

VIDEO MODELS ARE ZERO-SHOT LEARNERS AND REASONERS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 The remarkable zero-shot capabilities of Large Language Models (LLMs) have
012 propelled natural language processing from task-specific models to unified, generalist
013 foundation models. This transformation emerged from simple primitives:
014 large, generative models trained on web-scale data. Curiously, the same primitives
015 apply to today’s generative video models. Could video models be on a trajectory
016 towards general-purpose *vision* understanding, much like LLMs developed
017 general-purpose *language* understanding? We demonstrate that Veo 3 can solve a
018 broad variety of tasks it wasn’t explicitly trained for: segmenting objects, detecting
019 edges, editing images, understanding physical properties, recognizing object
020 affordances, simulating tool use, and more. These abilities to perceive, model,
021 and manipulate the visual world enable early forms of visual reasoning like maze
022 and symmetry solving. Veo’s emergent zero-shot capabilities indicate that video
023 models are on a path to becoming unified, generalist vision foundation models.
024

025 Project page: <https://zero-shot-anonymous.github.io>
026

1 INTRODUCTION

027 We believe that video models will become unifying, general-purpose foundation models for machine
028 vision just like large language models (LLMs) have become foundation models for natural language
029 processing (NLP). Within the last few years, NLP underwent a radical transformation: from task-
030 specific, bespoke models (e.g., one model for translation, another one for question-answering, yet
031 another one for summarization) to LLMs as unified foundation models. Today’s LLMs are capable
032 of general-purpose language understanding, which enables a single model to tackle a wide variety of
033 tasks including coding [1], math [2], creative writing [3], summarization, translation [4], and deep
034 research [5, 6]. These abilities started to emerge from simple primitives: training large, generative
035 models on web-scale datasets [e.g 7, 8]. As a result, LLMs are increasingly able to solve novel tasks
036 through few-shot in-context learning [7, 9] and zero-shot learning [10]. Zero-shot learning here
037 means that prompting a model with a task instruction replaces the need for fine-tuning or adding
038 task-specific inference heads.

039 Machine vision today in many ways resembles the state of NLP a few years ago: There are excellent
040 task-specific models like “Segment Anything” [11, 12] for segmentation or YOLO variants for ob-
041 ject detection [13, 14]. While attempts to unify some vision tasks exist [15–26], no existing model
042 can solve *any* problem just by prompting. However, the exact same primitives that enabled zero-shot
043 learning in NLP also apply to today’s generative video models—large-scale training with a gener-
044 ative objective (text/video continuation) on web-scale data [27]. In this article, we therefore ask:
045 Do video models develop general-purpose *vision* understanding, similar to how LLMs developed
046 general-purpose *language* understanding? We answer this question in the affirmative:

- 047 1. Analyzing 18,384 generated videos across 62 qualitative and 7 quantitative tasks, we report
048 that Veo 3 can solve a wide range of tasks that it was neither trained nor adapted for.
- 049 2. Based on its ability to **perceive**, **model**, and **manipulate** the visual world, Veo 3 shows
050 early forms of “chain-of-frames (CoF)” **visual reasoning** like maze and symmetry solving.
- 051 3. While task-specific bespoke models still outperform a zero-shot video model, we observe
052 a substantial and consistent performance improvement from Veo 2 to Veo 3, indicating a
053 rapid advancement in the capabilities of video models.

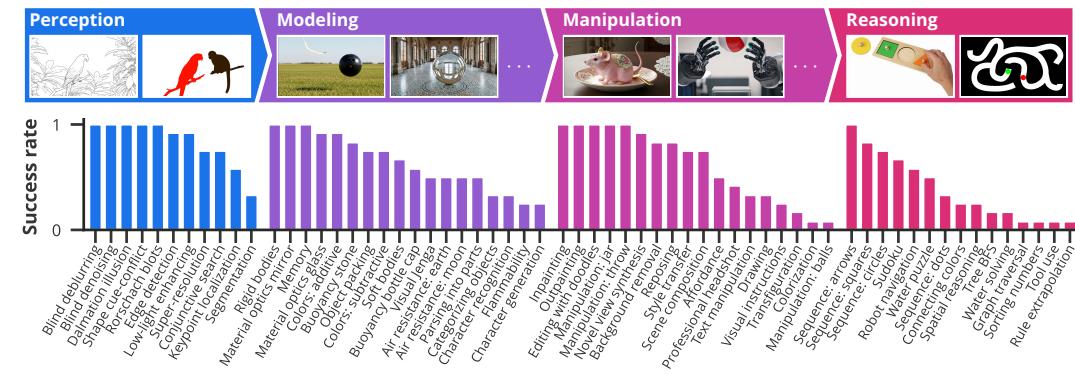


Figure 1: **A qualitative overview of Veo 3’s zero-shot abilities.** The plot shows Veo 3’s success rate across 12 samples as a rough estimate of model performance on 62 tasks across the vision stack. Tasks are described in Sec. 3 and shown in App. A. Find videos of all tasks on our [project page](#).

2 METHODS

Approach and motivation Our method is simple: We prompt Veo. This minimalist strategy is intentional, as it mirrors the transformation of NLP from task-specific fine-tuning or training to prompting a capable foundation model [28–30]. Here, we adopt the same philosophy to explore the capabilities of Veo 3 as a general-purpose vision model. Following Bommasani et al. [31, p. 3], a foundation model is any model “trained on broad data (generally using self-supervision at scale)” which can be adapted (here: via prompting) “to a wide range of downstream tasks”.

NEW
NEW

Takeaway 1 In NLP, prompting replaced task-specific training or adaptation for many tasks. A similar paradigm shift is on the horizon in machine vision, facilitated by video models.

Video generation For each task, we query the publicly available Veo 2 or Veo 3 models via Google Cloud’s Vertex AI API. We prompt the model with an initial input image (which the model uses as the first frame) and a text instruction. The models then generate a 16:9 video at 720p resolution, 24 FPS, for a duration of 8s. Veo 3 has model ID `veo-3.0-generate-preview` and Veo 2 model ID `veo-2.0-generate-001`. According to the Vertex documentation [32], the API uses an LLM-based prompt rewriter. This means that for some tasks, the solution is likely to come from the LLM instead of the video (e.g., Fig. 55: Sudoku). We treat the system (rewriter and video generator) as a single black-box entity. However, to isolate the video model’s reasoning abilities, we verified that a standalone LLM (Gemini 2.5 Pro [2]) could not reliably solve key tasks (Fig. 58: Robot navigation, Sec. 4.5: Maze solving, Sec. 4.6: Visual symmetry) from the input image alone.

Why Veo? The core argument of this paper—that video models are zero-shot learners and reasoners—can be supported by demonstrating success on *any* sufficiently capable model. We choose Veo for its consistent high ranking on `text2video` and `image2video` leaderboards [33]. Unless noted otherwise, figures are generated with Veo 3. To provide a sense of how rapidly performance is improving, our quantitative analyses compare Veo 3 with its predecessor, Veo 2, released roughly half a year earlier: Veo 2 was announced in December 2024 and released in April 2025 [34, 35], while Veo 3 was announced in May 2025 and released in July 2025 [36, 37].

3 QUALITATIVE RESULTS: SPARKS OF VISUAL INTELLIGENCE?

We begin with a comprehensive, qualitative investigation across visual tasks to assess the potential of video models as visual foundation models. We organize our findings into four hierarchical capabilities, each building on the preceding ones (c.f. Fig. 1 and Fig. 2):

1. **Perception** as a foundational ability to understand visual information.

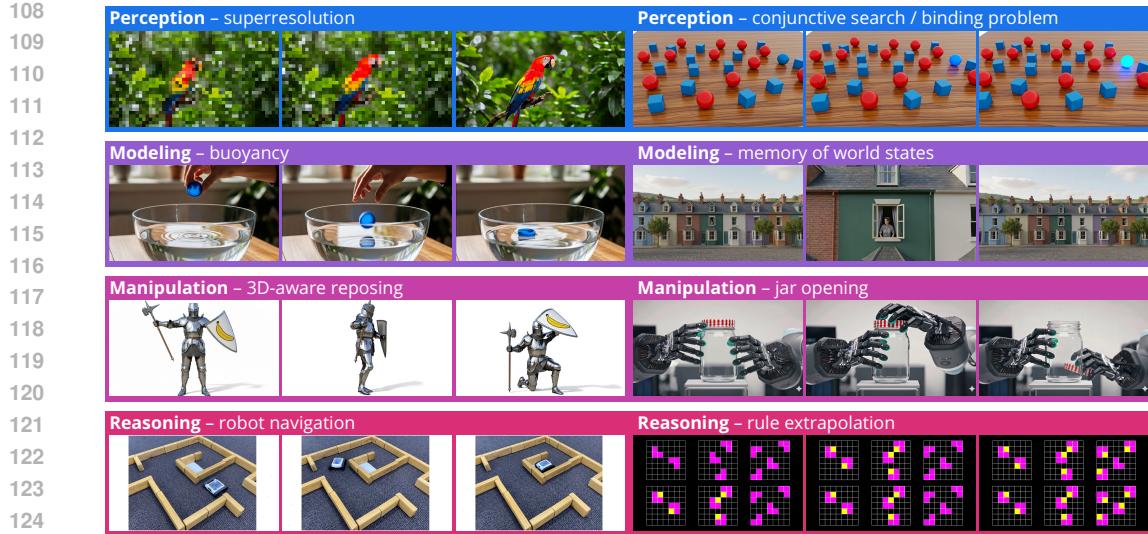


Figure 2: **Veo 3 zero-shot learning and reasoning examples.** From classic **perceptual** tasks (superresolution, visual search) to **modeling** (buoyancy, memory of world states after zooming in), **manipulation** (pose editing, simulating dexterous manipulation) and **visual reasoning** (navigation, rule extrapolation): Veo 3 can zero-shot solve a host of visual tasks that are specified as an input image and a text prompt. Examples are shown in App. A; videos of all tasks are on our [project page](#).

2. **Modeling**, which builds on the perception of objects to form a model of the visual world.
3. **Manipulation**, which meaningfully alters the perceived and modeled world.
4. **Reasoning** across space and time over a sequence of manipulation steps.

While capability boundaries often overlap, this hierarchy provides a framework for understanding the emergent abilities of video models. For example, solving a maze (see Fig. 57 and Sec. 4.5) requires perceiving the maze, modeling its state (walls vs. floor), and finally manipulating an object (a mouse, a circle) to move from start to finish.

For each task in this section, we prompt Veo 3 22 times and report the *success rate* in the caption. *Success rate* is the fraction of videos that solve a task, as determined by human annotators (see App. A.5). A success rate greater than 0 suggests that the model possesses the *ability* to solve the task, while a success rate closer to 1 indicates that the task is solved *reliably* irrespective of the random seed. While not a substitute for the systematic quantification we perform in Sec. 4, this provides a ballpark estimate of the model’s capabilities.

FIX

Perception Computer vision has historically relied on a suite of specialized models for tasks like segmentation [11, 12], object detection [13, 14], and edge detection [38]. While some backbones can be adapted or fine-tuned for other tasks, training-free transfer to novel tasks is rare, limiting generalization. As we show here, this is changing with large video models.

