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Figure 1. Our MAR-3D demonstrates strong generalization ability on in the wild images, accurately handling complex geometric details
including fine structures and intricate shapes. We visualize the normal maps of our generated meshes with some random rotations.

Abstract

Recent advances in auto-regressive transformers have rev-
olutionized generative modeling across different domains,
from language processing to visual generation, demonstrat-
ing remarkable capabilities. However, applying these ad-
vances to 3D generation presents three key challenges: the
unordered nature of 3D data conflicts with sequential next-
token prediction paradigm, conventional vector quantiza-
tion approaches incur substantial compression loss when
applied to 3D meshes, and the lack of efficient scaling
strategies for higher resolution latent prediction. To address
these challenges, we introduce MAR-3D, which integrates a

pyramid variational autoencoder with a cascaded masked
auto-regressive transformer (Cascaded MAR) for progres-
sive latent upscaling in the continuous space. Our archi-
tecture employs random masking during training and auto-
regressive denoising in random order during inference, nat-
urally accommodating the unordered property of 3D la-
tent tokens. Additionally, we propose a cascaded train-
ing strategy with condition augmentation that enables ef-
ficiently up-scale the latent token resolution with fast con-
vergence. Extensive experiments demonstrate that MAR-3D
not only achieves superior performance and generalization
capabilities compared to existing methods but also exhibits
enhanced scaling capabilities compared to joint distribu-
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tion modeling approaches (e.g., diffusion transformers).

1. Introduction
High-quality 3D mesh generation has emerged as a crit-
ical challenge in computer graphics and vision, with
widespread applications in gaming and AR/VR industries.
Recent advances in open-world 3D object generation have
demonstrated promising results following several distinct
paradigms. Large Reconstruction Models [13, 39] em-
ploy transformers to convert single images into 3D shapes
through implicit representations with multi-view supervi-
sion. However, the lack of generative priors leads to blurry
artifacts in unseen regions. Another direction combines 2D
diffusion models [4, 21, 23, 33, 41] with sparse view 3D re-
construction models [18, 37, 46, 48]. However, these meth-
ods are constrained by the quality and consistency of the
generated multi-view images. A more recent paradigm fol-
lows the success of 2D image generation by utilizing 3D
variational auto-encoders (VAE) to compress dense point
clouds into latent space, then applying diffusion models for
direct 3D shape generation [14, 20, 50–52].

While these approaches show promising performance,
they face fundamental challenges in effectively increas-
ing tokens to achieve higher quality generation: (1) exist-
ing VAEs and generators struggle to maintain geometric
detail when representing 3D data into limited number of
tokens, (2) the computational complexity of transformer-
based generators grows quadratically with token resolution,
directly increasing the number of tokens requires hundreds
of GPUs [51]—making it impractical, and (3) the lack of an
effective strategy to progressively increase resolution while
maintaining generation quality.

In this work, we address these challenges through a pro-
gressive approach. First, we introduce a Pyramid VAE
that captures multi-scale geometric information through dif-
ferent cross-attention layers, improving data representation
and reconstruction quality while maintaining efficient to-
ken resolution. Second, we develop a cascaded genera-
tion strategy using two Masked Auto-Regressive (MAR)
models: MAR-LR generates low-resolution tokens that cap-
ture overall shape, while MAR-HR refines these into high-
resolution tokens with fine geometric details.

This progressive strategy is enabled by several key strate-
gies: (1) a random masking operation during training that
naturally fits the unordered property of 3D latent tokens, (2)
condition augmentation that reduces compounding errors
when increasing resolution, and (3) an efficient parallel de-
coding strategy that maintains generation quality even with
longer token sequences. Through extensive experiments,
we demonstrate that our approach not only achieves supe-
rior performance compared to existing methods but also ex-
hibits enhanced progressive properties in terms of both la-

tent token resolution and generation quality.
Our key contributions include:

• A Pyramid VAE architecture that enables effectively in-
creasing token resolution to preserve geometric details.

