziere
et al., 2023). Recent literature has shown a flora
of methods to improve LLM code generation
performance during inference time, including
agentic approaches (Qian et al., 2023; Liu et al.,
2024b), multi-agent approaches (Tao et al., 2024; Hong et al., 2023; Islam et al., 2024), tool usage
(Zhang et al., 2024), and self-repair (Le et al., 2023; Olausson et al., 2023a). There is a trade-off
between scaling inference and training compute, with an optimal balance between them (Wu et al.,
2024; Sardana et al., 2024). Our work complements this by demonstrating the impact of enhanced
solution diversity and exploration on scaling. While this work focuses on MCTS, our method can
seamlessly integrate with advanced solution sampling methods during refinement (Tang et al., 2024).

Solution validation and feedback. Prior work has demonstrated that effective and accurate validation
methods significantly boost performance in code generation (Chen et al., 2022; 2024b) and related
tasks like math theorem proving (Cobbe et al., 2021; Uesato et al., 2022). The importance of a
reliable evaluation metric is critical (Liu et al., 2024a), and incorporating natural language feedback
and reflection on execution results further enhances performance (Zhang et al., 2023c; Bai et al.,
2022). Our work complements this by introducing new search methods that more effectively discover
solutions meeting these validation and evaluation criteria. Combining a strong search method with a
robust validation approach leads to improved solution generation performance.

Black box optimization. While many of these methods are domain specific, we adapt many of the
insights behind these methods into using LLMs to search over language and code space. Our textual
optimization steps can be thought of as ‘textual gradients’, though we do not use them to conduct
backpropogation (Yuksekgonul et al., 2024). There have been some recent works exploring the usage
of LLMs as optimizers for different problems (Zhang et al., 2023b; Liu et al., 2024c), including
using evolutionary optimization algorithms (Lange et al., 2024; Liu et al., 2024b).

Tree search. Tree search has proven effective in decision-making domains. Previous works have
applied tree search to multi-step tasks, such as determining the next reasoning step (Silver et al.,
2017; Zhou et al., 2024; Yao et al., 2023; Besta et al., 2024) or generating the next code token (Zhang
et al., 2023c). While prior work primarily uses tree search for planning (Jiang et al., 2023; Feng et al.,
2023; Bairi et al., 2024), we show that tree search can also be used for optimization, functioning as a
black-box method for exploring a region rather than a line.

6 CONCLUSION

We have shown that framing code generation as an optimization task over the code space and
applying SCATTERED FOREST SEARCH is highly effective. The simple yet powerful SCATTERING
technique, which encourages the LLM to produce more diverse outputs, underscores the importance
of exploration in optimization and search processes. This framework and these techniques can offer
valuable insights for other code or language generation tasks.

The integration of search-based methods could significantly reduce computational costs while en-
hancing performance, making them attractive for large-scale deployments, especially in real-time
applications or those requiring resource efficiency. This framework also lays the groundwork for
future research into optimization strategies for language models, potentially leading to more advanced
search algorithms, hybrid models, and novel techniques that push the limits of generative models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Arun Iyer, Suresh Parthasarathy, Sriram
Rajamani, B Ashok, and Shashank Shet. Codeplan: Repository-level coding using llms and
planning. FSE, 1:675–698, 2024.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts:
Solving elaborate problems with large language models. In AAAI, volume 38, pp. 17682–17690,
2024.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision
without process. arXiv preprint arXiv:2405.03553, 2024a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023.

Ziru Chen, Michael White, Raymond Mooney, Ali Payani, Yu Su, and Huan Sun. When is tree search
useful for llm planning? it depends on the discriminator. arXiv preprint arXiv:2402.10890, 2024b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun
Wang. Alphazero-like tree-search can guide large language model decoding and training. arXiv
preprint arXiv:2309.17179, 2023.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah D Goodman. Stream of search (sos): Learning to search in language. arXiv preprint
arXiv:2404.03683, 2024.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and David
Sculley. Google vizier: A service for black-box optimization. In SIGKDD, pp. 1487–1495, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. arXiv preprint arXiv:2105.09938, 2021.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

Md Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. Mapcoder: Multi-agent code
generation for competitive problem solving. arXiv preprint arXiv:2405.11403, 2024.

Naman Jain, Tianjun Zhang, Wei-Lin Chiang, Joseph E Gonzalez, Koushik Sen, and Ion Stoica.
Llm-assisted code cleaning for training accurate code generators. arXiv preprint arXiv:2311.14904,
2023.

Xue Jiang, Yihong Dong, Lecheng Wang, Fang Zheng, Qiwei Shang, Ge Li, Zhi Jin, and Wenpin
Jiao. Self-planning code generation with large language models. ACM Transactions on Software
Engineering and Methodology, 2023.

Robert Lange, Yingtao Tian, and Yujin Tang. Large language models as evolution strategies. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 579–582,
2024.

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul, Doyen Sahoo, and Shafiq Joty. Codechain:
Towards modular code generation through chain of self-revisions with representative sub-modules.
arXiv preprint arXiv:2310.08992, 2023.

David A. Levin and Yuval Peres. Markov chains and mixing times.
https://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf, 2020.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. NeurIPS,
36, 2024a.

Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language models as
evolutionary optimizers. In 2024 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8.
IEEE, 2024b.

Shihong Liu, Samuel Yu, Zhiqiu Lin, Deepak Pathak, and Deva Ramanan. Language models as
black-box optimizers for vision-language models. In CVPR, pp. 12687–12697, 2024c.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. NeurIPS, 36, 2023.

Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-Lezama.
Demystifying gpt self-repair for code generation. CoRR, 2023a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-Lezama.
Is self-repair a silver bullet for code generation? In The Twelfth International Conference on
Learning Representations, 2023b.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feed-
back. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 27730–27744. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
Sun. Communicative agents for software development. arXiv preprint arXiv:2307.07924, 6, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=HPuSIXJaa9.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal:
Accounting for inference in language model scaling laws, 2024. URL https://arxiv.org/
abs/2401.00448.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. NeurIPS, 36, 2023.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Hao Tang, Keya Hu, Jin Peng Zhou, Sicheng Zhong, Wei-Long Zheng, Xujie Si, and Kevin Ellis.
Code repair with llms gives an exploration-exploitation tradeoff. arXiv preprint arXiv:2405.17503,
2024.

Wei Tao, Yucheng Zhou, Wenqiang Zhang, and Yu Cheng. Magis: Llm-based multi-agent framework
for github issue resolution. arXiv preprint arXiv:2403.17927, 2024.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu. Toward self-
improvement of llms via imagination, searching, and criticizing. arXiv preprint arXiv:2404.12253,
2024.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen Han,
Sean Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves llm search
for code generation. arXiv preprint arXiv:2409.03733, 2024.

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/2401.00448
https://arxiv.org/abs/2401.00448

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. NeurIPS, 35:
24824–24837, 2022.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An
empirical analysis of compute-optimal inference for problem-solving with language models, 2024.
URL https://arxiv.org/abs/2408.00724.

