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ABSTRACT

Iterative differential approximation methods that rely upon backpropagation have
enabled the optimization of neural networks; however, at present, they remain
computationally expensive, especially when training models at scale. In this pa-
per, we present a computationally efficient alternative for optimizing neural net-
works that can both reduce the costs of scaling neural networks and provide high-
efficiency optimizations for low-resource applications. This paper will discuss
how we derive a general result about feed-forward neural networks and then ex-
tend this solution to compositional (mult-layer) networks, which we then apply
to a simplified transformer block, containing both feed-forward and self-attention
layers. These developments lead us to train highly-specified and complex multi-
layer neural architectures that we refer to descriptively as self-attentive feed-
forward unit (SAFFU) layers, which we apply to our development of a hyper-
efficient transformer, which appears to generalize well over small—cognitively-
feasible—volumes of data. Results from testing demonstrate explicit solutions
grossly outperform models optimized by backpropagation alone. Moreover, fur-
ther application of backpropagation after explicit solutions leads to the discovery
of better optima from smaller scales of data, i.e., that training highly-performant
models from much smaller scales of data is enabled by warm starting models with
their explicit solutions. Using the efficiency and consistency of the SAFFU’s ex-
plicit solution, we carry out ablation experiments training a roadmap of about 250
transformer models over 1-million tokens, each, to determine ideal hyperparam-
terizations for the SAFFU-based transformer. We find that multiple different ar-
chitectural variants of the SAFFU-transformer are capable of highly-performant
models. Most critically, we discover from this ablation that some of the most per-
formant models are in fact not the most parameterized. These results appear to
strongly indicate that well-generalized models could be reached more efficiently
(using less data) by using explicit solutions, and moreover, that architectural ex-
ploration using explicit solutions can pay dividends in guiding the search for effi-
cient architectures containing fewer parameters, and which could be incorporated
into low-resource hardware where AI might be embodied.

1 INTRODUCTION AND RELATED WORK

The cost of training large language models (LLMs) becomes extremely expensive when models be-
come large in part due to large parameter requirements, but perhaps most of all from the tremendous
scales of data required—LMs commonly require volumes of language that far exceed what a human
would experience in a lifetime. Naturally, two concerns confront us: 1) training LLMs more effi-
ciently, with respect to training times and computational costs; and 2) obtaining LLM-like abilities
from smaller quantities of data, i.e., from at most what a human might experience. We show how
explicit solutions to parameter optimization—which utilize assumptions over architectures to math-
ematically deduce algebraic forms for the parameters in neural network weight matrices—without
backpropagation—make significant headway in satisfying concerns 1 & 2. Once an explicit solution
is mathematically derived for a neural network, “plug and chug” computations can be leveraged to
great efficiency to produce more-performant and -generalized models, using very little data.

Alongside escalating size and complexity, LLMs are becoming ever more central to applied work
in artificial intelligence (AI). Superlative self-attention-based models in natural language processing
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(NLP) now demonstrate capabilities attracting research interest and investment alongside counter-
parts in computer vision, like the diffusion probabilistic models (Ho et al., 2020) in DAll-E (Ramesh
et al., 2021) and Stable Diffusion (Rombach et al., 2022). The potential to further amplify capabil-
ities by combining text, images, and other modalities to construct even more powerful models, as
exemplified by the likes of KOSMOS-1 (Huang et al., 2023) and GPT-4 (OpenAI, 2023), suggests
staggering advancements may be on the cusp of development.

Still, our collective understanding of the inner workings of these models is far from complete. Lim-
ited understanding in the internal mechanisms of models hinders our ability to fully exploit their
capabilities, while simultaneously raising challenges (Bommasani et al., 2022). Reliability and
safety is a primary concern: LLMs are prone to generating biased and unreliable text, and diffu-
sion models produce distorted images that conflict with basic human perception. The unpredictable
behaviors of neural models in novel contexts challenges their operational benefits to humans via
their (in)abilities to avoid inadvertent harms (Kenton et al., 2021; Weidinger et al., 2021; Tamkin
et al., 2021; Hendrycks et al., 2023). Efficiency is also a major concern (Shen et al., 2023)—
backpropagation is ubiquituous in optimization, and still entails a high computational cost, particu-
larly as models scale over larger amounts of data (Rumelhart et al., 1986a;b), escalating processing
requirements.

We ask: “how can these challenges can be overcome to ensure models are reliable, interpretable,
and efficient?”, and posit that understanding the optimization processes underlying these models is
crucial. Perhaps, grasping the intricacies of model optimization will allow for a more straightfor-
ward approach, requiring fewer iterations to achieve the same or better quality results? Furthermore,
understanding how models optimize allows us to adjust specific parameters in the weight matrices,
enabling models to perform in a desired manner. Here, we extend our knowledge of explicit solu-
tions from single-layer feed-forward neural networks, to an architecture with compositionally-linked
feed-forward and self-attention layers. Our work demonstrates an explicit optimization technique
that significantly accelerates model training processes, reaching optima far beyond the reach of
backpropagation, alone. So when this solution is applied to self-attention networks, it accelerates
time-to-optimization and finds vastly better optima with better generalization qualities, offering a
vital alternative to the current trends in neural network training.

Explicit solutions relate to recent work focused on finding that attention layers converge in direction
to SVM solutions (Tarzanagh et al., 2023) and that transformers may rediscover standard estimation
algorithms (Akyürek et al., 2023). Explicit solutions also connect to recent discoveries finding gen-
eralization in overparametrized networks occurs beyond the point of dataset memorization (Power
et al., 2022). Likewise, this work is also connected to efforts aimed at improving the overall train-
ing efficiency of transformers, such as one attention type developed to reduce memory reads/writes
between GPU high bandwidth memory and on-chip SRAM (Dao et al., 2022).

By conducting ablation experiments over a large number of LM architectural variants, we discover
that “warming up” (warm-start) models with the explicit solution for self-attention leads to better
generalization, more rapidly. This discovery is largely invariant to the scales of training data utilized,
i.e., warm-starts lead to objectively better models on both large and small data sets. Furthermore, our
findings indicate that iterative optimization with backpropagation only leads to generalized models
with the explicit solution—models initialized randomly at least appear to require more computation
than any conducted experiments, regardless of scale. We conjecture that model disorientation, in
fact, leads to randomly-initialized models not achieving their full potential (regardless of size), and
discuss this effect in relation to how LLMs might be overcoming disorientation in applications.

2 SAFFU LAYER ARCHITECTURE

This derivation began by analyzing word2vec’s continuous bag-of-words (CBOW) variant (Mikolov
et al., 2013a;b), and was generalized to simple single-layer LMs, and then all feed-forward neural
networks with arbitrary non-negative feature sets, as it is presented in Appendix A. Derived model-
parameters are generally based on co-occurrences, requiring some re-normalization and non-linear
transformation to approximate points of loss minimization. The discovery of the priming number—a
constant dependent that allows conversion of input-output co-occurrence into well-optimized neural
models—should not be understated, e.g., allowing extension of explicit solution applications from
text (categorical) to image (numerical) input. Beyond extending explicit solutions to other data
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types, discovering the priming number hinted at the possibility of complex and multi-layer solutions.
Our work now picks up from that point, stacking multiple single-layer warm-starts to form multi-
layer architectures, and further, investigates compositionally-bound layers and an encoder-decoder
architecture combining self-attention and feed-forward layers wrapped in a generalized neural unit.

