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Abstract

Synchronous updates may compromise the efficiency of cross-device federated
learning once the number of active clients increases. The FedBuff algorithm
(Nguyen et al. [16]) alleviates this problem by allowing asynchronous updates
(staleness), which enhances the scalability of training while preserving privacy via
secure aggregation. We revisit the FedBuff algorithm for asynchronous federated
learning and extend the existing analysis by removing the boundedness assump-
tions from the gradient norm. This paper presents a theoretical analysis of the
convergence rate of this algorithm when heterogeneity in data, batch size, and delay
are considered.

1 Introduction

Federated learning (FL) is an approach in machine learning theory and practice that allows training
models on distributed data sources [12, 14]. The distributed structure of FL has numerous benefits over
traditional centralized methods, including parallel computing, efficient storage, and improvements in
data privacy. However, this framework also presents communication efficiency, data heterogeneity,
and scalability challenges. Several works have been proposed to improve the performance of FL [1, 5,
7]. Existing works usually address a subset of these challenges while imposing additional constraints
or limitations in other aspects. For example, the work in [8] shows a trade-off between privacy,
communication efficiency, and accuracy gains for the distributed discrete Gaussian mechanism for
FL with secure aggregation.

One of the most important advantages of FL is scalability. Training models on centralized data stored
on a single server can be problematic when dealing with large amounts of data. Servers may be
unable to handle the load, or clients might refuse to share their data with a third party. In FL, the data
is distributed across many devices, potentially improving data privacy and computation scalability.
However, this also presents some challenges. First, keeping the update mechanism synchronized
across all devices may be very difficult when the number of clients is large [23]. Second, even if
feasible, imposing synchronization results in huge (unnecessary) delays in the learning procedure [1].
Finally, each client often might have different data distributions, which can impact the convergence
of algorithms [9, 21].

In synchronous FL, e.g., FedAvg [12, 14], the server first sends a copy of the current model to each
client. The clients then train the model locally on their private data and send the model updates back to
the server. The server then aggregates the client updates to produce a new shared model. The process
is repeated for many rounds until the shared model converges to the desired accuracy. However, the
existence of delays, message losses, and stragglers hinders the performance of distributed learning.
Several works have been proposed to improve the scalability of federated/distributed learning via
enabling asynchronous communications [1, 6, 11, 13, 15, 18, 20, 23]. In the majority of these results,
each client immediately communicates the parameters to the server after applying a series of local
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Table 1: Comparison of the characteristics considered in our analysis with relevant works for federated
learning for smooth & non-convex objective functions. Parameter τ denotes the maximum delay.

Algorithm Reference Asynchronous Buffered Unbounded Convergence
Update Aggregation Gradient Rate

McMahan et al. [14] ✗ ✓ - -

FedAvg Yu et al. [24] ✗ ✓ ✗ O
(

1√
T

)
Wang et al. [21] ✗ ✓ ✓ O

(
1√
T

)
FedAsync Xie et al. [23] ✓ ✗ ✗ O

(
1√
T

)
+O

(
τ2

T

)
FedBuff Nguyen et al. [16] ✓ ✓ ✗ O

(
1√
T

)
+O

(
τ2

T

)
This Work ✓ ✓ ✓ O

(
1√
T

)
+O

(
τ2

T

)

updates. The server updates the global parameter once it receives any client update. This has the
benefit of reducing the training time and better scalability in practice and theory [1, 6, 15, 17] since
the server can start aggregating the client updates as soon as they are available.

The setup, known as “vanilla” asynchronous FL, has several challenges that must be addressed.
First, due to the nature of asynchronous updates, the clients are supposed to deal with staleness,
where the client updates are not up-to-date with the current model on the server [16]. Moreover,
the asynchronous setup may imply potential risks for privacy due to the lack of secure aggregation,
i.e., the immediate communication of every single client to the server [2, 3]. In [16], the authors
proposed an algorithm called federated learning with buffered asynchronous aggregation (FedBuff ),
which modifies pure asynchronous FL by enabling secure aggregation while clients perform asyn-
chronous updates. This novel method is considered a variant of asynchronous FL while serving as an
intermediate approach between synchronous and asynchronous FL.

FedBuff [16] is shown to converge for the class of smooth and non-convex objective functions under
the boundedness of the gradient norm. By removing this assumption, we provide a new analysis for
FedBuff and improve the existing theory by extending it to a broader class of functions. We derive our
bounds based on stochastic and heterogeneous variance and the maximum delay between downloads
and uploads across all the clients. Table 1 summarizes the properties and rate of our analysis for
FedBuff algorithm alongside and provides a comparison with existing analyses for FedAsync [23]
and FedAvg [12, 14]. The rates reflect the complexity of the number of updates performed by the
central server. The speed of asynchronous algorithms is faster since the constraint for synchronized
updates is removed in asynchronous variations. To our knowledge, this is the first analysis for (a
variant of) asynchronous federated learning with no boundedness assumption on the gradient norm.