Ya xiang Yuan. Recent advances in trust region algorithms. Mathematical Programming, 2015.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. In ICLR, 2024. URL https://openreview.net/
forum?id=Bb4VGOWELI.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. NeurIPS, 36, 2023.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic" differentiation" via text. arXiv preprint arXiv:2406.07496,
2024.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
with tool-integrated agent systems for real-world repo-level coding challenges. arXiv preprint
arXiv:2401.07339, 2024.

Kexun Zhang, Danqing Wang, Jingtao Xia, William Yang Wang, and Lei Li. Algo: synthesizing
algorithmic programs with llm-generated oracle verifiers. arXiv preprint arXiv:2305.14591, 2023a.

Michael R Zhang, Nishkrit Desai, Juhan Bae, Jonathan Lorraine, and Jimmy Ba. Using large language
models for hyperparameter optimization. In NeurIPS 2023 Foundation Models for Decision Making
Workshop, 2023b.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B Tenenbaum, and Chuang Gan.
Planning with large language models for code generation. arXiv preprint arXiv:2303.05510, 2023c.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B. Tenenbaum, and Chuang Gan.
Planning with large language models for code generation, 2023d. URL https://arxiv.org/
abs/2303.05510.

Li Zhong, Zilong Wang, and Jingbo Shang. Ldb: A large language model debugger via verifying
runtime execution step-by-step. arXiv preprint arXiv:2402.16906, 2024.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models. ICML, 2024.

14

https://arxiv.org/abs/2408.00724
https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=Bb4VGOWELI
https://arxiv.org/abs/2303.05510
https://arxiv.org/abs/2303.05510

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX: SMARTER CODE SPACE EXPLORATION WITH LLMS

A ETHICS STATEMENT

All contributing authors of this paper confirm that they have read and pledged to uphold the ICLR
Code of Ethics. Our proposed method is specifically designed for code generation using LLMs. We
acknowledge the potential for LLMs to generate code that may inadvertently introduce vulnerabilities
or ethical concerns. Our research prioritizes the development of methodologies that emphasize
responsible usage, ensuring that generated code adheres to best practices in security and ethics. We
recognize that LLMs can perpetuate and amplify biases present in training data. We aim to contribute
positively to the field of code generation while addressing the potential challenges and responsibilities
that arise from the use of advanced AI technologies.

B PROBLEM SETTING AND CODING PROBLEM EXAMPLE

In the program synthesis task x = ⟨p,H⟩, the solver is provided with a problem prompt p, described
in natural language, which requests the generation of code to implement a specific functionality or
object s. The objective is to generate a solution s′ that passes all the hidden tests H designed to
evaluate its correctness. These hidden tests H are not visible to the solver under any circumstances.
In some cases, the solver may also have access to a set of validation tests V , which they can use
to verify their solution s′ before submitting it for evaluation against the hidden tests. Alternatively,
the solver may generate their own validation tests V to test the functional correctness of s′. Both
hidden and validation tests are typically structured as a set of assert statements validating specific
functionalities of s. A representative example of this problem setup is provided below.

Example code generation prompt, solution, and tests

Prompt: Write a function greatest_common_divisor(a,b) that returns the GCD
of two integers a and b

Validation tests:
assert(greatest_common_divisor(3,5) == 1)
assert(greatest_common_divisor(25,15) == 5)
assert(greatest_common_divisor(0,3) == 3)

Proposed solution 1:
def greatest_common_divisor(a, b):

for i in range(min(a, b), 0, -1):
if a % i == 0 and b % i == 0:

return i

Test feedback:
assert(greatest_common_divisor(3,5) == 1) #output 1 is
correct
assert(greatest_common_divisor(25,15) == 5) #output 5 is
correct
assert(greatest_common_divisor(0,3) == 3) #output None is
incorrect

A solution s′ is deemed correct if and only if it passes all hidden tests H . Solvers are permitted up
to k attempts [s]k to submit their solutions for evaluation. If at least one submission s∗ satisfies all
hidden tests, the task is considered solved. Given a set of tasks X , the proportion of tasks ⟨p,H⟩ ∈ X
successfully solved by the agent within k submissions is referred to as the pass@k rate (Chen et al.,
2021).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.1 JUSTIFICATION FOR PROBLEM SETUP

In our problem setting, the solver is explicitly not allowed to access the hidden tests H . This
constraint ensures that the task closely mirrors real-world applications of program synthesis, where
the solver must produce solutions based solely on the problem prompt p. Such a setup aligns with
platforms like LeetCode or conventional coding assessments, where test cases remain hidden to
preserve the integrity of the evaluation process and discourage overfitting to known test sets.

This restriction is not only practical but also reflects the needs of end users in real-world scenarios.
Writing comprehensive and correct unit tests is a time-consuming process, requiring substantial
domain knowledge and effort. In practice, users would prefer tools that can autonomously generate
correct implementations from a prompt without requiring additional test specifications or guidance.
By requiring solvers to rely on self-generated validation tests or implicit reasoning to produce
correct solutions, this setup encourages the development of tools capable of robust and generalized
problem-solving.

By prioritizing correctness under these constraints, our framework evaluates an agent’s ability to
understand the problem and synthesize accurate solutions in a realistic and user-centric manner,
making it an ideal benchmark for program synthesis tasks.

C METHODOLOGY DETAILS

C.1 TRADITIONAL MONTE CARLO TREE SEARCH (MCTS)

Monte Carlo Tree Search (MCTS) is a widely used algorithm for decision-making in environments
with large, complex state spaces, such as games and optimization problems. The algorithm incre-
mentally builds a search tree by simulating possible outcomes and leveraging these simulations to
balance exploration (visiting new states) and exploitation (refining knowledge about promising
states). The MCTS process consists of four main stages: selection, expansion, simulation, and
backpropagation.

C.1.1 SELECTION

The algorithm begins at the root node, corresponding to the current state s, and iteratively selects
child nodes using a selection policy designed to balance exploration and exploitation. The most
commonly used selection policy is the Upper Confidence Bound for Trees (UCT), which evaluates
each child state s′ and corresponding action (or direction) d according to the formula:

UCT (s,d) = Q̂(s,d) + c

√
ln
(∑

b n(s, b)
)

n(s,d)
, (6)

where Q̂(s,d) is the estimated value of taking action d from state s, n(s,d) is the number of
times this action has been visited, and c is a hyperparameter controlling the exploration-exploitation
trade-off. This equation encourages actions that either have high value (exploitation) or have been
visited less frequently (exploration).

C.1.2 EXPANSION

After a leaf node is reached during selection, one or more child nodes representing potential future
states s′ are added to the search tree. These states are typically generated by sampling actions or
improvement directions d from a predefined set or policy. The added nodes represent unexplored
areas of the search space.

