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Abstract001

Using language models to scalably approxi-002
mate human preferences on text quality (LLM-003
as-a-judge) has become a standard practice ap-004
plicable to many tasks. A judgment is often005
extracted from the judge’s textual output alone,006
typically with greedy decoding. However,007
LLM judges naturally provide distributions008
over judgment tokens, inviting a breadth of009
inference methods for extracting fine-grained010
preferences. We find that taking the mean of011
the judgment distribution consistently outper-012
forms taking the mode (i.e. greedy decoding)013
in all evaluation settings (i.e. pointwise, pair-014
wise, and listwise). We further explore novel015
methods of deriving preferences from judgment016
distributions, and find that methods incorporat-017
ing risk aversion often improve performance.018
Lastly, we analyze LLM-as-a-judge paired with019
chain-of-thought (CoT) prompting, showing020
that CoT can collapse the spread of the judg-021
ment distribution, often harming performance.022
Our findings show that leveraging distributional023
output improves LLM-as-a-judge, as opposed024
to using the text interface alone.025

1 Introduction026

LLM-as-a-judge has emerged as a scalable frame-027

work for evaluating model outputs by approximat-028

ing human annotation (Lin et al., 2024; Li et al.,029

2024b; Dubois et al., 2024). Typically, such sys-030

tems prompt off-the-shelf LLMs to score a re-031

sponse or rank multiple responses to a given user032

prompt. LLM-as-a-judge methods boast strong033

agreement with human judgments across a breadth034

of domains and criteria (Zheng et al., 2023b; Ye035

et al., 2023), despite current limitations (Koo et al.,036

2023; Tan et al., 2024).037

Most prior work involving LLM-as-a-judge elic-038

its judgments through the LLM’s text interface (Lin039

et al., 2024; Zhu et al., 2023; Ye et al., 2023), where040

the most likely token (i.e. the mode of the next to-041

ken distribution) or a sampled token is taken to042

represent the LLM’s judgment. Recent works (Lee 043

et al., 2024a; Liu et al., 2023b; Yasunaga et al., 044

2024) have suggested that taking the mean of the 045

score token distribution can better represent the 046

LLM’s judgment. In this work, we comprehen- 047

sively evaluate design choices for leveraging LLM 048

judges’ distributional output.1 049

We show that the mean consistently outperforms 050

the mode in the pointwise, pairwise, and listwise 051

settings (i.e. evaluating one, two, and many re- 052

sponses at a time). Specifically, the mean achieves 053

higher accuracy in 42 out of 48 cases on Re- 054

wardBench (Lambert et al., 2024) and MT-Bench 055

(Zheng et al., 2023b). We further explore novel 056

methods of deriving preferences from score distri- 057

butions (Section 4). For example, incorporating 058

risk aversion often improves performance. Cate- 059

gorizing methods as discrete or continuous, where 060

discrete methods (e.g. mode) are simple to interpret 061

like rubric scores, we find that continuous methods 062

outperform discrete methods, due to the latter often 063

predicting ties and failing to capture slight prefer- 064

ences. In particular, the mode assigns ties more 065

frequently than every other method, leading to the 066

lowest accuracy even among discrete methods. 067

We further study how chain-of-thought (CoT) 068

prompting (Wei et al., 2022) impacts the perfor- 069

mance of LLM-as-a-judge. After the CoT reason- 070

ing, LLMs often exhibit sharper score distributions, 071

making the mean judgment similar to the mode. 072

Removing CoT increases the spread of the judg- 073

ment distribution, often improving performance, 074

and more so for taking the mean than taking the 075

mode (e.g. absolute +6.5% for mean vs. +1.4% for 076

mode, on average with pointwise scoring on Re- 077

wardBench), demonstrating the synergy between 078

eliciting and using distributional output. 079

Our findings stress the importance of leveraging 080

1We provide implementations of the evaluated
methods at https://anonymous.4open.science/r/
distributional-judge-D756/README.md.
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Figure 1: Pointwise LLM judge’s logits produce a score distribution. We show two ways to compare two score
distributions: (1) comparing the modes of the distributions and (2) comparing the means of the distributions.

distributional output to maximize the effectiveness081

of LLM-as-a-judge, as opposed to using the text082

interface alone. As LLM-as-a-judge paradigms083

are widely adopted for complex tasks, improving084

best practices for using LLM-as-a-judge can impact085

many end tasks’ development and evaluation.086

2 Background087

2.1 LLM-as-a-Judge Settings088

We briefly review three settings for LLM-as-a-089

judge; see Appendix A for more background.090

Pointwise Scoring The LLM judge scores the091

two texts independently on a scale from 1 to some092

K, as shown in Figure 1 (Zheng et al., 2023b; Lin093

et al., 2024; Cui et al., 2023).094

Pairwise Scoring The LLM judge scores both095

texts in a single prompt (Zhu et al., 2023; Saha096

et al., 2023; Chan et al., 2023). To account for097

position bias, we prompt the LLM judge twice,098

once for each order of presentation, and average099

the outputs (Lee et al., 2024a).100

Pairwise Ranking The LLM judge states which101

of the two texts it prefers (Lin et al., 2024; Li et al.,102

2024b; Dubois et al., 2024). As with pairwise scor-103

ing, we prompt the LLM judge twice, once for each104

order of presentation.105

2.2 Related Work106

Mean Judgment Several prior works have used107

the mean of the judgment distribution, mostly in108

the pointwise setting. Liu et al. (2023b); Lee et al.109

(2024a); Saad-Falcon et al. (2024) note the bene-110

fits of the mean but do not empirically compare111

it with the mode. Zawistowski (2024), Hashemi112

et al. (2024), Lukasik et al. (2024) show that the113

mean outperforms the mode for summary scoring,114

dialogue scoring, and other regression tasks. Con- 115

current work (Yasunaga et al., 2024) shows that 116

the mean outperforms the mode on RewardBench 117

(Lambert et al., 2024), but the paper’s focus is on 118

data-efficient alignment. 119

Lee et al. (2024a); Zhai et al. (2024) use pairwise 120

judgment distributions to train a student model, but 121

do not empirically compare with distillation using 122

one-hot judgments. In this work, we benchmark 123

the mode, the mean, and newly proposed methods 124

for leveraging distributional judgments across the 125

pointwise, pairwise, and listwise settings. 126

CoT Zheng et al. (2023b) presented preliminary 127

evidence that CoT benefits LLM-as-a-judge. Other 128

LLM-as-a-judge systems have been proposed that 129

take advantage of LLMs’ ability to perform CoT 130

reasoning (Ankner et al., 2024; Feng et al., 2024). 131

On the other hand, Liu et al. (2024f) evaluate many 132

evaluation protocols and find that CoT can hurt per- 133

formance. However, their analysis assumes access 134

only to the judges’ text interface, not examining 135

the effect of CoT on the judgment distribution. In 136

this work, we analyze the interplay between CoT 137

and the inference method (e.g. mode vs. mean). 138

Related phenomena on the effect of CoT have 139

been studied in the literature (Chiang and Lee, 140

2023; Stureborg et al., 2024; Liu et al., 2024a; Lee 141

et al., 2023; Sprague et al., 2024; Hao et al., 2024; 142

Zheng et al., 2023b). Wang and Zhou (2024) show 143

the sharpening effect of CoT, which improves per- 144

formance on numerical reasoning tasks. In this 145

work, we show that this sharpening effect can be 146

harmful when the LLM is used as a judge. 147

Distributional Reward Models Using distribu- 148

tional judgment makes it possible for LLM judges 149

to represent pluralistically aligned preferences 150

(Sorensen et al., 2024; Siththaranjan et al., 2023; 151

Kumar et al., 2024). Compared to existing work on 152
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distributional reward models (Siththaranjan et al.,153

2023; Zhang et al., 2024b; Li et al., 2024a; Dorka,154

2024; Poddar et al., 2024; Padmakumar et al.,155

2024), (1) our setting involves LLMs not trained156

or prompted for distributional judgment (Meister157

et al., 2024), and (2) LLM judges can produce ar-158

bitrary distributions over a flexibly chosen discrete159

judgment space.160

3 Distributional Judgment161

In this section, we present our findings comparing162

mode vs. mean inference and CoT vs. no-CoT163

prompting for LLM-as-a-judge systems.164

3.1 Methods165

To infer a judgment from the LLM’s output distri-166

bution, we use the mode or the mean. With mode,167

we perform greedy decoding to produce a judgment168

token and discard the logits. With mean, we com-169

pute a weighted average of the judgment options,170

weighting each judgment option by the probability171

assigned to its token. See Appendix B for details.172

3.2 Experimental Setup173

Models As LLM judges, we use gpt-4o-2024-08-174

06 (shortened to GPT-4o) (OpenAI et al., 2024),175

Llama-3.1-8B-Instruct (Llama-3.1-8B) (Dubey176

et al., 2024), Mistral-7B-Instruct-v0.3 (Mistral-7B)177

(Jiang et al., 2023), and Prometheus-2-7B (Kim178

et al., 2024). We cover a commonly used closed-179

source LLM2 (GPT-4o), as well as smaller open-180

source variants.181

Inference Settings We prompt the LLM judge182

with or without CoT reasoning, i.e. to provide183

a brief explanation before stating the judgment.184

We use greedy decoding for CoT prompting. See185

Appendix C for prompts.186

We softmax the judgment logits into judgment187

probabilities with temperature 1. We use the score188

space {1, . . . ,K = 9} in this section.189

Evaluation Datasets and Metrics We evaluate190

on RewardBench (Lambert et al., 2024) and MT-191

Bench (Zheng et al., 2023b), two canonical datasets192

for preference modeling with human annotations.193

Each data instance contains a prompt, a preferred194

response, and a dispreferred response.195

2Many proprietary LLMs such as Google Gemini and An-
thropic Claude do not provide logit access, preventing us from
including them in our experiments. In Appendix E.1, we
provide partial results for DeepSeek-V3, whose trends match
those of GPT-4o.

Model Setting Method Reward MT-BenchBench

G
PT

-4
o

point score mode 85.1, 84.0 81.9, 80.5
mean 87.4, 88.0 83.6, 83.2

pair score mode 86.7, 87.4 86.2, 86.5
mean 87.1, 87.6 86.3, 86.8

pair rank mode 88.4, 89.7 86.3, 85.6
mean 88.6, 90.5 87.3, 85.9

L
la

m
a

-3
.1

-8
B

point score mode 69.6, 72.2 74.9, 71.9
mean 72.7, 79.3 78.7, 81.5

pair score mode 71.7, 75.2 82.6, 82.4
mean 72.1, 76.8 82.3, 81.2

pair rank mode 68.9, 58.9 76.2, 63.0
mean 74.2, 68.6 80.0, 76.5

M
is

tr
al

-7
B point score mode 60.4, 62.7 59.5, 66.2

mean 63.8, 72.1 62.6, 74.0

pair score mode 67.3, 68.9 79.3, 79.8
mean 68.1, 71.0 80.0, 80.4

pair rank mode 56.3, 53.8 51.5, 51.5
mean 63.9, 59.1 73.5, 65.5

Pr
om

et
he

us
-2

-7
B

point score mode 64.3, 66.0 72.5, 73.5
mean 64.6, 75.2 72.1, 81.6

pair score mode 71.0, 68.7 78.4, 80.8
mean 70.5, 70.8 78.3, 80.9

pair rank mode 59.6, 48.2 51.5, 43.0
mean 69.7, 48.8 75.4, 33.4

Table 1: Mode vs. mean and CoT vs. no-CoT
(comma-separated) accuracy results (%). For each base
model+setting, we bold the best result and underline
results not significantly worse (α = 0.05). The mean
outperforms the mode in 42 out of 48 cases. No-CoT
outperforms CoT in 14 out of 16 cases when using the
mean for pointwise or pairwise scoring.