• A cascaded MAR generation that combines MAR-LR and
MAR-HR models for progressive token generation.

• A comprehensive study demonstrating the benefits of
our progressive up-scaling strategy combining auto-
regressive model for improving generation quality.

• The state-of-the-art results among open-sourced methods
on public benchmarks, with particular improvements in
preserving fine geometric details and complex structures.

2. Related works

2.1. 3D Large Reconstruction Models
The Large Reconstruction Model (LRM) [13, 39, 43, 45]
marks a pivotal advancement in single-view 3D reconstruc-
tion by significantly scaling up both model architecture and
dataset size for neural radiance field [25] (NeRF) predic-
tion. While LRM was initially developed for reconstruction
tasks, its capabilities have been extended to text-to-3D and
image-to-3D generation through integration with multiview
diffusion models [23, 32, 41, 42], as demonstrated by sub-
sequent works such as Instant3D [18], DMV3D [47], and
InstantMesh [46]. Recent innovations, including LGM [37],
GRM [48], and LaRa [3], have further enhanced rendering
quality and computational efficiency by combining novel
view generation diffusion models with generalizable Gaus-
sians family [15, 17] in a feed-forward manner. However,
this approach of leveraging pre-trained multiview diffu-
sion models [33, 41] encounters two significant challenges.
First, the disjoint training of reconstruction and diffusion
models can introduce multiview inconsistencies during in-
ference. Second, the multiview diffusion process typically
produces lower resolution outputs, resulting in the loss of
original image details and degraded reconstruction fidelity.

2.2. 3D Generative Models
Direct generation of 3D content under explicit 3D super-
vision offers a more efficient approach to 3D content cre-
ation [16, 31, 49–53]. However, training generative models
directly on 3D data poses significant challenges due to ex-
tensive memory and computational requirements. Recent
approaches address these limitations by first compressing
3D shapes into compact latent representations before ap-
plying diffusion or auto-regressive models. This field saw
significant advancement with 3DShape2VecSet [50], which
introduced a 3D mesh VAE that encodes point clouds into
shape latents and decodes occupancy values using grid em-
beddings, coupled with a categorical latent diffusion model.
Building on this foundation, subsequent works including
Michelangelo [52], CLAY [51], and Craftsman [20] scaled



up 3D diffusion models by leveraging diffusion transformer
architectures and larger datasets, achieving superior gen-
eralization capabilities. Xcubes [31] further advanced the
field by compressing 3D meshes into sparse latent voxels
and learning hierarchical voxel diffusion models for gener-
ation. While recent attempts aiming at synthesizing meshes
directly [5, 6, 26, 34] have demonstrated promising results
in high-quality mesh generation, their effectiveness is lim-
ited by mesh tokenization constraints and strict require-
ments on face counts, which ultimately restrict their gener-
alization capability. Distinct from previous approaches, our
method preserves the advantages of auto-regressive models
while circumventing the limitations of lossy tokenization
from vector quantization through the integration of diffu-
sion models and progressive up-scaling strategy.

2.3. Generative Auto-Regressive Models
Auto-regressive models [9, 40] have revolutionized visual
generation [1, 2, 8, 19, 22, 27, 36, 38] through their se-
quential approach of synthesizing images using discrete to-
kens produced by image tokenizers. Pioneering works such
as VQGAN [8] demonstrated the effectiveness of raster-
scan sequences for next-token prediction by first train-
ing a discrete-valued tokenizer on images, utilizing a fi-
nite vocabulary obtained through vector quantization, fol-
lowed by per-token prediction. Subsequently, Maskgit and
MUSE [1, 2] advanced beyond sequential token prediction
by introducing parallel prediction of multiple tokens in ran-
dom order, substantially improving both generation qual-
ity and efficiency. More recently, VAR [38] introduced a
novel next-scale prediction paradigm that not only better
preserves spatial locality but also achieves significant com-
putational efficiency gains. However, these methods still
suffer from information loss due to quantization in the latent
space. To address this limitation in continuous domains,
MAR [19] proposed modeling per-token probability distri-
butions using a diffusion process [11], effectively combin-
ing the efficiency of auto-regressive models with the advan-
tages of continuous diffusion processes to mitigate quanti-
zation losses. Building upon these advancements and the
demonstrated scalability benefits in 2D applications, our
work extends continuous auto-regressive modeling into the
realm of high quality 3D mesh generation.

