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ABSTRACT

Designing an optimal dataset to teach a target concept to a learner has been a
well-studied problem in Machine Learning. Prior works have mostly focused on
unconstrained single-phase teaching, where the learner learns solely under the
guidance of a helpful teacher who can provide any number of examples. In this
work, we introduce a more realistic two-phase framework called “Nurture-then-
Nature" where the learner first learns under the guidance of a teacher in the ‘Nurture’
phase, followed by an i.i.d. learning phase from ‘Nature’. Importantly, the teacher
is constrained to provide a dataset of size up to B and is required to minimize the
final error of the learner. We study this problem in the ‘instance-agnostic’ and
‘instance-aware’ settings and provide efficient teaching algorithms for each of them.
We provide theoretical guarantees and experimental results to support our findings.

1 INTRODUCTION

The problem of designing an optimal dataset to teach a target concept h* : X — ) to a learner, also
known as Machine Teaching, has been a long-studied problem |Goldman & Kearns|(1995)); Liu & Zhu
(2016); Zhang et al.[(2016). Prior works on Optimal Teaching have mainly focused on a single-phase
learning setting where the student learner solely learns under the guidance of the teacher who has
unconstrained teaching budget/Goldman & Kearns|(1995)); Zhang et al.|(2016); Kumar et al.| (2021);
Liu & Zhu| (2016). However, in many practical scenarios, the teacher may only have a limited budget
of teaching lessons that it can provide to the learner. For example, consider a university curriculum
setting where a teacher has to teach a concept, say how to identify a disease from an MRI scan to a
student(see Figure but it can only teach a limited number of lessons (dataset D7 : |Dp| < B) to
them before they graduate from the program. This first phase of learning which takes place under the
guidance of the teacher is called the “Nurture" phase. Since “Teaching Dimension”(TD) Goldman &
Kearns| (1995) is the smallest possible dataset to teach a concept, the teacher will not be able to teach
completely, if the budget is less than 7D |Goldman & Kearns|(1995)).

However, from the student’s perspective, learning does not stop after graduating from the university.
Rather, they transition to a “Nature" learning phase and continue to learn about the target concept by
receiving an i.i.d. dataset D g from the nature/environment. For example in Figure[T] the student keeps
learning about disease identification from i.i.d. MRI scans drawn from a digital library with a hope to
master the concept over time. We call this two-phase learning setting “Nurture-then-Nature”(NtN)
learning. The goal of a good teacher is to design an “optimal” dataset D7. to minimize students’ error
at the end of nature phase in NtN learning. To study this further, we ask the following question:

What is an optimal teaching demonstration to minimize the error in NtN setting?

We study this problem and make the following contributions: 1.) We propose a novel mathematical
framework of “Nurture-then-Nature” learning for studying budget-constrained teaching where the
goal of the teacher is to minimize final error of the student. 2.) We study the problem under two
levels of knowledge by the teacher and propose teaching algorithms for each of them:

1. In Instance Agnostic setting, we consider a teacher who does not know the environment
distribution P and is required to teach instances with any P. Our efficient teacher constructs
an optimal teaching set to simplify the complexity of learner’s version space at the end of
‘Nature’ phase thereby making it easy for them to learn from i.i.d. sample in ‘Nature’ phase.
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Nurture Learning: under a Teacher.  Nature Learning: from i.i.d. dataset.

Figure 1: An illustrative example of Nurture-then-Nature learning in medical teaching domain. In the
‘nurture’ phase, the student learns to identify a brain disease from MRI scans under the guidance of a
teacher. This is followed by the ‘nature’ phase where the student continues learning using an i.i.d.
sample from a digital database.

2. In Instance Aware setting, the teacher knows P and is required to be competitive with the

instance optimal teaching set. We propose an algorithm using datamodels [Ilyas et al| (2022)
to exactly solve this problem under linear assumption. Unlike (a), this method works for any

learner that satisfies linear risk assumption and extends to non-linear datamodels as well.

We present both theoretical and experimental results to validate the effectiveness of our algorithms in
both settings and compare their performance to a simulated baseline algorithm.

2 RELATED WORKS

Machine Teaching has been a well-studied problem in the literature [Shinohara & Miyano| (1991);
[Goldman & Kearns| (1995); (2015). Past works have studied optimal teaching in various learning
settings ranging from supervised learning |(Goldman & Kearns| (1995); [Liu & Zhu| (2016)); [Kumar]
et al| (2021)); Bharti et al.| (2024)) to online/active learning [Zhang et al.| (2016); [Peltola et al.| (2019) to
sequential decision making and reinforcement learning |Brown & Niekum| (2019); [T'schiatschek et al.|
(2019); [Zhang et al.| (2021). However, most of these works have focused on unconstrained teaching
setting where the teacher is free to design and teach a dataset of any arbitrary size which may not be
possible under real-world constraints. Our work studies budget-constrained teaching in a two-phase
supervised learning setting where the teacher can only provide a dataset up to a fixed size.

Some recent works have considered other forms of constraints that are distinct from our budget
constraints like time constraint [Filho et al.| (2023), preference constraint Tschiatschek et al.| (2019).
The most relevant work to ours is the budget-constrained teaching problem examined by [Kobayashi
& Shinoharal (2009). However, the authors have only considered a single-phase teaching setting
of |Goldman & Kearns| (1995) where the goal is to minimize the learner’s error at the end of the
teaching phase. Moreover, their algorithm and analysis is very specialized to distribution-independent
teaching of a class of monomials |[Kearns et al.|(1994). On the other hand, our framework is much
more general with a clearly different goal. Furthermore, our teaching algorithms can handle infinite
hypothesis classes like linear/polynomial classifiers through VC reduction and linear datamodel
connections.

Optimal teaching has been shown to be a hard bilevel optimization problem |Goldman & Kearns|
(1995); Zhu et al.| (2018) which limits its practical utility. The main difficulty often lies in estimating
the risk of the learner as a function of the dataset. Naive methods require simulating a learner to
estimate the risk on different independent datasets making it a challenging task. However, recent
works like linear datamodels have taken a function approximation approach and
have shown that risk can be well approximated by a linear function of the dataset in many real-world
problems. Prior works have utilized this connection to detect backdoor attacks [Khaddaj et al.| (2023,
forget training data using machine unlearning |Georgiev et al.|(2024) and to select good datasets for
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training large models |[Engstrom et al.| (2024) which aligns closely with the objective of single-phase
machine teaching setting, which is clearly different from our budget-constrained Nature-then-Nature
teaching.