Without any task-specific training, Veo 3 can perform a range of classic computer vision tasks, including edge detection (Fig. 10), segmentation (Fig. 11), keypoint localization (Fig. 12), super-resolution (Fig. 13), blind deblurring (Fig. 14), denoising (Fig. 15) and low-light enhancing (Fig. 16). Some of these tasks were already demonstrated in [39], but Veo’s emergent abilities extend farther: It can perform complex tasks like conjunctive search (Fig. 17) and interpreting ambiguous images such as the classic dalmatian illusion (Fig. 18), the cat shape in a texture-shape cue conflict image (Fig. 19), and colored blots from the Rorschach test (Fig. 20). Apart from denoising—the classic diffusion objective—none of these tasks are explicitly trained for in video models.

162
163
164
165
166
167

Takeaway 2 Veo 3 shows emergent zero-shot perceptual abilities well beyond the training task. Just like LLMs replaced many task-specific NLP models, video models will likely replace most bespoke models in computer vision—once they become sufficiently cheap and reliable.

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

Modeling: intuitive physics & world models Based on their *perception* of the visual world, video models are starting to *model* it, too. Modeling the world and the principles that govern it (e.g., laws of physics) is a critical step toward successful prediction and action. Several works have investigated and quantified intuitive physics in deep models [e.g., 40–54]. Here, we investigate an exemplary subset of tasks from these works. Veo’s grasp of physics is demonstrated by its ability to model various physical properties, like flammability (Fig. 21), rigid and soft body dynamics and their surface interactions (Fig. 22) and air resistance affecting falling objects (Fig. 23), and buoyancy (Fig. 24). As illustrated by the Visual Jenga task [55], Veo can remove objects from a scene in a physically plausible order (Fig. 25) and understands which objects fit into a backpack (Fig. 26). Furthermore, it correctly generates some optical phenomena like refraction and reflection (Fig. 27) and additive/subtractive color mixing (Fig. 28). Beyond physical characteristics, Veo understands some abstract relationships which is an important aspect of modeling the world. For example, Veo can distinguish categories like toys from other objects like a laptop (Fig. 29). On samples inspired by the Omniglot dataset [56], we demonstrate Veo’s ability to recognize patterns, generate variations thereof, and parse larger wholes into parts (Fig. 30). Lastly, Veo maintains a memory of the world state across time and camera movements within the video context (Fig. 31).

185
186
187
188
189
190
191
192
193

Manipulation: editing & imagination Based on its ability to *perceive* objects and *model* their relation to each other and the world, Veo can meaningfully *manipulate* the visual world, too. This enables Veo 3 to perform a variety of zero-shot image editing tasks like background removal (Fig. 32), style transfer (Fig. 33), colorization (Fig. 34), inpainting (Fig. 35), and outpainting (Fig. 36). Furthermore, it can manipulate text elements (Fig. 37), and edit images based on doodle instructions (Fig. 38). Veo’s understanding of 3D world enables it to compose scenes from individual components (Fig. 39), generate novel views of objects and characters (Figs. 40 and 41), smoothly transform one object into another (Fig. 42), or change the perspective, lighting, and appearance to turn a selfie into a professional photograph (Fig. 43).

194
195
196
197
198
199
200

This ability to plausibly modify a scene allows it to imagine complex interactions, simulate dexterous object manipulation (Fig. 44; note that we do not test actual robots as e.g. [57] do), interpreting object affordances (Fig. 45), demonstrating how to draw a shape (Fig. 46) and roll a burrito (Fig. 47). Overall, video models can meaningfully manipulate and simulate aspects of the (digital) visual world.

201
202
203
204
205
206
207
208

Visual reasoning across time and space *Perception*, *modeling*, and *manipulation* all integrate to tackle *visual reasoning*. While language models manipulate human-invented symbols, video models can apply changes across the dimensions of the real world: time and space. Since these changes are applied frame-by-frame in a generated video, this parallels chain-of-thought in LLMs and could therefore be called *chain-of-frames*, or CoF for short. In the language domain, chain-of-thought enabled models to tackle reasoning problems [28], and visualizing intermediate steps helps [58]. Similarly, chain-of-frames (a.k.a. video generation) might enable video models to solve challenging visual problems that require step-by-step reasoning across time and space.

209
210
211
212
213
214
215

We see early signs of this ability in tasks such as generating a valid graph traversal (Fig. 48), performing visual breadth-first search on a tree (Fig. 49), completing visual sequences (Fig. 50), connecting matching colors (Fig. 51), fitting shapes into holes (Fig. 52), and sorting numbers (Fig. 53). Furthermore, Veo can use tools to accomplish a visual task (Fig. 54) and solve simple Sudokus (Fig. 55) or visual puzzles (Fig. 56). Finally, it can solve mazes and navigation tasks (Figs. 57 and 58 and Sec. 4.5) and extrapolate rules from visual examples (Fig. 59). While not always perfect, the model’s ability to solve such problems in a zero-shot manner points to exciting possibilities for more advanced visual reasoning and planning in future, with more capable video models.

216
217
218
219
220

Takeaway 3 Frame-by-frame video generation parallels chain-of-thought in language models. Just like chain-of-thought (CoT) enables language models to reason with symbols, a “chain-of-frames” (CoF) enables video models to reason across time and space.

221
222
223
224
225

Summary Taken together, the qualitative examples from this section indicate that a capable video model like Veo 3 possesses strong zero-shot learning abilities. While the results are not always perfect, the model consistently demonstrates the capacity to solve a wide variety of tasks for which it was not explicitly trained.

226
227

4 QUANTITATIVE RESULTS

228
229
230
231
232
233

The previous section offered a qualitative exploration of video model capabilities. In this section, we add a quantitative assessment for seven tasks. As in Sec. 3, we consider different facets of visual understanding: For **perception**, we assess Veo on edge detection and segmentation. For **manipulation**, we examine image editing and object extraction performance. Finally, we evaluate **reasoning** abilities through maze solving, visual symmetry, and visual analogies. We do not include evaluations for **modeling**, since this area is well addressed by recent benchmarks, see Sec. 3.

234
235
236
237
238
239

We evaluate performance separately for the *best frame* and the *last frame* (where applicable). *Best frame* reports the best performance across any frame in the generated videos. This indicates the performance ceiling, but the optimal frame is not known a priori. Therefore, we also report performance on the *last frame* of each video, which may underestimate a model’s ability but has the practical advantage that the frame is predetermined. This distinction is important because Veo tends to continue animating a scene even after task completion, potentially reducing last frame performance.

240
241
242
243
244
245

Where applicable, we use the state-of-the-art image editing model Nano Banana [59] as a reference. As a general trend, we observe a large performance increase from Veo 2 to Veo 3, often matching or exceeding Nano Banana’s performance. Performance tends to improve substantially from $k = 1$ to $k = 10$ attempts, indicating that a good solution can be found in a reasonable number of tries. While image models are excellent zero-shot learners, too [60–63], video models are the more general framework because of their ability to process both temporal and spatial information.

246
247

4.1 PERCEPTION: EDGE DETECTION

248
249
250
251
252
253
254
255

Despite not being trained for it, Veo 3 can be prompted to detect, and therefore **perceive**, edges. Fig. 3 details edge detection performance (measured by OIS; details and prompt in App. B.1) for Veo 2 and Veo 3. While Veo 3 (0.77 pass@10) is not on par with task-specific SOTA (0.90) [65], its performance is remarkable for two reasons: First, it is zero-shot. Second, many of Veo 3’s edge maps are more detailed than the ground truth. For example, Veo 3 correctly outlines foliage and tire profiles; this hurts performance on the dataset but seems more indicative of a dataset limitation than a model limitation (the annotators understandably did not bother to trace each and every edge).

256
257

4.2 PERCEPTION: SEGMENTATION

258
259
260
261
262
263
264
265
266

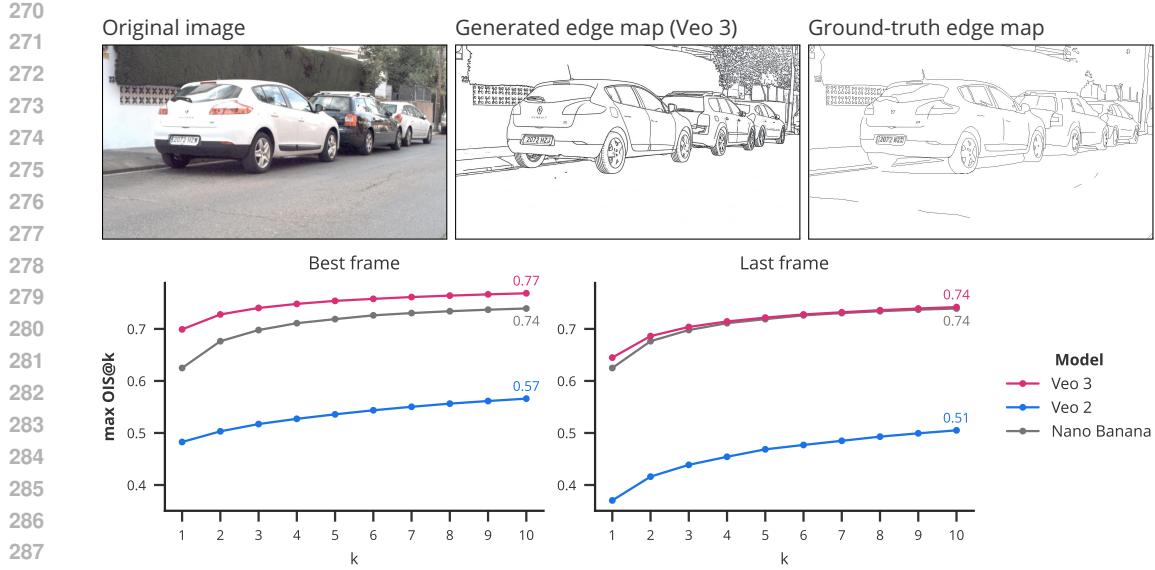
Instance segmentation requires delineating (i.e., **perceiving**) distinct objects in an image. Contrary to classic instance segmentation or promptable segmentation, we prompt models to segment all objects in a scene, without specifying an object category or location. We report mean Intersection over Union (mIoU); experiment details are in App. B.2. As shown in Fig. 4, Veo 3 achieves an mIoU of 0.74 (best frame pass@10), comparable to Nano Banana’s 0.73. Naturally, Veo 3 lacks behind the performance of a bespoke model like SAMv2 [12], but nevertheless shows remarkable zero-shot segmentation abilities. Interestingly, the prompt really matters: Veo consistently performs better with a green background than a white one (0.74 vs. 0.66 best frame pass@10); possibly due to the widespread use of green screens. See also App. C for prompting best practices.