2.1 SELF-ATTENTIVE FEED-FORWARD NEURAL UNITS (SAFFUS)

We first define the data on which SAFFUs will operate, assuming sequential instances: a model’s
objective is to reconstruct a matrix Y ∈ {0,1}M×N of unit-normalized rows: ∥Ym,∶∥1 = 1 cor-
responding to target elements for prediction. Predictions are based on M sets of matrix-features
contained in a tensor storing K vectors of dimension D for each m = 1,⋯,M : X ∈ RM×K×D. Thus,
each m-target: Ym,∶ has a slice from Xm,∶,∶ ∈ RK×D that is a matrix of K vectors, drawn from other
rows of Y . LMs are auto-regressive, so each m-prediction has every k = 1,⋯K of its features drawn
from an i-row of Y : Xm,k,∶ = Yi,∶, or some low-dimensional embedding matrix, E ∈ RN×D;D < N .

Standard self-attention layers have a layer-specific dimension: DA and three parameter matri-
ces: Wq,Wk,Wv ∈ RD×DA ; used together with the vector-valued softmax activation function:
φ(x)i = exi/∑j e

xj . Attention distributions: A ∈ RN×K are applied for all M predictions:
A = φ(Xm,∶,∶WqW

T
k XT

m,∶,∶) to weight vectors for each m, producing hidden states: H = AXm,∶,∶
and score vectors: HWv, the latter of which are passed through application-specific activation func-
tions, such as the rectified linear unit (ReLU) (Fukushima, 1975; Nair & Hinton, 2010).

We first propose eliminating DA. This is accomplished easily within φ, since the product W =

WqW
T
k ∈ RD×D is equivalent to its component-wise formulation: A = φ(Xm,∶,∶WXT

m,∶,∶). This
forces the re-consideration of Wv’s use of DA, which could instead be thought of as a hidden or
decoder dimension, provided one defines DA = N . We notate decoders by U ∈ RD×N , mak-
ing the pre-activation form for a two-layer self-attention plus decoder model easily expressable as:
φ(Xm,∶,∶WXT

m,∶,∶)Xm,∶,∶U . This standard matrix expression obfuscates the softmax function’s input-
output structure, but the attention layer operates by-query, i.e., φ normalizes by row. If queries are
defined by hth features, score vectors can be expressed individually as: φ(Xm,h,∶WXT

m,∶,∶)Xm,∶,∶U .

We next ask if quadratic form for Am,∶ be computed in a way separating X from W , exchanging
the order of self-attention’s multiplication to: Am,∶ = φ(Xm,h,∶X

T
m,∶,∶W ). Note that this formulation

requires redefining the dimensionality of W ∈ RK×K . To concisely notate, we store consolidated
quadratic features for each target in Q ∈ RM×K , defined by-m as: Qm,∶ = Xm,h,∶X

T
m,∶,∶ ∈ RK ,which

refines the hidden-state equation to: Hm,∶ = φ(Qm,∶W )Xm,∶,∶. Finally, we propose a negative
logarithm operate on attention-outputs: Am,∶ = − logφ(Qm,∶W ). While the softmax operates on
score vectors: φ(Ai,∶Xm,∶,∶U), attention’s log-softmax mathematically ‘activates’ features by pro-
viding separation in differential structure between attention and decoder layers that makes a solution
tractable. Queries from the layer’s head h—a hyperparameter—are used to compute outputs:

SAFFU(Xm,∶,∶) = φ(−[logφ(Xm,h,∶X
T
m,∶,∶W )]Xm,∶,∶U). (1)

2.2 AN EXPLICIT FORM FOR FEED-FORWARD OPTIMIZATION

Motivation for log-probability activation becomes clearer when the explicit solution proofs are con-
sidered in Appendices A and B, where logits partly invert softmax operations. Proof requires defin-
ing hidden state vector-sums: Hm,∶ = ∑K

k=1 Xm,k,∶, the decoder’s action: Ŷm,∶ = φ(Hm,∶U), and:

Definition: A data set of vector-inputs H ∈ RM×D and -outputs Y ∈ RM×N has generalized co-
occurrences F (H,Y ) ∈ RD×N between inputs and outputs defined by the sum of outer products:

F (H,Y ) =
M

∑
m=1

Hm,∶ ⊗Ym,∶ =HTY . (2)

Theorem: A softmax-activated feed-forward layer receiving K-norm non-negative D-dimensional
inputs Hm,∶ for each target of prediction Ym,∶ is approximately optimized by a column-wise trans-
lation of the layer’s generalized log-co-occurrence matrix: Uj,i = logF (H,Y )j,i +wi. The trans-
lating weights, wi, are defined by i-column (output) as: wi =

K−1
K

log(∑
D
d=1F (H,Y )d,i), defining
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an explicit form for each of the layer’s j, i-parameters by the expression:

Uj,i = logF (H,Y )j,i −
K − 1

K
log(

D

∑
d=1

F (H,Y )d,i) (3)

Proof of the above is recorded in Appendix A. We refer to K as a priming number, and in circum-
stances where features are not unit-normalized (but still positive) the explicit solution appears to still
function quite well. To extend the priming number from discrete feature sets, the average norm of
a given feature vector: K̂ = (∑M

m=1∑
D
d=1Hm,d)/M is effective. However, the most critical knowl-

edge explicit solution use is understanding layer inputs and targets. Decoders—such as U in the
theorem—often have clear inputs (features) and outputs (supervising targets); however, composi-
tional layers like W—within a SAFFU’s ‘deep’ attention layer—require investigation to determine
an answer to: what supervises self-attention?

2.3 EXTENDING THE EXPLICIT SOLUTION FROM SINGLE LAYERS TO SAFFUS

The explicit solution to single layers tells us in part that: first-order approximations can be computed
locally from generalized log-co-occurrences matrices, from the bottom up. However, these kinds of
local/first-order approximations are non-compositional, that is, even when they are applied to multi-
layer softmax networks, their local optimization will is of lower quality than what’s achievable by
backpropagation, which utilizes the differential structure of function composition to tease higher-
order behavior out of networks. We acknowledge this, specifically, to highlight that the SAFFU’s
explicit solution is the first such compositional explicit solution—our task is to train an LM by
minimizing the cross entropy of SAFFU layers over W and U :

L = −
M

∑
m=1

logSAFFU(Xm,∶,∶)im = −
M

∑
m=1

logφ(− logφ(WXm,h,∶Xm,∶,∶)Xm,∶,∶U)im (4)

where i ∈ {1,⋯,N}M is the vector of target indices for each prediction in the sequence of M .

