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Abstract

We introduce algorithms for learning nonlinear dynamical systems of the form xt+1 =
σ(Θ⋆xt) + εt, where Θ⋆ is a weight matrix, σ is a nonlinear link function, and εt is a
mean-zero noise process. We give an algorithm that recovers the weight matrix Θ⋆ from a
single trajectory with optimal sample complexity and linear running time. The algorithm
succeeds under weaker statistical assumptions than in previous work, and in particular i)
does not require a bound on the spectral norm of the weight matrix Θ⋆ (rather, it depends on
a generalization of the spectral radius) and ii) enjoys guarantees for non-strictly-increasing
link functions such as the ReLU. Our analysis has two key components: i) we give a general
recipe whereby global stability for nonlinear dynamical systems can be used to certify
that the state-vector covariance is well-conditioned, and ii) using these tools, we extend
well-known algorithms for efficiently learning generalized linear models to the dependent
setting.1

1. Introduction

We consider nonlinear dynamical systems of the form

xi+1 = f⋆(xi) + εi, (1)

where f⋆ ∶ Rd → Rd is an unknown function, {εi}ni=0 is an independent, mean-zero noise
process in Rd and x0 = 0. Dynamical systems are ubiquitous in applied mathematics,
engineering, and computer science, with applications including control systems, time series
analysis, econometrics, and natural language processing. The recent success of deep rein-
forcement learning (Mnih et al., 2015; Silver et al., 2017; Lillicrap et al., 2016) has led to
renewed interest in developing efficient algorithms for learning complex nonlinear systems
such as (1) from data.

In this paper, we focus on the task of estimating the dynamics f⋆ given a single trajectory
{xi}n+1

i=1 , where f⋆ belongs to a known function class F . We focus on the following questions:

• What is the sample complexity of recovering the dynamics f⋆? How is it determined
by F?

• What algorithmic principles enable computationally efficient recovery of the dynamics?

1. The full version of this paper is available at https://arxiv.org/abs/2004.14681.
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For linear dynamical systems where f⋆(x) = Θ⋆x, subroutines for efficiently estimating
dynamics from data form a core building block of certainty-equivalent control, which enjoys
optimal sample complexity guarantees for this simple setting (Mania et al., 2019; Simchowitz
and Foster, 2020). While linear dynamical systems have been the subject of intense recent
interest (Dean et al., 2019; Hazan et al., 2017; Tu and Recht, 2018; Hazan et al., 2018;
Simchowitz et al., 2018; Sarkar and Rakhlin, 2019; Simchowitz et al., 2019; Mania et al.,
2019; Sarkar et al., 2019), nonlinear dynamical systems are comparatively poorly understood.

1.1. On the performance of least squares

On the algorithmic side, a natural starting point for learning the system (1) is the least
squares estimator

f̂n = arg min
f∈F

1

n

n

∑
i=1

∥f(xi) − xi+1∥2, (2)

where ∥⋅∥ denotes the entrywise `2 norm. A basic observation is that the in-sample prediction
error (or, denoising error) of this estimator is bounded by the so-called offset Rademacher
complexity introduced by Rakhlin and Sridharan (2014); Liang et al. (2015):

Proposition 1 The least-squares estimator (2) guarantees

Eε[
1

n

n

∑
i=1

∥f̂n(xi) − f⋆(xi)∥
2] ≤ Eε sup

g∈G
[ 1

n

n

∑
i=1

4⟨εi, g(xi)⟩ − ∥g(xi)∥2] =∶Ro
n(G), (3)

where G = F − f⋆ and Eε denotes expectation with respect to {εi}ni=1.2

The proof is a simple consequence of the basic inequality for least squares (van de Geer,
2000). The offset Rademacher process captures the notion of localization/self-normalization
(Bartlett et al., 2005; Koltchinskii, 2006; de la Peña et al., 2008): The negative quadratic
term penalizes fluctuations from the term involving the random variables {εi}ni=1, leading
to fast rates for prediction error. In particular, if εi has subgaussian parameter τ2 and
f⋆(x) = Θ⋆x is a familiar linear dynamical sytem, we have Ro

n(Glinear) ≲ τ2 ⋅ d2n . The utility
of this approach, however, lies in the fact that it easily extends beyond the linear setting.
For example, if G consists of a class of generalized linear dynamical systems of the form

xi+1 = σ(Θ⋆xi) + εi, (4)

where σ ∶ Rd → Rd is a 1-Lipschitz link function, we enjoy a similar guarantee: Ro
n(Gglm) ≲