We evaluate accuracy on the binary classifica- 196

tion task; predicting the correct winner, a tie, or the 197

wrong winner gets 1, 0.5, or 0 points, respectively 198

(Lambert et al., 2024). RewardBench contains 199

2,985 (prompt, response 1, response 2) triplets, 200

each labeled with the preferred response. Since MT- 201

Bench has multiple human judgments per triplet, 202

we compute accuracy using only triplets with unan- 203

imous human judgments (1,132 out of 1,814). See 204

Appendix D for dataset details. 205

3.3 Results 206

Table 1 shows our main results, comparing mode vs. 207

mean and CoT vs. no-CoT across various prompt 208

settings and LLMs. 209

Mean outperforms mode The mean outper- 210

forms the mode in 42 out of 48 cases. In Table 10, 211

we provide a subset breakdown of RewardBench 212

and observe particularly large gains for pointwise 213

scoring on the Reasoning subset. 214

CoT often harms LLM-as-a-judge For the scor- 215

ing settings, no-CoT outperforms CoT in 14 out of 216

3



Model Setting RewardBench MT-Bench

GPT-4o
point score .039, .103 .041, .116
pair score .042, .066 .038, .064
pair rank .002, .065 .012, .114

Llama
-3.1-8B

point score .060, .101 .068, .093
pair score .054, .106 .047, .092
pair rank .215, .318 .186, .331

Table 2: Average standard deviation of judgment dis-
tribution, with judgment options rescaled to [0, 1].
Comma-separated values in each cell are with and with-
out CoT. No-CoT always has a greater standard devia-
tion.

16 cases when using the mean. For the pairwise217

ranking setting, CoT outperforms no-CoT, except218

with GPT-4o on RewardBench.219

We interpret the harmful effect of CoT on point-220

wise scoring with the smaller models as being due221

to sharpening, whereby the initial entropy in the222

judgment is lost as the model commits to one in-223

stantiation of a reasoning trace (Wang and Zhou,224

2024). Table 2 confirms this trend by showing that225

the standard deviation of judgment distributions is226

lower for CoT than no-CoT. Moreover, removing227

CoT benefits the mean more than the mode (e.g.228

69.6→72.2 for mode vs. 72.7→79.3 for mean, with229

Llama-3.1-8B on RewardBench), revealing the syn-230

ergy between eliciting and utilizing distributional231

judgment.232

Which setting works the best? Comparing dif-233

ferent LLMs, we find GPT-4o performs better with234

pairwise judgment (e.g. 88.0 for pointwise scoring235

vs. 90.5 for pairwise ranking on RewardBench)236

as in prior work, but the smaller models often do237

better with pointwise judgment and rely heavily on238

CoT for pairwise ranking (e.g. with Prometheus-2-239

7B on MT-Bench, 75.4→33.4 when removing CoT240

from pairwise ranking, compared to 81.6 with no-241

CoT pointwise scoring). We believe this is because242

pairwise judgment demands a more powerful judge243

to leverage the context. Thus, in pairwise ranking244

with the smaller models, the reasoning gained by245

CoT often outweighs the distributional signal lost246

in the process. Nonetheless, using pairwise scoring247

(where assigning individual scores can be viewed248

as an intermediate reasoning step) rather than pair-249

wise ranking can eliminate the need for CoT, and250

we recover much of the gap on RewardBench, and251

match or exceed pointwise performance on MT-252

Bench.253

4 Study on Pointwise Scoring 254

Beyond the mode and mean discussed in prior work 255

and the previous section, we further explore the 256

design space of utilizing distributional output from 257

LLM scorers. 258

Discrete vs. Continuous We say a method is 259

discrete if it compares two score distributions by 260

their independently assigned scores that take values 261

in {1, . . . ,K}. Otherwise, we say it is continuous. 262

Discrete scores are often desirable for interpretabil- 263

ity (e.g. simple rubrics) but, by the pigeonhole 264

principle, can often result in tied comparisons and 265

fail to capture slight preferences. 266

Additional Metric: Mean Squared Error For 267

our further analysis, we report mean squared error 268

(MSE) in addition to accuracy. For target labels in 269

{0, 1} (a unanimously preferred response), MSE is 270

equivalent to the Brier score. Accuracy incentivizes 271

predicting a winner instead of a tie as long as oracle 272

confidence is over 50%. In contrast, expected MSE 273

is optimized by exactly predicting the oracle con- 274

fidence, thus serving as a measure of a method’s 275

calibration given the judge’s distributional output. 276

On MT-Bench, we generalize the label space 277

to [0, 1] by averaging the human judgments, thus 278

allowing us to evaluate MSE on the full dataset. 279

In Appendix F.1, we analyze alignment between 280

the judgment distributions of LLMs and those of 281

humans (as opposed to the average or majority 282

vote). 283

4.1 Methods 284

Table 3 lists our extended methods for comparing 285

two score distributions. We motivate the newly 286

introduced methods below and provide details in 287

Appendix B.1. 288

Users often prefer discrete methods (e.g. mode) 289

because they are simple to interpret, even if they 290

have lower accuracy than continuous methods (e.g. 291

mean). This motivates the question of where the 292

mode (the status quo method) ranks among discrete 293

methods. To answer this question, we compare the 294

mode to other discrete methods: rounded mean, 295

median, and first percentile (discussed in the next 296

paragraph). 297

Humans exhibit risk aversion when making de- 298

cisions. They often disprefer negative outcomes 299

more strongly than they prefer positive outcomes. 300

However, this disposition is not captured by the 301

measures of central tendency discussed so far. 302
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Name Description Definition of NAME(X1, X2) ∈ [−1, 1] Discrete or
(higher says X1 is better, lower says X2 is better) Continuous

MODE Mode sgn(r1 − r2) with ri = argmaxk P (Xi = k) Discrete

MEAN Mean
E(X1 −X2)

E|X1 −X2|+ σ(X1 −X2)
Continuous

[MEAN] Rounded mean sgn(r1 − r2) with ri = argmink |EXi − k| Discrete
MEDI Median sgn(r1 − r2) with ri = QXi(0.5) Discrete

1P 1st percentile sgn(r1 − r2) with ri = QXi(0.01) Discrete
RAM Risk-averse mean MEAN(X1 − σ−(X1), X2 − σ−(X2)) Continuous

QT Quantiles
∫ 1

0
sgn(QX1(p)−QX2(p)) dp Continuous

PS Probability of superiority P (X1 > X2)− P (X1 < X2) Continuous

Table 3: Methods of comparing two score distributions X1, X2 over K score options. sgn is the sign function.
QX(p) denotes the value at the p-quantile. σ(X) denotes the standard deviation; σ−(X) =

√
E[max(EX −X, 0)2]

denotes the lower semi-deviation, a risk measure (Bond and Satchell, 2002).

Model Method RewardBench MT-Bench

Acc ↑ MSE ↓ Acc ↑ MSE ↓

GPT-4o

MODE 84.0 .118 80.5 .145
MEAN 88.0 .102 83.2 .097

[MEAN] 85.2 .109 80.2 .146
MEDI 84.6 .112 80.2 .142

1P 84.3 .116 81.0 .138
RAM 88.4 .100 83.4 .096

QT 87.9 .096 83.2 .118
PS 87.8 .096 83.3 .103

Llama
-3.1-8B

MODE 72.2 .192 71.9 .142
MEAN 79.3 .155 81.5 .104

[MEAN] 75.0 .186 75.0 .145
MEDI 73.6 .191 73.9 .142

1P 76.0 .183 79.2 .147
RAM 79.9 .152 81.4 .102

QT 79.0 .164 81.1 .116
PS 78.9 .161 81.4 .110

Table 4: Pointwise results over methods. No-CoT (see
Table 11 for CoT). Text styling follows Table 1.

Thus, we investigate whether incorporating the hu-303

man disposition of risk aversion into LLM-as-a-304

judge inference methods improves alignment with305

human preferences. The methods 1P (discrete) and306

RAM (continuous) reflect risk aversion. 1P takes an307

approach contrary to MODE; instead of focusing on308

where the most mass lies, 1P assigns a low score309

if there is even a 1% chance of such a low score310

(Siththaranjan et al., 2023). RAM is MEAN but with311

each distribution shifted down by its risk σ−.312

We have used MODE to represent the status313

quo LLM-as-a-judge inference method, which uses314

greedy decoding to obtain a judgment token. How-315

ever, some prior works use a positive temperature,316

e.g. to obtain varied CoT chains (Zhang et al.,317

2024a), in which case a sampled judgment token is318

decoded rather than the mode. To account for the319

random nature of sampling, we design the method320

PS as the difference in winrates over repeated pairs321

of samples from the LLM judge (Siththaranjan 322

et al., 2023). QT generalizes MEDI and 1P by aver- 323

aging the comparisons over all quantiles, and can 324

be viewed as PS but with X1 and X2 positively 325

monotonically correlated. 326

4.2 Results 327

Main Takeaways 328

• Table 4 shows that the top pointwise methods 329

are the continuous ones (MEAN, RAM, QT, PS), 330

in both accuracy and MSE, indicating that they 331

should be chosen over discrete methods. 332

• Even among discrete methods, MODE has the 333

lowest accuracy in 3 out of the 4 cases, indicating 334

that the mode is a suboptimal choice even if 335

discrete scores are desired. 336

• 1P often outperforms MEDI (e.g. 79.2 vs 73.9 337

accuracy with Llama-3.1-8B on MT-Bench), and 338

RAM slightly outperforms MEAN (e.g. 79.9 vs. 339

79.3 accuracy with Llama-3.1-8B on Reward- 340

Bench), suggesting that risk aversion can be help- 341

ful for preference modeling. 342

Study: Score Granularity and Ties We show 343

here that ties explain the finding above that the dis- 344

crete methods fall behind the continuous ones, and 345

we experiment with score granularity as a remedy. 346

Table 5 shows that the discrete methods predict 347

ties on a significant number of instances, on which 348

MEAN is still able to achieve nontrivial accuracy. 349

On the other hand, we find that on instances where 350

a discrete method does not predict a tie, it has simi- 351

lar accuracy to MEAN (not shown; see Table 12), in- 352

dicating that the performance gap is well explained 353

by ties. Nonetheless, tie behavior varies by method; 354

MODE has the most ties and the highest MEAN ac- 355
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mode, as the former aggregates at the distribution level while the latter aggregates at the text level (if mode is used).

Model Method Tie rate MEAN’s accuracy

K = 9 K = 99 K = 9 K = 99

GPT-4o

MODE .17 .20 72 73
[MEAN] .16 .03 67 53

MEDI .17 .09 70 62
1P .16 .08 66 60

Llama
-3.1-8B

MODE .35 .24 69 70
[MEAN] .26 .07 64 61

MEDI .29 .11 67 67
1P .23 .08 65 57

Table 5: Tie analysis for discrete pointwise methods on
RewardBench using no-CoT (see Table 12 for CoT and
Table 13 for MT-Bench). We report results with two
score granularity levels (K). Tie rate is the proportion
of instances where the method predicts a tie, over which
we report MEAN’s accuracy (%); excess of 50% or 75%
indicates room for improving accuracy or MSE, respec-
tively.

curacy, amounting to the most untapped signal for356

determining the better response.357

Table 5 further shows that granularizing the358

score space from K = 9 to K = 99 improves359

the expressivity of the discrete methods (except for360

MODE), drastically reducing the rate of ties, while361

MEAN accuracies remain similar or decrease.362

Table 6 expands on the comparison between363

K = 99 and K = 9, reporting results from the364

same setting in Table 4 except for the granularity365

scale. Consistent with our motivation, the discrete366

methods (except for MODE) improve in accuracy,367

rivaling the continuous methods. Although MODE368

somewhat makes up for its low accuracy with a369

lower MSE than most other discrete methods on370

MT-Bench, it suffers the highest MSE on Reward-371

Bench.372

Taken together, Tables 4-6 show that even in use373

cases where discrete scores are desired, one should374

consider alternatives to the mode.375

Method RewardBench MT-Bench

Acc ↑ MSE ↓ Acc ↑ MSE ↓

G
PT

-4
o

MODE 81.7–2.3 .134+.016 78.4–2.1 .158+.013
MEAN 86.7–1.3 .108+.006 82.9–0.3 .099+.002

[MEAN] 86.5+1.3 .127+.018 82.7+2.5 .182+.036
MEDI 85.2+0.6 .126+.014 81.5+1.3 .170+.028

1P 86.4+2.1 .116+.000 82.7+1.7 .165+.027
RAM 86.7–1.7 .104+.004 83.0–0.4 .098+.002

QT 86.6–1.3 .114+.018 82.7–0.5 .147+.029
PS 86.6–1.2 .105+.009 82.4–0.9 .107+.004

L
la

m
a-

3.
1-

8B

MODE 72.0–0.2 .221+.029 75.1+3.2 .169+.027
MEAN 79.3+0.0 .156+.001 81.3–0.2 .103–.001

[MEAN] 78.5+3.5 .198+.012 80.7+5.7 .180+.035
MEDI 76.5+2.9 .207+.016 80.1+6.2 .161+.019

1P 78.5+2.5 .195+.012 81.5+2.3 .177+.030
RAM 79.7–0.2 .152+.000 81.1–0.3 .102+.000

QT 78.7–0.3 .177+.013 81.3+0.2 .143+.027
PS 78.6–0.3 .163+.002 81.8+0.4 .111+.001

Table 6: Pointwise results over methods (K = 99). No-
CoT (see Table 14 for CoT). Subscripts denote change
from K = 9 (Table 4). Text styling follows Table 1.