267
268

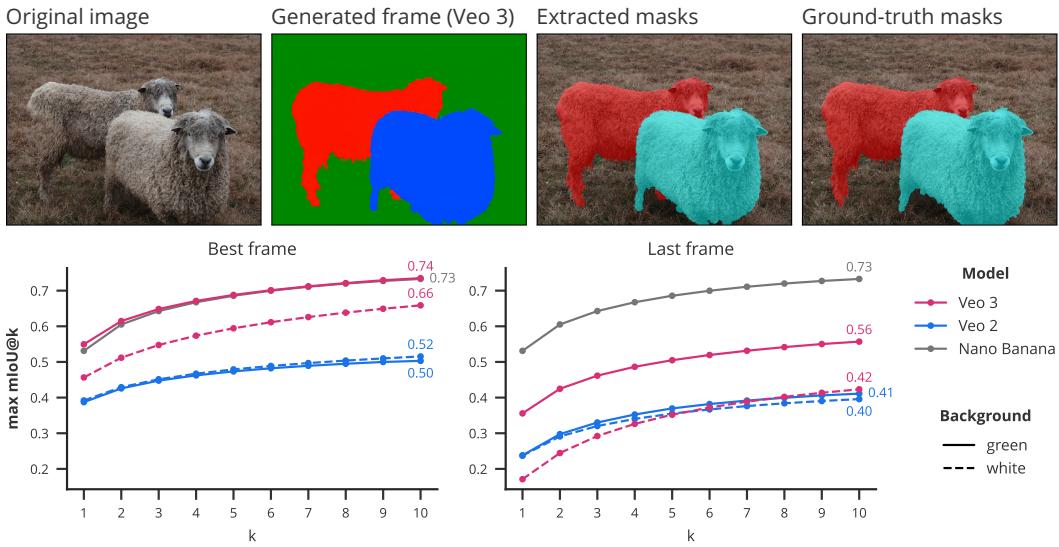
4.3 MANIPULATION: OBJECT EXTRACTION

269

Can Veo perceive and extract (i.e., **manipulate**) all objects in a scene? We test this using a simple dataset depicting one to nine animals (details in App. B.3). Veo is asked to extract and line up all



288
 289 Figure 3: **Edge detection** on all 50 test images from BIPEDv2 [64, 65]. We generate 10 videos per
 290 sample and report best performance over k attempts as a function of k . Prompt: “*All edges in this*
 291 *image become more salient by transforming into black outlines. Then, all objects fade away [...]*”
 292 Details & full prompt: App. B.1.



311
 312 Figure 4: **Class-agnostic instance segmentation** on a subset of 50 easy images (1-3 large objects)
 313 from LVIS [66]. Prompt: “[...] each distinct entity is overlaid in a different flat color [...] the
 314 background fades to {white, green} [...]” Details & full prompt: App. B.2.

315
 316 animals horizontally, with white space between them (in some sense, a visual “tally”). To assess
 317 whether the number of extracted animals is correct, we count connected components in the last
 318 frame. Fig. 5 shows an example. While Veo 2 performs around chance, Veo 3 achieves up to 93%
 319 pass@10. Given the simplicity of the task, a perfect model should easily achieve 100% accuracy.

321 4.4 MANIPULATION: IMAGE EDITING

322 Image editing requires **manipulating** images according to a text instruction (e.g., adding/removing
 323 objects or changing their appearance). We evaluate whether Veo can edit images on a random subset

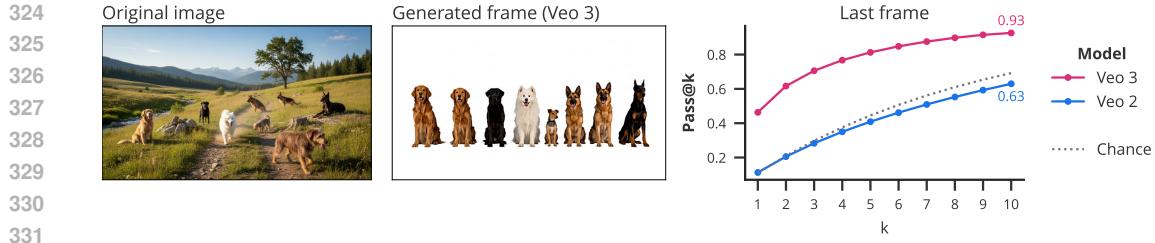


Figure 5: **Object extraction** on an animal dataset. Prompt: *“The background changes to white [...] all animals line up in a row [...]”* Details & full prompt: App. B.3.

Figure 6: **Image editing** on a subset of Emu-edit [67]. Prompt: “Create a smooth, static animation that slowly changes the color of the fire hydrant to red. [...]” Details & full prompt: App. B.4.

of 30 samples from Emu-edit [67]. Veo has a strong bias for animated scenes and might introduce unintended changes (e.g., camera movement, animating people). We therefore ask three human raters to evaluate *fidelity* (correct edit) and *precision* (correct edit without unintended changes). An example edit and results are shown in Fig. 6. We find that Veo 3 especially excels in preserving details and textures across edits. If unintended changes such as camera movement or animating people can be controlled better, video models could become highly capable 3D-aware image and video editors (see also [24, 39, 68, 69]).

4.5 REASONING: MAZE SOLVING

Maze solving tests a model’s ability to plan a path in a constrained environment, a key aspect of **reasoning**. In our setup, a red circle needs to navigate to a goal (green circle) without crossing any walls. We automatically verify the path (details in App. B.5) and present results for different mazes in Fig. 7. Veo 3 shows zero-shot maze solving abilities, significantly outperforming Veo 2 which often produces illegal moves. For instance, in 5×5 grids, Veo 3 achieves a pass@10 rate of 78% compared to Veo 2’s 14%. The consistent performance gap highlights the advancing reasoning capabilities of Veo 3. While Nano Banana matches or surpasses Veo 3’s performance on rectangular mazes, it fails to solve irregular mazes entirely. Similarly, Gemini 2.5 Pro outperforms Veo 3 on small mazes when given an ASCII representation of the maze (T2T), but falls behind on 9×9 mazes, and generally struggles when the maze is represented as image (as opposed to text) input. Both comparisons highlight the advantages of solving a visual task step-by-step in a visual medium.

4.6 REASONING: VISUAL SYMMETRY SOLVING

Completing a pattern to be symmetrical assesses the ability to understand and apply spatial **reasoning**. We create a custom dataset of shapes (e.g., heart, letters) and random patterns (see App. B.6 for details). Fig. 8 shows that Veo 3 outperforms Veo 2 and Nano Banana by a large margin. We also use this task to systematically analyze how different prompts affect performance in App. C: The pass@1 difference between best and worst prompt is 40 percentage points on the shape split and 64 percentage points on the random split.

4.7 REASONING: VISUAL ANALOGY COMPLETION

Visual analogies test a model's ability to understand transformations and relationships between objects, a form of abstract **reasoning**. Concretely, we prompt the model to fill the missing quadrant

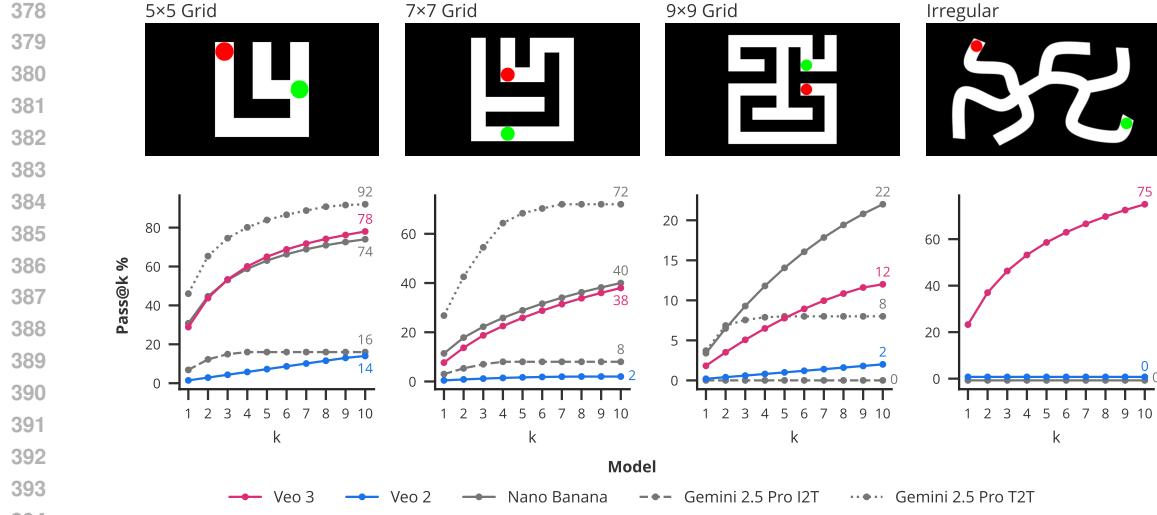


Figure 7: Maze solving. Mazes of various sizes with start (red) and goal (green) locations. Prompt: “[...] *The red circle slides smoothly along the white path, stopping perfectly on the green circle [...]*” Details & full prompt: App. B.5. Veo 2 struggles to solve even small sizes, mostly due to illegal moves early in the generation. Veo 3 performs much better and benefits from multiple attempts. For comparison, we evaluate Nano Banana and also show Gemini 2.5 Pro’s performance on mazes presented as images (I2T) or ASCII text (T2T).

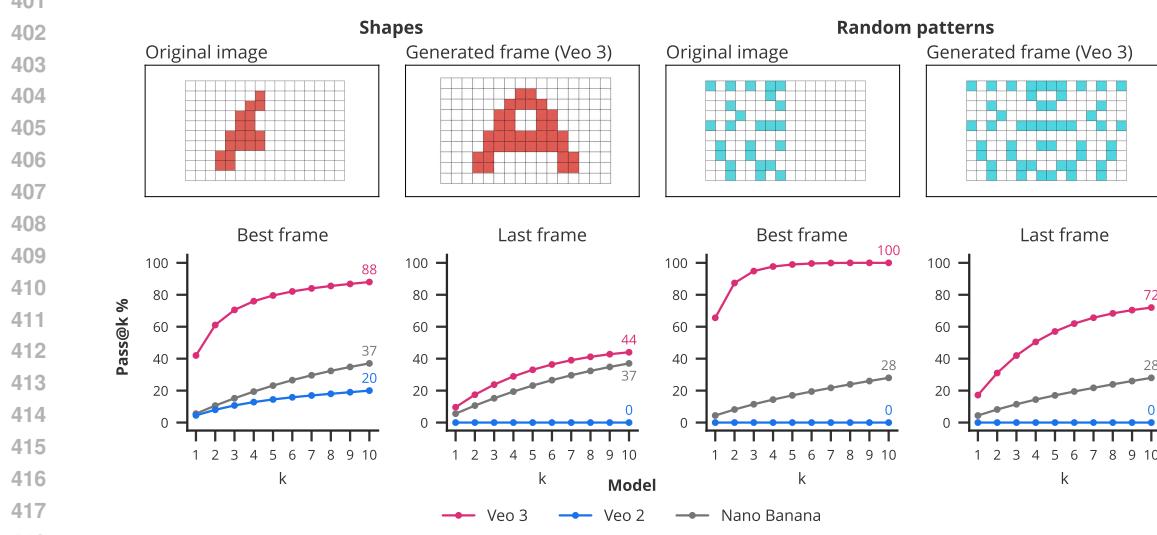


Figure 8: **Visual symmetry**. Prompt: *“Instantly reflect this pattern along the central, vertical axis while keeping the existing colored pattern without modification. [...]”* A model has to color all cells correctly to pass. Details & full prompt: App. B.6.

of a 2×2 grid to complete the analogy (e.g., A is to B as C is to ?). We evaluate the correctness of the generated infill for four transformation types from KiVA [70], see App. B.7 for details. The results are summarized in Fig. 9. While Veo 2 struggles to understand any analogies, Veo 3 correctly completes examples for *color* and *resize*. However, both models perform below chance (0.33) on *reflect* and *rotate* analogies, indicating an erroneous, systematic bias.

Takeaway 4 While far from perfect, Veo 3—building on its ability to perceive, model and manipulate objects—shows emergent visual reasoning abilities.