2 Problem Setup & Algorithm

In this section, we first state the problem setup and then explain the FedBuff algorithm [16]. We
consider a set of n clients and one server, where each client i ∈ [n] owns a private function
fi : Rd → R and the goal is to jointly minimize the average local cost functions via finding a
d-dimensional parameter w ∈ Rd that

min
w∈Rd

f(w) :=
1

n

n∑
i=1

fi(w),

with fi(w) := Eξi∼pi
[ℓi(w, ξi)],

(1)

where ℓi : Rd × Si → R is a cost function that determines the prediction error of w over a single
data point ξi ∈ Si on user i, and pi represents user i’s data distribution over Si, for i ∈ [n]. In the
above definition, fi(·) is the local cost function of client i, and f(·) denotes the global (average) cost
function which the clients try to collaboratively minimize. Now, let Di be a data batch sampled from
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pi. Similar to (1), we denote the stochastic cost function f̃i(w,Di) as follows:

f̃i(w,Di) :=
1

|Di|
∑

ξi∈Di

ℓi(w, ξi). (2)

Minimization of (1) by having access to an oracle of samples and its variants are extensively studied
for many different frameworks [7]. Now, we are ready to explain the FedBuff algorithm.

2.1 Federated Learning with Buffered Asynchronous Aggregation (FedBuff):

Let w0 be the initialization parameter at the server. The ultimate goal is to minimize the cost function
in (1), using an algorithm via access to the stochastic gradients. All clients can communicate with the
server, and each client i ∈ [n] communicates when its connection to the server is stable. First, let us
explain the FedBuff algorithm from the client and server perspectives.

• Client Algorithm: Each client i requests to read the server’s parameter w ∈ Rd 1 once the
connection is stable and the server is ready to send the parameter. There is often some delay in
this step which we call the download delay. This may be originated from factors such as unstable
connection, bandwidth limit, or communication failure. For example, maybe the server seeks to
reduce the simultaneously active users by setting client i on hold. The download delay can simply
model all these factors. Once the parameter is received (downloaded) from the server, client i
performs Q steps of local stochastic gradient descent starting from the downloaded model w for
its cost function fi(·). In words, agent i runs a Q-step algorithm (loop of size Q), where at each
local round q ∈ {0, 1, . . . Q−1}, client i samples a data batch Di,q with respect to distribution
pi and performs one step of gradient descent with local stepsize η > 0. Finally, agent i returns
the updates (the difference between the initial and final parameters) to the server. We refer to
the time required to broadcast parameters to the server as the upload delay, which could have
similar factors as the download delay. Agent repeats all this procedure until the server sends a
termination message. Algorithm 1 summarizes the pseudo-code of operations at client i ∈ [n],
where Steps 4-8 show the local updates performed at the agent. Moreover, ∆i in Step 9 denotes
the difference communicated to the server.

Algorithm 1 FedBuff (Client i)
1: input: number of local steps Q, local stepsize η.
2: repeat
3: read w from the server ▷ download phase
4: wi,0 ← w
5: for q = 0 to Q−1 do
6: sample a data batch Di,q

7: wi,q+1 ← wi,q − η∇f̃i(wi,q,Di,q)
8: end for
9: ∆i ← wi,0 − wi,Q

10: client i broadcasts ∆i to the server ▷ upload phase
11: until not interrupted by the server

• Server Algorithm: The server considers an initialization for parameter w0 ∈ Rd. Then, starting
from timestep t = 0, the server repeats an iterative procedure in addition to sending its parameters
to the clients upon their request. Algorithm 2 describes the server operations in FedBuff. In a
nutshell, the algorithm consists of two parts, (i) secure aggregation of client updates in a buffer
with size K ≥ 12, and (ii) updating the parameters using the aggregated updates. In other words,
let k, t respectively denote the indices associated with buffer and server updates.3 The server
starting from t = 0, receives updates broadcast by the agents asynchronously depending on their

1For simplicity of presentation, we drop the timestep from the parameters at the client level. We will use the
time notation in our analysis in Appendix A.

2K is an integer number.
3As explained in [16], the buffer and secure aggregation may be performed on a secure channel which

prevents the server from observing individual local updates received from the clients.
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upload & download delays as well as the time required for Q local updates. A secure buffered
aggregates these updates, up to K separate updates received by the clients in ∆

0
, initially set to

zero. By indexing k, we keep track of uploaded updates on the server. When the buffer saturates
of K different updates, server uses the aggregator parameter ∆

0
and updates its parameter w0

according to line 9 of Algorithm 2. Then, the server increases its update counter t and removes all
updates from the buffer, i.e., k = 0. In this algorithm, we denote the agent which sends the k-th
update at round t by index it,k ∈ [n]. Basically, server repeats Steps 5-14 until some convergence
criteria be satisfied. After the convergence, the server sends a termination message to all the
clients.

Algorithm 2 FedBuff (Server)

1: input: model w0, server stepsize β, buffer size K
2: t← 0, k ← 0

3: ∆
0 ← 0

4: repeat
5: if the server receives an update ∆it,k from some client it,k∈[n] then
6: ∆

t ← ∆
t
+∆it,k

7: k ← k + 1
8: if k = K then
9: wt+1 ← wt − β∆

t

10: k ← 0
11: t← t+ 1

12: ∆
t ← 0

13: end if
14: end if
15: until not converged

As we described above, the crucial novelty of this algorithm is on the server side, where the server
operations, with the help of a secure buffered aggregation, control the staleness and prevent unneces-
sary access to individual updates. Note that for K = 1, the presented algorithm reduces to vanilla
asynchronous federated learning with no buffer aggregation. Figure 1 illustrates the update schedule
for FedBuff and provides a comparison with the asynchronous updates in FedAvg [14]. As shown on
the left of Figure 1, the vertical lines with light blue color are associated with uploaded updates. Note
that the buffer size is K = 2 in this example. These vertical lines are of two types, (i) solid or (ii)
hatched. The solid lines reflect the time the buffer is full, and hence the server performs an update.
Contrary to FedBuff, under the synchronous updates (as shown in the right figure), the server should
halt the training procedure until all clients selected within one round receive the updates.