3 PROBLEM FORMULATION

3.1 THE LEARNER AND THE ENVIRONMENT

Consider a predictive modeling task from an input space X’ to an output space ) defined by a joint
distribution P over & x ). During learning, a learner receives a dataset D = {(z4,¥i) }ic[n)
(X x V)™ and tries to learn a good predictive model that does well on future data from P.

An Empirical Risk Minimization (ERM) |Shalev-Shwartz & Ben-David| (2014); Mohri et al.|(2018])

learner/student .4 starts with a hypothesis class # and minimizes empirical risk with respect to a loss
¢:Y x Y — R on the training dataset D,

1
A(D;H) = argmin— > £(h(z), 4:) ¢))
hen 1
(zi,y:)€D
where, £ is the loss function. It eventually aims to learn a hypothesis with the smallest risk Rp(h) =

E(z,y)~p [£(h(z),y)]. We make the following simplifying assumption on the realizability of the
environment which has been well used in literature (Goldman & Kearns|(1995)); [Liu & Zhu! (2016)).

Definition 1 (Realizability & Version Space Learner). An environment is said to be realizable if
Jn* € H such that P = Px - Py|x and Py|x(Y = h*(X)) = 1. Under realizability, an ERM
learner that minimizes the risk w.r.t. 0 — 1 loss and maintains the entire subset of ERM hypotheses is
called a version space(VS) learner.

Remark 1. We note that the output of learning A(D; H) can be a single hypothesis or a subset of
them, depending on the learner.

3.2 THE TEACHER

There is a helpful teacher who is required to teach a target hypothesis h* € H to the learner. The
teacher knows h* but can only provide a dataset of size up to budget B € Z to the learner before
they graduate. The teacher will not be able to teach h* completely if B is less than the T'D. However,
after graduating, the learner keeps learning about ~A* using i.i.d. sample from the environment P.

We consider two teaching settings based on different levels of knowledge of the teacher:

1. Instance agnostic setting: In this setting, the teacher does not know the underlying Px and
has to teach a learner in instance agnostic way, i.e. the teaching should work for any Px.

2. Instance aware setting: In this setting, the teacher knows the underlying distribution of the
environment Px and has to be competitive wrt to instance optimal solution.

Next, we define the interaction of the learner with the teacher and the environment.

3.3 THE NURTURE-THEN-NATURE SETTING

The learning process of the version space learner in the NtN setting is split into two phases:

Phase I - The Nurture Phase: In this phase, the learner learns under the guidance of the teacher. It
receives a dataset Dy from the teacher and learns a version space of hypothesis V(Dyr; H) consistent
with D given as,

V= V(DT,/H) = {h cH ‘ h(l‘l) = Y, V({L‘i,yl‘) S DT} (2)

Phase II - The Nature Phase: The nurture phase is followed by the nature/i.i.d. learning phase
where the learner starts with the surviving version space V; from previous phase and continues to
learn about h* by receiving a i.i.d. dataset Dy~ P"™ of size n from the environment distribution P. It
then learns a version space V(Dg; V1) consistent with Dg on V4, i.e.,

Vo = V(DE,V1) = {h eV h(l‘z) = Yi, V(xi,yi) S DE}
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At the end of this phase, the learner hopes to have learned h* with as small a risk as possible.
Remark 2. We make the following remarks on the two phases:

1. With budget B > TD, this phase captures the standard unconstrained teaching prob-
lem|Goldman & Kearns| (1995). However, with a budget B < T'D, the teacher can only
teach h* partially to the learner, leading to a very different teaching problem.

2. We note that in the Nature phase, the learner learns using a hypothesis class V1 that has
been simplified from H by the teaching set Dt provided by the teacher. In effect, the teacher
controls the complexity of learning from Nature by simplifying V, using Dr.

4 INSTANCE AGNOSTIC TEACHING SETTING

In instance agnostic setting, the teacher does not know the environment distribution Py and aims to
minimize a high probability instance agnostic objective defined as follows:

Teaching objective: Given an instance (X,), Px,h*, H, d,n, B), the instance agnostic teaching
objective is defined as,
D} + argmin ¢
E,DT:|DT|SB

S.t. VP, PDENP" < Rp(h) < 6) >1-9 3)

max
heV(Dg;V(DriH))
Remark 3. We make the following remarks: 1.) The teacher does not know Px, it has to ensure
that learner succeeds in any P. 2.) The teacher influences learner’s performance through a budget
constrained dataset D : |Dr| < B that reduces H to V(Dr; H).

Note that the feasibility constraint in [3| requires to satisfy (n,d) PAC guarantee for any P. Prior
works in PAC-learning Haussler et al.| (1994)); |Vapnikl (1992)) provides the following instance agnostic
bound on error of version space learner that helps to simplify the problem objective.

(PAC-guarantee) : VP, Vn € N, § € (0,1), if D i prr,

p.>1-4, R(h) < €(n,6,H 4

w.p. > permzx o Fi(R) < €n, 6, 3) )
where, R(h) is the risk with respect to the 0 — 1 loss. For a hypothesis class # and a fixed (n, ),
PAC-guarantee satisfies ] with €(n, §, ) = O(L - (d(H) +log(1))) where d(#) is the VC dimension
of H. Later, Hanneke|(2016)) also proved that this guarantee is optimal with respect to d(V(H)).

Note that the feasibility constraints of Equation[3]is nothing but PAC-guarantee with surviving version
space V; = V(Dr, H) as the hypothesis space. This reduces our teaching objective into:

Dk + argmin 1 <d(V(DT;H)) + log <(15>> . 3)

Dr:|Dr|<B T

Since (n,d) are fixed, we essentially need to minimize the VC of the version space V(Dyr; H)
maximally under budget constraint B leading to the following theorem on the teaching algorithm.

Theorem 1. A teaching algorithm that, by teaching using dataset D’ , optimally reduces the VC
dimension of the version space V(Drp;H) surviving at the end of the Nurture phase solves the
instance-agnostic NtN teaching problem optimally.

Computing VC is tractable for hypothesis classes like axis-aligned rectangles, linear classifiers,
polynomial classifiers Mohri et al.| (2018)); |Shalev-Shwartz & Ben-David| (2014), however, in general
this is a NP-hard problem [Shinohara (1995); [Manurangsi & Rubinstein| (2017); Manurangsi| (2022).
Since, optimally reducing VC is at least as hard as computing it, we cannot hope to reduce VC of
general hypothesis classes efficiently. Instead, we focus on optimally reducing the VC dimension for
tractable hypothesis classes under finite teaching budget.