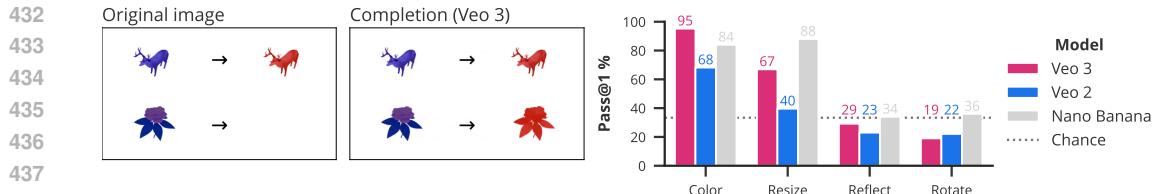


Figure 9: **Visual analogy solving** on four transformations à 50 samples from KiVA [70]. Prompt: “[...] generate the missing object in the lower right region and solve the visual analogy. [...]” Pass@1 is evaluated on the last frame, results up to pass@10 can be found in App. B.7.

5 DISCUSSION

Summary A breakthrough in machine vision started the deep learning revolution in 2012 [71], but in recent years, natural language processing has seen the most rapid progress. This was driven by the rise of general-purpose LLMs, whose ability to solve novel tasks in a zero-shot fashion has led them to replace most task-specific models in NLP. We here make the case that machine vision is on the cusp of a similar paradigm shift, enabled by emergent abilities of large-scale video models. Our core finding is that Veo 3 can solve a wide range of tasks in a zero-shot manner, spanning the full vision stack from **perception** to **modeling**, **manipulation** and even early forms of **visual reasoning**. While its performance is not yet perfect, the massive and consistent improvement from Veo 2 to Veo 3 indicates that video models will become general-purpose foundation models for vision, just as LLMs have for language.

NEW

Zero-shot learning in the era of web-scale data The advent of models trained on web-scale data has led to a necessary evolution in the understanding of zero-shot capabilities. Given the vast and diverse nature of the training data, it is difficult to verify that a model has not encountered data similar to a particular task before. In contemporary usage, the definition of “zero-shot learning” has therefore shifted from a strict “unseen task” criterion (often impossible to verify) to a methodological one which we adopt: A task is considered zero-shot if the model can be prompted to perform the task despite not being trained, adapted or fine-tuned specifically for that task [10, 30, 72]. For instance, LLMs were described as “zero-shot reasoners” [10] not because of any guarantees that reasoning-style text isn’t part of the training data by accident, but because they can perform reasoning tasks without task-specific training or adaptation, simply via prompting alone.

NEW

NEW

Performance is a lower bound Tasks can be represented in a myriad of ways; a maze, for example, can be presented as a black-and-white grid, a video game, or a photorealistic scene, with the prompt requesting a solution in the form of a line, a moving object, or a glowing path. Moreover, visually, a maze could be represented as a black-and-white grid, a Pac-Man game, or a photorealistic top-down view of an apartment. This has three implications: First, prompt engineering—including the *visual* prompt a.k.a. starting frame—is as important for visual tasks as it is for LLMs (see also App. C and [73] for a discussion). Second, we must distinguish between a model’s task performance and its underlying ability (i.e., competence) to solve that task [74, 75]. Third, as a consequence, the model performance reported here with a given visual and textual prompt should be considered a lower bound on the model’s true capabilities. This also holds for the tasks that we report as failure cases in App. E, such as providing visual instructions to fold laundry (Fig. 76), planning to move a sofa between rooms separated by a small door (Fig. 77), or certain visual puzzles (Fig. 70).

FIX

Video generation is expensive, but costs tend to fall Generating a video is more expensive than running a bespoke, task-specific model (see also App. D). Yet, the economics of general-purpose models are on a predictable trajectory: Epoch AI [76] estimates that LLM inference costs are falling by a factor of $9\times$ to $900\times$ per year for a given performance level. In NLP, early generalist models were also considered prohibitively expensive (“GPT-3’s size makes it challenging to deploy” [7, p. 8]). Nevertheless, rapidly falling inference costs, combined with the appeal of generalist models, have replaced most task-specific language models. If NLP is a guide, the same trend will play out in vision. While specialized models will likely remain cheaper, the superior performance and poten-

NEW

486 trial cross-task synergies of foundation models increasingly justify their higher computational cost.
 487 For example, today’s leading coding models aren’t task-specific models, but general-purpose LLMs.
 488 Similarly, unified vision models will likely outperform many task-specific models since visual tasks
 489 have deep relationships with each other [16], enabling generalist models to benefit from synergies.
 490

NEW

491 **Jack of many trades, master of few?** For many tasks, Veo 3’s performance is below state of the
 492 art of specialized models. This mirrors the early days of LLMs; GPT-3 reported performance well
 493 below fine-tuned models on many tasks [7, cf. Tables 3.1, 3.3, 3.4, 3.5]). This did not stop language
 494 models from becoming foundation models, and we don’t believe it will stop video models from
 495 becoming vision foundation models for two reasons. First, the step-change in performance from
 496 Veo 2 to Veo 3 is evidence of rapid progress over time. Second, our scaling results from Sec. 4 show
 497 pass@10 to be consistently higher than pass@1 with no signs of a plateau. Therefore, inference-time
 498 scaling methods [e.g. 77–80] in combination with the standard optimization toolkit like post-training
 499 with automatic verifiers are likely to boost performance. For the tasks we test here, Veo 3 is akin to
 500 a pre-trained language model that has yet to undergo instruction tuning or RLHF [81, 82].

NEW

501 **Will other video models show similar behavior?** While tackling visual intelligence tasks with
 502 video models is still in its infancy, three articles released after the initial version of this work con-
 503 firm that other model families beyond Veo also show strong performance: [83] investigate Sora-
 504 2, [84] test six models including Sora-2, Hailuo-02 and Kling-2.5-Turbo-Pro, while [85] adapt
 505 CogVideoX1.5-5B for visual reasoning tasks. Collectively, they indicate that our finding of emergent
 506 visual intelligence in video models isn’t limited to a single model family.
 507

NEW

NEW

NEW

NEW

508 **Where does Veo’s performance come from?** Veo’s architecture, training data mixture, and train-
 509 ing recipe, alongside the exact models used for embeddings and prompt-rewriting, and the specific
 510 verbal and visual prompts used in each task all likely influence the performance reported in this
 511 work. Related works published after the initial version of this manuscript and mentioned in the para-
 512 graph above indicate that many of the behaviors we demonstrate are not specific to Veo. Instead, they
 513 seem to be an emergent property of video generation trained on large-scale data. As is the case for
 514 large language models and large vision models [86–89], the exact performance distribution across
 515 tasks is likely determined by the data mixture, though more research is required. It also remains to
 516 be seen whether scaling laws can be established for visual intelligence tasks of video models, that
 517 properly capture the impact of data scale and compute similarly to prior works in LLMs [90–92].
 518 On the prompt side, we examine the impact of the text prompt in App. C; a study on the impact of
 519 visual prompts and the potential for automatic prompt engineering is left for future work.
 520

NEW

NEW

NEW

521 **Similarities and differences with NLP** There are strong reasons to believe that progress in vision
 522 will mirror the rapid advancements seen in NLP. Both language and vision models are developed on
 523 the same hardware infrastructure, and thus benefit from the same hardware scaling laws. Addition-
 524 ally, many pivotal algorithmic breakthroughs, such as the Transformer architecture, are modality-
 525 agnostic and have been successfully adapted for both domains. We therefore expect inference costs
 526 for vision models to decrease just as they are for LLMs, enabling their widespread adoption.
 527

NEW

528 However, there are also crucial differences. A significant hurdle for vision is the cost of training on
 529 information-dense video data, which could slow the adoption of large-scale vision models compared
 530 to their NLP counterparts. Conversely, data availability presents a long-term advantage for vision.
 531 It is widely believed that we are approaching the limits of available high-quality text data, whereas
 532 the amount of video data being generated globally continues to grow exponentially. This suggests
 533 that while training costs are a near-term challenge, the vast and growing reservoir of video data may
 534 ultimately fuel the development of even more powerful foundation models for vision.
 535

NEW

NEW

536 **Outlook** This is an exciting time for vision. Seeing NLP’s recent transformation from task-specific
 537 to generalist models, it is conceivable that the same transformation will happen in machine vision
 538 through video models (a “GPT-3 moment for vision”), enabled by their emergent ability to perform
 539 a broad variety of tasks in a zero-shot fashion, from perception to visual reasoning.

540
541 REFERENCES

542 [1] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large
543 language models for code generation. *arXiv preprint arXiv:2406.00515*, 2024.

544 [2] Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, In-
545 derjit Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing
546 the frontier with advanced reasoning, multimodality, long context, and next generation agen-
547 tic capabilities. *arXiv preprint arXiv:2507.06261*, 2025.

548 [3] Tiannan Wang, Jiamin Chen, Qingrui Jia, Shuai Wang, Ruoyu Fang, Huilin Wang, Zhaowei
549 Gao, Chunzhao Xie, Chuou Xu, Jihong Dai, et al. Weaver: Foundation models for creative
550 writing. *arXiv preprint arXiv:2401.17268*, 2024.

552 [4] Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, Shujian Huang, Lingpeng Kong, Jia-
553 jun Chen, and Lei Li. Multilingual machine translation with large language models: Empirical
554 results and analysis. *arXiv preprint arXiv:2304.04675*, 2023.

556 [5] Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The
557 AI Scientist: Towards fully automated open-ended scientific discovery. *arXiv preprint
558 arXiv:2408.06292*, 2024.

559 [6] Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang
560 Liu, Michael Moor, Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as
561 research assistants. *arXiv preprint arXiv:2501.04227*, 2025.

563 [7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
564 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
565 models are few-shot learners. *Advances in neural information processing systems*, 33:1877–
566 1901, 2020.

567 [8] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
568 Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
569 language models. *arXiv preprint arXiv:2206.07682*, 2022.

571 [9] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing
572 Xu, Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. *arXiv preprint
573 arXiv:2301.00234*, 2022.

574 [10] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
575 Large language models are zero-shot reasoners. *Advances in neural information processing
576 systems*, 35:22199–22213, 2022.

578 [11] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
579 Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything.
580 In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 4015–
581 4026, 2023.

582 [12] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma,
583 Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment
584 anything in images and videos. *arXiv preprint arXiv:2408.00714*, 2024.

586 [13] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
587 Unified, real-time object detection. In *Proceedings of the IEEE conference on computer
588 vision and pattern recognition*, pages 779–788, 2016.

589 [14] Rahima Khanam and Muhammad Hussain. Yolov11: An overview of the key architectural
590 enhancements. *arXiv preprint arXiv:2410.17725*, 2024.

592 [15] Pablo Acuaviva, Aram Davtyan, Mariam Hassan, Sebastian Stafp, Ahmad Rahimi, Alexandre
593 Alahi, and Paolo Favaro. From generation to generalization: Emergent few-shot learning in
video diffusion models. *arXiv preprint arXiv:2506.07280*, 2025.

594 [16] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio
 595 Savarese. Taskonomy: Disentangling task transfer learning. In *Proceedings of the IEEE*
 596 *conference on computer vision and pattern recognition*, pages 3712–3722, 2018.

597

598 [17] Yijing Lin, Mengqi Huang, Shuhan Zhuang, and Zhendong Mao. Realgeneral: Unify-
 599 ing visual generation via temporal in-context learning with video models. *arXiv preprint*
 600 *arXiv:2503.10406*, 2025.