Figure 1: Communication and update schedule for synchronous and buffered asynchronous aggre-
gation: The demonstrated setup in this example contains n = 5 agents, with Q = 3 local updates,
buffer size K = 2 for FedBuff [16], and sampling rate 0.6 for FedAvg [14].
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3 Convergence Result

This section presents our main result alongside a few standard assumptions. First, to be coherent
with the proof in [16], let us denote τ ti to be the timestep of the last downloaded parameter on client
i ∈ [n] up to the t-th update at the server. Now, we are ready to introduce the assumptions in our
analysis for FedBuff, i.e., Algorithms 1 & 2.

Assumption 1 (Bounded Staleness). For all clients, i ∈ [n] and server steps t ≥ 0, the staleness or
effective delay between the download and upload steps is bounded by some constant τ , i.e.,

sup
t≥0

max
i∈[n]

∣∣t− τ ti
∣∣ ≤ τ, (3)

and the server receives updates uniformly, i.e., it,k ∼ Uniform([n]).

Note that τ ti is the timestep of the last parameter downloaded via agent i up to timestep t at the server.
Therefore, if agent i contributes in the (t+1)-th update, i.e., it,k = i, for some k ∈ {0, 1, . . . ,K−1},
the difference between the download and upload rounds is bounded. This is a standard assumption in
the analysis of asynchronous algorithms with heterogeneous data on the clients.4

Assumption 2 (Smoothness). For all clients i ∈ [n], function fi : Rd → R is bounded below,
differentiable, and L-smooth, i.e., for all w, u ∈ Rd,

∥∇fi(w)−∇fi(u)∥ ≤ L∥w − u∥ (4)
f⋆
i := min

w∈Rd
fi(w) > −∞. (5)

This assumption guarantees the necessary conditions for analyzing smooth & non-convex functions.
Note that boundedness from below can be relaxed only to the global cost function f , i.e., it is sufficient
to only assume that f⋆ := minw∈Rd f(w) > −∞ in our analysis instead of (5) for all i ∈ [n]. Now,
we introduce the assumptions on bounded stochasticity and heterogeneity.

Assumption 3 (Bounded Variance). For all clients i ∈ [n], the variance of a stochastic gradient
∇ℓi(w, ξi) on a single data point ξi ∈ Si is bounded, i.e., for all w ∈ Rd

Eξi∼pi
∥∇ℓi(w, ξi)−∇fi(w)∥2 ≤ σ2. (6)

This assumption is conventional in the analysis of stochastic optimization algorithms and has been
used in many relevant works [1, 9–11, 16, 19, 21]. Note that as we defined the stochastic loss in
(2) and used the stochastic gradients in Step 7, we also need to show the stochastic variance for the
gradients of the sampled batches. For simplicity, let us assume that all batch sizes are of size at least
b, therefore according to (6), we have:

Epi

∥∥∥∇f̃i(w,Di)−∇fi(w)
∥∥∥2 ≤ σ2

|Di|
≤ σ̂2 :=

σ2

b
. (7)

Assumption 4 (Bounded Population Diversity). For all w ∈ Rd, the gradients of local functions
fi(w) and the global function f(w) satisfy the following property:

1

n

n∑
i=1

∥∇fi(w)−∇f(w)∥2 ≤ γ2. (8)

In our analysis, we work with heterogeneous cost functions. Therefore, it is a reasonable and
conventional assumption to assume that the boundedness of the population diversity [4, 5, 16, 20].
The inequality in 9 measures the variance of local full gradients from the average full gradient, which
resembles to the expressions in (6) & (7). Fallah et al. [5] discusses the connection of this bound to
the similarity of local data distributions pi, for all i ∈ [n].

We now move to present our convergence result under the above assumptions.

4It is worth mentioning that Mishchenko et al. [15] relaxed this assumption (to unbounded delay) for the
analysis of homogeneous smooth & strongly convex functions.
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Theorem 1. Let Assumptions 1-4 hold, β = 1
K , and η = 1

Q
√
LT

. Then, the following property holds

for the joint iterates of Algorithms 1 and 2: for any timestep T ≥ 160L(Q+7)(τ+1)3 at the server

1

T

T−1∑
t=0

E
∥∥∇f (wt

)∥∥2 ≤ 8
√
L
(
f(w0)−f⋆

)
√
T

+
16
√
L
(

σ2

b + γ2
)

√
T

+
320L(Q+1)(τ2+1)

(
σ2

b + nγ2
)

T
.

We present the proof for Theorem 1 in Appendix A.