τ2 ⋅ d2n . More generally, even though (3) has a complex dependent structure (the variables
ε1, . . . , εn determine the evolution of x1, . . . , xn via (1)), it is possible to bound the value for
general function classes F such as neural networks, kernels, decision trees using sequential
covering numbers and chaining techniques introduced in Rakhlin et al. (2014); Rakhlin and
Sridharan (2014). However, there are number of important questions that remain if one
wishes to use this type of learning guarantee for real-world control applications.

2. Note that xi is measurable with respect to the σ-algebra σ(ε1, . . . , εi−1).
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• Efficient algorithms. Even for simple nonlinear systems such as the generalized
linear model (4), computing the least-squares estimator (2) may be computationally
intractable in the worst case. For what classes of interest can we obtain algorithms
that are both computationally efficient and sample-efficient?

• Out-of-sample performance. The prediction error guarantee (3) only concerns perfor-
mance on the realized sequence {xt}nt=1. For control applications such as certainty-
equivalent control, it is essential to bound the performance of the estimator f̂n on
counterfactual sequences in which the data generating process is xt+1 = f̂n(xt)+ εt (i.e.,
error in simulation). For linear and generalized linear systems, a sufficient condition
for such a guarantee is to recover the weight matrix Θ⋆ in parameter norm. Under
what conditions on the data generating process can we obtain such guarantees?

1.2. Contributions.

We provide a new efficient algorithm for recovery of generalized linear systems (4). Our

algorithm runs in nearly-linear time and obtains optimal O(
√
d2/n) sample complexity for

recovery in Frobenius norm. Conceptually, our key technical observations are as follows:

• We provide a general recipe based on Lyapunov functions for proving that data remains
well-conditioned/nearly isometric for stable dynamical systems, without assuming
linearity.

• We show that efficient algorithms for learning generalized linear models in the i.i.d.
setting (Kalai and Sastry, 2009; Kakade et al., 2011) cleanly port to the dependent
setting. Here the key insight is that the empirical counterparts of simple non-convex
losses arising from generalized linear models remain well-behaved even under dependent
data.

Our algorithm improves prior work on two fronts: First, we do not require a bound on the
spectral norm of Θ⋆, and instead require a bound on a parameter that generalizes the notion
of the spectral radius to the nonlinear setting. Second, we can recover Θ⋆ even when the
link function σ is the ReLU, eschewing invertibility assumptions from previous results.

Related work. Our results are closely related to recent work of Oymak (2019); Bahmani
and Romberg (2019); Sattar and Oymak (2020). We refer the reader to the full version of
the paper for a detailed comparison and further discussion of related work.

Notation. Throughout this paper we use c > 0, c′ > 0, and c′′ > 0 to denote absolute
numerical constants whose value may vary depending on context. We use non-asymptotic
big-oh notation, writing f = O(g) if there exists a numerical constant such that f(x) ≤ c ⋅g(x)
and f = Õ(g) if f ≤ c ⋅ gmax{log g,1}. We say a random vector v ∈ Rd is subgaussian with

variance proxy τ2 if sup∥θ∥=1 supp≥1 {p−1/2 (E[∣⟨v, θ⟩∣p])1/p} = τ and E[v] = 0, and we denote

this by v ∼ subG(τ2). We let ∥⋅∥op denote the spectral norm and ∥⋅∥F denote the Frobenius
norm. For a convex set X, we let ProjX(⋅) denote euclidean projection onto the set. Unless
otherwise stated, all dynamical systems considered in this paper are assumed to start from
x0 = 0.
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2. Stability, Lower Isometry, and Recovery

Well-conditioned data plays a fundamental role in statistical estimation. For linear regression,
it is well-known that the minimax rates for parameter recovery are governed by the spectrum
of empirical design matrix Xn ∈ Rn×d formed by stacking x1, . . . , xn as rows (Hastie et al.,
2015; Wainwright, 2019)). In particular, letting Σ̂n =X⊺

nXn denote the empirical covariance,
a sufficient condition for recovery is the lower isometry property Σ̂n ⪰ 1

2I; See Lecué and
Mendelson (2018) for a contemporary discussion. In this section, we develop tools for proving
lower isometry guarantees for nonlinear dynamical systems such as (1). To begin, we make
a mild assumption on the noise process.