Sensitivity to Score Granularity In Appendix 376

F.2, we analyze the sensitivity of different methods 377

to score granularity, and find theoretically and em- 378

pirically that the mode is the most sensitive method. 379

5 Study on Pairwise Ranking 380

The judgment styles in Section 3’s overview were 381

scoring (Section 4) and ranking. In this section, we 382

analyze design decisions for pairwise ranking, and 383

in Section 6 listwise ranking. 384

5.1 Design Decisions 385

As we explain below, the pairwise ranking exper- 386

iments in Table 1 used Likert-2, post-aggregation 387

for the mode, and pre-aggregation for the mean. 388

We now consider alternative choices (see Appendix 389

B.2.2 for details). 390
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Center
Agg.
Time

RewardBench MT-Bench

Acc ↑ MSE ↓ Acc ↑ MSE ↓

mode post 56.7 .240 57.5 .192
pre 73.1 .265 78.1 .222

median post 56.8 .240 57.5 .192
pre 72.9 .261 78.0 .218

mean post 73.2 .207 78.2 .144
pre 73.2 .222 78.1 .155

Table 7: Pairwise ranking results over methods using
Likert-3 comparing pre- and post-aggregation. All meth-
ods use Llama-3.1-8B, CoT (see Table 15 for GPT-4o
and no-CoT). Text styling follows Table 1.

K
RewardBench MT-Bench

Acc ↑ MSE ↓ Acc ↑ MSE ↓

2 74.2, 68.6 .187, .214 80.0, 76.5 .126, .135
3 73.2, 66.3 .222, .240 78.1, 70.8 .155, .155
5 70.0, 58.5 .215, .234 77.1, 64.8 .142, .153

Table 8: Pairwise ranking results over Likert-K scales,
using pre-aggregation mean. Llama-3.1-8B, CoT (see
Table 16 for GPT-4o and no-CoT). Text styling follows
Table 1.

Timing of aggregation and measure of central391

tendency Pairwise judgment suffers from posi-392

tion bias, i.e. the LLM judge’s sensitivity to the393

order in which the evaluated texts are presented,394

which is usually addressed by prompting the LLM395

judge twice, once for each order of presentation396

(Lee et al., 2024a). We examine the remaining397

question of whether to aggregate the two judgments398

before or after computing the measure of central399

tendency (mode, median, or mean), as shown in400

Figure 2. Pre- vs. post-aggregation can be likened401

to mean vs. mode, as the former aggregates at the402

distribution level while the latter aggregates at the403

text level (if mode is used).404

Granularity We prompt the judge to express405

its preference on a K-point Likert scale: [>,<]406

(Likert-2), [>,=, <] (Likert-3), or [≫, >,=, <,≪407

] (Likert-5) (Liu et al., 2024b).408

5.2 Methods Results409

Table 7 shows that accuracy depends little on the410

measure of central tendency and mostly on when411

we aggregate, with aggregating first leading to412

higher accuracy (as much as 56.7→73.1 using the413

mode on RewardBench). Considering that the tim-414

ing of aggregation does not affect accuracy if the415

two runs agree, this shows that even for inconsis-416

tent judgments caused by position bias, there is417

still valuable signal in the relative magnitudes of 418

preference that we can leverage by aggregating 419

first. 420

On the other hand, an intuitive explanation for 421

why the measure of central tendency has little effect 422

on accuracy is that the judgment space is small, so 423

there is high correlation between the signs of the 424

measures of central tendency. In fact, they are 425

equivalent in the pre-aggregation Likert-2 setting. 426

Although aggregating first improves accuracy, it 427

harms MSE for mode and median, which we at- 428

tribute to the volatile prediction of a binary winner 429

when faced with the uncertain situation of posi- 430

tional inconsistency. Nevertheless, the mean (with 431

either pre- or post-aggregation) is among the top 432

accuracy methods while outperforming all other 433

methods on MSE. This demonstrates the calibra- 434

tion benefit of using the judgment distribution to 435

produce a continuous prediction. 436

With GPT-4o (not shown; see Tables 15, 16), 437

MSE is always minimized with no-CoT, highlight- 438

ing the discord between CoT’s sharpening effect 439

and calibration. In Appendix F.3, we further ana- 440

lyze position bias and find that CoT increases the 441

occurrence of severe position bias. 442

5.3 Granularity Results 443

Table 8 compares the Likert scales used in the pair- 444

wise ranking prompt. We find that Likert-2 per- 445

forms the best overall, in line with the AlpacaEval 446

methodology (Dubois et al., 2024) but deviating 447

from WB-Reward and Arena-Hard-Auto (Lin et al., 448

2024; Li et al., 2024b), which use Likert-5. 449

6 Listwise Judgment 450

Listwise judgment is not as prevalent as pointwise 451

or pairwise judgment, but it offers efficiency (Zhu 452

et al., 2024) while granting the judge the maximal 453

context for comparison (Buyl et al., 2023). 454

6.1 Judgment Spaces and Methods 455

We consider two prompts for eliciting listwise pref- 456

erences over N texts (Appendix C.4). Prompt 1 457

is the one proposed by Zhu et al. (2024), which 458

prompts to produce all
(
N
2

)
pairwise preferences 459

and then aggregate them into a sorted list. Prompt 460

2 skips the intermediate pairwise step and asks to 461

directly produce the list (Liu et al., 2023a; Qin 462

et al., 2023). We can then extract all pairwise3 463

3We retain the pairwise evaluation setup from previous
sections; see Appendix D.1 for discussion.

7



preferences from one of the following judgment464

spaces using the mode (textual output) or the mean465

(distributional output).466

• INTERM (Prompt 1): Intermediate pairwise pref-467

erences (Likert-3, no-CoT, only one of the two468

presentation orders), which we view as the rea-469

soning process leading to the list. This efficiently470

extends pairwise ranking to the listwise setting,471

similar to batch prompting (Cheng et al., 2023).472

• LIST (Prompt 1): Final list. For MEAN, we use473

the probability distribution over text identifiers474

at each rank, inspired by Zhuang et al. (2023);475

Reddy et al. (2024). Specifically, at rank r, de-476

note pr(i) as the probability of decoding text477

(identifier) i. Decoding text i at rank r implies478

that any text j not yet decoded will be decoded at479

a later rank and is thus worse than text i, and vice480

versa. Hence, we define MEAN(i, j) ∈ [0, 1] as481

the average of pr(i)
pr(i)+pr(j)

over the ranks r until482

i or j is decoded.483

• DIRECT LIST (Prompt 2): LIST but with Prompt484

2 (no intermediate pairwise step).485

6.2 Experimental Setup486

Models Due to the context length required for487

listwise ranking and the difficulty of the task, we488

limit our evaluation to GPT-4o. In preliminary489

experiments, we found poor performance with the490

smaller models, but in Appendix E.1 we show that491

DeepSeek-V3 exhibits similar trends to GPT-4o.492

Datasets We evaluate on Nectar (Zhu et al.,493

2024), RM-Bench (Liu et al., 2024c), and MT-494

Bench (Zheng et al., 2023b).495

From Nectar, we use a random subset of 1,000496

prompts, each with 7 responses. We discard the497

GPT-4 judgments included in the dataset and col-498

lect our own silver labels using GPT-4o with pair-499

wise ranking (Likert-5, no-CoT, pre-aggregation,500

mean). RM-Bench contains 1,327 prompts, each501

with 3 chosen and 3 rejected responses, yielding502

9 pairwise preference labels. MT-Bench contains503

160 prompts, each with 6 responses. See Appendix504

D for dataset details.505

6.3 Results506

Table 9 compares mode and mean in the listwise507

judgment spaces. The two methods have similar508

accuracy, but the mean has much lower MSE.509

We find DIRECT LIST to be the most accurate510

judgment space (notably, outperforming pointwise511

Space Method Nectar RM-Bench MT-Bench

Acc MSE Acc MSE Acc MSE

interm mode 80.4 .155 62.1 .339 80.8 .201
mean 80.4 .048 62.5 .243 80.7 .121

list mode 82.2 .156 62.4 .376 83.7 .189
mean 82.0 .105 61.7 .317 83.5 .157

direct list mode 86.1 .138 69.9 .301 86.8 .168
mean 86.4 .087 69.4 .267 85.9 .133

Table 9: Listwise results (GPT-4o). Text styling follows
Table 1.

scoring on MT-Bench; see Table 4), while INTERM 512

has the lowest MSE. We hypothesize that DIRECT 513

LIST outperforms LIST due to the intermediate pair- 514

wise comparisons playing a similar role to CoT in 515

the pointwise and pairwise settings, where distri- 516

butional output is captured most intactly without it. 517

Even so, in Appendix F.3 we find DIRECT LIST to 518

suffer the most position bias, consistent with Zhu 519

et al. (2024), while INTERM has the least. 520

7 Conclusion and Recommendations 521

We comprehensively evaluated design choices for 522

leveraging LLM judges’ distributional output. For 523

pointwise scoring, we showed that continuous 524

methods (e.g. mean) outperform discrete meth- 525

ods (especially the mode) due to ties. For pairwise 526

ranking, we related the mean vs. mode comparison 527

to pre- vs. post-aggregation of the two presentation 528

orders’ judgments. Although smaller LLM judges 529

suffer heavily from inconsistent judgments due to 530

position bias, pre-aggregation effectively leverages 531

the relative magnitudes of preference. 532

We showed that CoT collapses the spread of the 533

judgment distribution, often hurting performance. 534

This applies even to the challenging setting of list- 535

wise ranking, where accuracy was maximized by 536

directly predicting the list without an intermediate 537

pairwise step. We hope that highlighting this limi- 538

tation of CoT encourages the development of rea- 539

soning mechanisms that preserve output diversity 540

and calibration for judgment and other subjective 541

or open-ended tasks. 542

Recommendations We summarize our findings 543

into guidelines for choosing judgment settings. 544

Large judges like GPT-4o should use pairwise rank- 545

ing no-CoT, or direct listwise ranking as an effi- 546

cient alternative. Smaller judges like Llama-3.1-8B 547

should use pointwise scoring no-CoT. The mean 548

should be used instead of the mode, but these set- 549

ting guidelines apply even if one uses the mode. 550
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Limitations551

Downstream Performance In this paper, we552

evaluate LLM-as-a-judge design decisions by their553

performance on preference modeling datasets.554

However, this setup may not reveal downstream555

impacts. We do not explore the impact of distribu-556

tional judgments on reinforcement learning from557

AI feedback (RLAIF) (Lee et al., 2024a) or human558

decision making.559

Training Our experiments involve off-the-shelf560

LLMs as judges without specific tuning. We do561

not explore training LLM judges to express dis-562

tributional judgments (Saad-Falcon et al., 2024).563

Similarly, we exclude distributional reward models564

(Dorka, 2024) from the scope of our study.565

CoT We conclude from our results that CoT of-566

ten hurts judgment performance. However, we567

only consider one prompt design per setting for568

eliciting CoT reasoning (Appendix C) and do not569

perform prompt optimization. Furthermore, we do570

not consider more extensive test-time scaling, such571

as asking the judge to produce its own reference572

response (Zheng et al., 2023b) or aggregating many573

CoT judgment runs (Zhang et al., 2024a; Stureborg574

et al., 2024).575

Natural Language Judgments A valuable as-576

pect of LLM-as-a-judge is its ability to augment577

judgments with interpretable rationales (Mahan578

et al., 2024; Byun et al., 2024; Ye et al., 2024b;579

Cao et al., 2024). However, the distributional judg-580

ments we consider here are limited to those that are581

easily quantifiable, and we do not propose methods582

for leveraging distributional output over natural lan-583

guage feedback. While it is possible to continue de-584

coding a rationale after the judgment, the rationale585

will be conditioned on the decoded judgment and586

not reflect the distribution over the unchosen judg-587

ment options. One approach could be to decode588

several rationales, each conditioned on a different589

judgment option.590
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A Related Work: LLM-as-a-judge1014