We begin with one of the simplest hypothesis class, a finite binary hypothesis class (Goldman &
Kearns| (1995)) and then extend our analysis to several other hypothesis classes.



Under review as a conference paper at ICLR 2026

4.1 FINITE BINARY HYPOTHESIS CLASS.

A finite binary hypothesis class consists of a set of hypothesis, each mapping a finite input space
X to binary labels {0,1}, i.e., H C 2%. We know that computing VC of H takes O(n'°s("))
time |Papadimitriou & Yannakakis|(1996); [Manurangsi & Rubinstein|(2017) and is NP-hard. This
eventually makes optimizing for VC an NP-hard problem as well. Hence, we further upper bound
VC by the size of the hypothesis class and aim to minimize that instead.

Given a budget B, the teacher aims to find teaching set Dy C X, |Dp| < B, that reduces the size of
version space V(Dr; H) maximally as follows:

D> i Dt .
T(—argDTzrlrg;lISB V(Dr; H)| (6)

It turns out that even this problem is NP-hard since it’s equivalent to another NP-hard problem called
Budgeted Maximum Coverage Problem |[Khuller et al.| (1999). However, there exists an efficient
algorithm to solve this problem approximately leading to the following theorem.

Theorem 2. There exists an efficient algorithm that reduces the version space size of finite hypothesis
class up to an approximation ratio of 1 — %

The algorithm and the proof of theorem can be found in the appendix. Next, we study another classic
hypothesis class considered in literature, the axis aligned rectangle hypothesis class |Goldman &
Kearns| (1995)).

4.2  AXIS-ALIGNED RECTANGLES ON Z2 GRID

This class consists of all axis-aligned rectangles in Z2 space. A hypothesis h € H is defined by the
two opposite corners (Zmin; Ymin ), (Tmax; Ymax) € Z> and it produces the following classifier:

h((%y)) =2 ]l[mmin <2 < Tpax A Ymin < ) < ymax] -1

We recall that VC of this class dy ¢ (H) = 4Mohri et al.| (2018)), and, the TD for teaching any h € H
is 6|Goldman & Kearns|(1995)). For our NtN setting, we focus on non-trivial cases with B < T'D.

Theorem 3 (Optimal VC reduction for axis-aligned rectangles.). The VC dimension of axis-aligned
rectangles in 72 can be optimally reduced as follows:

Budget B |12 [3]4]5]>6
mnVC |4 |32 2] 1] 0

Table 1: Minimum VC achievable by B-budgeted teaching on axis-aligned rectangle class in Z2.

We refer the readers to appendix for a complete proof. Next, we consider two popular hypothesis
classes, a homogeneous linear and a polynomial class.

4.3 LINEAR HYPOTHESIS CLASSIFIERS IN R?
Consider teaching a family of homogeneous linear binary classifiers in % = R?. Given a w € R, it
induces a linear classifier of form,

ho(z) =2 1wz > 0] — 1.
Prior works have studied optimal teaching of linear decision boundaries in unconstrained setting and
have shown that T'D = d + 1 for perceptron learner Kumar et al.|(2021)) and 7D = 2 for max-margin

learner|Liu & Zhu|(2016). We also know that the VC-dimension of linear class H is d/Mohr1 et al.
(2018)) and address the following question:

“How to optimally reduce the VC-dimension V(Dr; H) using a constrained teaching set |Dy| < B?”.

To do so, we characterize the version space in terms of a polyhedral cone and prove that minimiz-
ing VC eventually requires reducing the ambient dimensionality of the version space as stated in
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Figure 2: Teaching dataset produced by our optimal VC reduction algorithm for teaching w* € R?
with B = 2 and B = 3 kills a one and two-dimensional subspace of (w*)* respectively.

Lemma [TOTT] of the appendix. We then provide an algorithm to compute the optimal dataset that
essentially works by killing the B — 1 orthogonal subspace of w* on a budget B leading to the
theorem stated next.

Theorem 4. There exists an algorithm that VB < d+1, optimally reduces VC of the linear class to d—
B+1 and optimal teaching set is given as DE = {(vy,+1),..., (vp_1,+1), (- Yiep—1 Vi- 1}

where, {v1,...,vp_1} is a B-basis of w** subspace.
Our analysis involves a novel way of characterizing VC of linear version spaces and we utilize it

to provide guarantees on optimally reducing VC using a teaching dataset. The complete proof is
deferred to the appendix. Next, we consider a polynomial hypothesis class in R%.

4.4 POLYNOMIAL HYPOTHESIS CLASSIFIERS IN R4

Let H be hypothesis class of k-degree polynomial classifiers in R?, given by,

H={h| h(x)=1[)_ w.x®>0], a € N’}

l| <k
and let ¢ : R? — R! denote the feature mapping for the corresponding Kernel Hilbert
space. We know that [ = (d+k_1) and the bases feature functions is given by B =

k
{xaK =aiwy x| ol <k =k a€ Nd}. Furthermore, any hypothesis h € H can
be represented by a parameter w* € R’ in the basis of the Hilbert space.

The polynomial classifier is linear in the ¢ feature space and the teacher aims to minimize the VC of
the corresponding version space. However, unlike the linear model, each of the teaching input vectors
in feature space must be realizable under the feature function ¢ on some = € R%,

Assuming the feature function is rich, i.e., the preimages of feature vectors exist, the optimal reduction
in VC of polynomial classifiers is given by the following theorem,

Theorem 5. For any target polynomial h* € H, the optimal teaching set that reduces the VC
dimension of the polynomial version space by B — 1 is given as DE = {(z;, +1) : ¢(z;) L w*,i €

[B —1],Yi # j, ¢(w:) L d(z)} U{(¢(ap) = — X0 é(x:), +1)}.

We defer the proof to the appendix. Note that the above algorithm relies on computing of preimage
feature vectors and we also propose an algorithm to compute them in the appendix.

We recall two major limitations of instance agnostic teaching. First, the teacher does not know Py
and it is required to be only competitive with respect to instance agnostic solution. However, when
teacher knows Py the optimal teaching set can be much smaller than instance agnostic setting and so
a better method is required. Secondly, we can only handle algorithms with specialized hypothesis
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classes as the problem of VC reduction is a hard problem in general. This motivates us to consider an
instance aware teaching with function approximation where we aim to tackle both the issues.

5 INSTANCE AWARE TEACHING SETTING

In an instance aware setting, the teacher knows the environment distribution Py and aims to find a
B-budgeted teaching set that minimizes the expected risk at the end of the nature phase.