Assumption 1 The noise variables {εt}nt=1 are independent. Each increment is isotropic
(zero-mean, with E[εiε⊺i ] = I) and satisfies εt ∼ subG(τ2).3

While Assumption 1 ensures that each increment εi is well-behaved, it is not clear a-
priori whether the empirical design matrix should enjoy favorable conditioning—indeed,
the observations {xi}n+1

i=1 evolve from the noise process in a complex dependent fashion. In
general, the behavior of the empirical design matrix will heavily depend on the system
f⋆. Here we show that classical results in control theory on exponential stability of the
system f⋆ provide sufficient conditions for both upper and lower control of the spectrum
of the empirical design matrix. While our guarantees apply to the noisy system (1), our
assumptions depend on the behavior of the system in absence of noise:

xt+1 = f(xt), (5)

where x0 = 0.

Definition 2 (Global exponential stability) A noiseless system (5) given by map f ∶
Rd → Rd is globally exponentially stable (g.e.s.) with respect to a norm ∥⋅∥◻ if there exist
constants Cf > 0 and ρf < 1 depending only on f such that for all k ≥ 1,

∥fk∥op(◻) ≤ Cfρkf , (6)

where ∥f∥op(◻) ∶= supx∈Rd
∥f(x)∥

◻

∥x∥
◻

.4

In this paper, we focus on systems where f⋆ satisfies the g.e.s. property, and where this is
certified by a quadratic Lyapunov function.

Definition 3 A map f ∶ Rd → Rd is (K,ρ)-g.e.s. if there exists a matrix K ≻ 0 and
constant 0 ≤ ρ < 1 such that for all x ∈ Rd,

∥f(x)∥2
K ≤ ρ ⋅ ∥x∥2

K , (7)

where ∥x∥K ∶=
√

⟨x,Kx⟩.

3. Our results extend to general covariance Σ under the standard assumption that Σ−1εt is subgaussian.

4. When f ∶ Rd → Rd, we let fk denote the k-times composition of f , i.e. fk = f ○ ⋯ ○ f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k times

.
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Any (K,ρ)-g.e.s. map satisfies (6) with ∥⋅∥◻ = ∥⋅∥K , Cf = 1, and ρf = ρ1/2. The equation (7)
is homogeneous under rescaling, and consequently we will assume without loss of generality
that K ⪰ I for the remainder of the paper.

In general, finding certificates of stability for nonlinear dynamical systems is a difficult
problem. Providing necessary and sufficient conditions for stability for rich classes of
nonlinear dynamical systems remains an active area of research, with most development
proceeding on a fairly case-by-case basis. We develop a general reduction from lower and
upper isometry to (K,ρ)-stability, which allows us to leverage developments in control in a
black-box fashion as opposed to having to prove concentration results case-by-case. Our
main result here is Theorem 4, which shows that any (K,ρ)-g.e.s. system enjoys both upper
and lower isometry.

Theorem 4 Consider the noisy system (1), and let noise process satisfy Assumption 1.
Suppose the map f⋆ satisfies the (K,ρ)-g.e.s. property Definition 3 in the absence of noise.

Then for any δ > 0, once n ≥ cd ⋅ τ4

(1−ρ)2 log(RK,ρ/δ + 1), with probability at least 1 − δ the

iterates {xi}ni=1 of the noisy system satisfy

1

4
⋅ I ⪯ 1

n

n

∑
i=1

xix
⊺
i ⪯ 4RK,ρ ⋅ I, (8)

where RK,ρ ∶= tr(K)
1−ρ is the effective radius of the system and c > 0 is an absolute constant.