3. Approach

3.1. Overall
As illustrated in Fig. 2, our framework MAR-3D con-
sists of a Pyramid VAE architecture coupled with a
Cascaded MAR. Specifically, MAR-LR generates low-
resolution tokens encoding global structure conditioned on
the input image tokens, while MAR-HR produces high-
resolution tokens conditioned on the previously generated

low-resolution tokens and image tokens, enabling fine geo-
metric detail refinement. The final 3D mesh is extracted by
applying Marching Cubes to the occupancy field [24] from
the high-resolution latent tokens.

3.2. Pyramid VAE

Encoder As illustrated in Fig. 2 (a), our Pyramid VAE
first generates K levels of down-sampled resolutions from
the input point cloud Pk ∈ RNk×3, where Nk is the num-
ber of points for kth level, and concatenates them with their
corresponding surface normals Pk

n as multi-resolution point
embeddings:

P̂k = [γ(Pk),Pk
n], (1)

where γ(·) denotes the positional embedding function.
Subsequently, we apply cross-attention operations between
learnable queries S and each level of point embedding P̂k,
which serve as keys and values. Each resolution level em-
ploys distinct cross-attention layers: coarse levels capture
structural features while fine levels extract detailed geomet-
ric information, which are then added together. Multiple
self-attention layers are subsequently applied to obtain the
latent tokens X:

X = SelfAttn

(
K∑

k=1

CrossAttnk(S, P̂k)

)
. (2)

While directly using high-resolution latent tokens would in-
crease computational burden and complicate diffusion train-
ing, our hierarchical design enables efficient token length
compression while preserving geometric details. Unlike
[51], which randomly operates on one of multiple resolu-
tions of point clouds during training, our Pyramid VAE pro-
cesses multiple resolution levels simultaneously and also
supports latent tokens of different resolutions, which en-
ables progressive scaling in the next step.

Decoder The decoder architecture first processes the en-
coded features through multiple self-attention layers. We
then sample query points with positional embeddings and
employ cross-attention between these embedded points and
the processed latent tokens to predict occupancy values.

Training Objective We optimize the VAE using a com-
bination of binary cross-entropy (BCE) loss for occupancy
prediction and KL-divergence loss for latent space regular-
ization:

Lvae = Ex∈R3

[
BCE

(
Ô(x),D(γ(x),X)

)]
+ λklLkl, (3)

where Ô(x) is the ground truth occupancy value.
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Figure 2. Overview of MAR-3D: (a) Pyramid VAE: It processes learnable tokens through separate cross-attention layers, taking multi-
resolution point clouds and normals as input to generate occupancy fields. (b) Cascaded MAR: Conditioned on image features extracted
by CLIP and DINOv2, we employ a cascaded design: a MAR-LR model for generating low-resolution tokens, and a MAR-HR model
for high-resolution token. The MAR architecture details are illustrated in the blue box. While MAR-LR and MAR-HR share the same
architecture, they differ in the inputs: MAR-HR additionally requires low-resolution tokens as input (shown in the dashed box).