The above theorem states the convergence of FedBuff algorithm to a first-order stationary point. This
result states a convergence rate of O

(
1√
T

)
+O

(
τ2

T

)
, where the term affected by the maximum

delay (second term) decays faster, hence the same convergence complexity as the synchronized
counterpart. Note that this rate states the number of updates occurring on the server (iteration
complexity), which in the case of asynchronous updates, practically converges much faster (3.3×
according to [16]) than synchronized updates.
Remark 1. The choice of β in Theorem 1 is an arbitrary option that implies the rate in the theorem
statement. The convergence proof may hold for any choices of β, such that βK = O (1).

Remark 2. In our analysis for Theorem 1, we considered bounded population diversity in Assumption
4. One can see that by relaxing this assumption to a stronger variant

max
i∈[n]

sup
w∈Rd

∥∇fi(w)−∇f(w)∥2 ≤ γ2, (9)

i.e., uniformly bounded heterogeneity5, nγ2 can be replaced with γ2 in the third term of the rate.

4 Conclusion

This paper studied the convergence properties of asynchronous federated learning via secure buffered
aggregation. By removing the boundedness assumption on the gradient norms, we presented a novel
analysis of the convergence of FedBuff algorithm, where we showed a sublinear convergence rate
of O(ϵ2) +O(τ2ϵ) to an ϵ-first-order stationary solution. We also discussed the dependence of this
rate on the batch size, stochasticity variance, data heterogeneity, and maximum delays. We leave
the privacy analysis of Fed-Buff with gradient clipping and noise addition to future studies. Also,
the communication complexity of this method and the extensions to decentralized setups remain for
future work.

Acknowledgments and Disclosure of Funding

This work was partially funded by ARPA-H Strategic Initiative Seed Fund #916012. Part of this
material is based upon work supported by the National Science Foundation under Grants #2211815
and #2213568.

5This stronger assumption is considered in the analysis of some related works such as [4][Assumption 3] and
[22][6.1.1 Assumptions and Preliminaries, (vii)])

6



References
[1] Mahmoud Assran, Arda Aytekin, Hamid Reza Feyzmahdavian, Mikael Johansson, and

Michael G Rabbat. Advances in asynchronous parallel and distributed optimization. Pro-
ceedings of the IEEE, 108(11):2013–2031, 2020.

[2] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
federated learning on user-held data. arXiv preprint arXiv:1611.04482, 2016.

[3] Wei-Ning Chen, Christopher A Choquette-Choo, and Peter Kairouz. Communication efficient
federated learning with secure aggregation and differential privacy. In NeurIPS 2021 Workshop
Privacy in Machine Learning, 2021.

[4] Canh T Dinh, Nguyen H Tran, and Tuan Dung Nguyen. Personalized federated learning with
moreau envelopes. arXiv preprint arXiv:2006.08848, 2020.

[5] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning
with theoretical guarantees: A model-agnostic meta-learning approach. Advances in Neural
Information Processing Systems, 33, 2020.

[6] Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. An asynchronous mini-
batch algorithm for regularized stochastic optimization. IEEE Transactions on Automatic
Control, 61(12):3740–3754, 2016.

[7] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977,
2019.

[8] Peter Kairouz, Ziyu Liu, and Thomas Steinke. The distributed discrete gaussian mechanism for
federated learning with secure aggregation. In International Conference on Machine Learning,
pages 5201–5212. PMLR, 2021.

[9] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on
identical and heterogeneous data. In International Conference on Artificial Intelligence and
Statistics, pages 4519–4529. PMLR, 2020.

[10] Anastasia Koloskova, Tao Lin, Sebastian U Stich, and Martin Jaggi. Decentralized deep learning
with arbitrary communication compression. arXiv preprint arXiv:1907.09356, 2019.

[11] Anastasia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guarantees
for asynchronous sgd for distributed and federated learning. arXiv preprint arXiv:2206.08307,
2022.
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A Proof of Theorem 1

Proof of Theorem 1. Before proceeding with the proof, let us state some inequalities. For any set of
m vectors {wi}mi=1 such that wi ∈ Rd, and a constant α > 0, the following properties hold: for all
i, j ∈ [m]:

∥wi + wj∥2 ≤ (1+α)∥wi∥2 + (1+α−1)∥wj∥2, (10a)
∥wi + wj∥ ≤ ∥wi∥+ ∥wj∥, (10b)

2⟨wi, wj⟩ ≤ α∥wi∥2 + α−1∥wj∥2, (10c)∥∥∥∥∥
m∑
i=1

wi

∥∥∥∥∥
2

≤ m

(
m∑
i=1

∥wi∥2
)
, (10d)

(1− α)
(
1 +

α

2

)
≤ 1− α

2
, (10e)

(1− α)

(
1 +

2

α

)
≤ 2

α
. (10f)

For simplicity, let us denote ∇̃fi (w) = ∇f̃i (w,Di). Therefore, at round t, the server updates its
parameter by receiving ∆

t
, as follows:

wt+1 = wt − β∆
t

(11)

= wt − β

K−1∑
k=0

∆it,k (12)

= wt − ηβ

K−1∑
k=0

Q−1∑
q=0

∇̃fit,k
(
w

τt
it,k

it,k,q

)
. (13)