2.3.1 OPTIMIZING A SAFFU’S DECODER LAYER

Supposing one already possessed an optimized attention layer W , our notational conventions for the
M attention distributions: Am,∶ = − logφ(WXm,h,∶Xm,∶,∶) and their corresponding hidden states:
Hm,∶ =Am,∶Xm,∶,∶ make direct application of Eq. 7 straightforward with knowledge of U ’s priming
number: KU . The negative logarithm in A’s definition is not unit-normalized, but an an upper
bound on its values—the negative logarithm of a probability distribution, i.e., entropy—is easily
obtained from a uniform distribution: KU = K logK, recording the layer aggregation of K unit-
normalized features using K entropically-activated probabilities as feature weights. With KU , we
can fully apply Eq. 7 over H and Y to state U ’s explicit form:

Uj,i = logF (H,Y )j,i −
KU − 1

KU
log(

D

∑
d=1

F (H,Y )d,i) (5)

Note that computing F (H,Y ) requires W being known form first: Hm,∶ = − logφ(Qm,∶W )Xm,∶,∶,
i.e., U ’s explicit solution can only be computed from W .

2.3.2 OPTIMIZING A SAFFU’S ATTENTION LAYER

Appendix B presents finer details on the derivation the SAFFU’s explicit solution. This solution
relies on direct application of Eq. 7, and requires answering the question: “what supervises self-
attention?” One can think of self-attention as producing feature-weighting distributions, and perhaps
could anticipate that supervising information for a self-attention distribution is 1) dependent on its
decoder, and 2) guides weights to features that are most predictive of targets. Ultimately, solving
L’s derivatives with respect to Wi,j set equal to 0 lead us to the revelation that V ∈ RM×K defined
by Vm,k = [U∶,im −Uφ (Hm,∶U)] ⋅ Xm,k,∶ was ‘supervising’ W , i.e., as an analog to Y (see
Appendix B.2). While we intentionally consolidated the attention layer’s inputs under the form
Q, it was a marvel—whether by serendipity or the need for concise notation—that the matrix V
emerged. In it contains variational information about the decoder matrix U , which summarizes
what the attention-matrix W should expect from U ’s reactions to its (W ’s) activations.
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By comparing the co-optimial criteria of U and W in Eqs. 18 and 22, we were able to state con-
cretely that the input-output pair of matrices Q and V are to W , as the pair H and Y are to U in
Appendix B.2. However, there are some differences to note between Eqs. 18 and 22. In particu-
lar, while the decoder’s softmax only engages one output dimension at a time in its derivative via
Ym,i in Eqs. 17–Eq. 18, the attention layer’s softmax has a derivative that engages all of its output
dimensions simultaneously via ∑K

k=1Vm,k in Eqs. 21–22. Regardless, the matrix V represents the
“internal” targets of the SAFFU—supervising W to temper its features to the decoder’s variation—
leaving W ’s priming number KW as the only remaining unknown in its explicit solution:

Wj,i = logF (Q,V )j,i −
KW − 1

KW
log(

K

∑
k=1

F (Q,V )k,i) (6)

While estimating a ‘good’ value of KU depended on the input data in X and the functional form
of the layer defined by W , W ’s priming number, itself, depends only on its input features in Q.
Consolidated quadratic features in Q are defined as Qm,∶ = Xm,h,∶Xm,∶,∶ ∈ RK , where each vector
Qm,∶ contains K inner products of the vector inputs from Xm,∶,∶ ∈ RK×D with their head-feature h.
These are inner products between unit-normalized vectors, so their values Qm,∶ can be thought of
as similarities between the head feature and the others in Xm,∶,∶. Thus, while Q’s values are each
less than one, one should expect ∥Qm,∶∥1 > 1. However, the norms of vectors in Q are bounded:
∥Qm,∶∥1 ∈ [0,K], since each ‘similarity’ cannot have value greater than 1. Thus, a sub-linear,
increasing function of K is likely useful for estimation of W ’s priming number, and, we set KW

at: KW = logK for simplicity.1 However, it’s likely the case that for KW (and KU ) can be
refined further by setting their values to the average norms of their input vectors. Finally, since
computing F (Q,V ) requires knowledge of U (V ’s expression depends on U ), we note that one
must independently have some initial solution to either U or W before the other can be computed.

2.4 INITIALIZING SAFFUS

The co-dependence between the explicit solutions for W and U is a start-up problem, where one
needs only a guess to get the process going. This could be a ‘dumb’ guess, like a uniform, e.g., all-1
initialization for W , or it could be more nuanced and estimate W (or U ), and perhaps alternatingly
update their values until a stopping criterion is reached. For a non-uniform initial guess at W ,
one must consider the input data’s distributional structure. The vectors contained within X will
generally be word embeddings, and we require only that word embeddings are non-negative and
unit-normalized. Standard word embeddings can be coerced to this domain via a variety of methods,
e.g., by passing traditional vectors through a softmax function. Regardless, we denote emebedding
layers by E ∈ (0,1]N×D, and assume that each i-token’s embedding vector (from the vocabulary of
N ) has a unit 1-norm: ∥Ei,∶∥1 = 1. Furthermore, embedding layers with the same hidden dimension
as the decoder layer (D) can be transformed similarly to V to grossly improve initialization of W
over uniform values: V̂m,k = [logEim,∶ − logET ⋅∑

M
j=1

Yj,∶

M
] ⋅XT

m,k,∶. All testing with SAFFUs has
demonstrated this initialization grossly-outperforms uniform starts, and accelerates optimization.

Finally, note first that both of Eq. 5 and Eq. 6 rely upon a logarithm of their generalized co-
occurrence matrices. The explicit solution’s expression for Ui,j in Eq. 5 has both targets and
features which are by-definition positive-valued; however, the V -targets for the attention-matrix
solution in Eq. 6 will likely contain negative values, and subsequently, have the potential to in-
troduce negatives into F (Q,V ). While the logarithm can be extended from (0,∞) to C ∖ {0},
the explicit solution only applies to positive-valued co-occurrences. 2 Thus, we translate varia-
tional inputs by a pre-determined constant bound, c = 2(1 + 1/K) logN , within the definitions:
Vm,k = [U∶,im −Uφ (Hm,∶U) + c] ⋅Xm,k,∶ and V̂m,k = [logEim,∶ − logET ⋅∑

M
j=1

Yj,∶

M
+ c]⋅XT

m,k,∶.
The bound c can be understood as 2—since V is computed via differences of two vectors—times the
product of the exponent derived from a model’s priming number (K), with the maximum entropy
from a uniform distribution over a vocabulary of size N , since the columns of U approximately
equal log-probabiltiy distributions. Computationally, c appears to produce matrices F (Q,V ) woth
positive values for all architectural variants tested. Intuitively, we understand the robustness of
the SAFFU’s explicit solution to V ’s translation by c (as defined), as a result of each vector in:

1Setting KW = logK immediately improved performance over the value KW =K in early testing.
2Negative inputs require extension of φ over a complex domain, which is beyond this work’s scope.
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Um,∶ − Uφ(Hm,∶U) being in the pre-image of the softmax function’s prediction from a uniform
feature-vector over the decoder U . Thus, the translation of each pre-image vector—and hence their
difference—is an operation to which the softmax function input is invariant (scalar translation).