Expected risk: Given an instance aware instance (X', Y, P, h*, H,J, n, B), the expected optimal
NtN teaching objective is defined as follows :
Dk + argmin Ep,.p~ [Rp(A(D7 U DEg)].
Dr:|Dr|<B

We note that, unlike the previous setting, the objective requires the teacher to produce a teaching set
that is competitive w.r.t. the instance specific P which can be much smaller than instance agnostic
solution. Also, this setting can handle any learning algorithm .A. Computing a close form of the risk
of training an algorithm is a challenging problem.

To handle this, we take a function approximation approach by first approximating the risk using a
datamodel [Ilyas et al.| (2022) and then uses this risk model to solve NtN. For simplicity, we focus
mainly on linear datamodels but our methodology extends to more complex input differentiable
function approximators like deep neural networks. We refer the interested readers to the appendix for
a clean outline on extending our method to neural datamodels using projected gradient descent.

Linear Datamodel: Linear datamodel proposed by [[lyas et al.[|(2022) aims to approximate the risk
R(A(D)) of training an algorithm .4 on a dataset D as a linear function of a dataset.

More formally, given a pool of input universe X, the risk of training an algorithm A on dataset D is
modeled as a linear function in the indicator feature representation of dataset D, i.e., 1p € {0,1}*.
R(A(D)) = wplp. (7)
The parameter wp can be estimated directly by solving a meta-learning problem on meta-dataset
D = {1p,, R(A(D;))}|™, sampled from a distribution defined over possible data subsets Py,
1 m
— in— Y fl(w'1p,, R(AD;)) + A . 8
wp argngnm; 2(w 1p;, R(A(D:)) + Awllx ®
Remark 4. Note that this method works for any learner A and hypothesis class H, as long as one
can efficiently train the base learner A on a collection of datasets D.

Once we have wp, the function w; 1p serves as a surrogate for true risk which is then used to solve
the original NtN problem under the following realizability assumption.

Assumption 1 (Realizability of Linear Datamodel). The risk function of learning algorithm A is
realizable under linear datamodel iff R(A(D)) = wh1p, ¥D.

Algorithm using Linear Datamodel: Using linear datamodel under assumption I} the risk in[7]can
be expressed as R(A(D U Dr)) = w; - 1pup,, which simplifies NtN objective to:
Di i p-Ep[l . 9
T DT:llf%lq{lléBwp p[1pups] )
Expanding Ep [1pup,], = (1 — (1 — P.)") + Laep, - (1 — P,)™, we note that the first term is
independent of D7 and thus can be ignored. This reduces equation[9]to the following,
D} + i 1, . 1—-P,)". 10
T bri<n ;{ veDr - Wral ) (10)

This is a Unit Profit Knapsack problem where every item x has a unit cost and weight wp (1 — P;)™.

It is efficiently solvable by choosing B items with smallest weight leading to the following theorem.
Theorem 6. Under assumption|l| the instance-aware NtN problem is efficiently solvable and the
optimal solution is given by,

D} + argmin{wp (1 — P,)" 1 x € X} (11)
B

We remark that in contrast to the solution of [Engstrom et al.| (2024) which can be interpreted as
single-phase teaching, our algorithm also utilizes P to be instance-aware in the nature phase.
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6 EXPERIMENTS

We evaluate our teaching algorithms for teaching learners with diverse hypothesis classes (in both
NtN settings) and compare their performance against relevant baselines, as outlined below:

1. Performance of the algorithm: 1.) Teach vs no-teach: Given a fixed teaching budget, do
our teaching algorithms produce significant gains compared to no teaching? 2.) Role of
budget: Does higher budget lead to better teaching performance?

2. Comparison with simulated teaching: In simulated teaching (Sim-Teach), the teacher
simulates K learners(we choose a moderate K for fair comparison based on computation
cost), each with a random teaching set of size B and then select the best-performing teaching
set one among them for final teaching.

Our experiments, designed for conceptual clarity, serve as a clear proof of concept to corroborate our
theory. A natural extension of our work would involve more complex benchmarks and datamodels.
This represents a promising direction for future work, and we outline a path for it in the appendix.

6.1 INSTANCE AGNOSTIC TEACHING BY OPTIMAL VC REDUCTION

We apply our optimal VC reduction algorithm(OPT-VC) to a version space learner with a linear and a
axis-aligned rectangle class to demonstrate its effectiveness in instance-agnostic setting.

6.1.1 HOMOGENEOUS LINEAR CLASSIFIERS

We consider teaching a w* € R* to a homogeneous linear version space classifier. The nature’s P is
a uniform distribution over sphere S*. We discretize the weight space and do exact version space
learning, as specified in equation [Z]. The error is computed by evaluating the worst classifier in the
version space V(D) on a held-out test set.

Our results: We tested our algorithmE]for teaching this learner on various budget B € {0,...,d+1}
and plot its NtN performance R(A(Dr U Dg)) as a function of n;;4 as shown in Figure
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Figure 3: (a.) Performance of our OPT-VC algorithm on a linear learner. (b.) Comparing our optimal
VC reduction algorithm to simulated baseline for teaching a linear learner.

The blue curve B = 0 denotes no-teaching, i.e., the learner only learns from n;;4 points while
other curves represent teaching with respective budget B. Figure [3(a)l we observe that OPT-VC
outperforms no-teaching for all B. Moreover, a higher B consistently leads to lower test risk, reaching
to zero for all n;;q once B > T'D = 5. We also compare our algorithm against the Sim-Teach with
B =3 and K = 4,100 simulations as shown in Figure[3(b)] We observe that Sim-Teach with K" = 4
performs a bit better than i.i.d. teaching but is still outperformed by OPT-VC. Even with K = 100,
which is computationally expensive, Sim-Teach could barely compete with our OPT-VC algorithm.

6.1.2 AXIS ALIGNED RECTANGLE CLASS

We consider axis-aligned rectangle class defined on space X = {—n,--- ,n}? and choose a target
rectangle h* and Py = U(X). As before, the verion space learner maintains a version space V(D; H)
and is evaluated by the worst hypothesis in V(D).

Our results: Figure shows the NtN performance of our OPT-VC algorithm on various budget
sizes|l|as a function of n;;4 on x-axis.
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As before, the blue curve corresponds to no teaching while others represent budgeted teaching with
various B. We see from Figure that our OPT-VC consistently outperforms no-teaching and leads
to lower error with higher budget. Again, once B > T'D = 6, nurture alone leads to a zero risk.