Settings1015

LLM-as-a-judge has been used in pointwise (evalu-1016

ating one response at a time), pairwise (two), and1017

listwise (many) settings.1018

Pairwise judgment has the advantage of ground-1019

ing each evaluated response in the other, creating1020

for a more calibrated task and leading to better1021

agreement with humans (Liusie et al., 2023). How-1022

ever, due to intransitivity in pairwise preferences1023

(Liu et al., 2024e), the cost to sort N texts is O(N2)1024

rather than O(N logN), compared to O(N) in the1025

pointwise setting. In addition, pairwise compar-1026

isons are susceptible to position bias (Shi et al.,1027

2024), which often must be addressed by running1028

both orders and aggregating the results (Zeng et al.,1029

2023; Li et al., 2024b). Pairwise comparisons have1030

also been shown to be more biased toward superfi-1031

cial traits such as verbosity and tone, in both LLM1032

and human judges (Payne, 1976; Jeong et al., 2024), 1033

although pointwise scoring more easily falls victim 1034

to adversarial responses (Raina et al., 2024). 1035

The listwise setting provides the maximal 1036

amount of context to the judge while keeping the 1037

same compute complexity as the pointwise setting. 1038

However, the judgment task becomes much more 1039

challenging (Qin et al., 2023; Koo et al., 2023), 1040

especially due to the amplified position bias (Zhu 1041

et al., 2024), and the combinatorially many orders 1042

makes it severely more daunting to address than 1043

in the pairwise case (Tang et al., 2023; Qin et al., 1044

2024). To mitigate position bias, Zhu et al. (2024) 1045

leverage intermediate pairwise preferences for ag- 1046

gregation into a sorted list. Zhuang et al. (2023); 1047

Reddy et al. (2024) use the distribution from a sin- 1048

gle output token for listwise passage reranking, a 1049

related task to LLM-as-a-judge. 1050

B Methods 1051

Let A1 and A2 be two texts to compare. We de- 1052

scribe the methods of predicting a value in [−1, 1] 1053

that signifies the advantage of A1 over A2. For 1054

accuracy, we take the sign of the prediction. For 1055

MSE, we rescale predictions from [−1, 1] to [0, 1]. 1056

The prompts for the various settings are in Ap- 1057

pendix C. 1058

B.1 Pointwise Methods 1059

We elaborate on the pointwise methods introduced 1060

in Section 4.1. The LLM judge independently 1061

judges A1 and A2, producing score distributions 1062

over {1, . . . ,K} for an integer K that define inde- 1063

pendent random variables X1 and X2, which are 1064

used to compare A1 and A2. 1065

The methods are invariant to scaling and trans- 1066

lating the judgment space, and all methods that do 1067

not take expectations E (which assumes linearity) 1068

are invariant to applying a positive monotone trans- 1069

formation to the judgment space. The methods are 1070

all equivalent if the distributions are determinis- 1071

tic, thus our experiments evaluate their ability to 1072

leverage the LLM judge’s distributional output. 1073

The denominator in MEAN normalizes it into 1074

[−1, 1], similar to sgn(x) = x
|x| , taking 0

0 to be 1075

0. The σ term lowers the magnitude of the predic- 1076

tion in the presence of uncertainty in a continuous 1077

manner. Specifically, let k, k′ ∈ {1, . . . ,K} with 1078

k ̸= k′. For ϵ ∈ [0, 1], let X1 have a two-point 1079

distribution (1− ϵ)δk + ϵδk′ and let X2 have a de- 1080

terministic distribution δk. Then MEAN(X1, X2) 1081
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as a function of ϵ is continuous at ϵ = 0.1082

For MEAN, RAM, and PS, we assume X1 and1083

X2 to be independent, but QT can be viewed as PS1084

but with X1 and X2 positively monotonically cor-1085

related. By incorporating the sign function, QT and1086

PS are less sensitive to extremal values than MEAN.1087

In addition, QT and PS can model intransitive pref-1088

erences, e.g. PS(X1, X2), PS(X2, X3) > 0 ⇏1089

PS(X1, X3) > 0, which we analyze in Appendix1090

F.4.1091

B.2 Pairwise Methods1092

In the pairwise setting, we consider two prompting1093

approaches for jointly evaluating the two texts A11094

and A2: scoring both texts (§B.2.1) and expressing1095

a preference (§B.2.2).1096

To account for position bias, we prompt the LLM1097

judge once for each order of presentation. For an1098

order o ∈ O := {(1, 2), (2, 1)}, we use o to denote1099

dependence on the order (Ao1 , Ao2) in which the1100

texts appear in the prompt.1101

B.2.1 Pairwise Scoring1102

For a given order o, the LLM judge scores the two1103

texts jointly in the same run. If we could obtain1104

the joint distribution P (Xo
o1 , X

o
o2), we could com-1105

pute the marginals and use any method in Table1106

3. However, the judge first outputs the score for1107

Ao1 and conditions on it when outputting the score1108

for Ao2 , i.e. Xo
o1 and Xo

o2 are not independent.1109

Thus, the full joint distribution P (xo1 , xo2) =1110

P (xo1)P (xo2 | xo1) can only be obtained by in-1111

jecting each xo1 ∈ {1, . . . ,K} into the context to1112

access P (xo2 | xo1). This is feasible with local1113

models but not with API-access models where in-1114

ference cost scales with K. Hence, we stick to a1115

single run and condition on the greedily decoded1116

xo1 = argmaxk P (Xo
o1 = k), giving us1117

Xo
∆

d
= (Xo

1 −Xo
2 ) | (Xo

o1 = xo1)1118

as a proxy for the score difference Xo
1 −Xo

2 . Se-1119

mantically, Xo
∆ is symmetric (i.e. there should be1120

no prior preference for A1 or A2), so we would like1121

our scalar judgment to be some measure of central1122

tendency (mode, median, or mean). As shown in1123

Figure 2, we also have the choice of whether to1124

aggregate the judgments from the two orders of1125

presentation before or after computing the measure1126

of central tendency.1127

For pre-aggregation, we simply take the mixture1128

distribution, 1129

P (X∆ = δ) :=
1

|O|
∑
o∈O

P (Xo
∆ = δ) 1130

for all δ ∈ {−(K − 1), . . . ,K − 1}, leaving more 1131

sophisticated approaches such as the convolution 1132

and Wasserstein barycenter for future study: 1133

AGG-MODE := sgn(mode(X∆)) 1134

AGG-MEDI := sgn(median(X∆)) 1135

AGG-MEAN := MEAN(X∆), 1136

where MEAN is defined as in Table 3, overloaded 1137

to take a single argument representing X1 −X2. 1138

For post-aggregation, we sum the two scalar 1139

judgments from the two orders and normalize: 1140

MODE-AGG :=

∑
o∈Omode(Xo

∆)∑
o∈O |mode(Xo

∆)|
1141

MEDI-AGG :=

∑
o∈Omedian(Xo

∆)∑
o∈O |median(Xo

∆)|
1142

MEAN-AGG :=
1

|O|
∑
o∈O

MEAN(Xo
∆), 1143

taking 0
0
:= 0. 1144

B.2.2 Pairwise Ranking 1145

We prompt the LLM judge to express its prefer- 1146

ence on a K-point Likert scale: [>,<] (Likert-2), 1147

[>,=, <] (Likert-3), or [≫, >,=, <,≪] (Likert- 1148

5). Assigning the symbols [≫, >,=, <,≪] the 1149

numerical values [2, 1, 0,−1,−2], the methods for 1150

pairwise ranking then follow those above for pair- 1151

wise scoring. We remark that the ‘mode’ and 1152

‘mean’ for pairwise scoring and pairwise rank- 1153

ing in Table 1 are with post-aggregation and pre- 1154

aggregation, respectively. 1155

B.3 Listwise Methods 1156

The listwise methods are introduced in Section 6.1. 1157

C Prompts 1158

We present representative example prompts to illus- 1159

trate the different settings. The prompts are adapted 1160

from MT-Bench (Zheng et al., 2023b). Auxiliary 1161

modifications are not shown, such as the prompt 1162

for second-turn evaluation in MT-Bench. 1163

C.1 Judgment Extraction Details 1164

To identify the token position containing the judg- 1165

ment, we use the specified format when available 1166
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(e.g. “Rating A: {rating_a}.” in pairwise scor-1167

ing). Otherwise, we use the latest token position1168

with more than 0.5 total probability assigned to1169

judgment tokens. If no valid token is found, we de-1170

fault the judgment to the minimum score of 1 in the1171

scoring setting, and to a tie in the ranking setting.1172

(For Nectar experiments, we exclude instances with1173

invalid silver-label judgments.)1174

For the local models (Llama-3.1-8B, Mistral-7B,1175

Prometheus-2-7B) in no-CoT prompting, we force1176

a prefix of the assistant’s response (e.g. “Rating1177

A: ”) and use a single output token as the judgment1178

token position.1179

C.2 Pointwise Prompts1180

System prompt for pointwise scoring (CoT,
K = 9)

Please act as an impartial judge and
evaluate the quality of the response
provided by an AI assistant to the user
prompt displayed below. Your
evaluation should consider factors
such as the helpfulness, relevance,
accuracy, depth, creativity, level of
detail, and ethicality of the response.
Begin your evaluation by providing a
short explanation. Be as objective as
possible. After providing your
explanation, please rate the response
with an integer score from 1 to 9,
without further explanation.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

1181

System prompt for pointwise scoring (no-
CoT, K = 9)

Please act as an impartial judge and
evaluate the quality of the response
provided by an AI assistant to the user
prompt displayed below. Your
evaluation should consider factors
such as the helpfulness, relevance,
accuracy, depth, creativity, level of
detail, and ethicality of the response.
Be as objective as possible. Please rate
the response with an integer score
from 1 to 9, without further
explanation.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

1182

User prompt for pointwise judgment

[User Prompt]
{User Prompt}
[End User Prompt]

[Start of Assistant's Answer]
{Assistant's Answer}
[End of Assistant's Answer]

1183

C.3 Pairwise Prompts 1184

System prompt for pairwise scoring (CoT,
K = 9)

Please act as an impartial judge and
evaluate the quality of the responses
provided by two AI assistants to the
user prompt displayed below. Your
evaluation should consider factors
such as the helpfulness, relevance,
accuracy, depth, creativity, level of
detail, and ethicality of their responses.
Begin your evaluation by comparing
the two responses and provide a short
explanation. Avoid any position biases
and ensure that the order in which the
responses were presented does not
influence your decision. Do not allow
the length of the responses to
influence your evaluation. Do not
favor certain names of the assistants.
Be as objective as possible. After
providing your explanation, output
your final verdict by strictly following
this format: "Rating A: {rating_a}.
Rating B: {rating_b}.", where
"{rating_a}" and "{rating_b}" are
integer scores from 1 to 9.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

1185

For pairwise ranking with the local models, we 1186

use a different prompt from the one below. We 1187

found that they would often fail to include the 1188

braces specified in the judgment format, so we 1189

omit them when prompting these models. 1190
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System prompt for pairwise ranking (Likert-
5, CoT)

Please act as an impartial judge and
evaluate the quality of the responses
provided by two AI assistants to the
user prompt displayed below. You
should choose the assistant that
follows the user's instructions and
answers the user's question better.
Your evaluation should consider
factors such as the helpfulness,
relevance, accuracy, depth, creativity,
level of detail, and ethicality of their
responses. Begin your evaluation by
comparing the two responses and
provide a short explanation. Avoid any
position biases and ensure that the
order in which the responses were
presented does not influence your
decision. Do not allow the length of
the responses to influence your
evaluation. Do not favor certain names
of the assistants. Be as objective as
possible. After providing your
explanation, output your final verdict
by strictly following this format:
"[[>>]]" if assistant A is significantly
better, "[[>]]" if assistant A is slightly
better, "[[=]]" for a tie, "[[<]]" if
assistant B is slightly better, and
"[[<<]]" if assistant B is significantly
better.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

1191

User prompt for pairwise judgment

[User Prompt]
{User Prompt}
[End User Prompt]

[Start of Assistant A's Answer]
{Assistant A's Answer}
[End of Assistant A's Answer]

[Start of Assistant B's Answer]
{Assistant B's Answer}
[End of Assistant B's Answer]

1192

C.4 Listwise Prompts 1193

The listwise prompts are adapted from Nectar (Zhu 1194

et al., 2024). 1195

System prompt for listwise judgment (N =
7), with intermediate pairwise preferences

We are interested in ranking different large
language model chat completions to a
conversation. Please act as an
impartial judge and evaluate the
quality of the completions provided by
the 7 AI assistants. Your evaluation
should consider factors such as the
helpfulness, relevance, accuracy,
depth, creativity, level of detail, and
ethicality of their responses.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

After the conversation and assistant
responses, the section "PAIRWISE
EVALUATION ORDER" will specify
the order in which to perform pairwise
comparisons. Output an array in
which, for each pairwise comparison,
you choose the letter of the better
response, or '=' for a tie. The array
should be comma-separated and
enclosed in double square brackets.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Then, considering these pairwise rankings,
please rank all 7 responses from best
to worst (breaking ties randomly),
strictly in the following format: [[_, _,
_, _, _, _, _]] where '_' contains an
assistant's letter name.