2.5 ASSIGNING LOW-DIMENSIONAL INPUT VECTORS (EMBEDDINGS)

Standard-basis encoding underlies token representation in neural language processing, even when
tokens are mapped sparsely to low-dimensional embeddings. While standard bases are excellent for
representation from perspectives such as precision, simplicity, and transparency, their relatively high
dimensionalities make dimensionality reduction necessary—standard bases scale poorly and over-fit
to training data, to name a few issues. Dimensionality reduction can be handled via gradient-based
optimization, but this approach is largely antithetical to our work’s approach. Thus, we employ a
naı̈ve mathematical approach, that 1) selects a low dimension: D (a hyperparameter) and extends its
set of standard basis vectors in the identity matrix: I ∈ {0,1}D×D, to a larger set of up to 2D −1 bit-
vectors, in order of decreasing discernability, to rapidly train embedding matrices of unit-normalized
bit-vectors to satisfy the SAFFU’s representation requirements for E ∈ (0,1]N×D. Pseudocode is
presented in Appendix C for the bit-cipher algorithm, which is applied in our assignment of bit-
vectors in SAFFU model embedding layers to tokens, as well as to the training of low-dimensional
‘targets’ to train hidden layers in our description of the encoder-decoder, SAFFU-based transformer
architecture presented in the next section.

We likewise densify bit-vectors using a model of noise. This is done by computing a vector of to-
ken counts f = ∑

M
m=1Ym,∶, and then the average (un-noised) embedding: e = (∑N

n=1 fnEn,∶)/M ,
and a model: q ∈ (0,1)N for the portion of occurrences that each n-token’s observations are (non-
)erroneous. Assuming that the highest-count tokens are least erroneously observed, we assume that
only one error is observed relative to each token’s count, that is: qn = fn/(fn + 1). Next and re-
gardless of the token that is observed, we modify its vector according to the probabilities that any
different, j-token, should have been observed, instead, which will take the form of a normalized
(∥p∥1 = 1) noise vector: p ∈ (0,1)N , defined to be near-uniform as: p = (1 − e)/∥1 − e∥1. To
understand p intuitively, we note that 1-minus each of the average embedding v’s (normalized) val-
uea is also a probability, which expresses the chance that a given dimension’s magnitude is spurious
(should not be observed). In application, the value of each bit-vector, En,∶, is finalized by adding
noise to rows of embedding layers: En,∶ = qnEn,∶ + (1 − qn)p.

3 A SAFFU-BASED TRANSFORMER ARCHITECTURE

To define an LM and transformer architecture, we generally utilize two distinct SAFFUs, which
are principally defined by hyperparameters referred to as the block size: b, and the radius: r. Both
are positive integers greater than 1 that describe the number of features over which a SAFFU’s
attention layer operates. The block and radial SAFFUs utilize different definitions of context for
input tensors, denoted by Xblock and Xradius. The value b defines the number of tokens per input
block for self-attention. Specifically, consider collecting a document’s Mdoc tokens in the tensor
B ∈ R⌈Mdoc/(b−1)⌉×b×D by assigning each m = 1,⋯,Mdoc to block i = ⌈m/(b − 1)⌉ by the equation
Bi,2∶b,∶ = [Eij ,∶]

i(b−1)+1
j=(i−1)(b−1)+1. These input embeddings are broken into slices of b − 1 so as to

accommodate room for special tokens that further contextualize input, by indicating if it is the first
block or a later one. All blocks have their first input Bi,1,∶ set to an embedding for a start of document
token: "<sod>" (for the first block), or to an embedding for a fragment token: "<frg>" (for other
blocks). Padding tokens: "<pad>" fill the remaining positions of the last block with features, the
last of which is reserved for an end of document token’s: "<eod>" embedding.

Slices of the block-input tensor are assigned according to the equation: Xblock
m,∶,∶ = Bi,∶,∶. To assure

that each slice Xblock
m,∶,∶ contains no target information (Ym,∶), inputs appearing at or beyond the tar-

get’s position within the block are replaced by those for padding tokens. While Xblock
m,∶,∶ provides a

global information on feature positions, the radius r is local, i.e., has a sliding horizon of r features
for each target. Denote the mth target’s position within block i by j, and define the r-input radial
features as those appearing before the mth: Xradius

m,∶,∶ = Bi,(j−1−r)∶(j−1),∶. For targets at positions m < r
(without a complete radius), missing features are filled with "pad" embeddings. Each block and ra-
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dius SAFFU can be operated under two modes of vector aggregation: summation-based aggregation
(sum) models add attention-weighted input vectors, and concatenation-based (cat) models concate-
nate their attention-weighted input vectors. Note: cat models form hidden states in RKD (vs. RD)
and so incur a K-fold increase decoder-parametric complexity: U cat ∈ RKD×N . This is controlled
by setting separate embedding dimensions for each of the block and radial SAFFU’s inputs: Db = 2

7

and Dr = 2
5 for all experiments, 3, keeping our ‘best’ models under 10-million parameters.

For an encoder-decoder architecture, we require that both block and radial SAFFUs have their out-
puts reduced to a ‘low’ hidden dimension: DH < N . This is accomplished by dimensionally reduc-
ing both block- and radius-SAFFU targets in explicit solutions from Y to the matrix Ỹ ∈ RM×DH

defined by: Ỹm,∶ = Zim,∶. Here, Z is a matrix of bit-vectors—serving as low-dimensional/hidden
targets—from the bit-cipher algorithm depicted in Fig. 2. Block and radial outputs are then be con-
catenated and decoded (again) by a final feed-forward layer: M ∈ R2DH×N . A full architectural
diagram for this design is presented at left in Fig. 1, where the top and bottom flows depict block
and radial SAFFUs operating on sequentially ordered (from top to bottom), globally- and locally-
positioned vectors (black rectangles). After products are taken with the head vector (depicted in
yellow), quadratic features are passed to self-attention layers, which output positional weights (de-
picted in gray) to produce aggregate embeddings. Aggregates are fed through their decoders to
produce concatenated outputs from the two SAFFUs, before being fed forward to the target distri-
bution size. Thus, the last layer is the decoder, and all preceding layers comprise the encoder.

3.1 AUGMENTING TRANSFORMERS WITH DOCUMENT MODELS

To better contextualize a given transformer’s outputs, we likewise define an optional document
model, which outputs its own hidden state via a intermediate single-layer prediction. We assume
that there are ∆ documents, and that the mth token in document δ of length Mδ has its input to the
document model defined by the average of all preceding embeddings (plus one for a padding token):
x = (Ei"<pad>",∶ + ∑

m−1
j=1 Eij ,∶)/m. Each vector x is passed through a feed-forward model whose

parameter matrix we denote by D ∈ RD×∆ that predicts the document index δ from which x came.
When a document model is utilized with a SAFFU-based transformer, each of its outputs: φ(xD) is
concatenated to the result from the two SAFFU’s, i.e., φ(xD) is concatenated to the red-blue result
prior to the last feed-forward layer, M , whose input dimensionality is augmented to: R(2DH+∆)×N .