Due to Assumption 2, we can infer that f is L-smooth, thus

f
(
wt+1

) (4)
≤ f(wt)− ηβ

〈
∇f(wt),

K−1∑
k=0

Q−1∑
q=0

∇̃fit,k
(
w

τt
it,k

it,k,q

)〉
︸ ︷︷ ︸

=:S1

(14)

+
Lη2β2

2

∥∥∥∥∥
K−1∑
k=0

Q−1∑
q=0

∇̃fit,k
(
w

τt
it,k

it,k,q

)∥∥∥∥∥
2

︸ ︷︷ ︸
=:S2

(15)

8



First, we provide a lower bound on term S1 in (14). Prior to show the bound, let us denote

g̃ti =
Q−1∑
q=0
∇̃fi

(
w

τt
i

i,q

)
, g̃t = 1

n

n∑
i=1

g̃ti , g
t
i =

Q−1∑
q=0
∇fi

(
w

τt
i

i,q

)
, and gt = 1

n

n∑
i=1

gti . Therefore,

E [S1] = E

[
Eit,k

〈
∇f(wt),

K−1∑
k=0

Q−1∑
q=0

∇̃fit,k
(
w

τt
it,k

it,k,q

)〉]
(16)

= E

[〈
∇f(wt),

1

n

n∑
i=1

K−1∑
k=0

g̃ti

〉]
(17)

= E

〈
∇f(wt),

1

n

n∑
i=1

K−1∑
k=0

Epi

[
g̃ti
]〉

= E

〈
∇f(wt),

K

n

n∑
i=1

gti

〉
(18)

= KQE
∥∥∇f(wt)

∥∥2 +K
[
E
〈
∇f(wt), gt −Q∇f(wt)

〉]
(19)

(10c)
≥ KQE

∥∥∇f(wt)
∥∥2 − K

2
E
∥∥∇f(wt)

∥∥2 − K

2
E
∥∥gt −Q∇f(wt)

∥∥2 (20)

=
K(2Q−1)

2
E
∥∥∇f(wt)

∥∥2 − K

2
E
∥∥gt −Q∇f(wt)

∥∥2 . (21)

Moreover, the following holds for S2 in (14):

E [S2] = E

Eit,k

∥∥∥∥∥
K−1∑
k=0

Q−1∑
q=0

∇̃fit,k
(
w

τt
it,k

it,k,q

)∥∥∥∥∥
2
 (22)

=
1

n
E

 n∑
i=1

∥∥∥∥∥
K−1∑
k=0

Q−1∑
q=0

∇̃fi
(
w

τt
i

i,q

)∥∥∥∥∥
2
 (23)

=
K2

n

n∑
i=1

E

∥∥∥∥∥
Q−1∑
q=0

∇̃fi
(
w

τt
i

i,q

)∥∥∥∥∥
2

=
K2

n

n∑
i=1

E
∥∥g̃ti∥∥2 . (24)

Now, according to (14), (21), and (22), we have:

Ef
(
wt+1

)
≤ Ef(wt)− ηβK(2Q−1)

2
E
∥∥∇f(wt)

∥∥2 (25)

+
ηβK

2
E
∥∥gt −Q∇f(wt)

∥∥2︸ ︷︷ ︸
=:S3

+
Lη2β2K2

2n
E

[
n∑

i=1

∥∥g̃ti∥∥2
]

︸ ︷︷ ︸
=:S4

, (26)

where we bound S3, S4 as follows:

S3 =

∥∥∥∥∥ 1n
n∑

i=1

(
gti −Q∇fi(wt)

)∥∥∥∥∥
2

(10d)
≤ 1

n

n∑
i=1

∥∥gti −Q∇fi(wt)
∥∥2 (27)

=
1

n

n∑
i=1

∥∥∥∥∥
Q−1∑
q=0

∇fi
(
w

τt
i

i,q

)
−Q∇fi(wt)

∥∥∥∥∥
2

(28)

=
1

n

n∑
i=1

∥∥∥∥∥
Q−1∑
q=0

[
∇fi

(
w

τt
i

i,q

)
−∇fi(wt)

]∥∥∥∥∥
2

(29)

(10d)
≤ Q

n

n∑
i=1

Q−1∑
q=0

∥∥∥∇fi (wτt
i

i,q

)
−∇fi(wt)

∥∥∥2 , (30)
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S4 =

n∑
i=1

∥∥∥Q−1∑
q=0

∇̃fi
(
w

τt
i

i,q

)∥∥∥2 (31)

(10d)
≤ Q

n∑
i=1

Q−1∑
q=0

∥∥∥∇̃fi (wτt
i

i,q

)∥∥∥2 (32)

= Q

n∑
i=1

Q−1∑
q=0

∥∥∥∇̃fi (wτt
i

i,q

)
−∇fi

(
w

τt
i

i,q

)
+∇fi

(
w

τt
i

i,q

)
−∇fi

(
wt
)

+∇fi
(
wt
)
−∇f

(
wt
)
+∇f

(
wt
) ∥∥∥2 (33)

(10d)
≤ 4Q

n∑
i=1

Q−1∑
q=0

[∥∥∥∇̃fi (wτt
i

i,q

)
−∇fi

(
w

τt
i

i,q

)∥∥∥2 + ∥∥∥∇fi (wτt
i

i,q

)
−∇fi

(
wt
) ∥∥∥2

+
∥∥∥∇fi (wt

)
−∇f

(
wt
) ∥∥∥2 + ∥∥∥∇f (wt

) ∥∥∥2]⇒ (34)