601 [18] Zhong-Yu Li, Ruoyi Du, Juncheng Yan, Le Zhuo, Zhen Li, Peng Gao, Zhanyu Ma, and Ming-
 602 Ming Cheng. Visualcloze: A universal image generation framework via visual in-context
 603 learning. *arXiv preprint arXiv:2504.07960*, 2025.

604

605 [19] Xinlong Wang, Wen Wang, Yue Cao, Chunhua Shen, and Tiejun Huang. Images speak in
 606 images: A generalist painter for in-context visual learning. In *Proceedings of the IEEE/CVF*
 607 *Conference on Computer Vision and Pattern Recognition*, pages 6830–6839, 2023.

608

609 [20] Jiahao Xie, Alessio Tonioni, Nathalie Rauschmayr, Federico Tombari, and Bernt Schiele.
 610 Test-time visual in-context tuning. In *Proceedings of the Computer Vision and Pattern Recog-
 611 nition Conference*, pages 19996–20005, 2025.

612

613 [21] Weifeng Lin, Xinyu Wei, Renrui Zhang, Le Zhuo, Shitian Zhao, Siyuan Huang, Huan Teng,
 614 Junlin Xie, Yu Qiao, Peng Gao, et al. Pixwizard: Versatile image-to-image visual assistant
 615 with open-language instructions. *arXiv preprint arXiv:2409.15278*, 2024.

616

617 [22] Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chao-
 618 fan Li, Shuting Wang, Tiejun Huang, and Zheng Liu. Omnipgen: Unified image generation.
 619 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages 13294–
 620 13304, 2025.

621

622 [23] Duong H Le, Tuan Pham, Sangho Lee, Christopher Clark, Aniruddha Kembhavi, Stephan
 623 Mandt, Ranjay Krishna, and Jiasen Lu. One diffusion to generate them all. In *Proceedings of*
 624 *the Computer Vision and Pattern Recognition Conference*, pages 2671–2682, 2025.

625

626 [24] Eyal Molad, Eliahu Horwitz, Dani Valevski, Alex Rav Acha, Yossi Matias, Yael Pritch, Yaniv
 627 Leviathan, and Yedid Hoshen. Dreamix: Video diffusion models are general video editors.
 628 *arXiv preprint arXiv:2302.01329*, 2023.

629

630 [25] Rahul Ravishankar, Zeeshan Patel, Jathushan Rajasegaran, and Jitendra Malik. Scaling prop-
 631 erties of diffusion models for perceptual tasks. In *Proceedings of the Computer Vision and*
 632 *Pattern Recognition Conference*, pages 12945–12954, 2025.

633

634 [26] Yutong Bai, Xinyang Geng, Karttikeya Mangalam, Amir Bar, Alan L Yuille, Trevor Darrell,
 635 Jitendra Malik, and Alexei A Efros. Sequential modeling enables scalable learning for large
 636 vision models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 637 *Recognition*, pages 22861–22872, 2024.

638

639 [27] Sherry Yang, Jacob Walker, Jack Parker-Holder, Yilun Du, Jake Bruce, Andre Barreto, Pieter
 640 Abbeel, and Dale Schuurmans. Video as the new language for real-world decision making.
 641 *arXiv preprint arXiv:2402.17139*, 2024.

642

643 [28] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
 644 Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
 645 *Advances in neural information processing systems*, 35:24824–24837, 2022.

646

647 [29] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
 648 and Jimmy Ba. Large language models are human-level prompt engineers. In *The eleventh*
 649 *international conference on learning representations*, 2022.

650

651 [30] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
 652 Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
 653 processing. *ACM computing surveys*, 55(9):1–35, 2023.

648 [31] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ B. Altman, Simran Arora, Sydney
 649 von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik
 650 Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S.
 651 Chen, Kathleen Creel, Jared Quincy Davis, Dorotya Demszky, Chris Donahue, Moussa
 652 Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-
 653 Fei, Chelsea Finn, Trevor Gale, Lauren E. Gillespie, Karan Goel, Noah D. Goodman, Shelby
 654 Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho,
 655 Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha
 656 Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei
 657 Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi, and et al. On the opportunities and
 658 risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.

659 [32] Google Cloud. Vertex AI Veo Prompt Rewriter. <https://cloud.google.com/ver>
 660 <text-ai/generative-ai/docs/video/turn-the-prompt-rewriter-off>
 661 <#prompt-rewriter>, 2025. Accessed: September 22, 2025.

662 [33] LMSYS ORG. Lmsys org text-to-video leaderboard. <https://lmarena.ai/leaderb>
 663 <oard/text-to-video>, September 2025. Accessed: 2025-09-23.

664 [34] Google. Veo 2 announcement. <https://blog.google/technology/google-l>
 665 <abs/video-image-generation-update-december-2024/>, 2024. Accessed:
 666 September 22, 2025.

667 [35] Google. Veo 2 launch. <https://developers.googleblog.com/en/veo-2-vid>
 668 <eo-generation-now-generally-available/>, 2025. Accessed: September 22,
 669 2025.

670 [36] Google. Veo 3 announcement. <https://blog.google/technology/ai/genera>
 671 <tive-media-models-io-2025/>, 2025. Accessed: September 22, 2025.

672 [37] Google. Veo 3 launch. <https://cloud.google.com/blog/products/ai-mac>
 673 <hine-learning/veo-3-fast-available-for-everyone-on-vertex-ai>,
 674 2025. Accessed: September 22, 2025.

675 [38] Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In *Proceedings of the IEEE*
 676 *international conference on computer vision*, pages 1395–1403, 2015.

677 [39] Noam Rotstein, Gal Yona, Daniel Silver, Roy Velich, David Bensaid, and Ron Kimmel. Path-
 678 ways on the image manifold: Image editing via video generation. In *Proceedings of the*
 679 *Computer Vision and Pattern Recognition Conference*, pages 7857–7866, 2025.

680 [40] Ronan Riochet, Mario Ynocente Castro, Mathieu Bernard, Adam Lerer, Rob Fergus,
 681 Véronique Izard, and Emmanuel Dupoux. IntPhys: A framework and benchmark for visual
 682 intuitive physics reasoning. *arXiv preprint arXiv:1803.07616*, 2018.

683 [41] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Yu Fish Tung, R. T.
 684 Pramod, Cameron Holdaway, Sirui Tao, Kevin Smith, Fan-Yun Sun, Li Fei-Fei, Nancy Kan-
 685 wisher, Joshua B. Tenenbaum, Daniel L. K. Yamins, and Judith E. Fan. Physion: Evaluating
 686 physical prediction from vision in humans and machines, 2021.

687 [42] Luca Weihs, Amanda Yuile, Renée Baillargeon, Cynthia Fisher, Gary Marcus, Roozbeh Mot-
 688 taghi, and Aniruddha Kembhavi. Benchmarking progress to infant-level physical reasoning
 689 in ai. *Transactions on Machine Learning Research*, 2022.

690 [43] Serwan Jassim, Mario Holubar, Annika Richter, Cornelius Wolff, Xenia Ohmer, and Elia
 691 Bruni. GRASP: A novel benchmark for evaluating language grounding and situated physics
 692 understanding in multimodal language models. *arXiv preprint arXiv:2311.09048*, 2023.

693 [44] Hsiao-Yu Tung, Mingyu Ding, Zhenfang Chen, Daniel Bear, Chuang Gan, Josh Tenenbaum,
 694 Dan Yamins, Judith Fan, and Kevin Smith. Physion++: Evaluating physical scene under-
 695 standing that requires online inference of different physical properties. *Advances in Neural*
 696 *Information Processing Systems*, 36, 2024.

[45] Hritik Bansal, Zongyu Lin, Tianyi Xie, Zeshun Zong, Michal Yarom, Yonatan Bitton, Chen-fanfu Jiang, Yizhou Sun, Kai-Wei Chang, and Aditya Grover. Videophy: Evaluating physical commonsense for video generation, 2024.

[46] Anoop Cherian, Radu Corcodel, Siddarth Jain, and Diego Romeres. LLMPhy: Complex physical reasoning using large language models and world models. *arXiv preprint arXiv:2411.08027*, 2024.

[47] Fanqing Meng, Jiaqi Liao, Xinyu Tan, Wenqi Shao, Quanfeng Lu, Kaipeng Zhang, Yu Cheng, Dianqi Li, Yu Qiao, and Ping Luo. Towards world simulator: Crafting physical commonsense-based benchmark for video generation, 2024.

[48] Bingyi Kang, Yang Yue, Rui Lu, Zhijie Lin, Yang Zhao, Kaixin Wang, Gao Huang, and Jiashi Feng. How far is video generation from world model: A physical law perspective. *arXiv preprint arXiv:2411.02385*, 2024.

[49] Saman Motamed, Laura Culp, Kevin Swersky, Priyank Jaini, and Robert Geirhos. Do generative video models understand physical principles? *arXiv preprint arXiv:2501.09038*, 2025.

[50] Daochang Liu, Junyu Zhang, Anh-Dung Dinh, Eunbyung Park, Shichao Zhang, and Chang Xu. Generative physical AI in vision: A survey. *arXiv preprint arXiv:2501.10928*, 2025.

[51] Enes Sanli, Baris Sarper Tezcan, Aykut Erdem, and Erkut Erdem. Can your model separate yolks with a water bottle? benchmarking physical commonsense understanding in video generation models. *arXiv preprint arXiv:2507.15824*, 2025.

[52] Luca M Schulze Buschoff, Elif Akata, Matthias Bethge, and Eric Schulz. Visual cognition in multimodal large language models. *Nature Machine Intelligence*, pages 1–11, 2025.

[53] Chenyu Zhang, Daniil Cherniavskii, Andrii Zadaianchuk, Antonios Tragoudaras, Antonios Vozikis, Thijmen Nijdam, Derck WE Prinzhorn, Mark Bodracska, Nicu Sebe, and Efstratios Gavves. Morpheus: Benchmarking physical reasoning of video generative models with real physical experiments. *arXiv preprint arXiv:2504.02918*, 2025.

[54] Quentin Garrido, Nicolas Ballas, Mahmoud Assran, Adrien Bardes, Laurent Najman, Michael Rabbat, Emmanuel Dupoux, and Yann LeCun. Intuitive physics understanding emerges from self-supervised pretraining on natural videos. *arXiv preprint arXiv:2502.11831*, 2025.

[55] Anand Bhattad, Konpat Preechakul, and Alexei A Efros. Visual jenga: Discovering object dependencies via counterfactual inpainting. *arXiv preprint arXiv:2503.21770*, 2025.

[56] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through probabilistic program induction. *Science*, 350(6266):1332–1338, 2015.

[57] Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zhulus, et al. V-JEPA 2: Self-supervised video models enable understanding, prediction and planning. *arXiv preprint arXiv:2506.09985*, 2025.

[58] Wenshan Wu, Shaoguang Mao, Yadong Zhang, Yan Xia, Li Dong, Lei Cui, and Furu Wei. Mind’s eye of LLMs: visualization-of-thought elicits spatial reasoning in large language models. *Advances in Neural Information Processing Systems*, 37:90277–90317, 2024.

[59] Google. Nano Banana: Gemini Image Generation Overview. <https://gemini.google/overview/image-generation/>, 2025. Accessed: September 22, 2025.