4 COMPUTATIONAL EXPERIMENTS

Data. We perform all ablation—and other, larger experiments—on a recently-released data set,
known as the BabyLM data set (Warstadt et al., 2023). These data have two main training sets,
consisting of 10- (10M) and 100-million (100M) tokens, and likewise contain 10-million token sets
for development and testing. For speed and efficiency, our ablation used the first 10% (roughly 106

tokens) of the 10M training set.

Tokenization. We use sub-word tokenizations to benefit from the efficiency, simplicity, and speed
of a count-based implementation of byte-pair encoding (BPE) (Sennrich et al., 2016). We train
two BPE models over the 217 and 220 highest-count words contained in the 10M- and 100M-word
BabyLM data sets, respectively until the stopping condition: all new merge rules produce a new
sub-word token of count 1 is reached. All experiments had their vocabulary size further reduced
by replacing sub-word tokens not needed for tokenization of the the 212 highest count words. This
reduced the 10M-token sub-word vocabulary size to a functional set of N 10M = 2,848 (down from
26,693) sub-word tokens, which added large efficieny boosts to ablation time. However, we note
that these ablation efficiency boosts were only achieved during backpropagation, since computing
explicit solutions doesn’t require operation of the final softmax, which is bottlenecked by a normal-
ization over the vocabulary size N . The 100M-token model’s vocabulary was also reduced, but from
20,590 to N 100M = 2,755, which thus demonstrated a much higher compression ratio over its 220
words, when compared to the 10M model’s same-sized covering by 2,755 sub-words, down from
20,590.

3Early experimentation uniformly demonstrated that bit-cipher embeddings smoothly offset perfor-
mance with size, which—alongside the clear ‘best’ configuration of sum-based block and cat-based radius
aggregation—meant computational gains could be made by lowering parameter-intensive cat dimensions.
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Figure 1: Cold-start (Cold train/dev) curves were obtained via backpropagation on randomly ini-
tialized parameters; whereas Warm-start (Warm train/dev) curves were obtained by first tuning the
model with its explicit solution, and then applying backpropagation.

Training. Experiments were trained over 1-million token folds of the 10M- and 100M-token sets.
Backpropagation experiments used Adam (Kingma & Ba, 2015) for optimization with a learning
rate of 105/2 across experiments. Ablation experiments utilize absolutely no backpropagation, and
received only 10% of the 10M-token data via initialization, defined as: having embedding matrices
initialized by the bit-cipher algorithm, self-attention matrices initialized by the explicit solution ini-
tialization targets, V̂ , and then followed by successive application of explicit solution computations
to all subsequent feed-forward/decoder layers, from the bottom up. In larger experiments, we refer
to cold-start models as those which have had random parameter initialization followed by back-
propagation applied to all layers. Cold-starts are compared to warm-start models, which have have
initialization by V̂ (on the first fold) followed by tuning. We distinguish tuning from initialization
only by use of V over V̂ . Tuning is applied over 10 folds (10-million tokens) for both 10M- and
100M-token models. While the 10M/former models utilized V instead of V̂ over 10 iterations, the
100M-token model was initialized in a single 10-million token shot, i.e., it was only initialize with
10% of the larger data set before backpropagation. Following 10-million tokens warm-start, back-
propagation was applied to all but the embedding layers of warm-start models, until early stopping
is signaled by 23 increases in perplexity, which was measured on approximately 105 tokens from the
development set, regardless of model size. Early stopping determines the total number of cold-start
epochs, and we refer to non-altered bit-cipher embeddings as frozen, whose results are discussed in
the next section. Abbreviated training logs from this process are provided in Appendix 6.

4.1 EXPERIMENTAL RESULTS

The explicit solution’s efficiency and stability allowed ablation of many SAFFU model variants.
All—approximately 250—have their performance presented in Appendix D. These explore combi-
nations of the proposed sum and cat architectural variations on each of the block and radial SAFFUs
(Tabs. 1–4), and then the impact of the document model on top of the ‘best’ combination (with
lowest-perplexity models), which turned out to use sum for blocks and cat for radii (Tab. 3). Each
table represents an r − b ‘grid’ corresponding to powers of 2, i.e., with r, b ∈ {21,22,⋯,27}. The ta-
bles in Appendix D can be seen as a basis for determination of which architectural variants merited
further training. For planning larger-scale models, it is critical to observe that perplexities more or
less generally decrease with larger values of r and b across tables, as this indicates that adding more
features improves prediction. However, we note some local optima appear for smaller values of r
when its ‘best’ cat-based aggregation is utilized, providing a balance of efficiency and performance.
While cat-based block aggregation is less advantageous, we note that it likewise has worse optima.

8
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The ‘best’ architecture from Tab. 5 (the black curve in Fig. 1), at the high-effiency optimum of r = 23
kept blocks large: b = 27, still capture long-range correlations. Setting r = 23 ultimately resulted
in models with more robust learning curves, optimizing for more epochs before the early-stopping
criterion was reached than when r = 27 (Fig. 1, red curve). Aside from ablation successfully guiding
model experimentation, it is perhaps the biggest surprise to see that cold-start models fail to optimize
to anywhere near the level of performance that warm-start models do, as can be seen in the gray
and pink curves in Fig. 1. While it is perhaps not surprising that fewer parameters contributed to
greater robustness during backpropagation, there would likely have been no impetus to investigate
the more-performant (and efficient) r = 23 model if our experiment not identified the near-parity
between r = 23 with r = 27 in ablation. Ultimately, r = 23 achieved the best test perplexity of 23.84,
while the r = 27 model’s perplexity only fell to 30.35 and the 10M cold-start models reached 63.98
(both), and our initial 100-million token model with r = 23 and b = 27, suprisingly, stopped at 58.05
(blue in Fig. 1), despite having been trained on the most individual documents.

5 DISCUSSION

Ablation-based determination of ‘best’ models for backpropagation greatly benefited from using few
tokens, which was possible due to the deterministic nature of explicit solutions and their initialization
by zero-matrices. Tuning models beyond ablation improved performance; however, initializing over
just 1-million tokens with the explicit solution demonstrated balanced performance on a random de-
velopment set. For the 100-million token model (blue in Fig. 1), this motivated a simplified training
process that applied backpropagation immediately after its initialization over 10-million tokens in
a single pass. These 10% of the 100M model’s training data appeared insufficient for warming the
model up to learning from all 100M tokens. This resulted in demonstrably less stable backpropaga-
tion, when compared to the faster-to-optimize 10M-models. Hence, having a broader ‘foundation’
with more data used in the explicit solution could be key to stable learning and generalization.

Several new algorithms were required to satisfy the strict conditions defined by our work, but,
when taken as a whole—with this paper’s computational experiments demonstrating warm-start
optimality unachievable without explicit solutions—this work shows that when iterative optimiza-
tion and explicit solutions are combined, they can lead to neural optimizations that were previously
un-achievable over such marginal scales of data. The derived explicit solutions at present only work
well, meaning that while they drastically reduce the training costs traing networks, they still must
be followed by some iterative optimization using backpropagation. In other words, these solutions
are not perfect. Though this is a limitation, awareness to it directs further development towards
the possibility of future work on explicit solutions that continues to reduce the expense of training
networks by fully eliminating the need for backpropagation. Regardless, the presented explicit so-
lutions do make it possible to optimize a given network’s performance to a point that is far beyond
what’s possible for networks with parameters that were initialized randomly. Critically, we note that
this effect is present regardless of how much data is used for training.