We also compare OPT-VC to Sim-Teach and show the results in Figure d(b)} Sim-Teach simulates
K = 4,100 learners with a random B = 3 teaching set and picks the best one it finds. Unlike linear
case, Sim-Teach significantly underperforms w.r.t. our OPT-VC algorithm on both Ks.

— B=0

0.6 opt-VC(B =3)
sim-Teach(B=3,K=4)

—— sim-Teach(B = 3,K=100)
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o
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o
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(a) (b)
Figure 4: (a.) Performance of our optimal VC reduction algorithm on learner, and (b.) Comparing our
optimal VC reduction algorithm to the simulated baseline in teaching axis-aligned rectangle class.

6.2 INSTANCE AWARE TEACHING THROUGH LINEAR DATAMODEL

In this section, we demonstrate the effectiveness of our linear datamodel algorithm to teach a linear
perceptron learner in the instance-aware setting of section [J3]).

For simplicity, we choose a finite-size universe, X C RZ, consisting of equally-spaced points on the
unit circle, a w* € R? and Py = U(X) as shown in Figure We first train a linear datamodel
wp that represents the risk of linear perceptron(refer to the appendix for more details). Once we
obtain wp, we select the bottom B input X’s as teaching dataset based on value Wwp (1 — P,)™.

Our results: We evaluate the NtN risk of perceptron on the teaching dataset produced by datamodel
method(OPT-DM) and report it in Figure [5(a)] We observe that OPT-DM with budget B = 2,3
significantly outperforms no-teaching (B = 0). It is also worth noting that D% generated by OPT-DM
differs somewhat from those produced by OPT-VC, as illustrated in Figure[5(b)] Nevertheless, both
approaches reduce the learner’s risk compared to just using i.i.d. dataset, as shown in Figure 5(a)}

m  teaching set (opt-VC) X teaching set (opt-DM)

0.25

opt-DM . .
0.20 — B=0 . L oo g
%0.15 _ B=2 . o 2 / o
ﬁ 0.10 — B=3 > ® ® > ° °
= . [l . .
0.05 o B 3 .
M i *—e—*
0.00
2 4 6 8 10 12 14 16
Niig X X
(@) (b)

Figure 5: (a.) Comparing the teaching set (constructed with linear datamodel) with the case of no
teaching. (b.) Teaching sets as constructed by linear datamodel method on a perceptron learner in R2.

7 LIMITATIONS & CONCLUSION

This work advances the study of machine teaching by considering a more realistic two-phase setting
where the teacher is constrained by a budget. We proposed novel and efficient algorithms to cater
to different assumptions on the teacher’s capabilities. We provided theoretical guarantees to our
algorithms and demonstrated their effectiveness through experiments against strong baselines.

Looking forward, two promising avenues for research emerge. First, while optimizing the VC
dimension using a teaching set is NP-hard in general, the design of approximation algorithms is an
important open problem. Second, understanding limitations of linearity and developing non-linear
datamodels further could significantly enhance its practical impact on large-scale applications.
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A APPENDIX

B PROOFS

B.1 FINITE BINARY HYPOTHESIS CLASS

Budgeted Maximum Coverage Problem: Given a finite universe of items U and a finite collection
of subsets of the universe V = {V, C U : z € X'}, where X is a finite set, the goal is to find a
subcollection of V' of size upto B, that covers maximum number of elements of U. This problem
is known to be NP-hard Khuller et al.| (1999). However, a greedy algorithm that greedily chooses
a subset to reduce U maximally is approximately optimal, and achieves an approximation ratio of
1-— % This leads to the following guarantee on the optimal reduction of the version space size.

Theorem 7 (Theorem 2 of main text). There exists an algorithm that reduces the version space size
of finite hypothesis class up to an approximation ratio of 1 — %

Proof. We note that each demonstration (z, h*(z)) eliminates a subset of hypothesis, V,, = {h € H :
h(zx) # h*(s)} from H. Maximally reducing the size of the version space requires eliminating as
many hypotheses from H\{h*} as possible under budget B. This is nothing but budgeted maximum
coverage problem with U = H\{h*}, {V, : © € X'} as defined above and the result follows from
Khuller et al.| (1999). O

B.2 AXIS-ALIGNED RECTANGLES ON ZZ2—GRID

Definition 2 (Extending h to h’). A rectangle b’ is said to extend h if {x : h(z) =1} C {z: k' (x) =
1}. An extension can occur along one or more of the four sides'| of the rectangle — namely, top,
bottom, left, or right.

Definition 3 (Fixing sides and degrees of freedom). Given a version space V that contains h*, we
define the degrees of freedom of V w.r.t. h* as the number of sides along which h* can be extended
to another rectangle b/, such that h' € V. If no such extension is possible along a particular side, we
say that that side is fixed in V.

Remark 5 (Reducing degrees of freedom). The original hypothesis class has four degrees of freedom
corresponding to the four sides along which h* can be independently extended while still remaining
within the version space V. When k € {1,2,3,4} sides of h* are fixed in V, the degrees of freedom
of the version space reduce by k.

Lemma 8. Let H be the class of axis-aligned rectangles on 72-grid. For any rectangle, h € H,
fixing one (two) of its sides requires two (three) labelled examples.

Proof. (Fixing one side). Without loss of generality, consider fixing y ., corresponding to the
bottom side of the target rectangle h*. This can be done using exactly two labelled examples:
{((z,y55), +)s (2, ¥k — 1), =)} where Zyin < # < Zpax. The ‘+° and ‘=’ examples force
every consistent hypothesis h to satisfy ymin < Yi;, a0d Ymin > Yo, — 1, respectively, thereby
enforcing ymin = Yo ;,- Thus, no extensions are possible along the bottom side thereby fixing this
side. With only one labelled example there is always an extension h of h* possible along the bottom
side such that h is consistent with the labelled example — enlarge downward (shrink upward) given a
single positive (negative) example. Hence two examples are necessary.

(Fixing two sides). Naively, by the reasoning above, we can use four examples to fix two sides. But
we can do better by using just three examples: labeling a corner point of the rectangle as ‘4’ and
two adjacent points just outside the rectangle as ‘—’. For e.g., if the corner is (Zmax, Ymin ), then the
following set suffices as a teaching set: {((Zmax, Ymin); +), (Tmax + 1, Ymin)s —)s ((Tmaxs Ymin —
1), —)}. The necessity of three labelled examples is apparent given the need for two labelled examples
to fix a single side (as seen above). O

Theorem 9 (Theorem 3 of main text). The VC dimension of axis-aligned rectangles in 72 can be
optimally reduced as shown in the Table[9 below:

'By a side of a rectangle, we mean one of the 4-tuple values that defines any rectangle h =
{Zmin, Tmax; Ymin, Ymax} € H. For e.g., xmin refers to the bottom-side of the rectangle h € H. We fol-
low this convention in the subsection@]for readability of the proofs.
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BudgetB |1 |2 |3 |4 |5|>6
mnVC |4 3|2 |21 0

Table 2: Minimum VC achievable by B-budgeted teaching on axis-aligned rectangle class in Z?2.