E[S4]
(34)
≤ 4Q

n∑
i=1

Q−1∑
q=0

Epi

[∥∥∥∇̃fi (wτt
i

i,q

)
−∇fi

(
w

τt
i

i,q

)∥∥∥2] (35)

+ 4Q

n∑
i=1

Q−1∑
q=0

E
∥∥∥∇fi (wτt

i
i,q

)
−∇fi

(
wt
) ∥∥∥2 (36)

+ 4Q

n∑
i=1

Q−1∑
q=0

E
∥∥∥∇fi (wt

)
−∇f

(
wt
) ∥∥∥2 (37)

+ 4Q

n∑
i=1

Q−1∑
q=0

E
∥∥∥∇f (wt

) ∥∥∥2 (38)

(7),(9)
≤ 4nQ2

[
σ̂2 + γ2 + E

∥∥∥∇f (wt
) ∥∥∥2] (39)

+ 4Q

n∑
i=1

Q−1∑
q=0

E
∥∥∥∇fi (wτt

i
i,q

)
−∇fi(wt)

∥∥∥2 . (40)

Therefore, due to (25)-(30), and (35)-(40), we have

Ef
(
wt+1

)
≤ Ef(wt)−

[
ηβK(2Q−1)

2
− 2η2Lβ2K2Q2

]
E
∥∥∇f(wt)

∥∥2 (41)

+

[
ηβKQ

2n
+

2η2β2K2QL

n

] n∑
i=1

Q−1∑
q=0

E
∥∥∥∇fi (wτt

i
i,q

)
−∇fi(wt)

∥∥∥2 (42)

+ 2η2Lβ2K2Q2σ̂2 + 2η2Lβ2K2Q2γ2 (43)
(4)
≤ Ef(wt)−

[
ηβK(2Q−1)

2
− 2η2Lβ2K2Q2

]
E
∥∥∇f(wt)

∥∥2 (44)

+
ηβKQL2 (1+4ηβKL)

2n

n∑
i=1

Q−1∑
q=0

E
∥∥∥wτt

i
i,q − wt

∥∥∥2︸ ︷︷ ︸
=:S5

(45)

+ 2η2Lβ2K2Q2σ̂2 + 2η2Lβ2K2Q2γ2. (46)
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Hence, it is sufficient to bound S5 in (44),

S5 =
∥∥∥wt − w

τt
i

i,q

∥∥∥2 (47)

=

∥∥∥∥∥∥
t−1∑
s=τt

i

(
ws+1 − ws

)
+ wτt

i − w
τt
i

i,q

∥∥∥∥∥∥
2

(48)

(10a)
≤
(
1+

1

β2K2

)∥∥∥∥∥∥
t−1∑
s=τt

i

(
ws+1 − ws

)∥∥∥∥∥∥
2

+
(
1+β2K2

) ∥∥∥wτt
i − w

τt
i

i,q

∥∥∥2 (49)

(10d)
≤
(
t−τ ti

)(
1+

1

β2K2

) t−1∑
s=τt

i

∥∥ws+1 − ws
∥∥2+

(
1+β2K2

) ∥∥∥wτt
i − w

τt
i

i,q

∥∥∥2 (50)

(3)
≤ τ

(
1+

1

β2K2

) t−1∑
s=t−τ

∥∥ws+1 − ws
∥∥2︸ ︷︷ ︸

=:S7

+
(
1+β2K2

) ∥∥∥wτt
i − w

τt
i

i,q

∥∥∥2︸ ︷︷ ︸
=:S6

. (51)

Now, we show a bound on the evolution of local updates at an arbitrary round s ≥ 0, i.e., the distance
between ws

i,q and ws, which we will use to provide a bound on S7.

E
∥∥ws

i,q − ws
∥∥2 = E

∥∥∥ws
i,q−1 − η∇̃fi

(
ws

i,q−1

)
− ws

∥∥∥2 (52)

= E
∥∥∥ws

i,q−1 − ws − η∇f (ws)

− η∇̃fi
(
ws

i,q−1

)
+ η∇fi

(
ws

i,q−1

)
− η∇fi

(
ws

i,q−1

)
+ η∇fi (ws)

− η∇fi (ws) + η∇f (ws)
∥∥∥2 (53)

(10a)
≤
(
1+

1

2Q

)
E
∥∥∥ws

i,q−1 − ws
∥∥∥2 (54)

+ 4(1+2Q)η2E

[∥∥∥∇̃fi (ws
i,q−1

)
−∇fi

(
ws

i,q−1

) ∥∥∥2
+
∥∥∥∇fi (ws

i,q−1

)
−∇fi (ws)

∥∥∥2
+
∥∥∥∇fi (ws)−∇f (ws)

∥∥∥2
+
∥∥∥∇f (ws)

∥∥∥2] (55)

(4),(7)
≤

(
1+

1

2Q

)
E
∥∥∥ws

i,q−1 − ws
∥∥∥2 (56)