6 CONCLUSION

While training bigger models, we noted how the 10M data—which was fully used in its explicit
solution applications—was better used during backpropagation before early stopping, optimizing
models more effectively over multiples passes of relatively few data. Alongside this smoother opti-
mization, what’s truly striking about is that training over multiple passes on small samples of data
was more effective than access to more data (for fewer passes). So, while one might expect the
100M-token data to produce better models, it may be the case that they needs be trained over for
longer periods, and perhaps have the explicit solution utilized over all 100M tokens. Understanding
this phenomenon further will be critical for future applications of the SAFFU architecture and its
explicit solution, but the best scenario for future development is likely if explicit solutions can be
derived that entirely obviate the need for backpropagation. Regardless, since explicit solutions seem
to work well with less data, they hold potential for the future development of high-performance
LMs that moreover, are small, and which could learn on-site using localized data for applications of
embodiment. These findings demonstrate the potential of explicit solutions for efficiently training
complex and multi-layer models, and we hope this work encourages further exploration of explicit
solutions as a strategy for improving training efficiency and our understanding of model function.
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A DERIVATION OF THE SINGLE-LAYER MODEL’S EXPLICIT SOLUTION

Theorem: A softmax-activated feed-forward layer receiving K-norm non-negative D-dimensional
inputs Hm,∶ for each target of prediction Ym,∶ is approximately optimized by a column-wise transla-
tion of the layer’s generalized log-co-occurrence matrix: Uj,i = logF (H,Y )j,i+logwi. The trans-
lating weights, logwi, are defined by i-column (output) as: logwi =

K−1
K

log(∑
D
d=1F (H,Y )d,i),

defining an explicit form for each of the layer’s j, i-parameters by the expression:

Uj,i = logF (H,Y )j,i −
K − 1

K
log(

D

∑
d=1

F (H,Y )d,i) (7)

Proof: Abbreviating F (H,Y ) by simply F for concise notation, first re-arrange the starting ex-
pression for a j, i-index pair of U is:

Uj,i = logwiFj,i (8)

It is a matter of algebra to reduce the the likelihood function’s general form with w to an expression
only dependent on w’s components in the denominator-factors:

eL =
M

∏
m=1

eHm,∶U∶,im

∑
N
n=1 eHm,∶U∶,n

=
M

∏
m=1

∏
D
d=1F

Hm,d

d,im

w−Kim ∑
N
n=1wK

n ∏
D
d=1F

Hm,d

d,n

(9)
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Above, the expression shows that one need only minimize the denominator at right to maximize the
overall expression, i.e., optimize the likelihood. Since the logarithm is a monotone function, this is
likewise equivalent to maximizing the logarithm of the denominator, which we denote by Υ:

Υ =
M

∑
m=1

ϵm =
M

∑
m=1

log [w−Kim
N

∑
n=1

wK
n

D

∏
d=1

F
Hm,d

d,n ] (10)

We then proceed directly, by differentially optimizing Υ and compute partial derivatives of ϵm:

∂ϵm
∂wi
∣
im=i
=

KwK−1
i ∏

D
d=1F

Hm,d

d,i

∑
N
n=1wK

n ∏
D
d=1F

Hm,d

d,n

−
K

wi
;

∂ϵm
∂wi
∣
im≠i
=

KwK−1
i ∏

D
d=1F

Hm,d

d,i

∑
N
n=1wn∏

D
d=1F

Hm,d

d,n

(11)

Putting these pieces together in-sum produces the expression:

∂Υ

∂wi
= −

Kfi

wi
+

M

∑
m=1

KwK−1
i ∏

D
d=1F

Hm,d

d,i

∑
N
n=1wn∏

D
d=1F

Hm,d

d,n

(12)

it becomes helpful now to identify a weighted, geometric mean of co-occurrences with token i over
the mth instance’s features: EG[Fj,i ∣ Hm,∶] = (∏D

d=1 F
Hm,d

d,i )1/K . Provided their inner product
with the weights is approximately a constant c ∈ R:

N

∑
n=1

wnEG[Fj,n ∣Hm,∶] ≈ c, (13)

solving for ∂Υ
∂wi
= 0 results in the following proportionality for each token-index, i:

fi

wK
i

=
M

∑
m=1

EG[Fj,i ∣Hm,∶]K

∑
N
n=1wnEG[Fj,n ∣Hm,∶]K

∝
M

∑
m=1

EG[Fj,i ∣Hm,∶]K (14)

Each EG[Fj,i ∣Hm,∶] likely correlates to fi, and their sum further integrates a broader average:

M

∑
m=1

EG[Fj,i ∣Hm,∶]K =M⟨EG[Fj,i ∣Hm,∶]⟩K (15)

Here, the expression ⟨EG[Fj,i ∣ Hm,∶]⟩ indicates the K-power mean of the geometric means of
co-occurrences with token i. We thus find that an explicit form for wi’s proportionality is:

wi ∝
f
1/K
i

⟨EG[Fj,i ∣Hm,∶]⟩
∝ f

1−K
K

i = (
D

∑
d=1

F (H,Y )d,i)

1−K
K

, (16)

dependent on the double-averaged denominators scaling with count: ⟨EG[Fj,i ∣Hm,∶]⟩∝ fi. ∎

B DERIVING THE SAFFU’S OPTIMIZATION CRITERIA

B.1 DERIVING AN OPTIMIZATION CRITERION FOR THE DECODER LAYER

Consider the partial derivatives of L with respect to each parameter of the decoder layer, Uj,i:

∂L

∂Uj,i
=

M

∑
m=1
[Ym,i − φ (Hm,∶U)i]Hm,j = F (H,Y )j,i −

M

∑
m=1

φ (Hm,∶U)iHm,j (17)

To derive these, it is helpful to recall the SAFFU’s notational conventions (slices of matrices) for its
M attention distributions: Am,∶ = − logφ(WXm,h,∶Xm,∶,∶) and hidden states: Hm,∶ =Am,∶Xm,∶,∶.

Upon setting the derivative equal to 0, we then note that any optimum of the decoder must have its
action over hidden states produce probabilities with expected values equal to the column-conditional
probabilities of the co-occurrence distribution normalized by ∑N

n=1F (H,Y )j,n = ∑
M
n=1Hn,j :

F (H,Y )j,i

∑
N
n=1F (H,Y )j,n

=
M

∑
m=1

φ (Hm,∶U)i
Hm,j

∑
N
n=1F (H,Y )j,n

= Eφ (Hm,∶U)i (18)
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In other words, we arrive at the same conclusion about the compositional decoder as was made from
analysis of the single-layer decoder: the arithmetic average prediction of the model on target i, taken
over the j-hidden frequencies, will behave as the conditional probability of the outputs, given the
inputs. With this is established, we must ask the question: what distributional form will in the inputs
take? This is partly answered by taking derivatives with respect to the ‘deep’ (attention) layer.