3.3. Cascaded Masked Auto-Regressive Model

Our Cascaded MAR consists of MAR-LR and MAR-HR
models with the same architecture while different input to-
kens. MAR-LR takes image tokens as condition and MAR-
HR takes both of the image tokens and the low-resolution
tokens generated by MAR-LR. Traditional auto-regressive
models predict tokens sequentially based on previous to-
kens, following a causal ordering paradigm widely adopted
in language models. However, given the unordered nature
of our latent tokens, we employ a random and parallel de-
coding strategy inspired by image generation techniques [1]

to efficiently generate large number of tokens:

p(x1, . . . , xN ) = p(X1, . . . , XS)

=
∏
S

p(Xs|X1, . . . , Xs−1), (4)

where Xs represents a set of tokens generated in parallel
at step s, the generation order of latent tokens is determined
randomly. During training, we adopt Masked Autoencoders
(MAE) [9], which employs random masking to reconstruct
masked regions using information from unmasked tokens.
This enables the model to predict tokens in arbitrary order
during inference. Since our latent tokens exist in contin-
uous space, we apply diffusion loss [19] rather than con-
ventional Cross Entropy loss to supervise both of our auto-
regressive model and diffusion model. During inference,



starting from image tokens, the newly generated tokens are
positioned in their designated locations and iteratively fed
back into the MAE encoder-decoder and diffusion denois-
ing pipeline for subsequent continuous token generation.
The low-resolution tokens generated by MAR-LR are con-
catenated with image tokens and fed into MAR-HR, fol-
lowing the same process to generate final high-resolution
tokens, which are fed into our VAE decoder to generate the
occupancy field and extract the mesh.

3.3.1. MAR-LR
Positional Embedding Given that our latent tokens lack
inherent sequential order or spatial position information,
conventional positional embedding approaches such as ab-
solute positional encoding and relative positional encoding
are not applicable. Instead, we associate each latent token
with learnable positional tokens, which are added as residu-
als to the original latent tokens, enabling positional embed-
ding adaptively updated during training.

Image Tokens For processing conditional images, we
leverage complementary features from CLIP [30] and DI-
NOv2 [28]. The concatenated features serve as initial to-
kens for the MAR encoder, providing both semantic under-
standing and fine-grained pixel-level features. During train-
ing, we implement classifier-free guidance by randomly
nullifying conditional input features with 0.1 probability,
enhancing conditional generation quality [10].

MAE Encoder and Decoder We concatenate images to-
kens with latent tokens and apply random masking with a
ratio ranging from 0.7 to 1.0. Following the MAE architec-
ture, we employ bidirectional attention mechanisms. The
process involves first processing unmasked tokens through
the MAE encoder, which is composed of multiple self-
attention layers, and then concatenating the encoded tokens
with mask tokens—using the same pre-defined learnable to-
ken for all masked positions. Learnable positional embed-
dings are incorporated into both masked and unmasked to-
kens before entering the MAE decoder, enabling position-
aware token prediction.

Diffusion process The decoder generates each condition
vector z ∈ RD for each token used in the diffusion pro-
cess. A lightweight MLP-based denoising network then re-
constructs ground truth tokens from Gaussian noise by op-
timizing:

L(z, x) = Ez, t
[
|ϵ− ϵθ(xt|t, z)|2

]
, (5)

where z is the condition vector from MAE decoder and xt

is the ground truth latent token provided by well-trained
VAE. During inference, reverse diffusion process is applied
to predict each set of tokens.

3.3.2. MAR-HR
We analyze the relationship between VAE latent token
length and reconstruction error. While increasing token
length improves VAE reconstruction quality, directly train-
ing MAR on longer sequences poses convergence chal-
lenges due to quadratic computational complexity. To
achieve high-quality geometric details while maintaining
computational efficiency, we implement a coarse-to-fine
generation strategy using a super-resolution model (MAR-
HR) that shares MAR-LR’s architecture but generates high-
resolution tokens conditioned on low-resolution latent to-
kens and image tokens. The training objective for MAR-HR
is defined as:

LH(zh, xh) = Ezh, t
[
|ϵ− ϵθ(x

t
h|t, zh)|2

]
, (6)

where xh represents high-resolution tokens from the VAE
and zh denotes the condition vector from MAE decoder in
our MAR-HR model.