↪→

↪→

↪→

↪→

↪→

Avoid any position biases and ensure that
the order in which the responses were
presented does not influence your
decision. Do not allow the length of
the responses to influence your
evaluation. Do not favor certain names
of the assistants. Be as objective as
possible.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

1196
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System prompt for listwise judgment (N =
7), without intermediate pairwise prefer-
ences

We are interested in ranking different large
language model chat completions to a
conversation. Please act as an
impartial judge and evaluate the
quality of the completions provided by
the 7 AI assistants. Your evaluation
should consider factors such as the
helpfulness, relevance, accuracy,
depth, creativity, level of detail, and
ethicality of their responses.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Please rank all 7 responses from best to
worst (breaking ties randomly),
strictly in the following format: [[_, _,
_, _, _, _, _]] where '_' contains an
assistant's letter name.

↪→

↪→

↪→

↪→

Avoid any position biases and ensure that
the order in which the responses were
presented does not influence your
decision. Do not allow the length of
the responses to influence your
evaluation. Do not favor certain names
of the assistants. Be as objective as
possible.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

1197

User prompt for listwise judgment (N = 7).
The presentation order is randomized. The
pairwise evaluation order is randomized ev-
ery instance for the prompt with interme-
diate pairwise preferences, and omitted for
the prompt without intermediate pairwise
preferences.

[CONVERSATION START]
{Conversation}
[CONVERSATION END]

[MODEL A RESPONSE START]
{Model A's response}
[MODEL A RESPONSE END]

[MODEL B RESPONSE START]
{Model B's response}
[MODEL B RESPONSE END]

[MODEL C RESPONSE START]
{Model C's response}
[MODEL C RESPONSE END]

[MODEL D RESPONSE START]
{Model D's response}
[MODEL D RESPONSE END]

[MODEL E RESPONSE START]
{Model E's response}
[MODEL E RESPONSE END]

[MODEL F RESPONSE START]
{Model F's response}
[MODEL F RESPONSE END]

[MODEL G RESPONSE START]
{Model G's response}
[MODEL G RESPONSE END]

PAIRWISE EVALUATION ORDER: [(G,
C), (B, G), (C, D), (A, E), (G, A), (A,
D), (B, A), (B, E), (B, F), (A, C), (E,
C), (E, F), (B, D), (F, A), (G, E), (F,
C), (F, D), (C, B), (F, G), (D, G), (E,
D)]

↪→

↪→

↪→

↪→

↪→

1198

D Datasets 1199

RewardBench (Lambert et al., 2024) is a reward 1200

model benchmark spanning chat, reasoning, and 1201
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safety. Each instance consists of a prompt, a cho-1202

sen response, and a rejected response, all manually1203

verified. The dataset categories are Chat, with 3581204

instances sourced from AlpacaEval (Li et al., 2023)1205

and MT-Bench (Zheng et al., 2023b); Chat Hard,1206

with 456 instances sourced from MT-Bench and1207

LLMBar (Zeng et al., 2023); Safety, with 740 in-1208

stances sourced from XSTest (Röttger et al., 2023),1209

Do-Not-Answer (Wang et al., 2023), and original1210

data; and Reasoning, with 1431 instances sourced1211

from PRM800k (Lightman et al., 2023) and Hu-1212

manEvalPack (Muennighoff et al., 2023). Except1213

for excluding the prior sets category, we follow the1214

original work and compute the final score as the1215

average of the category scores.1216

MT-Bench (Zheng et al., 2023b) is a dataset1217

of multi-turn questions spanning writing, roleplay,1218

extraction, reasoning, math, coding, knowledge I1219

(STEM), and knowledge II (humanities/social sci-1220

ence). There are 3,355 (prompt, model pair, human1221

judge, turn) tuples, 1,814 unique (prompt, model1222

pair, turn) tuples, and 80 unique prompts each with1223

two turns of interaction. To evaluate accuracy, we1224

use the 1,132 instances with unanimous non-tie1225

human judgments. To evaluate MSE, we use all1226

1,814 instances and set the label of an instance1227

to the average of the human judgments, where a1228

0 or 1 represents the evaluated winner, and a 0.51229

represents a tie.1230

Nectar (Zhu et al., 2024) is a dataset of 183k1231

prompts each with 7 model responses. The prompts1232

are sourced from Anthropic-HH (Bai et al., 2022),1233

LMSYS-Chat-1M (Zheng et al., 2023a), UltraFeed-1234

back (Cui et al., 2023), and ShareGPT. We use a1235

random subset of size 1,000.1236

RM-Bench (Liu et al., 2024c) is a reward model1237

benchmark focusing on sensitivity to subtle content1238

differences and resistance to style biases. There1239

are 1,327 instances spanning chat, code, math, and1240

safety. Similar to RewardBench, we follow the1241

original work and average the 4 category scores.1242

For each prompt, there are 3 pairs of (chosen, re-1243

jected) responses, where each pair is written with1244

a particular style regarding concision and whether1245

formatted as plain text or markdown.1246

The HelpSteer2 dataset (Wang et al., 2024b) con-1247

tains multiple human ratings on a 0-4 scale for1248

five attributes (helpfulness, correctness, coherence,1249

complexity, verbosity) for each (prompt, response)1250

instance. We use a random subset of size 1,000.1251

D.1 Listwise Evaluation 1252

For the listwise setting, we use the same evaluation 1253

setup as with the pointwise and pairwise setting.4 1254

We concern ourselves with agreement at the pair 1255

level rather than the list level because pairwise pref- 1256

erences are sufficient to produce a total order, such 1257

as by choosing the maximum likelihood order (Liu 1258

et al., 2024e; Liusie et al., 2024) or with graph- 1259

theoretic methods (Tideman, 1987; Schulze, 2011; 1260

Li et al., 2024c). Thus, pairwise preferences are an 1261

adequate unit at which to measure agreement, and 1262

the aggregation into a total order may be modular- 1263

ized away for experimental simplicity. 1264

To compute accuracy on Nectar with silver labels 1265

(Section 6.2), we take the sign of the silver label as 1266

the silver label for accuracy. 1267

E Additional Results 1268

Table 10 is an expanded version of Table 1, pro- 1269

viding a subset breakdown of RewardBench. We 1270

observe particularly large gains for pointwise scor- 1271

ing on the Reasoning subset, e.g. absolute +7.7% 1272

and +17.1% for GPT-4o and Llama-3.1-8B. 1273

Tables 11 (K = 9) and 14 (K = 99) show point- 1274

wise results over methods (expanded versions of 1275

Tables 4 and 6). Tables 12 and 13 show expanded 1276

tie analyses on RewardBench (simplified in Table 1277

5) and MT-Bench. 1278

Table 15 shows pairwise ranking results over 1279

methods, extending Table 7. Table 16 compares 1280

the Likert scales used for pairwise ranking, ex- 1281

tending Table 8. In Table 16, the most calibrated 1282

setting on MT-Bench is (GPT-4o) Likert-5 no-CoT, 1283

achieving a 31% lower MSE than the most accurate 1284

setting, Likert-2 CoT, suggesting that a finer granu- 1285

larity has potential to improve calibration (Liu et al., 1286

2024b). With GPT-4o in Tables 15 and 16, MSE is 1287

always minimized with no-CoT, highlighting the 1288

discord between CoT’s sharpening effect and cal- 1289

ibration. This result is in line with AlpacaEval 1290

(Dubois et al., 2024), which uses no-CoT and judg- 1291

ment probabilities, but deviating from WB-Reward 1292

and Arena-Hard-Auto (Lin et al., 2024; Li et al., 1293

2024b), which use CoT and decoded judgments. 1294

E.1 DeepSeek-V3 Results 1295

We provide partial results for DeepSeek-V3 1296

(DeepSeek-AI et al., 2025), a model of comparable 1297

size to GPT-4o. Tables 17 and 18 contain pointwise 1298

4This means that our MT-Bench results are directly com-
parable across settings.
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Model Setting Method RewardBench MT-Bench
Chat Chat Hard Safety Reasoning Total

GPT-4o

point score mode 95.8, 89.7 76.0, 77.4 89.3, 88.5 79.5, 80.3 85.1, 84.0 81.9, 80.5
mean 97.1, 94.3 75.2, 79.8 90.3, 89.7 87.0, 88.0 87.4, 88.0 83.6, 83.2

pair score mode 97.3, 97.9 69.0, 70.7 89.1, 89.5 91.3, 91.3 86.7, 87.4 86.2, 86.5
mean 97.2, 97.8 69.7, 70.8 89.5, 89.5 91.9, 92.4 87.1, 87.6 86.3, 86.8

pair rank mode 96.9, 97.6 76.4, 79.1 89.0, 90.9 91.4, 91.3 88.4, 89.7 86.3, 85.6
mean 96.2, 98.3 76.6, 79.4 88.5, 90.8 93.0, 93.6 88.6, 90.5 87.3, 85.9

Llama-3.1-8B

point score mode 83.8, 87.6 57.6, 58.0 76.2, 78.2 60.8, 64.8 69.6, 72.2 74.9, 71.9
mean 89.0, 95.8 58.6, 58.8 73.0, 80.8 70.2, 81.9 72.7, 79.3 78.7, 81.5

pair score mode 92.0, 94.3 45.4, 45.4 69.5, 78.8 79.9, 82.4 71.7, 75.2 82.6, 82.4
mean 92.6, 95.8 44.6, 45.0 69.3, 78.9 81.7, 87.6 72.1, 76.8 82.3, 81.2

pair rank mode 76.7, 65.2 52.3, 48.1 71.0, 66.4 75.6, 55.8 68.9, 58.9 76.2, 63.0
mean 90.5, 93.0 50.0, 44.1 78.1, 72.7 78.3, 64.6 74.2, 68.6 80.0, 76.5

Mistral-7B

point score mode 52.4, 66.2 51.5, 50.5 79.9, 75.7 57.8, 58.4 60.4, 62.7 59.5, 66.2
mean 54.5, 82.1 53.5, 49.1 79.9, 79.6 67.2, 77.5 63.8, 72.1 62.6, 74.0

pair score mode 87.6, 89.9 40.2, 40.4 74.0, 73.0 67.4, 72.4 67.3, 68.9 79.3, 79.8
mean 89.2, 91.1 41.2, 39.3 74.1, 73.4 67.8, 80.2 68.1, 71.0 80.0, 80.4

pair rank mode 51.0, 51.5 51.0, 46.2 62.2, 66.8 61.0, 50.8 56.3, 53.8 51.5, 51.5
mean 79.5, 81.7 39.3, 36.3 73.1, 67.7 63.8, 50.6 63.9, 59.1 73.5, 65.5