Proof. We will proceed by starting with the case of B = 2 and end with the case B = 5 in that
increasing order. The case B > 6 follows from classical Teaching Dimension |Goldman & Kearns
(1995) as T'D = 6.

Case B = 1: We cannot fix any side of the target h* with B = 1 (Lemma[g)) and, hence, VC-
dimension remains 4.

Case B = 2: We can fix exactly one of the sides of the target h* with two examples as per Lemma ]
This means the reduced version space H' has 3 degrees of freedom (Remark and VC(H') = 3:
Consider the rightmost side (i.e. Znyax) 1S fixed and take four points in general position. If one
point lies within the convex hull of the other three, fixing x,.x prevents labeling the outer three
points as ‘+’ and the interior point as ‘—’. Otherwise, if no point is inside the convex hull of the
remaining three points, label the two points farthest apart (along the axis of the fixed side) as ‘4’ and
the remaining two as ‘—’. In both cases, at least one labeling is impossible, implying VC(H') < 4.
However, the set {(z,y), (x + 1,y + 1), (x + 1,y — 1)}, where < Zax, can be shattered.

Case B € {3,4}: Fix two opposite sides (e.g., Zmin and Zmax) via four examples (Lemma. Thus,
the reduced version space H' has 2 degrees of freedom (Remark[5) and VC(H') = 2: Any three
collinear points lying between these sides cannot all be labelled arbitrarily (one of them becomes the
‘middle’ point). Alternatively, for a triplet in general position, if one of the points falls outside these
sides, we cannot flip its label without contradiction. Hence no triple is shattered, but pairs are.

Alternatively, by Lemma [8] use three labelled examples to fix two sides that meet at a corner of
the target rectangle (e.g., (Zmax, Ymin))- Again, we have reduced version space H’ with 2 degrees
of freedom (Remark [5). This reduction ensures no set of three points can be shattered: if they are
collinear, the ‘middle’ point cannot be labelled differently from the other two; if they are in general
position, at least one labelling is impossible (e.g. two points that are closest to one of the sides to be
fixed are labelled as ‘+’ and the remaining point as ‘—’). However, two points remain shatterable
(for instance, by choosing a suitable (x,y) for the top-right corner). Hence, VC(H') = 2.

Case B = 5: With three sides fixed by, for instance, fixing a corner and one of the sides corresponding
to the opposite corner (Lemma [§)) using three and two labelled examples, respectively, the version
space reduces to H’ with 1 degree of freedom (Remark[5)) and VC(H') = 1: No two-point set can be
shattered as one labeling always becomes impossible depending on which three of the 4-tuple values
have been taught. However, we can construct a single point set that can be labeled in any way.

Case B = 6: Since TD(h*; H) = 6, we can simply use a teaching set of size six so that the version
space is reduced from H to H' = {h*}. Thus, VC(H') = 0. O

B.3 HOMOGENOUS LINEAR CLASSIFIERS
Let D be a dataset of size m with p negative labels generated by a target hypothesis w* € Hiinear,
given as follows,
D:=D UDV:={(z;,-1):iep]}U{(zs,+1):ie{p+1,--- ,m}}. (12)
Note that D induces a polyhedral cone as a version space,
V(D) ={w: w'a; <0,V € D™, wha; >0,V € D'}

Since a cone lies in the subspace span of its vectors, we have that VC(V(D)) < d(V(D)), where d
denotes dimensionality. Next lemma shows that VC'(V(D)) is also lower bounded by d(V(D)) — 1.

Lemma 10. For a dataset D containing all positive labels, i.e., D = D, we have that VC(V(D)) >
d(V(D)). Otherwise, VC(V(D)) > d(V(D)) — 1.

Proof. Let V(S) = {w € RP : w'a; > 0,Vi € [n]} be a closed polyhedral cone formed by an all
positive dataset S and let [ be its dimensionality. We show that VC'(.S) = [.
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We construct a set V' consisting of [ points in R? and show that it can be shattered by S. For each
labeling s € {0, 1}!, we construct a labeling vector w, € S that achieves label s on V. Consider a
set of [ orthogonal vectors in S and arrange them as columns of matrix A = [v1, v, - - - ,v;] € R4*!,
Since, S is [-dimensional, we can always find such a set of vectors.

Now, we show that the set of [ points, V = {—A~Te;,— A~ Tey, -, —A~ T¢;} can be shattered by
S. We use pseudo-inverse if [ < d.

Let s € {0, 1} be a labeling vector. We will show that w, = (3., _, Ae;) achieves the labeling s
on V. First, note that since .S is a convex cone, ws = » ;.. _,v; € S.

We have that, (—A~ Te;) Tw, = Y, _g—ef A7 Ae; = 3, _—ele; = —1[s; = 0]. Thus,
huw,(—A7Te;) = 1[(A™Te;) Tws > 0] = 1[s; = 1] and so w; realizes the labeling s. Since,
dim(S) = 1,8 C R, and we have that VC(S) < VC(R!) = . Thus, VC(S) = 1.

Now, if S has an open halfspace, i.e., the corresponding dataset contains a negative labeled point,

then all the labeling except all positive one can be realized, i.e., wy = 0 does not lie in .S, while rest
all w; still lie in S and above proof proceeds. Thus, | — 1 < VC(S) <. O

Next, we characterize the dimensionality of the version space and asserts that maximal dimensionality
reduction can be achieved by B positively labeled demonstrations as stated in point 3 below.

Lemma 11. The following statement hold true for a consistent dataset D generated by w* € RP :
1. Negative points do not help in reducing dimensionality, i.e., d(V(D)) = d(V(D1)).
2. VD : |D| < B, we have that d(V(D)) > d — |D| + 1.
3. ZB % d, ihe dataset DB achieves optimal reduction in VC by B — 1, thus, d(V(DZX)) =
—B+1.

DP ={(v1,+1),..., (vp_1,+1), (= > v, +1)}
i€[B—1]

. . i
where {v1,...,vp_1} is a B-basis of w*— subspace.