Condition Augmentation To address the discrepancy be-
tween VAE-generated low-resolution tokens used during
training and MAR-LR-generated tokens used during infer-
ence, we employ a condition augmentation strategy to mit-
igate compounding error [12]. Our approach applies Gaus-
sian noise to the low-resolution tokens xl through:

xl
′ = tϵ+ (1− t)xl, (7)

where ϵ ∼ N (0, I) and t ∼ U(0.4, 0.6) during training,
with t fixed at 0.5 during inference. This augmentation is
applied to both VAE-generated low-resolution tokens dur-
ing training and MAR-LR-generated low-resolution tokens
during inference before they are processed by MAR-HR.
This strategy effectively reduces compounding error and
provides strong conditional guidance to MAR-HR, enabling
faster convergence compared to direct high-resolution token
training. The previous approach, as seen in [51], requires
substantial computational resources (hundreds of GPUs)
and, as demonstrated in our experiments, yields poor con-
vergence under the same limited GPU resources.

3.4. Inference Schedules
Generation Schedule During inference, we first gener-
ate a random token generation order. Then we extract im-
age tokens from input image, which are fed into the MAE
encoder-decoder architecture. From the decoder outputs,
we select condition vector z according to the predeter-
mined generation order. Multiple tokens undergo parallel
DDIM [35] denoising processes simultaneously. The num-
ber of tokens Ns processed in each auto-regressive step fol-
lows a cosine schedule as in [1], progressively increasing
over S total steps:

Ns =

⌊
N(cos(

s

S
)− cos(

s− 1

S
))

⌋
. (8)



GSO [7] OmniObject3D [44]
Method F-Score ↑ CD ↓ NC ↑ F-Score ↑ CD ↓ NC↑
LGM [37] 0.745 0.813 0.685 0.738 0.821 0.677
CraftsMan [20] 0.776 0.785 0.687 0.771 0.798 0.675
TripoSR [39] 0.834 0.644 0.727 0.825 0.621 0.731
InstantMesh [46] 0.923 0.415 0.780 0.918 0.427 0.779
Ours 0.944 0.351 0.835 0.931 0.364 0.826

Table 1. Comparison of different methods on GSO and OmniObject3D datasets. Arrows (↑/↓) indicate whether higher or lower is
better. Best results are in bold.

This scheduling strategy is motivated by the observation
that initial tokens are more challenging to predict, while
later tokens become progressively easier to determine, sim-
ilar to a completion task. Consequently, we generate fewer
tokens in initial steps and gradually increase the number in
later steps, rather than maintaining a constant generation
rate across all steps.

CFG Schedule We employ CFG in our diffusion model:

ε = εθ(xt|t, zu) + ωs · (εθ(xt|t, zc)− εθ(xt|t, zu)), (9)

where zc and zu are conditional and unconditional output
from the MAE decoder, which serve as the condition for
the diffusion model. We employ a linear strategy [19] for
the CFG coefficient ωs, starting with lower values during
the initial uncertain steps and progressively increasing it to
λcfg . Specifically, in Eq. 9, we set ωs = s ∗ λcfg/S.

3.5. Discussion
The MAR-3D architecture offers significant advantages
over joint distribution modeling methods such as DiT by
decomposing the complex joint distribution into temporal
(diffusion) and spatial (auto-regressive) components. This
decomposition, combined with our cascaded super resolu-
tion model, enables progressively increasing tokens. The
effectiveness of this approach is comprehensively validated
through ablation studies comparing against existing joint
distribution modeling method by DiT [29].