The key feature of Theorem 4 is that we only need to assume the (K,ρ)-g.e.s. property on
the map f⋆ in the absence of noise, yet the theorem gives a guarantee on the trajectory
generated by the noisy system (1) as long as Assumption 1 is satisfied.

The proof has three parts, each of which relies on the machinery of self-normalization.
We first use the structure of the dynamics (1) to show that the lower isometry in (8) holds
as soon as we have a weak upper bound on the covariance of the form 1

n ∑
n
i=1 xix

⊺
i ⪯

B
δ ⋅ I,

where δ is the failure probability. We then show that in (K,ρ)-g.e.s. systems, this condition
is satisfied with B = RK,ρ. Finally, the strong upper bound in (8) is attained by using a
self-normalized inequality to boost the weak upper bound and remove the 1/δ factor.

2.1. Lower isometry for generalized linear systems

We now provide sufficient conditions under which the generalized linear systems that are
the focus of our main learning results satisfy the g.e.s. property. We make the following
mild regularity assumption on the link function.

Assumption 2 The link function σ ∶ Rd → Rd has the form σ(x) ∶= (σ1(x1),⋯, σd(xd)),
where each coordinate function σi ∶ R → R is non-decreasing, 1-Lipschitz, and satisfies
σi(0) = 0.

With this assumption, the following constrained Lyapunov equation provides a sufficient
condition under which the generalized linear system satisfies the g.e.s. property.

Proposition 5 Suppose there exists a diagonal matrix K ≻ 0 and scalar ρ < 1 such that

Θ⊺KΘ ⪯ ρ ⋅K. (9)

Then the map f = σ ○Θ is (K,ρ)-g.e.s. whenever σ satisfies Assumption 2.
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Proposition 5 can be used to invoke Theorem 4 for any generalized linear system of the
form f⋆ = σ ○Θ. Thus, we can ensure lower and upper isometry hold for generalized linear
systems whenever their stability is certified the Lyapunov condition (9).

The equation (9) strengthens the usual Lyapunov condition for linear systems by adding
the additional constraint that K is diagonal. This condition is stronger than the classical
spectral radius condition that ρ(Θ) < 1, but it can easily be seen that some type of
strengthening is necessary, as the classical condition is not sufficient for nonlinear systems.
For example, the matrix Θ = ( 1 1

−1 −1 ) has ρ(Θ) = 0, but the map x↦ relu(Θx) is not g.e.s.—
indeed, we have relu(Θe1) = e1, where e1 is the first standard basis vector. A sufficient
condition for Proposition 5 is that Θ has spectral norm bounded by unity, but the condition
(9) is a strictly weaker than this assumption. Further sufficient conditions include: 1)
ρ(Θ) < 1 and Θ has non-negative entries (Rantzer, 2011, Proposition 2), and 2) ρ(∣Θ∣) < 1,
where ∣Θ∣ denotes element-wise absolute value operator. We refer to the full version of this
paper for additional discussion.

3. Algorithms for generalized linear dynamical systems

We now leverage the isometry results of Section 2 to develop efficient algorithms with
parameter recovery guarantees for generalized linear systems. Following Section 2, we make
the following assumption on the generalized linear system.

Assumption 3 The system (1) is generalized linear (f⋆ = σ ○Θ⋆) and is (K,ρ)-g.e.s. in
the sense of Proposition 5. Furthermore, ∥Θ⋆∥F ≤W , where W is known to the learner.5

Background: Learning generalized linear models Our algorithm for learning gen-
eralized linear dynamical systems builds on developments for learning generalized linear
models in statistical learning. Consider the simpler setting where we receive {(xi, yi)}ni=1

i.i.d., where y = σ(⟨θ⋆, x⟩) + ε and E[ε ∣ x] = 0. For this setting the population loss
L(θ) ∶= Ex,y[(σ(⟨θ, x⟩) − y)2] is not convex. However, if the link function σ is strictly
increasing the and the population covariance E[xx⊺] is well-conditioned, the loss satis-
fies a gradient-dominance type property, and gradient descent on the empirical loss will
converge to θ⋆ given sufficiently many samples (Mei et al., 2018). To provide guarantees
even when σ is not strictly increasing, we opt to use a variant of the GLMtron algorithm
introduced by Kakade et al. (2011). The GLMtron algorithm performs gradient descent
using a “pseudogradient” for the empirical loss in which the derivative of σ is simply dropped:
θ(t+1) = θ(t) − 1

n ∑
n
i=1(σ(⟨θ(t), xi⟩) − yi)xi. Following the pseudogradient allows the algorithm

to efficiently provide prediction error guarantees even when σ is not strictly increasing, and
this is the starting point for our approach.