Proof. To prove 1, we start with a basis set of V(DV) and a feasible zo € V(D). Translating the
basis set by z yields a basis set for V(D). To prove 2, we can construct a dataset with | D| points that
kills | D| — 1 vectors in orthogonal subspace of w*. For prove 3, it is easy to see that a classifier w is
consistent on Djff if and only if w ¢ span(vy,- - ,vp_1). Thus, the dimensionality of the version
space V(DZ2) reduces from d(R?) = d to d(V(DE)) =d - B+ 1. O

Theorem 12 (Theorem 4 of main text). There exists an algorithm that VB < d + 1, opti-
mally reduces the VC of the linear class to d — B + 1 and the optimal teaching set is given as
DB = {(vy,+1),...,(vp_1,+1),(— >ic(p—1) Vi, +1)}, where, {v1,... ,vp_1} is a B-basis of

wrt subspace.

Proof. We make the following observations:

1. For a dataset with all positive demonstrations, we have that VC(V(D)) > d(V(D)) >
d — B + 1 and the lower bound is achieved by DZ is Lemma

2. For a dataset with at least one negative demonstration, VC(V(D)) > d(V(D)) — 1 =
d(V(DT)) —1>d— |D*| > d — B + 1. The first inequality follows from Lemma 10|
while others follow from Lemma [Tl

Thus, for B < d, the optimal strategy is to teach dataset DZ to kill of B — 1 dimensional subspace.
We refer to Figure [[2]] for an illustrative teaching example in w* € R? and B = 2,3. For B > d + 1,
our optimal teaching dataset matches with the unconstrained teaching dataset proposed by [Kumar
et al|(2021). O
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B.4 POLYNOMIAL HYPOTHESIS CLASS

Theorem 13 (Theorem 5 of main text). For any target polynomial h* € H, the optimal teaching
set that reduces the VC dimension of the polynomial version space by B — 1 is given as DE =

{(@i, +1) : $las) Lw*,i€ [B—1],Vi# j,é(w:) L d(x;)} U{(d(xp) = — 5" (), +1)}

Proof. The teacher can computes B — 1 orthonormal bases functions to * and their negative
summand represented by vectors vy, -+ ,Vp_1,— Y ie[B—1] Vi in the standard bases. However, to
be a valid teaching set these vectors must be induced by the feature function ¢ on certain input
set (preimages under ¢) {z; € R? : i < [B]}. Assuming that there exists a set of such inputs,
the teacher can construct the optimal teaching set given by the dataset DL = {(x;,1) : i €

[B -1} u{(- ZiE[B—l] z;, 1)}

Computing the preimages for teaching vectors: We propose an iterative algorithm that can compute
the orthogonal preimages efficiently assuming they exist. At the start of iteration k € [B], say we
have already computed the £ — 1 orthogonal bases vectors in w**, the optimization problem to find
the next orthobasis vector vy, is as follows:

T, v < min  lv — ¢()|?
v

st.a'v=0,Vaec{v;:i<k—-1}U{w*}

Once all {v;}|;<p_1 vectors have been computed, we compute the preimage of their negative
summand by solving

p,vp ¢ minlv — (- D @)+ Ao = o).

j<B-1

Remark 6. This method extends to any finite dimension kernel. However, not all kernel mapping
may admit a pre-image set thereby limiting this approach.

C EXPERIMENTS FOR INSTANCE-AWARE TEACHING USING DATAMODELS

Overview: We first train a datamodel using meta dataset Dy, := (D;, R(A(D;))) computed by
training perceptron algorithms on various data subset D; sampled from Pp € A(2%) and tested on a
held out test set to get the meta label R(.A(D;)). We use a uniform distribution Pp over all subset of
size < - | X| where X is a finite set of points in R?.

Once, we have the meta dataset, we train the datamodel parameter wp using sparse linear regression
on Dj;. We then compute the optimal teaching set as B points in X' with minimum weights
Wp(1— Py)™.

We then evaluate the NtN performance on this dataset for various values of n;;4. The teaching code for
VC reduction teaching for linear and axis aligned rectangles can also be found in the supplementary
materials (data_models.ipynb).

Now we describe our setup and pseudo-code along with hyperparameter configurations for estimating
linear datamodels, computing the teaching sets and evaluating NtN performance.

C.1 SETUP, DATA GENERATION AND EVALUATION

We consider teaching a homogeneous linear classifier in R2. The learner is trained via an ERM
procedure using a perceptron loss (as a computationally convenient surrogate to 0—1 loss) on a finite
universe X C R2.

We let X be a set of 16 uniformly-spaced points on the unit circle in R?. Each point z € X is labeled
via a target linear separator wtrueﬂ In the nature phase, the learner receives n i.i.d. draws from the
uniform distribution Py. Since we have access to all of X and we know that Py is uniform, we
evaluate the test performance of a linear classifier as the average 0-1 loss on the entire feature space
X.

2For simplicity, we have chosen wie to be one of these 16 points in our simulations.
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C.2 TEACHING THROUGH LINEAR DATAMODELS (OPT-DM)

As discussed in Section [5} we use linear datamodels to approximate the learner’s risk as a linear
function of the dataset. We then use these estimated datamodel’s weights to find the budgeted teaching
set which is to be used for teaching the learner under the prescribed teaching budget.

C.2.1 ESTIMATING LINEAR DATAMODELS

* Meta-Dataset Construction: We sample Ngpsers Subsets S; C X of size o - |X| via a
distribution Pyyss. For each subset S;, we train a perceptron on S; using the perceptron
loss and measure its O—1 test loss y; on the entire space X'. We use o = 0.25 and Pyypsers tO
be a uniform distribution in our experiments.