[60] Kevin Clark and Priyank Jaini. Text-to-image diffusion models are zero shot classifiers. *Advances in Neural Information Processing Systems*, 36:58921–58937, 2023.

[61] Priyank Jaini, Kevin Clark, and Robert Geirhos. Intriguing properties of generative classifiers. In *The Twelfth International Conference on Learning Representations*, 2023.

756 [62] Ryan Burgert, Kanchana Ranasinghe, Xiang Li, and Michael S Ryoo. Peekaboo: Text to
 757 image diffusion models are zero-shot segmentors. *arXiv preprint arXiv:2211.13224*, 2022.
 758

759 [63] Levon Khachatryan, Andranik Mousisyan, Vahram Tadevosyan, Roberto Henschel,
 760 Zhangyang Wang, Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image
 761 diffusion models are zero-shot video generators. In *Proceedings of the IEEE/CVF Interna-*
 762 *tional Conference on Computer Vision*, pages 15954–15964, 2023.

763 [64] Xavier Soria, Edgar Riba, and Angel Sappa. Dense extreme inception network: Towards a
 764 robust CNN model for edge detection. In *The IEEE Winter Conference on Applications of*
 765 *Computer Vision (WACV '20)*, 2020.

766 [65] Xavier Soria, Angel Sappa, Patricio Humanante, and Arash Akbarinia. Dense extreme incep-
 767 tion network for edge detection. *Pattern Recognition*, 139:109461, 2023. ISSN 0031-3203.
 768 doi: <https://doi.org/10.1016/j.patcog.2023.109461>. URL <https://www.sciencedirect.com/science/article/pii/S0031320323001619>.

771 [66] Agrim Gupta, Piotr Dollar, and Ross Girshick. LVIS: A dataset for large vocabulary in-
 772 stance segmentation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern*
 773 *Recognition*, 2019.

774 [67] Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain, Amit Zohar, Oron Ashual, Devi
 775 Parikh, and Yaniv Taigman. Emu edit: Precise image editing via recognition and genera-
 776 tion tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 777 *Recognition*, pages 8871–8879, 2024.

779 [68] Wenhao Sun, Rong-Cheng Tu, Jingyi Liao, and Dacheng Tao. Diffusion model-based video
 780 editing: A survey. *arXiv preprint arXiv:2407.07111*, 2024.

782 [69] Shoubin Yu, Difan Liu, Ziqiao Ma, Yicong Hong, Yang Zhou, Hao Tan, Joyce Chai, and
 783 Mohit Bansal. VEGGIE: Instructional editing and reasoning of video concepts with grounded
 784 generation. *arXiv preprint arXiv:2503.14350*, 2025.

785 [70] Eunice Yiu, Maan Qraitem, Anisa Noor Majhi, Charlie Wong, Yutong Bai, Shiry Ginosar,
 786 Alison Gopnik, and Kate Saenko. Kiva: Kid-inspired visual analogies for testing large mul-
 787 timodal models. *arXiv preprint arXiv:2407.17773*, 2024.

789 [71] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep
 790 convolutional neural networks. *Advances in neural information processing systems*, 25, 2012.

792 [72] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
 793 Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
 794 intelligence: Early experiments with gpt-4. *arXiv preprint arXiv:2303.12712*, 2023.

795 [73] Andrew Kyle Lampinen, Stephanie CY Chan, Aaditya K Singh, and Murray Shanahan. The
 796 broader spectrum of in-context learning. *arXiv preprint arXiv:2412.03782*, 2024.

798 [74] Chaz Firestone. Performance vs. competence in human–machine comparisons. *Proceedings*
 799 *of the National Academy of Sciences*, 117(43):26562–26571, 2020.

801 [75] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
 802 Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. *Nature*
 803 *Machine Intelligence*, 2(11):665–673, 2020.

804 [76] Ben Cottier, Ben Snodin, David Owen, and Tom Adamczewski. LLM inference prices have
 805 fallen rapidly but unequally across tasks, march 2025. URL <https://epoch.ai/data-insights/llm-inference-price-trends>. Accessed: 2025-09-12.

807 [77] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
 809 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in lan-
 guage models. *arXiv preprint arXiv:2203.11171*, 2022.

810 [78] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe,
 811 Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative re-
 812 finement with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–
 813 46594, 2023.

814 [79] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low,
 815 Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. OpenAI o1 system card.
 816 *arXiv preprint arXiv:2412.16720*, 2024.

817 [80] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time com-
 818 pute optimally can be more effective than scaling model parameters. *arXiv preprint*
 819 *arXiv:2408.03314*, 2024.

820 [81] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
 821 Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language mod-
 822 els to follow instructions with human feedback. *Advances in neural information processing*
 823 *systems*, 35:27730–27744, 2022.

824 [82] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction
 825 tuning with GPT-4. *arXiv preprint arXiv:2304.03277*, 2023.

826 [83] Jingqi Tong, Yurong Mou, Hangcheng Li, Mingzhe Li, Yongzhuo Yang, Ming Zhang,
 827 Qiguang Chen, Tianyi Liang, Xiaomeng Hu, Yining Zheng, et al. Thinking with video: Video
 828 generation as a promising multimodal reasoning paradigm. *arXiv preprint arXiv:2511.04570*,
 829 2025.

830 [84] Yang Luo, Xuanlei Zhao, Baijiong Lin, Lingting Zhu, Liyao Tang, Yuqi Liu, Ying-Cong
 831 Chen, Shengju Qian, Xin Wang, and Yang You. V-ReasonBench: Toward unified reasoning
 832 benchmark suite for video generation models. *arXiv preprint arXiv:pdf/2511.16668*, 2025.

833 [85] Pablo Acuaviva, Aram Davtyan, Mariam Hassan, Sebastian Stapf, Ahmad Rahimi, Alexandre
 834 Alahi, and Paolo Favaro. Rethinking visual intelligence: Insights from video pretraining.
 835 *arXiv preprint arXiv:2510.24448*, 2025.

836 [86] Alex Fang, Gabriel Ilharco, Mitchell Wortsman, Yuhao Wan, Vaishaal Shankar, Achal Dave,
 837 and Ludwig Schmidt. Data determines distributional robustness in contrastive language im-
 838 age pre-training (clip). In *International conference on machine learning*, pages 6216–6234.
 839 PMLR, 2022.

840 [87] Prasanna Mayilvahanan, Roland S. Zimmermann, Thaddäus Wiedemer, Evgenia Rusak, At-
 841 tila Juhos, Matthias Bethge, and Wieland Brendel. In search of forgotten domain generaliza-
 842 tion, 2025. URL <https://arxiv.org/abs/2410.08258>.

843 [88] Thaddäus Wiedemer, Yash Sharma, Ameya Prabhu, Matthias Bethge, and Wieland Brendel.
 844 Pretraining frequency predicts compositional generalization of clip on real-world tasks, 2025.
 845 URL <https://arxiv.org/abs/2502.18326>.

846 [89] Prasanna Mayilvahanan, Thaddäus Wiedemer, Sayak Mallick, Matthias Bethge, and Wieland
 847 Brendel. Llms on the line: Data determines loss-to-loss scaling laws, 2025. URL <https://arxiv.org/abs/2502.12120>.

848 [90] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon
 849 Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
 850 language models. *arXiv preprint arXiv:2001.08361*, 2020.

851 [91] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 852 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
 853 Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

854 [92] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
 855 Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The
 856 llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.

864 [93] Wenhan Yang, Wenjing Wang, Haofeng Huang, Shiqi Wang, and Jiaying Liu. Sparse gradient
 865 regularized deep retinex network for robust low-light image enhancement. *IEEE Transactions*
 866 on Image Processing, 30:2072–2086, 2021.

867 [94] Declan Campbell, Sunayana Rane, Tyler Gialanza, Camillo Nicolò De Sabbata, Kia Ghods,
 868 Amogh Joshi, Alexander Ku, Steven Frankland, Tom Griffiths, Jonathan D Cohen, et al.
 869 Understanding the limits of vision language models through the lens of the binding problem.
 870 *Advances in Neural Information Processing Systems*, 37:113436–113460, 2024.

871 [95] R. C. James. Sight for sharp eyes. *LIFE*, 58(7):120, 1965.

872 [96] Richard Langton Gregory. The intelligent eye, 1970.

873 [97] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann,
 874 and Wieland Brendel. ImageNet-trained CNNs are biased towards texture; increasing shape
 875 bias improves accuracy and robustness. In *International conference on learning representa-*
 876 *tions*, 2019.

877 [98] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati,
 878 Alan Fan, Christian LaForte, Vikram Voleti, Samir Yitzhak Gadre, et al. Objaverse-xl: A
 879 universe of 10m+ 3d objects. *Advances in Neural Information Processing Systems*, 36:35799–
 880 35813, 2023.

881 [99] François Chollet. On the measure of intelligence. *arXiv preprint arXiv:1911.01547*, 2019.

882 [100] Jacob Cohen. A coefficient of agreement for nominal scales. *Educational and psychological*
 883 *measurement*, 20(1):37–46, 1960.

884 [101] Robert Geirhos, Kristof Meding, and Felix A Wichmann. Beyond accuracy: quantifying trial-
 885 by-trial behaviour of cnns and humans by measuring error consistency. *Advances in neural*
 886 *information processing systems*, 33:13890–13902, 2020.

887 [102] Mary McHugh. Interrater reliability: The kappa statistic. *Biochemia medica : časopis*
 888 *Hrvatskoga društva medicinskih biokemičara / HDMB*, 22:276–82, 10 2012. doi: 10.116
 889 13/BM.2012.031.

890 [103] Piotr Dollár and C. Lawrence Zitnick. Structured forests for fast edge detection. In *ICCV*,
 891 2013.

892 [104] Piotr Dollár and C. Lawrence Zitnick. Fast edge detection using structured forests. *ArXiv*,
 893 2014.

894 [105] C. Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating object proposals from edges. In
 895 *ECCV*, 2014.

896 [106] Kai Leng, Zhijie Zhang, Jie Liu, Zeyd Boukher, Wei Sui, Cong Yang, and Zhijun Li. Superedge:
 897 Towards a generalization model for self-supervised edge detection. *CoRR*, 2024.

898 [107] Michael Ivanitskiy. Maze dataset. <https://pypi.org/project/maze-dataset/0.3.4/>, 2025. Accessed: June 31, 2025.

899 [108] Yujin Jeong, Arnas Uselis, Seong Joon Oh, and Anna Rohrbach. Diffusion classifiers under-
 900 stand compositionality, but conditions apply. *arXiv preprint arXiv:2505.17955*, 2, 2025.

901 [109] Nate Gillman, Charles Herrmann, Michael Freeman, Daksh Aggarwal, Evan Luo, Deqing
 902 Sun, and Chen Sun. Force prompting: Video generation models can learn and generalize
 903 physics-based control signals, 2025. URL <https://arxiv.org/abs/2505.19386>.

904 [110] Daniel Geng, Charles Herrmann, Junhwa Hur, Forrester Cole, Serena Zhang, Tobias Pfaff,
 905 Tatiana Lopez-Guevara, Carl Doersch, Yusuf Aytar, Michael Rubinstein, Chen Sun, Oliver
 906 Wang, Andrew Owens, and Deqing Sun. Motion prompting: Controlling video generation
 907 with motion trajectories. *arXiv preprint arXiv:2412.02700*, 2024.