C.1.3 SIMULATION

Once a new node is expanded, the algorithm performs a simulation or rollout from that state s′. In
this step, a playout policy is used to sample a trajectory of states and actions until a terminal state
or evaluation horizon is reached. The outcome of this simulation, denoted as v(s′), provides an
estimate of the quality of the state s′. This value could represent a game outcome (e.g., win/loss), a
performance metric (e.g., number of test cases passed), or another problem-specific objective.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.1.4 BACKPROPAGATION

The results of the simulation are then propagated back up the search tree to update the value estimates
Q̂(s,d) for the nodes along the trajectory τ = [s0,d1, s2, . . . , s−1]. The value update is performed
iteratively using a weighted average, which incorporates the new simulation result while retaining
information from prior simulations:

Q̂(si,di+1)
(t+1) ← (1− αn)Q̂(si,di+1)

(t) + αn max{Q̂(si,di+1)
(t), Q̂(si+1,di+2)

(t+1)}, (7)

where αn is a weighting parameter that depends on the visit count n(s,d), and max ensures that
only the best-performing solutions along the trajectory are prioritized.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.2 SCATTERED FOREST SEARCH

Algorithm 1: Scattered Forest Search (SFS) with SCOUTING

Input: Language Model L, Prompt p, Number of iterations N , Branching factor k, Exploration parameter c
Output: Best solution s∗

Function Scattering(node):
Generate diverse directions {d1, d2, . . . , dk} using L conditioned on feedback for node;
Save directions {d1, d2, . . . , dk} to node.directions, with node.qvalue(di)← 0;
return node.directions;

Function Foresting(S0):
Initialize forest with random seed solutions {s1, s2, . . . , sn} sampled by L;
foreach seed ∈ S0 do

Scattering(seed); // Generate directions for each seed
end
return forest S0;

Function Scouting(parent, direction, child, feedback, I):
Update global insights I using feedback from applying direction to parent, resulting in child;

Function SelectSeed(S):
Select the most promising seed s from S using UCT formula (Eq. 1);
return s;

Function SelectDirection(node):
Select the most promising direction d from node.directions using UCT formula;
return d;

Function Simulate(seed):
parent← seed, τ ← ∅;
while parent is not a leaf node do

direction← SelectDirection(parent);
child← Child node corresponding to direction;
τ.append((parent, direction, child));
parent← child;

end
return leaf node and trajectory τ ;

Function Expand(parent, direction):
Generate new solution s′ using L conditioned on s, direction, and feedback;
Create new child node child with solution s′ and feedback from validation tests on parent;
return child;

Function Backpropagate(τ, leaf, reward):
leaf.qvalue[direction]← reward;
foreach (parent, direction, child) ∈ τ (in reverse order) do

Update parent.qvalue[direction] using Eq. 2;
parent.visits[direction]← parent.visits[direction] + 1;

end
begin

Initialize global insights I ← ∅;
Initialize forest S0 ← Foresting();
Generate validation tests V if not given;
for i← 1 to N do

seed← SelectSeed(S0);
leaf, τ ← Simulate(seed);
direction← SelectDirection(leaf);
child← Expand(leaf, direction);
feedback, reward← Execution feedback and validation score of child;
Backpropagate(τ, leaf, reward);
Scouting(leaf, direction, child, feedback, I);
Scattering(child); // Generate directions for the new node

end
s∗ ← Best solution across all trees;

end

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Python Pseudocode for SFS with SCOUTING

def scattering(node):
"""
Generate diverse directions for a given node using the language model (LM).
"""
directions = [d1, d2, ..., dk] # Generate using LM conditioned on node feedback
node.directions = directions
node.qvalue = {d: 0 for d in directions} # Initialize q-values for each direction
return directions

def foresting():
"""
Initialize a forest with multiple random seed solutions and generate directions for each seed.
"""
forest = [s1, s2, ..., sn] # Generate initial seeds using LM
for seed in forest:

scattering(seed) # Generate directions for each seed
return forest

def scouting(parent, direction, child, feedback, insights):
"""
Update global insights using feedback from applying a direction to the parent to produce the child.
"""
Update insights with the feedback and interaction details
insights.update({(parent, direction): feedback})

def select_seed(forest):
"""
Select the most promising seed from the forest using the UCT formula.
"""
return max(forest, key=lambda s: uct_value(s)) # Replace with actual UCT calculation

def select_direction(node):
"""
Select the most promising direction from a node’s directions using the UCT formula.
"""
return max(node.directions, key=lambda d: uct_value(node, d)) # Replace with actual UCT calculation

def simulate(seed):
"""
Simulate a path starting from a seed, selecting the best direction at each step.
"""
parent = seed
trajectory = []
while not is_leaf_node(parent):

direction = select_direction(parent)
child = get_child_node(parent, direction)
trajectory.append((parent, direction, child))
parent = child

return parent, trajectory

def expand(parent, direction):
"""
Expand the search tree by applying a direction to the parent and generating a new solution.
"""
new_solution = generate_solution(parent.solution, direction) # Use LM
feedback = validate_solution(new_solution) # Validation feedback
child = create_node(new_solution, feedback) # Create a new child node
return child

def backpropagate(trajectory, leaf, reward):
"""
Backpropagate the reward along the trajectory.
"""
leaf.qvalue[direction] = reward
for parent, direction, child in reversed(trajectory):

parent.qvalue[direction] = backprop_update(reward)
reward = parent.qvalue[direction]
parent.visits[direction] += 1 # Increment visit count

Main algorithm
def scattered_forest_search(model, prompt, iterations, branching_factor, exploration_param):

"""
Perform the Scattered Forest Search (SFS) algorithm.
"""
insights = {} # Initialize global insights
forest = foresting() # Initialize forest of seed solutions
validation_tests = generate_validation_tests() # Generate tests if not given

for _ in range(iterations):
seed = select_seed(forest)
leaf, trajectory = simulate(seed)
direction = select_direction(leaf)
child = expand(leaf, direction)
feedback, reward = execute(child, validation_tests) # Run validation tests and get reward
backpropagate(trajectory, leaf, reward)
scouting(leaf, direction, child, feedback, insights)
scattering(child) # Generate directions for the new node

best_solution = get_best_solution(forest)
return best_solution

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

SFS integrates three key components: scattering, foresting, and scouting, with tree search performed
using Monte Carlo Tree Search (MCTS). Below, we detail the main components and steps of the
algorithm.

C.3 ALGORITHM OVERVIEW

SFS operates over multiple iterations, progressively refining the solution space using a search tree
initialized with diverse seed solutions. For each iteration, SFS balances exploration and exploitation
using the Upper Confidence Bound for Trees (UCT) formula to guide the search. The algorithm
begins by initializing global insights I, a forest of seed solutions S0, and validation tests V . It then
performs the following steps over N iterations.

Initialization

• Global Insights: A global memory I is initialized to store feedback and general insights
gained during the search process, enabling knowledge sharing across branches.

• Forest Creation: The algorithm generates a set of initial seed solutions S0 =
{s1, s2, . . . , sn} by sampling diverse solutions using the language model L. For each
seed:

– Direction Initialization: Diverse directions {d1, d2, . . . , dk} are generated for each
seed solution by prompting L with feedback from the seed.

– Q-Values: Q-values for each direction are initialized to 0, i.e., node.qvalue(di)← 0.
These values are updated dynamically based on feedback during backpropagation.

Seed Selection The algorithm selects the most promising seed solution s from the forest S using
the UCT formula:

UCT (s,d) = Q̂(s,d) + c

√
ln
(∑

b n(s, b)
)

n(s,d)
, (8)

where c is the exploration parameter, n(s,d) is the visit count for direction (or seed) d at state s,
and Q̂(s,d) is the estimated reward for that direction. This balances exploration of under-explored
solutions and exploitation of high-reward solutions. Unvisited seeds/directions always have infinite
UCT values, which means that we will always explore unvisited seeds or directions first.