* Sparse Linear Fit (¢, -regularization): We collect pairs (1g,, y;) and solve

1 Nubsets
2
(0" 1s, — wi)” + A€

f = argmi

gnélln Nsubsets i—1
We use scikit-learn’s LassoLarsCV solver with 4-fold cross-validation to auto-
matically select A and perform the ¢;-regression. Here, 6, measures how strongly point
x € X influences the overall risk. The pseudo-code for estimating datamodels is outlined in
Algorithm T}

Algorithm 1 EstimateDataModel

Require: Universe X C R3, subsampling fraction « € (0, 1), test-set size m, number of subsets
Ngupbsets, distribution over subsets Py psets

T <+ o> Initialize datamodel training set
2: S={(z,y) |z € X,y =2"sign(wrye - ) — 1}
3: for i = 1to Nyypsers do
4:  Sample subset .S; C S as per Psypsers With |S;| = - d
5:  Train Aon S;
6:  Sample Dycyp ~ PP
7y L 2 ()€ Drony L0—1(A(255:),y)
8:  Define 1, € {0,1}% where (15,); = lifz; € S; else 0
9: T%TU{(lSi,yi)}
10: end for

11: 6 < RunRegression(7)
12: return 6

C.2.2 COMPUTING THE TEACHING SET

Having estimated the linear datamodel using Algorithm [I]above, we use its weights 6 along with the
given teaching budget B, a nature budget n, and underlying data distribution Py, we can compute
the limited-budget teaching set by finding B points that minimize the following

> 0, (1—Pry)".
x€D

We thus pick the B smallest values of 6, (1 — Px ;)™ as proved in Theorem@ This is outlined below
as Algorithm

Algorithm 2 ComputeTeachingSet

Require: Teaching budget B, weight vector 6, distribution Py, nature budget n
I: Dy + argming {0, - (1 — (Px%)™)}
2: return Dy
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C.2.3 NTN EVALUATION

Given that we have estimated the datamodel and computed the limited-budget teaching set D, we
now measure performance (Ry¢n (Dr,niiq)) of the learnt classifier as a function of the nature budget
n4;q. In particular, by sampling K = 50 distinct i.i.d. subsets of size n;;q, training a perceptron
on Dy U D} for each k € [K], and computing average test-set error Ry.n (D1, n4q) as averaging
their 0-1 loss on the entire space X (Equation equation [I3]below). We repeat this for nature budgets
Niid = 1,..., N for N = 16. Note that ' = 50 subsets are sampled for each n;;4 so that we can
compute the 95% confidence intervals (shaded regions) as seen in Figure [5(a)l

K
1 1 .
Rnen (D1, niiq) = Ve E Eq E lo—1 (AL (), Yz) (13)
k=1 TEX

where { A}'} denotes trained models using the k" subset of i.i.d. training set with n;;4 nature budget
and y, denotes the true label of any point x € X as per Wyre-

C.2.4 COMBINING EVERYTHING: TRAINING A LINEAR CLASSIFIER THROUGH NTN

The OPT-DM procedure as outlined above in B.2.1 — B.2.3 can be collectively expressed as Algorithm
Blbelow.

Algorithm 3 TrackNtNPerformance

Require: X C R?, |X| = d, uniform Py, teaching budget B, max nature budget N, &, Ngypsets
Psupsets, test-set size m, number of models K
1: 0 < EstimateDataModel(X, o, m, Nsypsetss Psubsets)
2: for n;;q = 1to N do
3: Dy + ComputeTeachingSet(B, 0, Py, n)

4: fork=1to K do

5: Sample D}"'* ~ Py

6: Train A}"¢ = A(Dp U D;"'%)

7:  end for

8:  Evaluate Ry¢n(Dr,n44) as per Equation equation
9: end for

C.3 EXTENDING TO NEURAL DATAMODEL IN INSTANCE-AWARE SETTING

Our Instance-Aware method based on datamodel is very generic and in fact it can be extended to any
datamodel that can be optimized over input space and that includes deep neural networks as well.

We briefly outline the procedure for using neural datamodel for NtN teaching. For teaching purpose,
we assume that we already have an access to neural datamodel (one can easily train one similar
to how we trained linear datamodel using same underlying metadataset just by substituting linear
function class with neural network function class).

1 m
0" < argmin — ;fz(fe(lm), R(A(Dy))) + All6]l3-

Once we have a trained neural datamodels parameterized by 6*, we use the following projected
gradient descent algorithm to find the best NtN teaching set under budget constraints.

We tested this method on a simple threshold classification problem with input space X =
{—4,-3,-2,-1,0,1,2,3}. The ground truth classifier is h(z) = 1[z > 0].

We apply our algorithm ProGrad-Ntn using Adam optimizer with a regularization coefficient of
0.1 and learning rate of 0.01 for 10K iterations or until iterates converge to a local minima. The
resulting z* so obtained is 2* = [-0.,0.01,0.37,0.23,0.,0.01, 0.]. Projecting on Iy (2*) = 2, yields
the dataset z = [—0.33, 0] as a teaching set which indeed is an optimal teaching set for the problem.
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Algorithm 4 ProGrad-NtN : Projected Gradient for Nurture-then-Nature

Require: Model function fy : z — R, Target y¥* = 0, Budget B, Learning rate
Ensure: Optimized dataset D* € {0,1}? with |D*|o < B.
- Initialize D € {0, 1} randomly.
while not converged do

Compute gradient: V < Vpl(fo(D),y*)

Perform gradient step: D <— D —nV

Project D onto ¢y < B ball: Keep the top-B entries of D and set others to 0.
end while
return D

A A Sl e

We would like to emphasize that the aim of the this and main experiments in the paper serves as a
empirical proof of concept for usefulness of linear and neural datamodel. A complete treatment of
these methods on complex problems is beyond the scope of this paper and we hope that future works
could build on our work to solve more real world NtN problems using our algorithm.

D COMPUTE SYSTEM AND LLLM USAGE

All code has been run on 48 core Intel Xeon system with 192GB memory and Macbook M1 Pro
laptop with 16GB memory. We have only used LLMs for rephrasing certain points in the paper.

18



	Introduction
	Related Works
	Problem Formulation
	The Learner and The Environment
	The Teacher
	The Nurture-then-Nature Setting

	Instance Agnostic Teaching Setting
	Finite Binary Hypothesis Class.
	Axis-aligned Rectangles on Z2 grid
	Linear Hypothesis Classifiers in Rd
	Polynomial Hypothesis Classifiers in Rd

	Instance Aware Teaching Setting
	Experiments
	Instance Agnostic Teaching by Optimal VC Reduction
	Homogeneous Linear Classifiers
	Axis Aligned Rectangle Class

	Instance Aware Teaching through Linear Datamodel

	Limitations & Conclusion
	Appendix
	Proofs
	Finite Binary Hypothesis Class
	Axis-aligned rectangles on Z2-grid
	Homogenous Linear Classifiers
	Polynomial Hypothesis Class

	Experiments for Instance-Aware Teaching using Datamodels
	Setup, Data Generation and Evaluation
	Teaching through Linear Datamodels (OPT-DM)
	Estimating Linear Datamodels
	Computing the teaching set
	NtN Evaluation
	Combining everything: Training a linear classifier through NtN

	Extending to Neural Datamodel in Instance-Aware Setting

	Compute system and LLM Usage