908 [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110]

918 APPENDIX

919

920

921 **A QUALITATIVE RESULTS:**
922 **PERCEPTION, MODELING, MANIPULATION, REASONING**

923

924

925 We show the initial prompt frame and successive generated frames for each task described in Sec. 3.
926 For each task, the figure caption also states the prompt used to generate all samples. The guidelines
927 used to determine success in each task are listed in App. A.5.

NEW

928

929

930

931 **A.1 PERCEPTION**

932

933

941

942

943

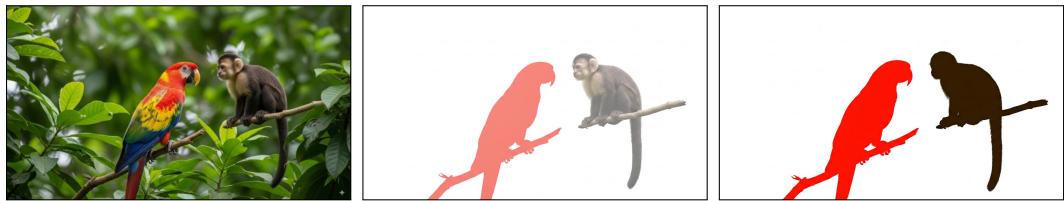
Figure 10: **Edge detection.** Prompt: “All edges in this image become more salient by transforming into black outlines. Then, all objects fade away, with just the edges remaining on a white background. Static camera perspective, no zoom or pan.” Success rate: 0.92.

944

945

946

947



955

956

957

Figure 11: **Segmentation.** Prompt: “Create an animation of instance segmentation being performed on this photograph: each distinct entity is overlaid in a different flat color [...]” (full prompt: App. B.2). Success rate: 0.33.

958

959

960

961

962

963

964

965

966

967

968

969

970

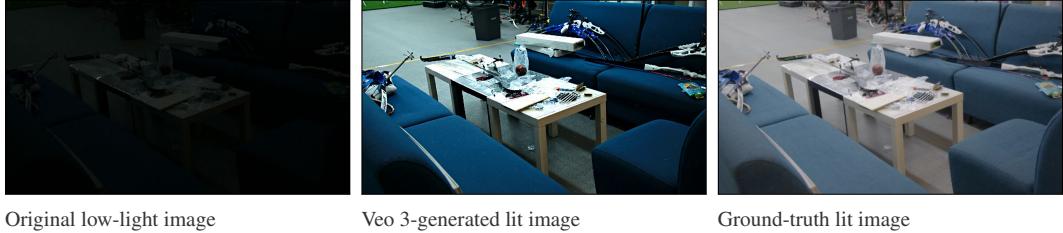
971

Figure 12: **Keypoint localization.** Prompt: “Add a bright blue dot at the tip of the branch on which the macaw is sitting. The macaw’s eye turns bright red. Everything else turns pitch black. Static camera perspective, no zoom or pan.” Success rate: 0.58.

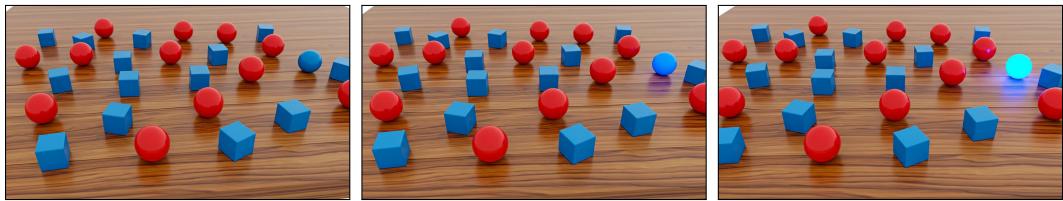
972
973
974
975
976
977
978
979 **Figure 13: Super-resolution.** Prompt: “Perform superresolution on this image. Static camera
980 perspective, no zoom or pan.” Success rate: 0.75.
981

982
983
984
985
986
987
988
989 **Figure 14: Blind deblurring.** Prompt: “Unblur image including background. Static camera per-
990 spective, no zoom or pan.” Success rate: 1.0.
991

992
993
994
995
996
997
998
999 **Figure 15: Blind denoising.** Each quadrant was corrupted with a different type of noise. Clockwise
1000 from top left: Gaussian noise, salt-and-pepper noise, speckle noise, shot noise. Prompt: “Remove
1001 the noise from this image. Static camera perspective, no zoom or pan.” Success rate: 1.0.
1002
1003



1004
1005
1006
1007
1008
1009
1010
1011 **Figure 16: Low-light enhancing.** Prompt: “Fully restore the light in this image. Static camera per-
1012 spective, no zoom or pan.” Success rate: 0.92. Image and ground-truth source: LOLv2 dataset [93].
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023



1024 **Figure 17: Conjunctive search / binding problem.** Prompt: “The blue ball instantly begins to
1025 glow. Static camera perspective, no zoom no pan no movement no dolly no rotation.” Success
rate: 0.75. Inspiration: [94].

Figure 18: **Dalmatian illusion understanding.** Prompt: “*Static camera perspective.*” Success rate: 1.0. Image credit: [95, 96].

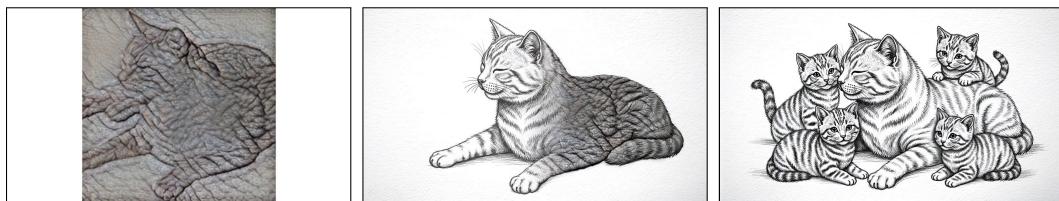


Figure 19: **Shape (cue-conflict) understanding.** Prompt: “*Transform the animal in this image into a sketch of the animal surrounded by its family.*” Success rate: 1.0. Image credit: [97].

Figure 20: **Rorschach blot interpretation.** Prompt: “*The patterns transform into objects.*” Success rate: undefined (1.0 for prompt following). Image credit: H. Rorschach, public domain via [wikipedia](#).

A.2 MODELING

Figure 21: **Material properties.** Prompt: “*The bunsen burner at the bottom turns on. Sped up time lapse. Static camera, no pan, no zoom, no dolly.*” Success rate: 0.25.

Figure 22: **Physics body transform. Rigid body** (top). Prompt: “A person picks up the vase and puts it back on the table in a sideways orientation. Static camera, no pan, no zoom, no dolly.” Success rate: 1.0. **Soft body** (bottom). Prompt: “A person drapes a thin silk scarf over the vase. Static camera, no pan, no zoom, no dolly.” Success rate: 0.67.

Figure 23: **Gravity and air resistance. On earth** (top). Prompt: “The objects fall due to gravity. Static camera, no pan, no zoom, no dolly.” Success rate: 0.5. **On the moon** (bottom). Prompt: “The objects fall down on the moon due to gravity. Static camera, no pan, no zoom, no dolly.” Success rate: 0.5.

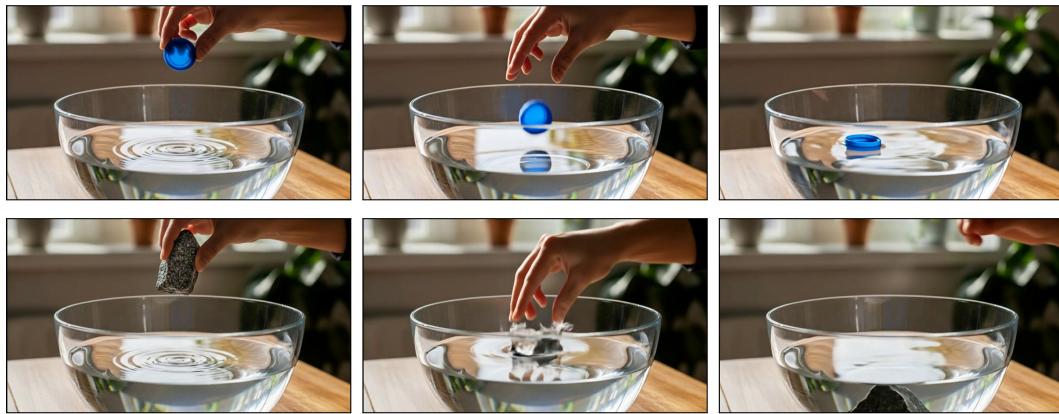
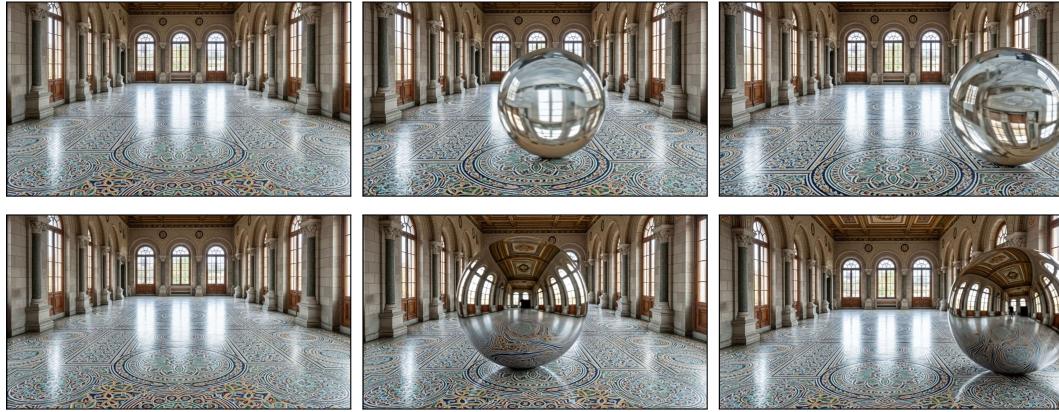


Figure 24: **Buoyancy**. Prompt: “The hand lets go of the object. Static camera, no pan, no zoom, no dolly.” Success rate (bottle cap): 0.58; success rate (rock): 0.83.

1134
1135
1136
1137
1138
1139 **Figure 25: Visual Jenga**, inspired by [55]. Prompt: “A hand quickly removes each of the items in
1140 this image, one at a time.” Success rate, based on removal of at least three objects: 0.5.
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

1151
1152
1153
1154
1155
1156
1157 **Figure 26: Object packing.** Prompt: “A person puts all the objects that can fit in the backpack
1158 inside of it. Static camera, no pan, no zoom, no dolly.” Success rate: 0.75.
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169



1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183 **Figure 27: Material optics.** **Glass** (top). Prompt: “A giant glass sphere rolls through the room.
1184 Static camera, no pan, no zoom, no dolly.” Note that the image through the glass sphere is inverted.
1185 Success rate: 0.92. **Mirror** (bottom). Prompt: “A giant mirror-polish metal sphere rolls through the
1186 room. Static camera, no pan, no zoom, no dolly.” Note that the image reflected off the sphere is not
1187 inverted). Success rate: 1.0.
1188

Figure 28: **Color mixing.** **Additive** (lights, top). Prompt: “*The spotlight on the left changes color to green, and the spotlight on the right changes color to blue.*” Success rate: 0.92. **Subtractive** (paints, bottom). Prompt: “*A paintbrush mixes these colors together thoroughly until they blend completely. Static camera, no pan, no zoom.*” Success rate: 0.75.