Simulation Starting from the selected seed s, the algorithm simulates a trajectory τ =
[(si,di, si+1)] by iteratively selecting the most promising direction di using the UCT formula.
The simulation proceeds until a leaf node is reached.

Expansion At the leaf node, the algorithm expands the search tree by generating a new child node:

s′ = L(s,d, feedback), (9)

where L generates a new solution s′ by incorporating the parent solution s, the improvement direction
d, and validation feedback. The newly generated solution s′ is validated, and the proportion of
validation tests passed serves as the reward:

Reward =
Number of tests passed
Total number of tests

. (10)

Backpropagation The reward is backpropagated along the trajectory τ :

Q̂(si,di+1)
(t+1) ← (1−αn)Q̂(si,di+1)

(t)+αn max{Q̂(si,di+1)
(t), Q̂(si+1,di+2)

(t+1)}, (11)

where αn is a weighting parameter dependent on visit counts. The visit count n(s,d) for each
direction is incremented by 1 during backpropagation.

Scouting The feedback f from applying a direction d to a parent node s is analyzed to extract
general insights. These insights are stored in global memory I and reused to guide future direction
generation. Scouting improves the search’s efficiency by leveraging knowledge gained from past
iterations.

Scattering For every expanded node, diverse new improvement directions {d1, d2, . . . , dk} are
generated using L. This encourages exploration of orthogonal regions of the solution space, reducing
the likelihood of stagnation in local optima.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Final Selection After N iterations, the best solution s∗ across all trees in the forest is selected.
The best solution is determined based on the highest reward, i.e., the proportion of validation tests
passed.

C.4 KEY FEATURES OF SFS

• Q-Value Initialization: For every new direction, Q-values are initialized to 0 and dynami-
cally updated during backpropagation.

• Reward Definition: The reward is explicitly defined as the proportion of validation tests
passed, providing a consistent measure of solution quality.

• Diversity: By incorporating scattering and foresting, the algorithm ensures diversity in
both initial seed solutions and branching directions, reducing the risk of stagnation in local
optima.

• Global Insights: The scouting mechanism enables the sharing of effective improvement
strategies across the search space, enhancing the algorithm’s exploitation capabilities.

The SFS algorithm’s integration of scattering, foresting, and scouting represents a powerful approach
to systematically navigate and optimize large solution spaces.

C.5 ALGORITHM COMPLEXITY

The time complexity of the Scattered Forest Search (SFS) algorithm is primarily determined by the
number of iterations N and the traversal steps involved in each iteration.

Time Complexity: At each iteration, the algorithm performs several steps: selecting seeds,
simulating a trajectory, expanding nodes, and backpropagating rewards. In the worst-case scenario,
the depth of the solution tree is proportional to N , resulting in O(N) steps for traversal. Over N
iterations, this results in a total time complexity of O(N2). Additionally:

• Scouting and Scattering: The scouting and scattering steps at each iteration involve
generating new directions and updating global insights, which have constant time complexity
per iteration.

• Comparison to Other Methods:
– Line Search: Line search explores solutions sequentially without tree traversal, yielding

a time complexity of O(N).
– Beam of Nodes (BoN): Similar to line search, BoN has a time complexity of O(N) due

to its focus on maintaining and updating a fixed number of candidate solutions.
– Tree Search (MCTS): Traditional Monte Carlo Tree Search also has a time complexity

of O(N2), as it involves tree traversal similar to SFS.

Thus, the SFS algorithm shares the same O(N2) time complexity as tree search but differs signifi-
cantly in its use of global insights and scattering to improve solution diversity and efficiency.

Space Complexity:

• SFS: The algorithm stores all generated solutions, resulting in a space complexity of O(N).
In addition, global insights I require constant space O(1) since only the most recent updated
insights need to be kept, and insights are kept within a fixed length.

• Line Search: Line search has a space complexity of O(1), as it retains only the most recent
solution.

• BoN and Tree Search: Both methods, like SFS, require O(N) space to store all candidate
solutions.

While the memory overhead for SFS is comparable to other tree-based methods, the efficient use of
global insights enhances the algorithm’s performance without additional memory costs.

Practical Considerations: Although SFS involves tree traversal, which contributes to the O(N2)
complexity, the computational bottleneck in practice is the solution generation process, typically

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

dominated by LLM API calls. Thus, the tree traversal cost has a negligible impact on runtime in
practical settings.

C.6 LLM REQUEST COST

Our algorithm requires two LLM-API calls (requests) per solution generated. One API call is
used for code generation based on SCATTERING improvement directions. One API call is used for
reflection after the code is generated and executed. The reflection step involves (1) updating the
global insights based on the execution feedback (2) generating new SCATTERING directions based on
the global insights and execution feedback. In practice, the two components of the reflection step
can be separated into two API calls run in parallel to increase computational efficiency and code
cleanness, which is how we implemented it.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D SCALING

Our method scales well with increased iterations. We show scaling curves for each dataset as shown
in Figures 15, 16, 17. We also display scaling curves at higher budgets as shown in Figure 18. We
see that performance mostly plateaus after the 20 solutions are generated. Moreover, other methods
do not catch up to our method each with higher search budgets, suggesting how our method is able
to fundamentally better explore the solution spaces, including solutions that other methods will not
consider.

Figure 15: Scaling curves for different search methods on APPS (left) and CodeContests (right).
We run each method for 10 iterations using gpt-3.5-turbo, reporting the proportion of problems
where the correct solution is discovered at each iteration.

Figure 16: Scaling curves for different search methods on HumanEval (left) and MBPP (right).
We run each method for 10 iterations using gpt-3.5-turbo, reporting the proportion of problems
where the correct solution is discovered at each iteration.

Figure 17: Scaling curves for different search methods on LeetCode. We run each method for 10
iterations using gpt-3.5-turbo, reporting the proportion of problems where the correct solution
is discovered at each iteration.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30 35
Number of solutions generated

0.70

0.75

0.80

0.85

0.90

Pr
op

or
tio

n
co

rre
ct

High budget scaling curves
Ours
Line
Tree (MCTS)
BoN

Figure 18: High budget scaling performance for our method. Proportion of problems where the
correct solution was discovered by our method on HumanEval with gpt-3.5-turbo0613 with
40 iterations. Our method continues to show great improvement up until 20 solutions generated while
the performance of other methods plateau. Other methods do not catch up with SFS in terms of
performance even with more inference scaling.

E PRIOR WORKS BENCHMARK

In the LATS experimental setup, in each iteration after a solution is generated, the algorithm is
allowed to check if the new solution is correct on the ground truth tests before proceeding (Zhou
et al., 2024). We show the performance of our method in the same setup here, with the same solution
budget. The performance Pass@1 numbers are adapted from the LATS paper (Zhou et al., 2024).
We see in Table 9 that given the same setup, our method still achieves higher performance.

Table 9: Comparison to prior works. We report Pass@1 performance with GPT-3.5.