Prometheus-2-7B

point score mode 81.3, 81.7 50.5, 50.8 65.9, 73.4 59.2, 58.2 64.3, 66.0 72.5, 73.5
mean 82.4, 92.2 48.9, 54.4 65.7, 76.6 61.3, 77.6 64.6, 75.2 72.1, 81.6

pair score mode 91.2, 92.0 44.1, 43.6 75.9, 69.4 72.7, 69.6 71.0, 68.7 78.4, 80.8
mean 91.3, 93.0 42.7, 43.0 74.9, 72.0 73.0, 75.1 70.5, 70.8 78.3, 80.9

pair rank mode 55.6, 45.4 51.0, 50.0 66.6, 49.7 65.3, 47.8 59.6, 48.2 51.5, 43.0
mean 90.5, 45.0 44.3, 50.7 74.2, 55.5 69.8, 44.1 69.7, 48.8 75.4, 33.4

Table 10: Mode vs. mean and CoT vs. no-CoT (comma-separated) accuracy results (%). Expanded version of Table
1.

and listwise results, respectively. The trends for1299

DeepSeek-V3 match those of GPT-4o.1300

F Analysis1301

F.1 Heterogenous Preferences1302

We investigate whether LLM judges can repre-1303

sent pluralistically aligned preferences (i.e. reflect1304

diverse human opinions) (Sorensen et al., 2024;1305

Siththaranjan et al., 2023; Kumar et al., 2024)1306

through their judgment distribution, without ex-1307

plicit training or prompting.1308

F.1.1 Multimodality1309

We begin by quantifying the degree of multimodal-1310

ity in the judgment distributions. An implicit as-1311

sumption behind the conventional method of using1312

the mode judgment is that the judgment distribution1313

is unimodal and thus the mode is a representative1314

judgment. However, in cases where humans dis-1315

agree, we would like LLM judges to reflect the1316

heterogeneity in the human population with a mul-1317

timodal distribution.1318

We quantify multimodality as the minimum1319

amount of probability mass that must be added1320

to make an unnormalized unimodal distribution,1321

divided by the total mass of the unnormalized1322

unimodal distribution to obtain a value in [0, 1),1323

where a distribution is unimodal if the probabil- 1324

ity mass function is non-decreasing and then non- 1325

increasing. For example, if the judgment distri- 1326

bution is [0.5, 0.2, 0.3], the minimum additional 1327

mass is 0.1 to obtain the unimodal distribution 1328

[0.5, 0.3, 0.3] with total mass 1.1, so we compute 1329

the multimodality as 0.1/1.1 ≈ 0.091. 1330

Table 19 presents the results. We find that more 1331

granularity leads to more multimodality (note that 1332

K = 2 always has multimodality 0), and no-CoT 1333

is more multimodal than CoT. The case of extreme 1334

multimodality for pointwise scoring K = 99 can 1335

be largely attributed to token bias (Lovering et al., 1336

2024; Shaikh et al., 2024). For example, GPT-4o 1337

K = 99 CoT on MT-Bench assigns on average 1338

0.036 probability to a single token that is a multiple 1339

of 5, but only 0.002 to a single token that differs by 1340

1 from one of those multiples of 5. 1341

F.1.2 Annotator Disagreement 1342

We next examine whether human annotator dis- 1343

agreement is correlated with the uncertainty in the 1344

LLM’s judgment distribution. On datasets with 1345

multiple human judgments per instance, we com- 1346

pute Spearman’s ρ between the standard deviation 1347

of the human judgments and that of the LLM’s 1348

judgment distribution. 1349
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Model Method RewardBench MT-Bench

Acc ↑ MSE ↓ Acc ↑ MSE ↓

GPT-4o

MODE 85.1, 84.0 .116, .118 81.9, 80.5 .152, .145
MEAN 87.4, 88.0 .099, .102 83.6, 83.2 .115, .097

[MEAN] 85.1, 85.2 .116, .109 82.0, 80.2 .150, .146
MEDI 85.0, 84.6 .116, .112 82.0, 80.2 .150, .142

1P 84.8, 84.3 .120, .116 82.6, 81.0 .141, .138
RAM 87.4, 88.4 .099, .100 83.9, 83.4 .115, .096

QT 87.4, 87.9 .107, .096 83.5, 83.2 .139, .118
PS 87.4, 87.8 .106, .096 83.5, 83.3 .136, .103

Llama
-3.1-8B

MODE 69.6, 72.2 .237, .192 74.9, 71.9 .177, .142
MEAN 72.7, 79.3 .198, .155 78.7, 81.5 .129, .104

[MEAN] 70.1, 75.0 .238, .186 75.7, 75.0 .172, .145
MEDI 69.8, 73.6 .238, .191 75.2, 73.9 .176, .142

1P 70.2, 76.0 .238, .183 76.8, 79.2 .172, .147
RAM 72.7, 79.9 .200, .152 78.8, 81.4 .130, .102

QT 72.8, 79.0 .220, .164 78.7, 81.1 .154, .116
PS 72.8, 78.9 .216, .161 78.6, 81.4 .149, .110

Table 11: Pointwise results over methods. Comma-separated values are with and without CoT (expanded version of
Table 4). Text styling follows Table 1.

Model Method Tie rate MEAN’s accuracy Non-tie accuracy ∆ ↑

K = 9 K = 99 K = 9 K = 99 K = 9 K = 99

GPT-4o

MODE .13, .17 .09, .20 64, 72 61, 73 +0.0, –0.1 +0.0, –0.3
[MEAN] .13, .16 .02, .03 65, 67 61, 53 +0.0, +0.0 +0.0, –0.0

MEDI .13, .17 .06, .09 65, 70 58, 62 –0.0, +0.0 –0.0, –0.1
1P .13, .16 .05, .08 66, 66 58, 60 +0.1, +0.1 +0.0, +0.5

Llama
-3.1-8B

MODE .27, .35 .18, .24 60, 69 63, 70 +0.2, –0.2 +0.2, –2.0
[MEAN] .25, .26 .07, .07 58, 64 56, 61 +0.0, +0.0 +0.0, +0.0

MEDI .26, .29 .11, .11 60, 67 59, 67 +0.1, –0.5 –0.2, –0.6
1P .24, .23 .08, .08 61, 65 55, 57 +0.3, +0.6 +0.8, +0.1

Table 12: Tie analysis for discrete pointwise methods on RewardBench (expanded version of Table 5). Tie rate is
the proportion of instances where the method predicts a tie, over which we report MEAN’s accuracy (%); excess of
50% or 75% indicates room for improving accuracy or MSE, respectively. Non-tie accuracy ∆ (%) is the method’s
accuracy minus MEAN’s accuracy over the non-tie instances. Comma-separated values are with and without CoT.
We find that the mode has the most ties, the highest MEAN accuracy, and the lowest non-tie accuracy delta (i.e. poor
recall without better precision), especially for no-CoT K = 99.

For MT-Bench, we take the 961 instances with1350

multiple human judgments. Table 20 reports weak1351

correlation in all settings except no correlation in1352

pairwise ranking with Llama-3.1-8B. Remarkably,1353

pointwise score distributions encode sufficient in-1354

formation to predict if humans will disagree on a1355

pairwise comparison of the texts.1356

The HelpSteer2 dataset (Wang et al., 2024b) con-1357

tains multiple human ratings on a 0-4 scale for five1358

attributes for each (prompt, response) instance. We1359

use a random subset of size 1,000. We prompt with1360

the provided annotation guidelines and have the1361

model rate all attributes in a single run. Table 21 re-1362

ports weak correlation on helpfulness, correctness,1363

and coherence but no correlation on complexity1364

and verbosity. We suspected this to be due to that1365

conditioning on the earlier attributes’ scores may re-1366

duce uncertainty for the later attributes (Stureborg 1367

et al., 2024; Hashemi et al., 2024), but we found 1368

that the average standard deviation is similar across 1369

attributes for both LLM and human judgments. 1370

F.1.3 Pluralistic Alignment 1371

We finally evaluate the alignment between pre- 1372

dicted judgment distributions and human judgment 1373

distributions. We quantify the distance between 1374

two distributions µ and ν with the Wasserstein p- 1375

distance for p ∈ {1, 2}: 1376

Wp(µ, ν) = inf
γ∈Γ(µ,ν)

(
E

(x,y)∼γ
|x− y|p

) 1
p

, (1) 1377

where Γ(µ, ν) is the set of couplings of µ and ν. 1378

A higher p more heavily punishes large point dis- 1379

tances |x − y|. We scale the judgment spaces to 1380
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Model Method Tie rate MEAN’s accuracy Non-tie accuracy ∆ ↑

K = 9 K = 99 K = 9 K = 99 K = 9 K = 99

GPT-4o

MODE .13, .21 .08, .22 62, 62 64, 67 +0.0, –0.2 +0.1, –0.7
[MEAN] .13, .21 .02, .04 61, 64 42, 48 +0.0, +0.0 +0.0, +0.0

MEDI .13, .22 .05, .11 61, 64 64, 55 +0.0, +0.1 +0.0, –0.6
1P .14, .19 .06, .09 56, 62 67, 56 –0.1, +0.1 +0.3, +0.7

Llama
-3.1-8B

MODE .25, .45 .14, .26 65, 71 61, 65 –0.1, –1.0 –0.4, –3.0
[MEAN] .24, .36 .06, .09 63, 68 49, 55 +0.0, +0.0 +0.0, –0.1

MEDI .25, .40 .10, .18 65, 69 54, 58 +0.0, –0.3 –0.4, +0.5
1P .20, .23 .07, .07 60, 59 53, 50 +0.1, –0.3 +1.8, +0.3

Table 13: Tie analysis for discrete pointwise methods on MT-Bench, mirroring Table 12.

Model Method RewardBench MT-Bench

Acc ↑ MSE ↓ Acc ↑ MSE ↓

GPT-4o

MODE 86.1+1.0, 81.7–2.3 .118+.002, .134+.016 83.8+1.9, 78.4–2.1 .152+.000, .158+.013
MEAN 87.4+0.0, 86.7–1.3 .097–.002, .108+.006 84.8+1.2, 82.9–0.3 .105–.010, .099+.002

[MEAN] 87.0+1.9, 86.5+1.3 .124+.008, .127+.018 85.1+3.1, 82.7+2.5 .167+.017, .182+.036
MEDI 86.7+1.7, 85.2+0.6 .119+.003, .126+.014 84.1+2.1, 81.5+1.3 .160+.010, .170+.028

1P 86.6+1.8, 86.4+2.1 .121+.001, .116+.000 84.2+1.6, 82.7+1.7 .159+.018, .165+.027
RAM 87.1–0.3, 86.7–1.7 .098–.001, .104+.004 85.1+1.2, 83.0–0.4 .106–.009, .098+.002

QT 87.3–0.1, 86.6–1.3 .112+.005, .114+.018 84.8+1.3, 82.7–0.5 .149+.010, .147+.029
PS 87.3–0.1, 86.6–1.2 .105–.001, .105+.009 84.8+1.3, 82.4–0.9 .130–.006, .107+.004

Llama
-3.1-8B

MODE 73.4+3.8, 72.0–0.2 .222–.015, .221+.029 77.3+2.4, 75.1+3.2 .191+.014, .169+.027
MEAN 75.9+3.2, 79.3+0.0 .183–.015, .156+.001 79.3+0.6, 81.3–0.2 .125–.004, .103–.001

[MEAN] 75.3+5.2, 78.5+3.5 .229–.009, .198+.012 79.3+3.6, 80.7+5.7 .201+.029, .180+.035
MEDI 74.4+4.6, 76.5+2.9 .228–.010, .207+.016 78.4+3.2, 80.1+6.2 .198+.022, .161+.019

1P 76.2+6.0, 78.5+2.5 .218–.020, .195+.012 80.6+3.8, 81.5+2.3 .187+.015, .177+.030
RAM 76.1+3.4, 79.7–0.2 .179–.021, .152+.000 79.7+0.9, 81.1–0.3 .123–.007, .102+.000

QT 75.7+2.9, 78.7–0.3 .214–.006, .177+.013 78.8+0.1, 81.3+0.2 .179+.025, .143+.027
PS 75.7+2.9, 78.6–0.3 .203–.013, .163+.002 78.6+0.0, 81.8+0.4 .151+.002, .111+.001

Table 14: Pointwise results over methods (K = 99). Comma-separated values are with and without CoT (expanded
version of Table 6). Subscripts denote change from K = 9 (Table 11). Text styling follows Table 1.