3.1. Algorithm and guarantees

Algorithm 1 is a natural extension of GLMtron to handle the vector-valued target variables
and matrix-valued parameters that arise in our dynamical system setting.

Algorithm 1 is closely related to projected gradient descent on the empirical square loss
L̂(Θ,Xn+1) ∶= 1

n ∑
n
t=1∥σ(Θxt) − xt+1∥2, but rather than following the gradient, the algorithm

5. There is no restriction on the range of the parameter W , but some of our sample complexity guarantees
depend on it polynomially.
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Algorithm 1 Parameter estimation for generalized linear systems

1: input: Single trajectory: Xn+1 = {xi}n+1
i=1 , Learning rate schedule: ηt.

2: initialize: Θ̂(1) = 0d×d.
3: Define M= {Θ ∈ Rd×d ∣ ∥Θ∥F ≤W}.
4: for t = 1, . . . ,m do
5: Θ̂(t+1) = ProjM(Θ̂(t) − ηtĜ(Θ̂(t),Xn+1)),

where Ĝ(Θ(t),Xn+1) ∶= 1
n ∑

n
i=1(σ(Θ(t)xi) − xi+1)x⊺i .

6: return: Θ̂ = Θ̂(m) (Option I), or Θ̂ = Θ̂(t) with t ∈ [m] uniform (Option II).

follows the pseudogradient Ĝ attained by dropping the link derivative σ′ from the gradient
(Line 5). This modification allows for prediction guarantees without assuming a lower bound
on the link function derivative, and allows for weaker dependence on the derivative lower
bound for parameter recovery guarantees. In particular, we show that the algorithm obtains
the best of both worlds in a certain sense. First, with only the assumption that the link
function is Lipschitz, the algorithm ensures that iterates have low prediction error on average.
Consequently, if we select an iterate uniformly at random (Option II in Algorithm 1), the
iterate will have low prediction error (a “slow rate” of type 1/√n) in expectation. On the
other hand, suppose the following assumption holds.

Assumption 4 There exists a constant ζ > 0 such that for all i, ∣σi(x) − σi(y)∣ ≥ ζ ∣x − y∣
for all x, y ∈ R.

In this case, the algorithm enjoys linear convergence, and taking the last iterate (Option I
in Algorithm 1) leads to a “fast” 1/n-type rate for prediction error, as well as a parameter
recovery guarantee.

To state the performance guarantee, we let E(Θ) ∶= 1
n ∑

n
i=1 ∥(σ(Θxi)−σ(Θ⋆xi))∥2 denote

the in-sample prediction error, and let EA denote expectation with respect to the algorithm’s
internal randomness (uniform selection of the iterate returned in Line 6 under Option II).

Theorem 6 Let δ > 0 be fixed and let Assumptions 1-3 hold. Whenever n ≥ cτ4d
1−ρ log (RK,ρ/δ + 1),

Algorithm 1 enjoys the following guarantees:

1. Slow rate. If ηt = 1
16RK,ρ

and m ≥ C0 ⋅
√
n, then with probability at least 1 − δ,

Algorithm 1 with Option II has

EA[E(Θ̂)] ≤ C1 ⋅
√

d2

n
log (4RK,ρ/δ + 1), (10)

where C0 ≤ c ⋅WB(τ2dRK,ρ log (4RK,ρ/δ + 1))−1/2 and C1 ≤ cτW
√

σmax(K)
1−ρ .