Method / Benchmark HumanEval MBPP
CoT (Wei et al., 2022) 46.9 54.9

ReAct (Yao et al., 2022) 56.9 67.0
Reflexion (Shinn et al., 2023) 68.1 70.0

ToT (Yao et al., 2023) 54.4 65.8
RAP (Hao et al., 2023) 63.1 71.4

LATS (Zhou et al., 2024) 83.8 81.1
Self-repair (Olausson et al., 2023b) 90.5 79.1

Ours (SFS) 93.3 91.2

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

F ABLATION ON MODELS

In this section, we provide a detailed ablation study on the performance of different base language
models, focusing on metrics relevant to the HumanEval benchmark. Table 10 displays the results
of applying various search methods across three models: gpt-3.5, gpt-4o-mini, and gpt-4o.
For each model, we report key performance indicators such as pass@1, pass@any, BERT similarity,
and validation score, along with the number of iterations (inclusive and exclusive). Furthermore,
Table 11 provides an extended comparison of metrics, including similarity measures like TF-IDF and
Levenshtein, alongside error rates (false positives/negatives) and true classification rates, helping to
evaluate model behavior in more detail across different performance aspects.

Table 10: Ablation on models. We run search methods for 10 iterations each on HumanEval

Model pass@1 pass@any BERT sim. val. score iters. (incl) iters. (excl)

gpt-3.5 82.5% 89.0% 0.9945 0.813 1.68 5.06
gpt-4o-mini 89.4% 93.8% 0.9876 0.845 0.84 5.83

gpt-4o 90.6% 95.6% 0.9915 0.894 0.68 4.95

Table 11: Performance metrics for different base LLM models on HumanEval. We ran
gpt-3.5-turbo-0613 for 10 iterations for each model.

Metric gpt-3.5 gpt-4o-mini gpt-4o

Pass@Any 89.0% 93.8% 95.6%
Pass@1 82.5% 89.4% 90.6%
Validation score 0.813 0.845 0.894
BERT sim. 0.9945 0.9876 0.9915
TF-IDF sim. 0.743 0.643 0.691
Levenshtein sim. 0.721 0.631 0.665
Token seq. sim. 0.765 0.719 0.705
False positive rate 6.25% 4.38% 4.38%
False negative rate 27.50% 33.13% 17.50%
True positive rate 55.00% 56.25% 73.13%
True negative rate 11.25% 6.25% 5.00%
Iters. (incl) 1.68 0.84 0.68
Iters. (excl) 5.06 5.83 4.95

F.1 INFERENCE VS TRAINING TRADEOFF

The debate between investing resources in training stronger models versus developing effective
inference-time methods reflects a fundamental tradeoff in the field of machine learning. Training-
based improvements often involve scaling up model size, enhancing training datasets, or incorporating
domain-specific fine-tuning. While these approaches can lead to substantial performance gains, they
come with high computational costs and limited adaptability post-training. Conversely, test-time
methods like Scattered Forest Search (SFS) focus on maximizing the utility of pre-trained models,
enabling efficient exploration and improved accuracy without additional training.

Our experiments vividly illustrate this tradeoff. For example, as shown in 14, stronger models
such as GPT-4o consistently outperform weaker models like GPT-3.5. However, we also observe
that weaker models benefit disproportionately more from inference scaling, highlighting that test-
time optimization can be particularly valuable for models that are not extensively trained. This
suggests that test-time methods can serve as a complement to training improvements, especially in
resource-constrained settings.

While training stronger models remains a cornerstone of progress, inference-time techniques like
SFS address challenges that training alone cannot solve. For instance:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

• Adaptability: Test-time methods allow for domain-specific optimizations without requiring
expensive retraining.

• Exploration vs. Exploitation: Techniques like SFS improve solution diversity and robust-
ness, addressing issues such as overfitting or lack of generalization in pre-trained models.

• Practical Use Cases: Many real-world applications rely on off-the-shelf LLMs where
retraining is infeasible. In such cases, enhancing inference-time performance becomes the
primary lever for improvement.

Our work also reveals intriguing interaction effects between training and inference scaling. For
example:

• Better Models, Marginal Gains: While stronger models perform better overall, the
marginal benefits of inference scaling decrease as training quality improves. This is because
well-trained models already exhibit diverse and high-quality outputs, reducing the need for
additional exploration.

• Weaker Models, Larger Gains: Conversely, weaker models benefit substantially from
techniques like SFS, which compensate for their limited training by expanding the search
space and leveraging execution feedback to refine solutions.

These findings highlight that the importance of inference scaling is inversely proportional to the
strength of the underlying model, creating an interesting trade-off that could guide future research in
balancing the two approaches.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

G PERFORMANCE METRICS FOR DIFFERENT DATASETS

We display detailed performance metrics for MBPP (Table 13), HumanEval (Table 12), CodeContests
(Table 16), Leetcode (Table 14), and APPS (Table 15).

The performance metrics across various datasets, including MBPP, HumanEval, CodeContests,
Leetcode, and APPS, offer a comprehensive comparison of different search methods used to evaluate
large language model (LLM) performance. Each table highlights the results of different strategies,
such as Line, Tree-based search (MCTS), Best of N, and our proposed method. Key metrics, such
as Pass@1, Pass@Any, validation score, and various similarity metrics (e.g., BERT, TF-IDF, and
Levenshtein), illustrate the effectiveness of each search method in terms of accuracy and relevance.

Additionally, false positive and false negative rates provide insight into the errors made by each
approach, while true positive and negative rates reflect the precision and recall of each method. These
metrics give a holistic view of model performance, especially in scenarios involving iterative search,
with the number of iterations (both inclusive and exclusive) further contextualizing the computational
complexity of each method.

Table 12: Performance metrics for different search methods on HumanEval. We ran
gpt-3.5-turbo-0613 for 10 iterations for each method.

Metric Line Tree (MCTS) Best of N Ours
Pass@Any 83.1% 76.9% 75.6% 89.0%
Pass@1 68.1% 75.6% 73.8% 82.5%
Validation score 0.795 0.827 0.774 0.813
BERT sim. 0.9992 0.9998 0.9983 0.9945
TF-IDF sim. 0.495 0.502 0.936 0.743
Levenshtein sim. 0.480 0.496 0.925 0.721
Token seq. sim. 0.476 0.500 0.962 0.765
False positive rate 8.1% 5.0% 3.8% 6.3%
False negative rate 16.9% 23.1% 28.1% 27.5%
True positive rate 51.3% 52.5% 45.6% 55.0%
True negative rate 23.8% 19.4% 22.5% 11.3%
Iters. (incl) 2.09 2.61 2.59 1.68
Iters. (excl) 7.13 8.87 9.00 5.06

Table 13: Performance metrics for different search methods on MBPP. We ran
gpt-3.5-turbo-0613 for 10 iterations for each method.

Metric Line Tree (MCTS) Best of N Ours
Pass@Any 82.9% 79.6% 77.3% 86.1%
Pass@1 73.6% 76.1% 76.6% 78.3%
Validation score 0.784 0.774 0.729 0.729
BERT sim. 0.9991 0.9998 0.9993 0.9956
TF-IDF sim. 0.473 0.521 0.960 0.747
Levenshtein sim. 0.455 0.519 0.956 0.759
Token seq. sim. 0.450 0.520 0.974 0.785
False positive rate 7.6% 5.8% 6.0% 6.5%
False negative rate 18.9% 26.2% 33.0% 21.7%
True positive rate 54.7% 49.9% 43.6% 56.7%
True negative rate 18.9% 18.1% 17.4% 15.1%
Iters. (incl) 1.91 2.29 2.36 1.91
Iters. (excl) 7.35 9.20 9.20 6.85

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 14: Performance metrics for different search methods on Leetcode. We ran
gpt-3.5-turbo-0613 for 10 iterations for each method.