[0, 1] so that Wp(µ, ν) ∈ [0, 1].1381

As baselines, we consider deterministic distri-1382

butions that place probability 1 on a measure of1383

central tendency.1384

Table 22 shows that using a distributional pre-1385

diction has little success in improving alignment1386

with the MT-Bench human pairwise preferences,1387

but Table 23 shows success for HelpSteer2 human1388

pointwise scores.1389

We also experimented with the HelpSteer2-1390

Preference dataset, prompting with the provided1391

annotation guidelines (Wang et al., 2024a). How-1392

ever, we found severe position bias in our experi-1393

ments with GPT-4o and Llama-3.1-8B (no-CoT).1394

The analysis showed no correlation between pre-1395

dicted distribution variance and annotator disagree-1396

ment, and poor pluralistic alignment compared to1397

the deterministic baselines.1398

F.2 Sensitivity to Score Granularity1399

Adopting the view that LLMs latently encode a con-1400

tinuous distribution but output a discretization of1401

it (Gillman et al., 2024), we analyze how faithfully 1402

functions of the (latent) continuous distribution can 1403

be approximated by those functions computed on 1404

the (observed) discretization. For practical inter- 1405

est, this manifests as robustness to the choice of 1406

K, with convergence in distribution to the continu- 1407

ous distribution as K → ∞. Thus, independently 1408

of the “principledness” of certain functions of a 1409

ground-truth continuous distribution, it is appropri- 1410

ate to examine the effect of discretization on our 1411

ability to approximate them to begin with. Our 1412

theoretical result is stated in Proposition 1 (see 1413

Appendix G.1 for full statement, proof, and discus- 1414

sion). 1415

Proposition 1. Among the discrete methods in Ta- 1416

ble 3, MODE computed on continuous distributions 1417

may fail to be approximated by the same function 1418

computed on their discretizations, even under regu- 1419

larity conditions. Meanwhile, [MEAN], MEDI, and 1420

1P admit an approximation error bound. 1421

We empirically assess the robustness to K of 1422

21



Model Center
Agg.
Time

RewardBench MT-Bench

Acc ↑ MSE ↓ Acc ↑ MSE ↓

GPT-4o

mode post 88.1, 89.3 .099, .090 86.1, 84.9 .139, .142
pre 88.4, 90.3 .112, .094 86.5, 85.2 .154, .154

median post 88.1, 89.3 .099, .091 86.1, 84.9 .138, .142
pre 88.4, 90.0 .111, .094 86.6, 85.4 .153, .146

mean post 88.9, 90.4 .098, .077 86.5, 85.4 .132, .100
pre 88.9, 90.4 .098, .078 86.6, 85.4 .132, .097

Llama
-3.1-8B

mode post 56.7, 52.4 .240, .279 57.5, 53.4 .192, .176
pre 73.1, 66.1 .265, .337 78.1, 70.9 .222, .268

median post 56.8, 52.5 .240, .279 57.5, 53.5 .192, .176
pre 72.9, 65.3 .261, .319 78.0, 69.1 .218, .238

mean post 73.2, 65.6 .207, .229 78.2, 70.5 .144, .146
pre 73.2, 66.3 .222, .240 78.1, 70.8 .155, .155

Table 15: Pairwise ranking results over methods, using Likert-3 (expanded version of Table 7). Comma-separated
values are with and without CoT. Text styling follows Table 1.

Model K
RewardBench MT-Bench

Acc ↑ MSE ↓ Acc ↑ MSE ↓

GPT-4o
2 88.6, 90.5 .094, .077 87.3, 85.9 .136, .101
3 88.9, 90.4 .098, .078 86.6, 85.4 .132, .097
5 88.8, 89.5 .099, .106 84.7, 85.8 .129, .087

Llama
-3.1-8B

2 74.2, 68.6 .187, .214 80.0, 76.5 .126, .135
3 73.2, 66.3 .222, .240 78.1, 70.8 .155, .155
5 70.0, 58.5 .215, .234 77.1, 64.8 .142, .153

Table 16: Pairwise ranking results over Likert-K scales,
using pre-aggregation mean (expanded version of Table
8). Comma-separated values are with and without CoT.
Text styling follows Table 1.

Method Acc ↑ MSE ↓

MODE 84.7, 82.5 0.123, 0.128
MEAN 84.8, 84.2 0.119, 0.120

[MEAN] 84.7, 82.7 0.123, 0.127
MEDI 84.7, 82.6 0.123, 0.128

1P 84.5, 82.9 0.124, 0.126
RAM 84.9, 84.1 0.120, 0.118

QT 85.0, 83.9 0.122, 0.125
PS 85.0, 83.9 0.122, 0.125

Table 17: Pointwise results with DeepSeek-V3 on Re-
wardBench. K = 9. Comma-separated values are with
and without CoT. Text styling follows Table 1.

the score distributions produced by the LLM judge1423

as well as the functions computed on them. The1424

former is not addressed by Proposition 1, which1425

assumes the score distributions to be errorless dis-1426

cretizations and thus consistent across granulari-1427

ties.1428

F.2.1 Sensitivity of Score Distributions1429

For an evaluated text, let µK denote the score1430

distribution with granularity K, with the score1431

space scaled to [0, 1]. We coarsify µ99 into µ̂991432

Space Method Nectar RM-Bench

Acc MSE Acc MSE

direct list mode 83.6 0.149 67.8 0.322
direct list mean 84.0 0.129 67.6 0.307

Table 18: Listwise results with DeepSeek-V3. Text
styling follows Table 1.

Model Setting K RewardBench MT-Bench

GPT-4o

point score 9 .000, .008 .000, .012
point score 99 .362, .409 .357, .440
pair rank 3 .000, .018 .000, .019
pair rank 5 .014, .049 .021, .041

Llama
-3.1-8B

point score 9 .009, .040 .013, .025
point score 99 .356, .379 .382, .365
pair rank 3 .044, .091 .051, .081
pair rank 5 .107, .194 .107, .245

Table 19: A study on multimodality (see Appendix
F.1.1). Comma-separated values are with and without
CoT.

by binning into 9 blocks of 11 scores. We then 1433

quantify sensitivity as the Wasserstein 1-distance 1434

W1(µ
9, µ̂99) ∈ [0, 1] (Eq. 1) averaged over the 1435

pointwise instances in the dataset. 1436

F.2.2 Sensitivity of Pointwise Methods 1437

For a dataset D of paired responses, we denote aK 1438

as the |D|-length vector containing the value of a 1439

method computed on each pair using granularity 1440

K. We then quantify sensitivity as the normalized 1441

flip rate 1442

FR :=
∥sgn(a9)− sgn(a99)∥1

∥sgn(a9)∥1 + ∥sgn(a99)∥1
∈ [0, 1]. (2) 1443
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Model Setting MT-Bench

GPT-4o
point score +0.21, +0.24
pair score +0.19, +0.27
pair rank +0.19, +0.27

Llama
-3.1-8B

point score +0.21, +0.14
pair score +0.20, +0.24
pair rank +0.02, –0.04

Table 20: Spearman’s ρ between standard deviation of
human judgments and that of LLM’s judgment distri-
bution. Comma-separated values are with and without
CoT. Bold denotes significant correlation (α = 0.01).
Ranking uses Likert-3; scoring uses K = 9 converted
to a Likert-3 distribution [P (X1 > X2), P (X1 =
X2), P (X1 < X2)].

F.2.3 Results1444

Table 24 presents the results on sensitivity to granu-1445

larity. The discrete metrics are more sensitive than1446

the continuous metrics. Furthermore, consistent1447

with Proposition 1, we find that the mode is the1448

most sensitive among the discrete methods, partic-1449

ularly with no-CoT.1450

The effect of CoT differs between the models:1451

GPT-4o is less sensitive with CoT, and Llama-3.1-1452

8B is less sensitive with no-CoT. Similar to Lee1453

et al. (2024b), it would appear that although GPT-1454

4o is a more capable judge than Llama-3.1-8B, it1455

is not as robust to granularity (in each model’s1456

CoT/no-CoT of choice). However, this is partially1457

because a limitation with setting K as large as 991458

for GPT-4o is that no-CoT distributions tend to1459

have high spread (Table 2), resulting in nontriv-1460

ial probability mass falling outside of the top 201461

tokens provided by the OpenAI API. Concretely,1462

the average total mass on the top score tokens is1463

0.88/0.90 on RewardBench/MT-Bench for no-CoT,1464

but over 0.99 for CoT.1465

F.3 Position Bias1466

We compare the degree of position bias (i.e. the1467

LLM judge’s sensitivity to the order in which the1468

evaluated texts are presented (Zheng et al., 2023b))1469

between various settings.1470

Evaluation Metrics For the pairwise setting1471

(scoring or ranking), we measure mean absolute1472

error (MAE) and mean squared error (MSE) be-1473

tween the two judgments from the two orders, using1474

pre-aggregation mean. Compared to MAE, MSE1475

punishes a few large errors more than many small1476

errors.1477

For the listwise setting, we measure Spearman’s1478

ρ between the difference in the presented positions 1479

of two responses and the judgment. 1480

Results Tables 25 and 26 report position bias in 1481

the pairwise settings. We find that no-CoT always 1482

improves MSE, even when it hurts MAE, showing 1483

that no-CoT reduces cases of extreme position bias. 1484

Table 27 reports listwise position bias. We find 1485

that DIRECT LIST exhibits the most position bias, 1486

consistent with Zhu et al. (2024), despite achiev- 1487

ing the highest accuracy (Table 9). On the other 1488

hand, INTERM has the least position bias. As the 1489

intermediate pairwise preferences can be likened 1490

to CoT, this suggests that intermediate reasoning 1491

can mitigate bias in challenging judgment settings. 1492

However, since an ideal judge should be able to 1493

simultaneously maximize accuracy and minimize 1494

bias, we believe current methods have ample room 1495

for improvement. 1496

F.4 Transitivity 1497

We say a comparison method a(·, ·) ∈ [−1, 1] is 1498

transitive if a(A1, A2) > 0 and a(A2, A3) ≥ 0 1499

imply a(A1, A3) > 0 for all triplets of texts 1500

(A1, A2, A3). For example, a score distribution 1501

comparison function that reduces to the compari- 1502

son of two real numbers derived from the two score 1503

distributions independently (e.g. mode or mean) 1504

is transitive. On the other hand, QT, PS, and the 1505

pairwise ranking methods are intransitive. 1506

Human preferences have been shown to exhibit 1507

intransitivity (Klimenko, 2015), motivating the 1508

question of whether LLM judges do so too and 1509

how this depends on the method used. Several 1510

prior works have proposed methods incorporating 1511

awareness of the intransitivity in LLM or human 1512

preferences (Liu et al., 2024e; Ethayarajh et al., 1513

2024; Zhang et al., 2024d; Ye et al., 2024a; Hu 1514

et al., 2024; Zhang et al., 2024c; Liu et al., 2024d). 1515

We adopt the view in Liu et al. (2024e) that tran- 1516

sitivity is generally desirable and indicative of a 1517

more capable judge, especially in the absence of a 1518

curated dataset of intransitive human preferences. 1519

Nevertheless, we remark that the ability to model 1520

intransitivity is essential to preference modeling in 1521

its full generality (Ethayarajh et al., 2024; Zhang 1522

et al., 2024d; Ye et al., 2024a), which, among point- 1523

wise methods, is achieved by QT and PS but not by 1524

mode and mean used in prior work. 1525

5In every judgment space, GPT-4o tends to favor responses
that are presented earlier.
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Model Helpfulness Correctness Coherence Complexity Verbosity

GPT-4o +0.24 +0.36 +0.32 +0.02 –0.01
Llama-3.1-8B +0.14 +0.22 +0.22 –0.00 +0.01

Table 21: Spearman’s ρ between standard deviation of human judgments and that of LLM’s judgment distribution.
HelpSteer2, no-CoT. Bold denotes significant correlation (α = 0.01).