B.2 DERIVING AN OPTIMIZATION CRITERION FOR THE SELF-ATTENTION LAYER

Once can similarly take the partial derivatives with respect to the attention layer’s, parameters Wj,i:

∂L

∂Wj,i
=

M

∑
m=1
[U∶,im −

N

∑
n=1

U∶,nφ (Hm,∶U)n] ⋅
∂Hm,∶
∂Wj,i

(19)

The compositional relationship between the decoder and attention layers is defined by an inner
product of hidden state partial derivatives with a decoder-based expression (that we will return to
shortly). Note: this relationship is invariant to activation functions, and would be expressed in
precisely the same manner for compositional optimization of ‘deep’ layers. The hidden-state vectors
produce partials derivatives of vectors, too, when L’s partial is taken over the parameter Wj,i:

∂Hm,∶
∂Wj,i

=
K

∑
k=1

Xm,k,∶Qm,j [e
(i)
k − φ(Qm,∶W )i] (20)

where e(i) is the standard basis vector of dimension K with 1 at position i. To express a solution
for W , it next helps to define the tensor V ∈ RM×K , containing the information from variational
vectors that describe the relative sensitivity of the decoder layer to each mth instance of the training
set’s k = 1,⋯,K features in X: Vm,k = [U∶,im −Uφ (Hm,∶U)] ⋅Xm,k,∶. Combining V with Eq. 19
and Eq. 20 simplifies the attention layer’s partial derivatives:

∂L

∂Wj,i
=

M

∑
m=1

Qm,j [Vm,i − φ(Qm,∶W )i
K

∑
k=1

Vm,k] (21)

Thus, solving ∂L/∂Wj,i = 0 allows for terms to be re-arranged and a—surprisingly familiar—
condition on the point of the attention layer’s optimization to be resolved:

F (Q,V )j,i

∑
K
k=1F (Q,V )j,k

=
M

∑
m=1

φ (Qm,∶W )i
Qm,j∑

K
k=1Vm,k

∑
K
k=1F (Q,V )j,k

= Eφ (Qm,∶W )i (22)

Specifically, if (a big if) the values [Qm,j∑
K
k=1Vm,k]/[∑

K
k=1F (Q,V )j,k] constitute a probability

mass function over the training set’s M instances of prediction, our conclusion is a statement much
like for the SAFFU’s decoder, where we observed an equivalent premise to the single-layer model’s
explicit solution: the arithmetic average prediction—now a feature weight—of the attention layer
on feature i, taken over the j-input co-frequencies with quadratic values in Q, will behave as the
conditional probability of the outputs, given the inputs. As mentioned for the decoder, we must ask:
what distributional form will in the inputs take? It should now be clear that neither the inputs, Hm,∶,
for the decoder—nor the inputs, Qm,∶, to the attention layer—have unit sum. Thus, estimates will
need to be made for both layers’ priming numbers in order to complete their optimizations.

Note that this investigation glosses over a subtle and perhaps exciting point of observation—that we
can now answer: what self-attention’s supervising targets are. While we intentionally consolidated
the attention layer’s inputs under the form Q, it is a marvel—whether by serendipity or the need
for concise notation—that the matrix V emerged. Intuitively, it contains variational information
on the decoder summarizing what the attention-matrix W should expect from U ’s reactions to its
(W ’s) activations. In summary, the co-optimial criteria for the matrices U and W in Eqs. 18 and
22 ultimately allow us to see that V contains the differentially-guiding targets of the self-attention
layer, W . Thus, the input-output pair of matrices Q and V are to W , as H and Y are to U .
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1: procedure BIT-CIPHER(N,D) ▷ Construct a D-bit cipher of N ≤ 2D dimensions.
2: B(0) ← [0⃗]
3: for d = 1,⋯,D do ▷ 1. Initialize lists for differently-normed bit-vectors.
4: B(d) ← []
5: I ← Identity(b)
6: Z,E ← {0}N×D,{0}N×D
7: i, j, d← 0,0,1
8: for n = 1,⋯,N do
9: while En,∶ = 0⃗ do ▷ 2. Find the next norm-d (or d + 1) bit-vector.

10: z ← Abs (B
(d−1)
j − Ii,∶)

11: if ∥z∥1 = d and z ∉ B(d) then ▷ 3. The norm must be d and the vector unused.
12: B(d) ← Concatenate (B(d), [z])
13: En,∶ ← z/∥z∥1 ▷ 4. Normalize the bit-vector and assign as embedding.
14: Zn,∶ ← z

15: j ← j + 1
16: if j = ∣B(d−1)∣ then ▷ 5. Change basis vector/component of modification.
17: j ← 0
18: i← i + 1
19: if i = d then ▷ 6. Reverse the d-bit vector order and increment d.
20: if d = 1 then
21: I ← Reverse (I)

22: i← 0
23: B(d) ← Reverse (B(k))
24: d← d + 1
25: return Z,E ▷ 7. Return matrices for deciphering and enciphering.

Figure 2: Bit-Cipher algorithm. After 1) initialization, the algorithm 2) finds new bit-vectors in
decreasing order of discernability, by 3) identifying (unassigned) bit-vectors of increasing norm
via translations of d − 1-bit vectors by standard basis vectors. Unassigned bit-vectors are then 4)
normalized and assigned as embeddings in E, while the raw bit-vectors, themselves are retained in
Z for training D-dimensional “hidden” states. Whenever the collection of d−1-bit vectors no longer
has any unassigned i-component modifications, 5) the basis vector/component of modification must
be incremented, and when this is the case for all last-component modifications, it’s determined that
there are no unassigned k-bit vectors, necessitating a 6) reversal of the d-bit vector order, which
maintains smooth transitions of discernability, upon future assignment. 7) Once all N dimensions
have been assigned a bit-vector (and normalized counterpart), the Z and E are returned.

C BIT-CIPHER ALGORITHM DETAILS

To define the bit-cipher algorithm (depicted in Fig. 2), consider a vocabulary of N unique tokens
and select a ‘low’ dimension: D ≤ N . Each nth token will have a unique bit vector assigned to its
row in a matrix Z ∈ {0,1}N×D that is drawn from the larger collection of 2N −1 non-zero bit vectors
in {0,1}D. The order of assignment from {0,1}D is based on a distinguishability hypothesis, which
expects that a ‘good’ order increases vector norms, while assigning bit-vectors to more common
categories (tokens). To assign bit-vectors in a ‘smooth’ order, the process depicted in Fig. 2, which
starts at bit-vector norm d = 1 and inducts the order that i = 1: assigns standard basis vectors to the
first D rows of Z from the identity I to represent the D most frequent tokens (generalizing one-
hots/standard bases); i = 2: increments d and adds standard-basis vectors from I to those already
assigned of norm d − 1 in Z in reverse order of assignment, while filtering for unique bit-vectors
in {0,1}D; i = 3: repeats step i = 2. D-bit vectors are then normalized to meet SAFFU input
requirements for its embedding layer, E ∈ RN×D, for each n = 1,⋯,N : En∶ = Zn∶/∥Zn∶∥1.