Metric Line Tree (MCTS) Best of N Ours
Pass@Any 33.3% 33.9% 33.9% 39.4%
Pass@1 28.9% 33.3% 33.3% 36.7%
Validation score 0.352 0.354 0.372 0.387
BERT sim. 0.9933 0.9998 0.9936 0.9961
TF-IDF sim. 0.840 0.934 0.889 0.589
Levenshtein sim. 0.813 0.926 0.902 0.694
Token seq. sim. 0.818 0.925 0.897 0.652
False positive rate 1.1% 0.6% 0.6% 5.0%
False negative rate 12.2% 27.2% 26.7% 24.4%
True positive rate 8.3% 6.1% 6.7% 9.4%
True negative rate 78.3% 66.1% 66.1% 61.1%
Iters. (incl) 6.78 7.31 6.74 6.42
Iters. (excl) 9.54 10.44 9.63 8.75

Table 15: Performance metrics for different search methods on APPS. We ran
gpt-3.5-turbo-0613 for 10 iterations for each method.

Metric Line Tree (MCTS) Best of N Ours
Pass@Any 22.0% 21.5% 23.0% 32.5%
Pass@1 14.5% 18.0% 19.5% 20.5%
Validation score 0.232 0.211 0.205 0.232
BERT sim. 0.9886 0.9997 0.9984 0.9946
TF-IDF sim. 0.837 0.943 0.825 0.523
Levenshtein sim. 0.817 0.936 0.843 0.626
Token seq. sim. 0.813 0.933 0.840 0.567
False positive rate 6.5% 3.0% 3.0% 7.0%
False negative rate 7.5% 17.5% 18.5% 16.0%
True positive rate 2.0% 1.5% 2.0% 2.5%
True negative rate 84.0% 78.0% 76.5% 74.5%
Iters. (incl) 7.93 8.66 7.82 7.30
Iters. (excl) 9.61 10.75 9.65 9.18

H TECHNIQUE ABLATION

In this section, we present the results of an ablation study to assess the impact of different com-
ponents of our method on performance, as shown in Table 17. We evaluate four variations: the
full method with all components enabled (“Everything”), and three ablations where we remove key
techniques—SCATTERING, FORESTING, and SCOUTING —one at a time.

The ablation results highlight how critical each technique is for achieving high performance. Re-
moving SCATTERING leads to a noticeable drop in Pass@Any, decreasing from 89.0% to 78.1%,
while removing FORESTING has a milder effect, with Pass@Any only falling to 86.3%. Notably,
FORESTING removal significantly affects similarity scores, with a drop in TF-IDF similarity from
0.743 to 0.419. Similarly, removing SCOUTING results in a slight reduction in performance metrics,
but Pass@1 remains comparable to the full method, indicating its robustness.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 16: Performance metrics for different search methods on Codecontests. We ran
gpt-3.5-turbo-0613 for 10 iterations for each method.

Metric Line Tree (MCTS) Best of N Ours
Pass@Any 3.0% 2.4% 3.0% 6.1%
Pass@1 1.21% 2.42% 1.82% 4.24%
Validation score 0.091 0.078 0.051 0.086
BERT sim. 0.9838 0.9997 0.9980 0.9950
TF-IDF sim. 0.871 0.980 0.770 0.502
Levenshtein sim. 0.856 0.981 0.800 0.603
Token seq. sim. 0.846 0.982 0.766 0.502
False positive rate 2.2% 1.2% 0.6% 1.2%
False negative rate 0.7% 2.4% 1.8% 1.2%
True positive rate 0.0% 0.0% 0.0% 0.0%
True negative rate 97.0% 96.4% 97.6% 97.6%
Iters. (incl) 9.74 10.73 9.75 9.53
Iters. (excl) 9.89 11.00 9.93 9.83

Table 17: Performance metrics for different ablations on techniques for our method. We ran
gpt-3.5-turbo-0613 for 10 iterations for each ablation on HumanEval.

Metric Everything No SCATTERING No FORESTING No SCOUTING

Pass@Any 89.0% 78.1% 86.3% 86.3%
Pass@1 82.5% 75.6% 79.4% 81.9%
Validation score 0.813 0.802 0.817 0.792
BERT sim. 0.9945 0.9982 0.9982 0.9942
TF-IDF sim. 0.743 0.926 0.419 0.740
Levenshtein sim. 0.721 0.911 0.427 0.729
Token seq. sim. 0.765 0.945 0.409 0.756
False positive rate 0.063 0.063 0.050 0.063
False negative rate 0.275 0.244 0.244 0.281
True positive rate 0.550 0.513 0.550 0.538
True negative rate 0.113 0.181 0.156 0.119
Iters. (incl) 1.68 2.43 2.05 2.12
Iters. (excl) 5.06 8.82 6.56 6.05

I VERIFIER ACCURACY AND GROUND-TRUTH VALIDATION TESTS

I.1 VALIDATION TEST GENERATION

In our methodology, validation tests are automatically generated to evaluate the correctness of code
solutions. The LLM is instructed to create Python unit tests in the form of assert statements. This
process involves prompting the model with a high-level description of the function or module and
specifying that the tests should be concise, diverse, and verifiable. By leveraging the LLM’s capability
to understand code semantics, the generated tests help guide the search for correct solutions and
provide immediate feedback during the refinement process.

To illustrate, consider the task of generating validation tests for a function
greatest_common_divisor(a, b). The LLM receives a prompt to write the func-
tion and is instructed to produce unit tests in the form of assert statements:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Example Code Generation Prompt, Solution, and Tests

Prompt: Write a function greatest_common_divisor(a, b) that returns the GCD
of two integers a and b.

Generated validation tests:
assert(greatest_common_divisor(3, 5) == 1)
assert(greatest_common_divisor(25, 15) == 5)
assert(greatest_common_divisor(0, 3) == 3)

The LLM follows a specific prompt instruction to generate these tests, ensuring comprehensive
validation of the function’s behavior. The prompt is structured as follows:

Test Generation Prompt

You are an AI coding assistant that can write unique,
diverse, and comprehensive unit tests for Python objects
given the description of the object. The format of test
cases should be:
“‘python
assert function_name(input_1) == expected_output_1, "Test
case 1 description"
assert function_name(input_2) == expected_output_2, "Test
case 2 description"
“‘
DO NOT use pytest or unittest frameworks for this task.
Stick to small inputs that you can easily verify the output
for.

This approach ensures the generation of validation tests that are both human-readable and executable,
enabling a robust evaluation of proposed solutions. By iterating through test generation, feedback,
and solution refinement, the process aligns closely with real-world software development practices
and ensures that the generated solutions are correct and efficient.

I.2 TEST ACCURACY EXPERIMENTS

In this section, we assess the impact of incorporating ground-truth validation tests on verifier accuracy,
as shown in Table 18. We compare three configurations: no ground-truth tests (“None”), using 3
ground-truth tests, and utilizing all available tests. These variations allow us to explore how different
amounts of external validation influence the performance of our verifier.