4. Experiments

4.1. Implementation Details
We train our pyramid VAE using a hierarchical point cloud
representation with 16384, 4096, and 1024 points from the
highest to lowest level, along with 20480 sampled ground
truth occupancy values. For cascaded MAR model train-
ing, we use the conditional images and latent tokens sam-
pled from the pyramid VAE, with batch sizes of 32 and 8
per GPU for MAR-LR and MAR-HR respectively. Train-
ing and inference details are provided in the supplementary.

4.2. Training Strategies
Training Data Curation Our training procedure utilizes
carefully curated data from Objaverse [44], implement-
ing a two-stage approach.We first train on 260K geomet-
rically diverse meshes with partial low texture quality for
200 epochs, followed by fine-tuning on 60K high-quality
meshes with natural textures for 100 epochs.

Rotation Augmentation For each 3D mesh, we render
56 conditional views using a structured rendering approach.
We first uniformly sample 8 base views with azimuth angles
ranging from 0° to 360°. Each base view is then augmented
with 6 different random rotations. To ensure consistency
between the input images and 3D latent tokens, we apply
corresponding rotations to the 3D meshes before VAE en-
coding. This strategy effectively avoids the ambiguity that
would arise from mapping the same canonical mesh to dif-
ferent conditional view images.

4.3. Comparison Results
Evaluation Settings We compare our method with recent
single-view approaches: InstantMesh [46] (multiview diffu-
sion with feed-forward SDF), LGM [37] (feed-forward 3D
Gaussians), TripoSR [39] (large reconstruction model with-
out diffusion), and CraftsMan [20] (VAE-diffusion pipeline
similar to ours). All evaluations use official pre-trained
models. We evaluate on GSO [7] and OmniObject3D [44]
datasets, which contain unseen real-scanned objects. To
ensure meaningful comparison, we first remove too sim-
ple categories such as boxes and then randomly sample
100 shapes from each dataset (200 total). We assess per-
formance using F-score, Chamfer distance (CD), and Nor-
mal Consistency (NC) between predicted and ground truth
meshes, after normalization and ICP alignment.

Quantitative Evaluation The quantitative comparison
with existing single-view mesh reconstruction and gener-
ation methods is presented in Tab. 1. Our method signif-
icantly outperforms baseline approaches across all evalu-
ation metrics on both test datasets, demonstrating strong
generalization to unseen data. On the GSO dataset, our



Input             Ours               InstantMesh           LGM               TripoSR                  CraftsMan                        GT

Figure 3. Comparison on rendered normal map. We visualize the normal map rendered by our method and other baseline methods.

method achieves a Chamfer Distance (CD) of 0.351, reduc-
ing the geometric error by 15.4% compared to InstantMesh
(0.415) and showing even more substantial improvements
over naive diffusion methods like CraftsMan (0.785). This
significant reduction in CD indicates more accurate geomet-
ric reconstructions. The improvement is consistent on the
OmniObject3D dataset, where our method maintains a low
CD of 0.364, outperforming InstantMesh (0.427) and other
competitors by a large margin. Additionally, we achieve
strong performance in other metrics, with F-Score reaching
0.944 and Normal Consistency (NC) of 0.835 on GSO, fur-
ther validating the effectiveness of our approach.

Qualitative Evaluation We conduct qualitative evalua-
tion in Fig. 3 and showcase representative examples demon-
strating our method’s capabilities in handling challenging

cases, including multi-object scenes, intricate geometric
structures, and meshes with topological holes. We visual-
ize the normal map rendered from the meshes generated by
these methods. As demonstrated in the figure, our method
exhibits superior reconstruction capabilities compared to
existing approaches. LGM struggles with geometric accu-
racy due to multi-view inconsistency and challenges in con-
verting 3D Gaussians to high-quality meshes. While Crafts-
Man employs a similar VAE-diffusion pipeline, its naive de-
sign leads to incorrect geometry and incomplete reconstruc-
tions. InstantMesh produces relatively high-quality meshes
but faces challenges with multi-object scenes and occasion-
ally generates geometries inconsistent with input images,
such limitation also observed in TripoSR without using any
generative prior. Our method achieves better geometric fi-
delity and completeness through careful design of both the



Figure 4. VAE Metrics with varying number of tokens. We
show the reconstructed mesh CD and IoU of our Pyramid VAE vs
the original VAE in terms of different number of tokens.