+ 4(1+2Q)η2

[
σ̂2 + L2 E

∥∥∥ws
i,q−1 − ws

∥∥∥2
+ E

∥∥∥∇fi (ws)−∇f (ws)
∥∥∥2 + E

∥∥∥∇f (ws)
∥∥∥2]. (57)

Note that we can select stepsize η ≤ 1
4L(Q+1) such that

η2 ≤ 1

16L2(Q+1)2
≤ 1

8L2Q(2Q+1)
⇒ 4(1 + 2Q)η2L2 ≤ 1

2Q
, (58)
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therefore, due to (52)-(57) and (58), we have:

E
∥∥ws

i,q − ws
∥∥2︸ ︷︷ ︸

:=P s
i,q

≤
(
1+

1

Q

)
E
∥∥∥ws

i,q−1 − ws
∥∥∥2︸ ︷︷ ︸

:=P s
i,q−1

(59)

+ 4(1+2Q)η2

[
σ̂2 + E

∥∥∥∇fi (ws)−∇f (ws)
∥∥∥2 + E

∥∥∥∇f (ws)
∥∥∥2]︸ ︷︷ ︸

:=Rs
i

⇒ (60)

P s
i,q ≤

(
1+

1

Q

)
P s
i,q−1 +Rs

i (61)

= Rs
i

q−1∑
k=0

(
1+

1

Q

)k

≤ Rs
i

Q−1∑
k=0

(
1+

1

Q

)k

(62)

= Rs
i

(
1+ 1

Q

)Q
− 1(

1+ 1
Q

)
− 1

= Rs
iQ

[(
1+

1

Q

)Q

− 1

]
≤ Rs

iQ(e− 1) ≤ 2Rs
iQ⇒ (63)

E
∥∥ws

i,q − ws
∥∥2 ≤ 8Q(1+2Q)η2

[
σ̂2 + E

∥∥∥∇fi (ws)−∇f (ws)
∥∥∥2 + E

∥∥∥∇f (ws)
∥∥∥2], (64)

for all q ∈ [Q].Again, note that according to Algorithm 2, we have:

ws+1 = ws − β

K−1∑
k=0

[
w

τs
is

is,0
− w

τs
is

is,Q

]
= ws − β

K−1∑
k=0

[
wτs

is − w
τs
is

is,Q

]
⇒ (65)

E
∥∥ws+1 − ws

∥∥2 ≤ β2 E

∥∥∥∥∥
K−1∑
k=0

[
wτs

is − w
τs
is

is,Q

]∥∥∥∥∥
2

(66)

(10d)
≤ β2K

K−1∑
k=0

E
∥∥∥wτs

is − w
τs
is

is,Q

∥∥∥2 (67)

= β2K2

[
E
[
Eis

∥∥∥wτs
is − w

τs
is

is,Q

∥∥∥2]] (68)

=
β2K2

n

n∑
j=1

E
∥∥∥wτs

j − w
τs
j

j,Q

∥∥∥2 (69)

(59)−(64)
≤ 8Q(1+2Q)η2β2K2σ̂2 (70)

+
8Q(1+2Q)η2β2K2

n

n∑
j=1

E
∥∥∥∇fj (wτs

j

)
−∇f

(
wτs

j

)∥∥∥2 (71)

+
8Q(1+2Q)η2β2K2

n

n∑
j=1

E
∥∥∥∇f (wτs

j

)∥∥∥2. (72)
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Let ϕ = 8η2Q2(1+2Q)(1+β2K2), then according to (47)-(72), we have

1

nϕ

n∑
i=1

Q−1∑
q=0

E[S5] ≤ τ

[
t−1∑

s=t−τ

∥∥ws+1 − ws
∥∥2]+ 1

n

n∑
i=1

∥∥∥wτt
i − w

τt
i

i,q

∥∥∥2 . (73)

≤ τ2σ̂2 +
τ

n

t−1∑
s=t−τ

n∑
j=1

E
∥∥∥∇fj (wτs

j

)
−∇f

(
wτs

j

)∥∥∥2 (74)

+
τ

n

t−1∑
s=t−τ

n∑
j=1

E
∥∥∥∇f (wτs

j

)∥∥∥2 (75)

+ σ̂2 +
1

n

n∑
i=1

E
∥∥∥∇fi (wτt

i

)
−∇f

(
wτt

i

)∥∥∥2 + 1

n

n∑
i=1

E
∥∥∥∇f (wτt

i

)∥∥∥2. (76)

Note that according to (3), we know that: τ ti ∈ {t−τ . . . , t}, therefore:

E
∥∥∥∇f (wτt

i

)∥∥∥2 ≤ t∑
s=t−τ

E
∥∥∥∇f (ws)

∥∥∥2, (77)

and similarly, for any s ∈ {t−τ . . . , t} and j ∈ [n],

E
∥∥∥∇f (wτs

j

)∥∥∥2 ≤ s∑
u=s−τ

E
∥∥∥∇f (wu)

∥∥∥2. (78)

Moreover, we have:∥∥∥∇fj (wτs
j

)
−∇f

(
wτs

j

)∥∥∥2 ≤ n∑
i=1

∥∥∥∇fi (wτs
j

)
−∇f

(
wτs

j

)∥∥∥2. (79)

Therefore, due to (73)-(79), we have:

1

nϕ

n∑
i=1

Q−1∑
q=0

E[S5]
(77)−(79)
≤ τ2σ̂2 + τ2nγ2 + τ

t−1∑
s=t−τ

s∑
u=s−τ

E
∥∥∥∇f (wu)

∥∥∥2 (80)

+ σ̂2 + nγ2 +

t∑
s=t−τ

E
∥∥∥∇f (ws)

∥∥∥2 (81)

= (1+τ2)
[
σ̂2 + nγ2

]
+ τ

t−1∑
s=t−τ

s∑
u=s−τ

E
∥∥∥∇f (wu)

∥∥∥2 + t∑
s=t−τ

E
∥∥∥∇f (ws)

∥∥∥2.
(82)

By combining (41)-(46) and (80)-(82), we have the following inequality:
Ef
(
wt+1

)
≤ Ef(wt) + 2η2Lβ2K2Q2

[
σ̂2 + γ2

]
(83)

− ηβK

2

[
(2Q−1)− 4ηLβKQ2 −QL2(1+τ2) (1+4ηβKL)ϕ

]
E
∥∥∇f(wt)

∥∥2 (84)

+
ηβKQL2 (1+4ηβKL)ϕ

2

t−1∑
s=t−τ

[
E
∥∥∥∇f (ws)

∥∥∥2 + τ

s∑
u=s−τ

E
∥∥∥∇f (wu)

∥∥∥2] (85)

+
ηβKQL2(1+τ2) (1+4ηβKL)ϕ

2

[
σ̂2 + nγ2

]
(86)

≤ Ef(wt) + 2η2Lβ2K2Q2
[
σ̂2 + γ2

]
(87)

− ηβKQ

2

[
1− 4ηLβKQ−QL2(1+τ2) (1+4ηβKL)ϕ

]
E
∥∥∇f(wt)

∥∥2 (88)

+
ηβKQL2 (1+4ηβKL)ϕ

2

t−1∑
s=t−τ

[
E
∥∥∥∇f (ws)

∥∥∥2 + τ

s∑
u=s−τ

E
∥∥∥∇f (wu)

∥∥∥2] (89)

+
ηβKQL2(1+τ2) (1+4ηβKL)ϕ

2

[
σ̂2 + nγ2

]
. (90)
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Now, we can obtain the following inequality by rearranging the terms in (83)-(90):[
1− 4ηLβKQ−QL2(1+τ2) (1+4ηβKL)ϕ

]
E
∥∥∇f(wt)

∥∥2 (91)

−L2 (1+4ηβKL)ϕ

t−1∑
s=t−τ

[
E
∥∥∥∇f (ws)

∥∥∥2 + τ

s∑
u=s−τ

E
∥∥∥∇f (wu)

∥∥∥2] (92)

≤
2
[
Ef(wt)− Ef

(
wt+1

)]
ηβKQ

(93)

+ 4ηβKQL
[
σ̂2 + γ2

]
(94)

+ 2L2(1+τ2) (1+4ηβKL)ϕ
[
σ̂2 + nγ2

]
, (95)

whereby mixing the terms in (92), we obtain:[
1− 4ηLβKQ− L2(τ2+1) (1+4ηβKL)ϕ

]
E
∥∥∇f(wt)

∥∥2 (96)

−L2 (1+4ηβKL) (τ+1)ϕ

t−1∑
s=t−τ

s∑
u=s−τ

E
∥∥∥∇f (wu)

∥∥∥2 (97)

≤
2
[
Ef(wt)− Ef

(
wt+1

)]
ηβKQ

(98)

+ 4ηβKQL
[
σ̂2 + γ2

]
(99)

+ 2L2(1+τ2) (1+4ηβKL)ϕ
[
σ̂2 + nγ2

]
. (100)

Finally, we add (96)-(100), for t = 0, 1, . . . T−1, and divide by T to show that:[
1− 4ηLβKQ− L2(τ2+1) (1+4ηβKL)ϕ

−L2 (1+4ηβKL) τ(τ+1)2ϕ

]T−1∑
t=0

E ∥∇f(wt)∥2

T
(101)

≤
2
[
f(w0)− Ef

(
wT
)]

ηβKQ
(102)

+ 4ηβKQL
[
σ̂2 + γ2

]
(103)

+ 2L2(1+τ2) (1+4ηβKL)ϕ
[
σ̂2 + nγ2

]
. (104)

Let us fix β = 1
K and η = 1

Q
√
LT

. Thus, we know that the following inequality holds

max
{
4ηβKLQ, L2(τ2+1)(1+4ηβKL)ϕ, L2τ(τ+1)2(1+4ηβKL)ϕ

}
≤ 1

4
, (105)

for T ≥ 160L(Q+7)(τ+1)3. Note that under this choices for η and β, we also have η ≤ 1
4L(Q+1) ,

which we used in (58). Therefore, we can conclude the final result in Theorem 1 as follows:

1

T

T−1∑
t=0

E
∥∥∇f(wt)

∥∥2 ≤ 8
√
L
(
f(w0)− Ef

(
wT
))

√
T

(106)

+
16
√
L
(
σ̂2 + γ2

)
√
T

(107)

+
320L(Q+1)(τ2+1)

(
σ̂2 + nγ2

)
T

. (108)
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