Model Setting Method W1 W2

GPT-4o

point score
mode .229, .246 .406, .419
mean .229, .247 .388, .349
distr .219, .222 .395, .386

pair score
mode .229, .230 .419, .419
mean .218, .215 .399, .387
distr .220, .215 .408, .401

pair rank
mode .228, .226 .420, .412
mean .221, .212 .396, .362
distr .215, .203 .405, .385

Llama
-3.1-8B

point score
mode .274, .267 .438, .405
mean .277, .267 .412, .359
distr .261, .246 .425, .391

pair score
mode .268, .276 .460, .470
mean .241, .244 .404, .400
distr .239, .243 .426, .433

pair rank
mode .296, .336 .490, .531
mean .356, .370 .423, .420
distr .347, .356 .540, .548

Table 22: Pluralistic alignment error (↓, Eq. 1) from MT-
Bench human pairwise preferences. Comma-separated
values are with and without CoT. Text styling follows
Table 1. The method ‘distr’ uses the predicted distribu-
tion, while the other methods place probability 1 on a
measure of central tendency.

Table 28 presents the intransitivity rates of dif-1526

ferent methods. Despite the capacity of QT and PS1527

to model intransitive preferences (Savage, 1994;1528

Finkelstein and Thorp, 2006; Conrey et al., 2013),1529

we find that they exhibit negligible intransitiv-1530

ity compared to the pairwise ranking methods.1531

Similar to Liu et al. (2024e), we observe that1532

a stronger judge (GPT-4o) exhibits less intransi-1533

tivity than a weaker judge (Llama-3.1-8B). Pre-1534

aggregation mean exhibits less intransitivity than1535

post-aggregation mode. Notably, for pairwise rank-1536

ing, we observe more intransitivity with CoT than1537

without CoT, even though CoT achieves higher ac-1538

curacy (Table 1).1539

G Derivations1540

G.1 Approximability of Discrete Pointwise1541

Functions Under Discretization1542

Proposition 1. We analyze the discrete methods in1543

Table 3. Specifically, we examine the score function1544

r rather than sgn(r1 − r2).1545

Let X be a random variable with support S ⊂1546

[12 ,K + 1
2) for an integer K. Define its discretiza- 1547

tion X̂ by P (X̂ = x̂) := P ([X] = x̂) for 1548

x̂ ∈ Ŝ := {1, . . . ,K}, where [·] denotes round- 1549

ing to the nearest integer. 1550

1. MODE may fail to be approximated: Sup- 1551

pose X has a density fX that is L-Lipschitz 1552

with L ≤ 1 and achieves its supremum 1553

at x∗ ∈ argmaxx∈S fX(x). Let x̂∗ ∈ 1554

argmaxx̂∈Ŝ P (X̂ = x̂). Suppose x̂ ∈ Ŝ, 1555

with arbitrarily large |x̂ − x̂∗| > 1, satisfies 1556

P (X̂ = x̂∗) ≥ P (X̂ = x̂) + L
4 . The above is 1557

consistent with [x∗] = x̂. 1558

2. [MEAN] can be approximated: |[EX] − 1559

[EX̂]| ≤ 1. 1560

3. MEDI and 1P can be approximated: For p ∈ 1561

(0, 1), |QX(p)−QX̂(p)| ≤ 1
2 . 1562

Proof. 1563

1. We present a construction. 1564

If L = 0, the claim is immediate; assume not. 1565

Define d := L
4 (
√

1 + 8/L − 2) ≥ L
4 . Let 1566

fX(x) = (d − L
4 ) + L(x − x̂ + 1

2) for x ∈ 1567

[x̂− 1
2 , x̂), and fX(x) = (d−L

4 )+L(x̂−x+ 1
2) 1568

for x ∈ [x̂, x̂ + 1
2), and fX(x) = d + L

4 for 1569

[x] = x̂∗. 1570

Around the regions [x̂− 1
2 , x̂+

1
2), [x̂

∗− 1
2 , x̂

∗+ 1571
1
2), we let fX decrease to 0 with slope ±L, or 1572

until reaching the domain boundary or each 1573

other. Continuity is maintained at the junction 1574

because, supposing x̂ < x̂∗ without loss of 1575

generality, the nearest endpoints x̂+ 1
2 , x̂

∗− 1
2 1576

satisfy |(x̂+ 1
2)− (x̂∗ − 1

2)| ≥ 1 and |fX(x̂+ 1577
1
2)− fX(x̂∗ − 1

2)| =
L
2 . 1578

We verify that P (X̂ = x̂∗) = d + L
4 = 1579

P (X̂ = x̂) + L
4 and x̂ ∈ {x̂} ∪ [x̂∗ − 1

2 , x̂
∗ + 1580

1
2) = argmaxx∈S fX(x). 1581

It remains to check that we have a valid dis- 1582

tribution. The total
∫
fX is bounded by the 1583

case if fX is allowed to reach 0 everywhere 1584
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Model Method Helpfulness Correctness Coherence Complexity Verbosity

W1 W2 W1 W2 W1 W2 W1 W2 W1 W2

GPT-4o
mode .218 .311 .219 .332 .149 .252 .211 .273 .186 .257
mean .221 .297 .217 .318 .151 .240 .213 .262 .197 .244
distr .188 .279 .194 .301 .134 .233 .199 .255 .179 .249

Llama
-3.1-8B

mode .259 .369 .250 .377 .154 .280 .227 .290 .182 .255
mean .255 .339 .249 .347 .158 .253 .224 .274 .174 .223
distr .219 .328 .215 .334 .134 .250 .209 .270 .164 .234

Table 23: Pluralistic alignment error (↓, Eq. 1) from HelpSteer2 human pointwise scores. No-CoT. Text styling
follows Table 1. The method ‘distr’ uses the predicted distribution, while the other methods place probability 1 on a
measure of central tendency.

Model Method Reward-Bench MT-Bench

GPT-4o

– .091, .105 .093, .111
MODE .103, .150 .128, .214
MEAN .066, .080 .105, .136

[MEAN] .104, .115 .144, .199
MEDI .101, .113 .137, .185

1P .096, .117 .137, .196
RAM .074, .084 .111, .138

QT .064, .078 .104, .133
PS .064, .078 .104, .137

Llama
-3.1-8B

– .136, .063 .117, .076
MODE .213, .201 .223, .247
MEAN .149, .042 .131, .048

[MEAN] .213, .139 .219, .218
MEDI .219, .160 .224, .218

1P .223, .105 .183, .133
RAM .168, .037 .156, .068

QT .151, .034 .130, .048
PS .151, .037 .129, .046

Table 24: Sensitivity to granularity (↓) of the score distri-
butions (Eq. 1) and of the pointwise methods computed
on them (Eq. 2). Comma-separated values are with and
without CoT. Text styling follows Table 1.

possible above:1585

∫
fX ≤ P (X̂ = x̂) + P (X̂ = x̂∗)1586

+
1

L

(
d− L

4

)2

+
1

L

(
d+

L

4

)2

1587

= 1− L

4
< 1,1588

so fX can be made a valid density by adding1589

an appropriately scaled uniform density, not1590

affecting the desired properties.1591

2. Denote the measures of X, X̂ as µX , µX̂ . The1592

definition of (X, X̂) is equivalent to the ex-1593

istence of a coupling γ ∈ Γ(µX , µX̂) with1594

samples defined by (x, x̂) ∼ γ for x ∼ µX1595

Model Setting K MAE MSE

GPT-4o

score 9 .090, .076 .057, .031
score 99 .094, .095 .049, .032
rank 2 .086, .087 .083, .037
rank 3 .085, .089 .078, .035
rank 5 .141, .182 .079, .053

Llama
-3.1-8B

score 9 .199, .163 .125, .066
score 99 .188, .160 .114, .060
rank 2 .357, .329 .193, .154
rank 3 .683, .518 .547, .340
rank 5 .506, .342 .334, .164

Table 25: Pairwise position bias (↓, see Appendix F.3)
on RewardBench (see Table 26 for MT-Bench). Comma-
separated values are with and without CoT. Text styling
follows Table 1. We find that no-CoT always maintains
or improves MSE, even when it hurts MAE.

Model Setting K MAE MSE

GPT-4o

score 9 .108, .091 .075, .038
score 99 .111, .108 .066, .039
rank 2 .108, .132 .100, .056
rank 3 .108, .134 .093, .051
rank 5 .187, .172 .120, .047

Llama
-3.1-8B

score 9 .211, .148 .145, .056
score 99 .193, .141 .129, .049
rank 2 .312, .355 .174, .172
rank 3 .618, .532 .466, .337
rank 5 .458, .298 .293, .129

Table 26: Pairwise position bias (↓) on MT-Bench, mir-
roring Table 25.

and x̂ = [x]. 1596

|EX − EX̂| =
∣∣∣∣∫ (x− x̂) dγ(x, x̂)

∣∣∣∣ 1597

≤
∫

|x− x̂|dγ(x, x̂) ≤
∫

1

2
dγ(x, x̂) =

1

2
1598

Thus, |[EX]− [EX̂]| ≤ 1. 1599
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Space Nectar RM-Bench MT-Bench

interm .086 .079 .033
list .092 .100 .041

direct list .118 .105 .056

Table 27: Listwise position bias (↓) with GPT-4o. We
report the absolute value5 of Spearman’s ρ between the
difference in the presented positions of two responses
and the judgment. Text styling follows Table 1.

Model Setting Method MT-Bench

GPT-4o

point score QT .000, .000
point score PS .006, .002
pair rank MODE-AGG .026, .022
pair rank AGG-MEAN .007, .003

Llama
-3.1-8B

point score QT .000, .000
point score PS .001, .000
pair rank MODE-AGG .234, .218
pair rank AGG-MEAN .040, .023

Table 28: A study on transitivity. In each cell, we
report the proportion of triplets that exhibit intransitivity,
with and without CoT. (Pointwise scoring uses K = 9;
pairwise ranking uses Likert-2.) In addition, our Nectar
silver labels (GPT-4o, Likert-5, no-CoT, mean) have an
intransitivity rate of 0.020.

3. Let q := QX(p).1600

P (X̂ < [q]− 1

2
) = P (X < [q]− 1

2
) < p1601

≤ P (X < [q] +
1

2
) = P (X̂ < [q] +

1

2
),1602

implying QX̂(p) = [q] where |q − [q]| ≤ 1
2 .1603

1604

Remark. The suppositions in (1) are to impose1605

regularity and show even then approximation may1606

not hold. For an example of their omission, with-1607

out requiring absolutely continuous X , it could1608

place atoms at arbitrary x, preventing any margin1609

P (X̂ = x̂∗)− P (X̂ = x̂) less than 1 from produc-1610

ing an error bound. The crucial case that causes the1611

mode to be unstable to approximate is the case of1612

multimodality.1613

In (3), it is crucial that we assumed no discretiza-1614

tion error, i.e. |P (X̂ = x̂) − P ([X] = x̂)| = 0.1615

With any discretization error, we would have no1616

bound on approximation error.1617

H Licensing1618

Our usage of the artifacts below complies with their1619

licenses.1620

Model Licensing GPT-4o6 has a proprietary li- 1621

cense. Llama-3.1-8B7 is licensed under the Llama 1622

3.1 Community License Agreement. Mistral- 1623

7B8 and Prometheus-2-7B9 are licensed under the 1624

Apache License 2.0. 1625

Dataset Licensing The datasets contain English 1626

language data. RewardBench10 and RM-Bench11 1627

are licensed under the ODC-By license. MT- 1628

Bench12 and HelpSteer213 are licensed under the 1629

CC BY 4.0 license. Nectar14 is licensed under the 1630

Apache License 2.0. 1631

I Ethical Considerations 1632

LLMs can exhibit unwanted biases. Relying on 1633

their judgments for downstream applications can 1634

propagate these biases. Nevertheless, our findings 1635

in this paper promote practices for improving align- 1636

ment with human preferences. 1637

6https://platform.openai.com/docs/models#
gpt-4o

7https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

8https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

9https://huggingface.co/prometheus-eval/
prometheus-7b-v2.0

10https://huggingface.co/datasets/allenai/
reward-bench

11https://huggingface.co/datasets/THU-KEG/
RM-Bench

12https://huggingface.co/datasets/lmsys/mt_
bench_human_judgments

13https://huggingface.co/datasets/nvidia/
HelpSteer2/tree/main/disagreements

14https://huggingface.co/datasets/
berkeley-nest/Nectar
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