D ABLATION TABLES
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Table 1: Training and Development-set perplexities without a document model. Aggregation
modes are: radial summation and and block summation. Top-performing models are in bold.

b = 21 b = 22 b = 23 b = 24 b = 25 b = 26 b = 27

r = 21 61.8, 64.0 59.8, 62.0 59.2, 61.3 56.9, 58.9 55.2, 57.3 54.1, 56.1 53.4, 55.4
r = 22 57.5, 59.5 56.5, 58.6 56.0, 58.1 54.0, 55.9 52.5, 54.5 51.6, 53.5 51.0, 52.9
r = 23 56.1, 58.2 54.8, 56.8 54.6, 56.6 52.8, 54.7 51.5, 53.4 50.7, 52.6 50.2, 52.1
r = 24 55.8, 58.0 54.5, 56.6 54.3, 56.4 52.7, 54.7 51.6, 53.6 50.9, 52.8 50.4, 52.3
r = 25 56.8, 59.1 55.1, 57.4 55.1, 57.3 53.6, 55.6 52.4, 54.5 51.7, 53.7 51.3, 53.2
r = 26 56.3, 58.6 55.2, 57.4 55.4, 57.6 53.8, 55.8 52.6, 54.6 51.9, 53.8 51.4, 53.3
r = 27 57.1, 59.3 55.7, 57.9 55.5, 57.7 53.9, 55.9 52.7, 54.7 52.0, 53.9 51.5, 53.4

Table 2: Training and Development-set perplexities without a document model. Aggregation
modes are: radial summation and block concatenation. Top-performing models are in bold.

b = 21 b = 22 b = 23 b = 24 b = 25 b = 26 b = 27

r = 21 61.0, 63.1 58.4, 60.4 57.6, 59.6 55.0, 56.8 53.3, 55.1 53.2, 54.8 54.8, 56.3
r = 22 56.7, 58.7 55.2, 57.2 54.6, 56.5 52.3, 54.1 51.0, 52.7 51.1, 52.7 52.8, 54.3
r = 23 55.4, 57.4 53.5, 55.5 53.2, 55.1 51.3, 53.0 50.1, 51.9 50.4, 52.0 52.2, 53.7
r = 24 55.1, 57.2 53.2, 55.2 52.9, 54.9 51.2, 53.0 50.3, 52.1 50.6, 52.3 52.4, 54.0
r = 25 56.0, 58.2 53.8, 56.0 53.7, 55.8 52.0, 53.8 50.9, 52.8 51.2, 52.9 52.9, 54.5
r = 26 55.5, 57.7 53.9, 56.0 54.0, 56.0 52.2, 54.0 51.0, 52.9 51.3, 53.0 53.0, 54.6
r = 27 56.3, 58.5 54.3, 56.5 54.1, 56.1 52.2, 54.1 51.1, 53.0 51.4, 53.1 53.2, 54.7

Table 3: Training and Development-set perplexities without a document model. Aggregation
modes are: radial concatenation and block summation. Top-performing models are in bold.

b = 21 b = 22 b = 23 b = 24 b = 25 b = 26 b = 27

r = 21 61.3, 63.5 59.2, 61.3 58.4, 60.5 56.0, 58.0 54.3, 56.3 53.2, 55.2 52.6, 54.5
r = 22 54.4, 56.4 53.4, 55.3 52.0, 53.9 49.6, 51.3 48.0, 49.8 47.2, 48.9 46.7, 48.4
r = 23 50.5, 52.4 49.4, 51.2 47.9, 49.6 45.8, 47.3 44.4, 46.0 43.7, 45.3 43.4, 44.9
r = 24 51.1, 53.0 50.2, 52.1 49.4, 51.2 47.5, 49.3 46.4, 48.2 45.8, 47.5 45.5, 47.2
r = 25 51.1, 53.1 49.2, 51.1 48.4, 50.2 46.6, 48.3 45.6, 47.2 45.0, 46.6 44.7, 46.3
r = 26 49.6, 51.5 48.2, 50.0 46.9, 48.5 45.2, 46.7 44.1, 45.6 43.5, 45.0 43.3, 44.7
r = 27 49.5, 51.3 47.9, 49.7 46.8, 48.4 45.0, 46.4 44.0, 45.4 43.4, 44.9 43.3, 44.7

Table 4: Training and Development-set perplexities without a document model. Aggregation
modes are: radial concatenation and block concatenation. Top-performing models are in bold.

b = 21 b = 22 b = 23 b = 24 b = 25 b = 26 b = 27

r = 21 60.5, 62.6 57.8, 59.8 56.9, 58.8 54.2, 56.0 52.5, 54.3 52.5, 54.1 54.1, 55.6
r = 22 53.8, 55.7 52.2, 54.1 50.8, 52.6 48.2, 49.8 46.9, 48.5 47.1, 48.6 48.8, 50.1
r = 23 50.0, 51.8 48.4, 50.2 46.9, 48.5 44.7, 46.2 43.6, 45.1 44.0, 45.4 45.6, 46.9
r = 24 50.5, 52.4 49.1, 50.9 48.3, 50.1 46.5, 48.1 45.7, 47.3 46.3, 47.7 48.0, 49.4
r = 25 50.5, 52.4 48.2, 50.0 47.3, 49.1 45.6, 47.1 44.8, 46.3 45.4, 46.8 47.1, 48.4
r = 26 49.0, 50.9 47.3, 49.0 45.9, 47.4 44.2, 45.5 43.5, 44.8 44.0, 45.3 45.7, 46.9
r = 27 49.0, 50.7 47.0, 48.7 45.9, 47.3 44.1, 45.4 43.5, 44.8 44.2, 45.4 46.0, 47.1

Table 5: Training and Development-set perplexities with a document model. Aggregation modes
are: radial concatenation and block summation. Top-performing models are in bold.

b = 21 b = 22 b = 23 b = 24 b = 25 b = 26 b = 27

r = 21 61.3, 63.4 59.1, 61.3 58.4, 60.4 56.0, 58.0 54.3, 56.3 53.2, 55.2 52.5, 54.5
r = 22 54.4, 56.3 53.3, 55.3 52.0, 53.9 49.5, 51.3 48.0, 49.8 47.1, 48.9 46.7, 48.4
r = 23 50.5, 52.3 49.3, 51.1 47.9, 49.6 45.7, 47.3 44.4, 46.0 43.7, 45.3 43.3, 44.9
r = 24 51.1, 53.0 50.1, 52.1 49.4, 51.2 47.5, 49.3 46.4, 48.2 45.8, 47.5 45.5, 47.2
r = 25 51.1, 53.1 49.2, 51.1 48.4, 50.2 46.6, 48.3 45.6, 47.2 45.0, 46.6 44.7, 46.3
r = 26 49.6, 51.5 48.2, 50.0 46.9, 48.5 45.1, 46.7 44.1, 45.6 43.5, 45.0 43.3, 44.7
r = 27 49.5, 51.3 47.9, 49.7 46.8, 48.4 45.0, 46.4 44.0, 45.4 43.4, 44.9 43.2, 44.7
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