The results demonstrate a clear improvement in Pass@1 and validation scores when ground-truth
tests are introduced. With no external tests, the Pass@1 rate is 82.5%, which increases to 87.2%
when 3 tests are used and further to 89.0% with all tests. Similarly, the validation score improves
from 0.813 to 0.862 and 0.864, respectively. These enhancements reflect the verifier’s increased
accuracy when more reliable validation signals are available.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 18: Performance metrics when given different amounts of ground truth tests. 6 self-generated
tests were used for validation in ‘None’. We ran gpt-3.5-turbo-0613 for 10 iterations for each
setting.

Metric None 3 tests All tests
Pass@Any 89.0% 90.2% 90.2%
Pass@1 82.5% 87.2% 89.0%
Validation score 0.813 0.862 0.864
BERT sim. 0.9945 0.9952 0.9949
TF-IDF sim. 0.743 0.767 0.762
Levenshtein sim. 0.721 0.739 0.729
Token seq. sim. 0.765 0.758 0.757
False positive rate 6.3% 9.8% 1.8%
False negative rate 27.5% 2.4% 3.7%
True positive rate 55.0% 78.0% 85.4%
True negative rate 11.3% 9.8% 9.1%
Iters. (incl) 1.68 2.34 2.04
Iters. (excl) 5.06 6.86 5.88

J SEED SCATTERING THEME

We calculate the validation score as shown below:

Mean validation score =
1

|X |
∑

⟨p,H⟩∈X

1

|Sp|
∑
s∈Sp

proportion of validation tests passed(s) (12)

We explore four themes: “None”, “Jabberwocky”, “Style”, and “Role” to assess their impact on
various evaluation metrics, including Pass@1, validation score, and similarity measures (BERT,
TF-IDF, Levenshtein, and token sequence). Additionally, we provide false positive and negative
rates, as well as true positive and negative rates, to further analyze the effects of the seed themes on
performance in Table 19.

We also present examples of the SCATTERING seed instructions used for each theme and the
metaprompt used to generate those instructions.

Table 19: Performance Metrics for varies seed instruction themes.

Seed instruction theme None Jabberwocky Style Role
Pass@1 72.50% 74.38% 79.38% 81.88%
Validation score 0.7786 0.7658 0.7548 0.7649
BERT similarity 0.9976 0.9944 0.9929 0.9957
TF-IDF similarity 0.9013 0.7559 0.6826 0.7734
Levenshtein similarity 0.8971 0.7749 0.7119 0.7907
Token sequence similarity 0.9361 0.8444 0.7504 0.8323
False positive rate 0.0500 0.0438 0.0500 0.0438
False negative rate 0.3000 0.3063 0.3500 0.3438
True positive rate 0.4250 0.4375 0.4438 0.4750
True negative rate 0.2250 0.2125 0.1563 0.1375
Pass@Any 75.00% 81.88% 88.13% 87.50%

Metaprompt: Roles of a Software Engineer

What are different possible roles that a software engineer can have, and what are the charac-
teristics of each role?

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

You are a problem solver. You are analytical, logical, detail-oriented. You thrive on tackling
complex problems and finding efficient solutions, enjoy the challenge of debugging and often
see issues as puzzles to be solved, and are methodical in your approach and persistent in your
efforts to overcome obstacles.

You are an innovator. You are creative, visionary, adaptable. You are always looking for new
ways to apply technology. You are not just interested in how things work but also in how they
can be improved or transformed. You enjoy pioneering new techniques and technologies and
are comfortable with experimentation and risk-taking.

You are a communicator. You are interpersonal, collaborative, empathetic. You excel in
environments where teamwork and collaboration are key. You are skilled at explaining
complex technical details in simpler terms and bridging the gap between technical teams
and non-technical stakeholders. You value relationships and work well in roles that require
negotiation and coordination.

Metaprompt: Instructions for Writing Code in Different Styles

What are ten different possible instructions you can give to a software engineer before they
write code, instructing them to write code in three different styles.

Write the code in a highly modular way, breaking down functionality into small, reusable
components. Each function or class should have a single responsibility, and avoid large
monolithic structures.

Use an object-oriented approach where each concept is modeled as a class. Leverage
inheritance, encapsulation, and polymorphism to create a flexible, scalable design.

Write the code in a functional programming style, avoiding mutable state and side effects.
Use pure functions, higher-order functions, and recursion where appropriate.

Metaprompt: Jabberwocky Poem by Lewis Carroll

Recite the poem "Jabberwocky" by Lewis Carroll.

’Twas brillig, and the slithy toves. Did gyre and gimble in the wabe:

All mimsy were the borogoves, And the mome raths outgrabe.

Beware the Jabberwock, my son! The jaws that bite, the claws that catch!

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

K WHY SCATTERING IS USEFUL FOR SOLUTION-LEVEL TREE SEARCH

Monte Carlo Tree Search (MCTS) is a powerful algorithm used to navigate large decision spaces by
balancing exploration and exploitation. At each step, MCTS selects actions based on a combination of
their estimated value (exploitation) and their potential for uncovering better outcomes (exploration),
typically guided by metrics such as the Upper Confidence Bound for Trees (UCT). The algorithm
works by iteratively expanding the most promising nodes in the search tree, simulating outcomes, and
backpropagating the results to refine its decision-making process. This iterative cycle helps MCTS
focus on regions of the search space that are likely to yield optimal solutions while still dedicating
some effort to exploring unvisited nodes.

The main challenge with using MCTS in our setting arises from the mechanism through which new
solutions are proposed by the Large Language Model (LLM). While MCTS encourages exploration
by prioritizing less-visited nodes, the diversity of exploration is fundamentally constrained by the
similarity of the proposed solutions. Even if MCTS efficiently navigates the tree, if the solutions
generated by the LLM are inherently similar, the result is limited exploration of the broader solution
space.

This issue becomes even more pronounced in scenarios with large action spaces, such as our setting,
where the action space encompasses all possible code solutions within a given length. Traditional
MCTS struggles in such settings because effective exploration and exploitation require the expansion
of numerous unvisited actions. Since it is computationally infeasible to exhaustively explore all
possible actions, selective expansion becomes critical. Without mechanisms to enhance the diversity
of these selected actions, the exploration remains suboptimal.

K.1 TOKEN-LEVEL VS. SOLUTION-LEVEL TREE SEARCH

A significant distinction between our approach and prior works lies in the level at which MCTS
operates. In traditional applications, MCTS is often employed at the token level, where it explores
possible next tokens during the generation of a single solution. At this level, the LLM’s log-
probabilities can be used to select the top k tokens, which are typically diverse enough to lead to
varied outcomes. Token-level MCTS effectively balances exploration and exploitation due to the
inherent variability in token selection.

In contrast, our method applies MCTS at the solution level, where each action corresponds to a
complete code solution rather than individual tokens. While this approach enables broader exploration
of high-level solutions, it introduces new challenges. Simply selecting the first k responses generated
by the LLM often results in highly similar solutions, as the LLM tends to produce consistent outputs
given the same prompt. Consequently, the lack of diversity in the selected actions undermines the
effectiveness of MCTS in exploring the solution space, even when it prioritizes less-visited nodes.