2. Fast rate. Suppose that Assumption 4 holds in addition to Assumptions 1-3. If ηt =
ζ2

(16RK,ρ)2 and m ≥ C2 ⋅ log (1 + nW 2B2

τ2RK,ρ
), then with probability at least 1− δ, Algorithm 1

with Option I has

E(Θ̂) ≤ C3 ⋅
d2

n
log (4RK,ρ/δ + 1), and ∥Θ̂ −Θ⋆∥2

F ≤ C4 ⋅
d2

n
log (4RK,ρ/δ + 1),

where C2 ≤ cB2ζ−4, C3 ≤ cτ2B2ζ−6 ⋅ σmax(K)
(1−ρ) and C4 ≤ cτ2ζ−4 ⋅ σmax(K)

(1−ρ) .
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Assumption 4 is satisfied for the so-called “leaky ReLU” reluβ(x) ∶= max{x,βx} with β > 0,
but not for the ReLU. Our next theorem shows that under stronger assumptions on the
noise process, the algorithm succeeds at parameter recovery for the ReLU as well. We make
the following assumption.

Assumption 5 The link function σ is the ReLU (σi(xi) = relu(xi) ∶= max{xi,0}) and the
noise process is Gaussian, with εi ∼ N(0, I).

The gaussian assumption ensures for any pair of parameters, sufficiently large probability
mass lies in the region where the ReLU is active. In particular, we use that for any pair
u, v ∈ Rd, Eε∼N(0,I)[(relu(⟨u, ε⟩) − relu(⟨v, ε⟩))2] ∝ ∥u − v∥2 (Lemma 18). Similar guarantees
can be established for log-concave distributions using arguments in Balcan and Long (2013),
but we consider only the gaussian case for simplicity.

Theorem 7 (Parameter recovery for the ReLU) Suppose assumptions Assumptions

1-3 and Assumption 5 hold. Let δ > 0 be fixed and suppose n ≥ c τ4d31−ρ log (RK,ρ/δ + 1). Then

when ηt = (16RK,ρ)−2e−4ρRK,ρ and m ≥ C0 ⋅ logn, Algorithm 1 with Option I guarantees

that with probability at least 1 − δ, ∥Θ̂ −Θ⋆∥2
F ≤ C1 ⋅ d

2

n ⋅ R2
K,ρ log2(2RK,ρn/δ + 1), where

C0 ≤ cB2e8ρRK,ρ and C1 ≤ cτW 2

(1−ρ)2 ⋅ e
8ρRK,ρ.

Let us discuss some key features of Theorem 6 and Theorem 7. First, in the fast rate regime

where Assumption 4 holds, Theorem 6 attains the usual parametric rate E∥Θ̂ −Θ⋆∥
F
≲
√

d2

n ,
which is optimal for this setting (Tsybakov, 2008). The algorithm is also linearly convergent
in this regime, and so the runtime to attain parameter recovery is nearly linear. On the other
hand, the dependence on problem-dependent parameters such as K and ρ in the results can
almost certainly be improved for all of the results. For example, while there are certainly
systems for which ∥xt∥ grows as 1

1−ρ , it is not clear whether exponential dependence on this
parameter in Theorem 7 is required for parameter recovery with the ReLU. More generally,

the factor eRK,ρ in Theorem 7 can be replaced with maxi e
∥µi∥2 , where µi is an upper bound

on the (conditional) expected value of xi at time i. Our analysis simply bounds ∥µi∥2 by
RK,ρ, and any improvements to this norm bound for systems of interest will immediately
lead to improved rates.

4. Discussion

We have shown that the exponential stability, in conjunction with Lyapunov arguments,
offers a simple approach to establishing isometry guarantees for data generated by nonlinear
dynamical systems, and we have provided efficient algorithms for learning and parameter
recovery in generalized linear systems. We hope that the analysis techniques introduced
here will find use beyond the generalized linear setting, as well as for end-to-end control.

Going forward, it will be interesting to draw further connections and build stronger
bridges between Lyapunov theory and empirical process theory for dependent data. For
example, what properties of data generated by dynamical systems can we use Lyapunov
functions to certify, going beyond lower and upper isometry?
Acknowledgements We thank Adam Klivans, Alexandre Megretski, and Karthik Sridha-
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