Setting F-Score ↑ CD ↓ NC↑
w/o Pyramid VAE 0.928 0.397 0.807
w/o condition aug 0.902 0.435 0.789
w/o MAR-HR 0.921 0.411 0.794
w/o rotation aug 0.934 0.369 0.821
full 0.944 0.351 0.835

Table 2. Ablation study of different components in our method.
↑ indicates higher is better, and ↓ indicates lower is better.

VAE architecture and generation pipeline.

4.4. Ablation Study
VAE Ablations We evaluate the VAE performance by an-
alyzing latent token length and our multi-resolution pyra-
mid design. The quantitative results in Fig. 4 demonstrate
that reconstruction error decreases with increasing token
length, though improvements beyond 1024 tokens become
marginal. Our pyramid design consistently enhances recon-
struction quality, with 1024 tokens under Pyramid VAE out-
performing 2048 tokens without it. Based on this analy-
sis, we select 256 tokens for MAR-LR and 1024 tokens for
MAR-HR, striking an optimal balance between computa-
tional efficiency and generation quality. As shown in Fig. 6,
more geometric details are shown in our Pyramid VAE (d)
using less tokens compared with single-level VAE (c).

Generation Ablations Tab. 2 presents our ablation study
for generation on several key components on GSO datset:
Pyramid VAE, condition augmentation, MAR-HR, rotation
augmentation. The results demonstrate that our Pyramid
VAE enhances generation quality through its improved la-
tent space, adding MAR-HR with condition augmentation
significantly improves cascaded generation quality by mit-

                Input         (a) Dit-256                (b) Dit-1K        (c) Dit-1K-cascaded     (d) condition aug+(c) 
 

       (e) MAR-256                (f) MAR-1K         (g) MAR-1K-cascaded  (h) condition aug+(g) 

Figure 5. Ablation study on token resolution and model scaling
strategies. Results (a)-(h) demonstrate different model configura-
tions and settings, with detailed analysis provided in the main text.

(a)     (b)         (c)           (d)

Figure 6. Visual comparison of VAE reconstruction. (a)-(c)
show reconstruction results from single-level VAE compressed
with 256, 1024, and 2048 latent tokens respectively. (d) demon-
strates the result from our Pyramid VAE using 1024 tokens.

igating compounding error, while view augmentation re-
duces view ambiguity. We also evaluate our cascaded MAR
design through comparison with a DiT implementation, as
illustrated in Fig. 5. Our base model with 256 latent to-
kens (e) achieves superior geometry quality compared to
the DiT version with the same latent tokens (a). When di-
rectly increasing to 1024 tokens, both our model (f) and DiT
(b) show degraded performance due to convergence issues.
While the cascaded model enhances detailed generation, er-
ror propagation from the low-resolution model introduces
significant noise in both MAR (g) and DiT version (c). Our
MAR-HR with condition augmentation (h) successfully up-
scales token resolution and achieves detailed generation,
demonstrating clear advantages over the DiT version (d).
This ablation study demonstrates that our cascaded MAR
with condition augmentation offers an effective and efficient
solution for scaling up the token resolution. Quantitative
comparison are provided in the supplementary.

5. Conclusion

We present a new 3D generation paradigm that combines
auto-regressive and diffusion models while addressing key
challenges in scaling to longer tokens. Through a Pyra-
mid VAE and cascaded training with condition augmenta-



tion strategy, we progressively refine low-resolution tokens
into high-resolution ones. Both quantitative and qualitative
results demonstrate the effectiveness of our method, high-
lighting the potential of auto-regressive 3D generation.
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