K.2 ROLE OF SCATTERING FOR SOLUTION-LEVEL TREE SEARCH

To address these limitations, we introduce the Scattering technique, which explicitly diversifies the
prompts used for solution generation. By incorporating varied seed themes or directions into the
prompts, Scattering ensures that the LLM generates a broader range of candidate solutions. This
increased diversity enhances the exploratory capabilities of MCTS, enabling it to better navigate the
solution space.

Experimental results in Section 3.5 demonstrate the effectiveness of Scattering. As shown in Table 1,
solutions generated without Scattering (seed theme=None) exhibit high similarity across all metrics,
leading to poorer performance. In contrast, using Scattering significantly reduces the similarity of
generated solutions and improves performance metrics, as depicted in Figure 11. This improvement
highlights the critical role of Scattering in enabling MCTS to effectively explore large and complex
action spaces.

These results underline the importance of fostering diversity in proposed actions to unlock the full
potential of MCTS in large and complex action spaces, further validating the utility of the Scattering
technique.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

L THEORY ILLUSTRATION

We can imagine each code generation is a node in the search graph, and generating a new code
solution given the current code and the feedback (test cases) can be seen as a transition from one node
to another stochastically. The problem with direct generation of code is that they are highly similar, so
the search process can be “trapped” in a local cluster where all nodes within have similar performance.
The concentrated nature of the generated solutions s might arise from the limited diversity inherent in
the post-training objectives (Ouyang et al., 2022; Rafailov et al., 2023) commonly employed to train
large language models (LLMs) as instruction-following chatbots. These objectives often prioritize
optimizing the model to produce a single, correct answer. Consequently, repeated sampling from the
model tends to yield highly similar outputs, offering minimal benefit from additional inference-time
computation. Specifically, the whole solution space can be imagined to consist of several such
node clusters. The text-based improvement direction, based on what we observed, can help prompt
highly different solutions if the improvement direction is different. This can be seen as a direct edge
connecting different node clusters. Such edges do not exist without text-based improvement direction.
This is what Equations 3 and 4 try to establish.

Figure 19: Illustration of Diverse Code Generation. Left: Direct code generation explores
solutions in a local cluster, leading to limited diversity. Right: Text-based improvement directions
create transitions between clusters, enabling diverse solution exploration.

Direct code generation is trapped within a
single cluster of similar solutions.

Text-based improvement introduces cross-
cluster transitions, increasing solution diver-
sity and escaping local optima.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

M MCTS SELECTION POLICY

We evaluate two Monte Carlo Tree Search (MCTS) selection policies: PUCT (Predictor Upper
Confidence Bounds for Trees) and UCT (Upper Confidence Bounds for Trees). Both policies aim to
balance exploration and exploitation during search, dynamically selecting promising directions for
exploration.

M.1 SELECTION POLICIES: PUCT

PUCT extends UCT (eq. 1) by incorporating a policy prediction term π(s,d), which biases explo-
ration based on a prior probability distribution:

P-UCT(s,d) = Q̂(s,d) + β(s) · PTransformer(d|s) ·

√
log

(
n(s)

)
1 + n(s,d)

, (13)

where:

• Q̂(s,d) is the estimated q-value for state s and direction d,
• PTransformer(d|s) is the probability of taking direction d given the partial program s, as

predicted by the LLM,
• n(s) =

∑
b n(s, b) is the total number of visits to state s,

• n(s,d) is the number of visits to direction d in state s,
• β(s) is the weight for exploration, defined as:

β(s) = log

(
n(s) + cbase + 1

cbase

)
+ c, (14)

where cbase and c are hyperparameters that control the exploration-exploitation balance.

The performance of PUCT heavily relies on the quality of π(s,d), which in our case is derived
from the cumulative token probabilities of the underlying language model (LLM). We use the same
formula as in (Zhang et al., 2023d).

M.2 WHY PUCT AND UCT PERFORM SIMILARLY IN OUR SETTING

Our experiments reveal that PUCT and UCT achieve similar performance levels when applied to
MCTS with self-feeding search (SFS). As shown in Fig. 22 and Table 20, PUCT depends on the
quality of the policy predictor, which is based on the cumulative token probabilities output by
the LLM. However, in our specific setting, these probabilities do not provide strong guidance for
policy-based exploration. This limitation arises because:

1. Token-level predictions are not aligned with global solution quality: The cumulative proba-
bilities from the LLM are optimized for next-token prediction, rather than for evaluating the
overall quality of solutions at different nodes in the search tree.

2. Sparse alignment between token probabilities and decision-making: For many problems in
HumanEval, the token-level likelihoods fail to correlate well with successful code comple-
tions, leading to suboptimal guidance for PUCT.

3. Robustness of UCT in the absence of strong priors: UCT relies purely on the empirical
q-value estimates and visit counts, which are updated during the MCTS process. This allows
UCT to perform well even without high-quality priors.

Overall, while PUCT offers theoretical advantages when high-quality priors are available, its depen-
dency on the LLM’s token probabilities limits its effectiveness in our setting, leading to comparable
performance with UCT.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Figure 22: PUCT vs UCT scaling performance for both SFS and tree search. Propor-
tion of problems where the correct solution was discovered by our method on HumanEval with
gpt-3.5-turbo0613 with 10 iterations. PUCT depends on the quality of policy predictor pre-
dictions, which are based on the cumulative token probabilities from the LLM in our case.

Table 20: Metrics for different MCTS selection policies. We run search methods for 10 iters. each
using gpt-3.5-turbo on HumanEval. PUCT and UCT achieve similar performance with SFS

Method pass@1 pass@any BERT sim. val. score iters. (incl) iters. (excl)

Tree (PUCT) 73.8% 75.0% 0.9996 0.799 2.84 9.46
Tree (UCT) 75.6% 76.9% 0.9998 0.827 2.61 8.87

Ours (PUCT) 78.8% 86.3% 0.9943 0.788 2.13 5.88
Ours (UCT) 82.5% 89.4% 0.9945 0.813 1.68 5.06

36

	Introduction
	Background
	Problem description
	Prior methods

	Methodology
	Tree branch Scattering
	Forest search and forest Scattering
	Branch Scouting
	A Theoretical Perspective
	Empirical validation

	Experiments
	Evaluation benchmarks
	Accuracy
	Scalability
	Solution diversity
	Ablation on techniques
	Verifier (Validation test) accuracy
	Ablation on model

	Additional Related work
	Conclusion
	Ethics Statement
	Problem setting and coding problem example
	Justification for Problem Setup

	Methodology details
	Traditional Monte Carlo Tree Search (MCTS)
	Selection
	Expansion
	Simulation
	Backpropagation

	Scattered forest search
	Algorithm Overview
	Key Features of SFS
	Algorithm complexity
	LLM request cost

	Scaling
	Prior works benchmark
	Ablation on models
	Inference vs training tradeoff

	Performance metrics for different datasets
	Technique ablation
	Verifier accuracy and ground-truth validation tests
	Validation test generation
	Test accuracy experiments

	Seed Scattering theme
	Why Scattering is useful for solution-level tree search
	Token-level vs. solution-level tree search
	Role of Scattering for solution-level tree search

	Theory Illustration
	MCTS selection policy
	Selection Policies: PUCT
	Why PUCT and UCT Perform Similarly in Our Setting