Figure 29: **Categorizing objects.** Prompt: “*A person puts all the kids toys in the bucket. Static camera, no pan, no zoom, no dolly.*” Success rate: 0.33.

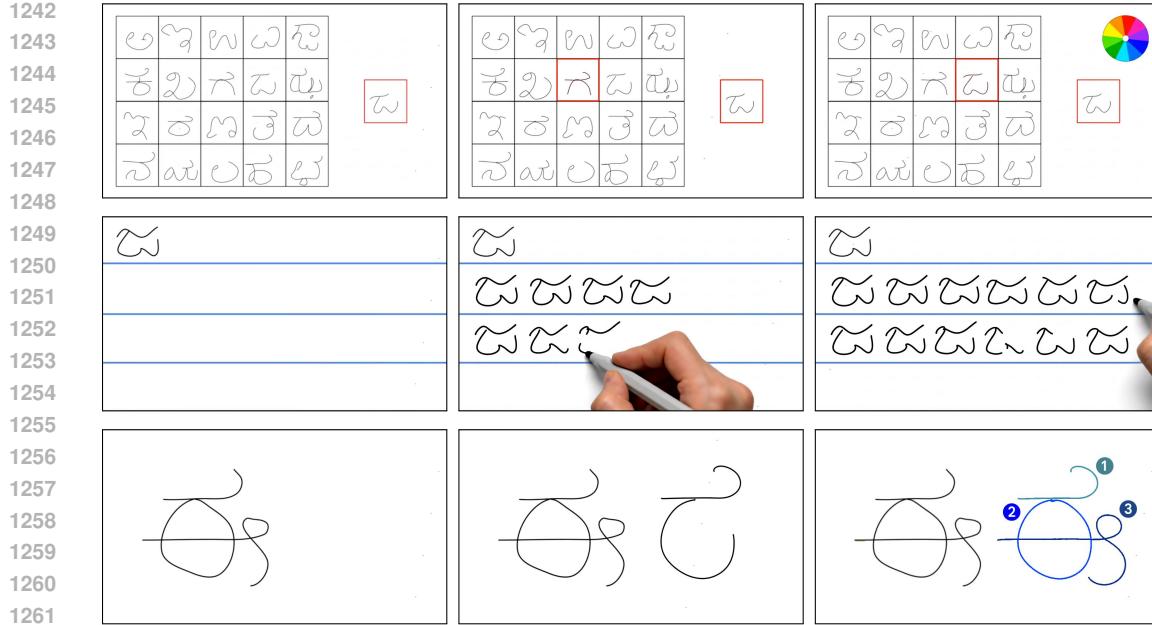


Figure 30: **Character recognition, generation, and parsing**, inspired by the Omniglot dataset [56]. **Recognition** (top). Prompt: “*The background of the grid cell with the same symbol as the one indicated on the right turns red. All other grid cells remain unchanged. After that, a spinning color wheel appears in the top right corner.*” (Note: Veo 3 has a prior to keep things moving, which is detrimental for tasks where the solution is obtained in an early frame. We observe that a ‘motion outlet’, such as a color wheel, can indicate task completion and ‘freeze’ the solution.) Success rate: 0.33. **Generation of variations** (middle). Prompt: “*The page is filled line-by-line with handwritten practice variations of the symbol.*” Success rate: 0.25. **Parsing into parts** (bottom). Color and numbers in final frame are added post-hoc to show stroke order. Prompt: “*Stroke-by-stroke, a replica of the symbol is drawn on the right.*” Success rate: 0.5.

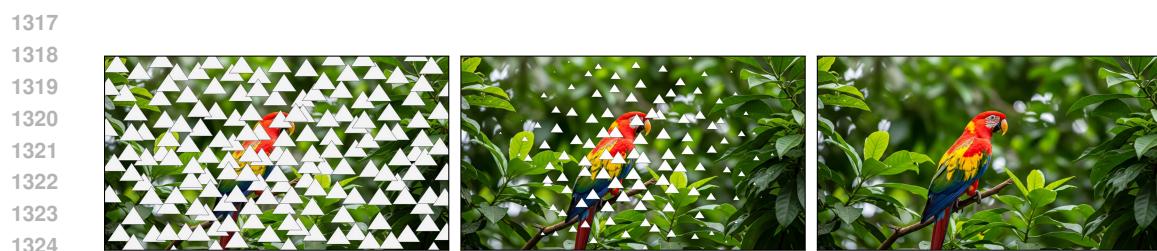
Figure 31: **Memory of world states**. Prompt: “*The camera zooms in to give a close up of the person looking out the window, then zooms back out to return to the original view.*” Success rate: 1.0.

A.3 MANIPULATION

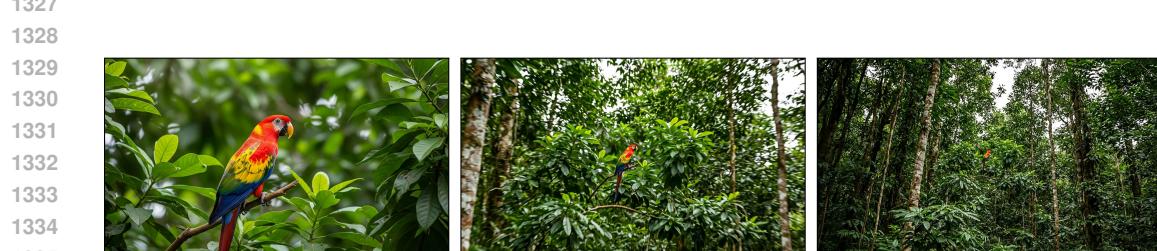
Figure 32: **Background removal**. Prompt: “*The background changes to white. Static camera perspective, no zoom or pan.*” Success rate: 0.83.

1303 Figure 33: **Style transfer**. Prompt: “*The scene transforms into the style of a Hundertwasser paint-1304 ing, without changing perspective or orientation; the macaw does not move. Static camera perspec-1305 tive, no zoom or pan.*” Success rate: 0.75.

1314 Figure 34: **Colorization**. Prompt: “*Perform colorization on this image. Static camera perspective,1315 no zoom or pan.*” Success rate: 0.08.



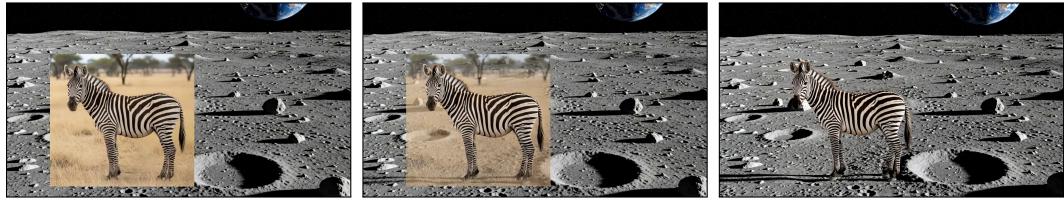
1325 Figure 35: **Inpainting**. Prompt: “*The white triangles become smaller and smaller, then disappear1326 altogether. Static camera perspective, no zoom or pan.*” Success rate: 1.0.



1336 Figure 36: **Outpainting**. Prompt: “*Rapidly zoom out of this static image, revealing what’s around1337 it. The camera just zooms back, while the scene itself and everything in it does not move or change1338 at all, it’s a static image.*” Success rate: 1.0.

1348 Figure 37: **Text manipulation**. Prompt: “*Animation of the text rapidly changing so that it is made1349 out of different types of candy (top left text) and pretzel sticks (bottom right text). Static camera1349 perspective, no zoom or pan.*” Success rate: 0.33.

1357 **Figure 38: Image editing with doodles.** Prompt: “*Changes happen instantly.*” Success rate: 1.0.
1358
1359



1367 **Figure 39: Scene composition.** Prompt: “*A smooth animation blends the zebra naturally into the scene, removing the background of the zebra image, so that the angle, lighting, and shading look realistic. The final scene perfectly incorporates the zebra into the scene.*” Success rate: 0.75.
1368
1369

1379 **Figure 40: Single-image novel view synthesis.** Prompt: “*Create a smooth, realistic animation where the camera seems to rotate around the object showing the object from all the sides. Do not change anything else. No zoom. No pan.*” Success rate: 0.92. Image source: [98].
1380
1381

1391 **Figure 41: 3D-aware reposing.** Prompt: “*The knight turns to face to the right and drops on one knee, lifting the shield above his head to protect himself and resting the hilt of his weapon on the ground.*” Success rate: 0.83.
1392
1393

1402 **Figure 42: Transfiguration.** Prompt: “*A magical spell smoothly transforms the structure of the teacup into a mouse.*” Success rate: 0.17.
1403

Figure 43: **Professional headshot generation.** Prompt: “Turn this selfie into a professional headshot for LinkedIn.” Success rate: 0.42. Image credit: photo by George Pisarevsky on Unsplash.

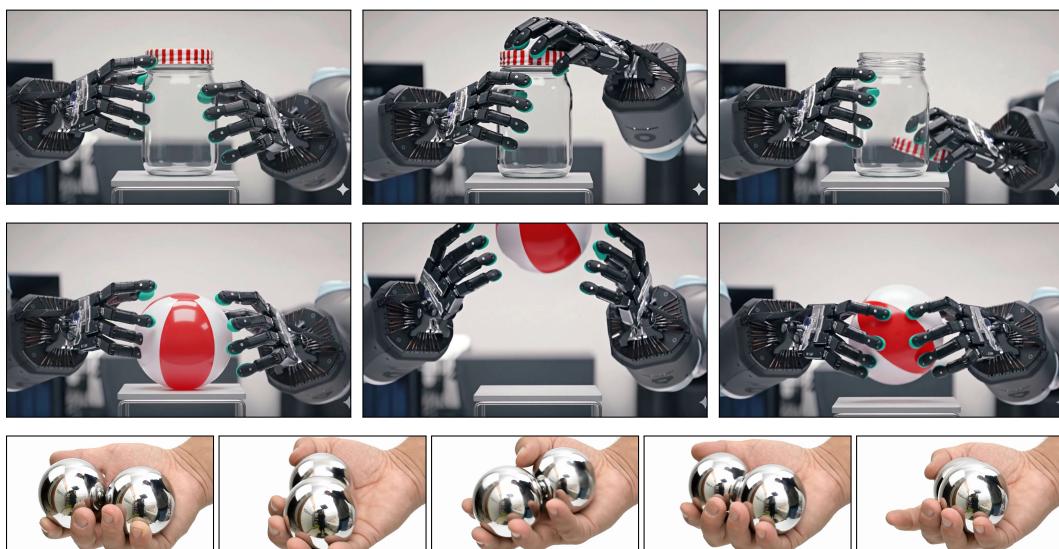


Figure 44: **Dexterous manipulation.** **Jar opening** (top). Prompt: “Use common sense and have the two robot hands attached to robot arms open the jar, like how a human would.” Success rate: 1.0. **Throwing and catching** (middle). Prompt: “Use common sense and have the two robot hands attached to robot arms throw the ball in the air; the ball goes up off the screen, hands move to positions to catch the ball, and catch the falling ball, like how a human would.” Success rate: 1.0. **Rotating Baoding balls** (bottom). Prompt: “A human hand holds two metal Baoding balls. The fingers, including the thumb, index, and middle finger, skillfully manipulate the balls, causing them to rotate smoothly like two planets orbiting around each other and continuously in the palm, one ball circling the other in a fluid motion.” Success rate: 0.08.

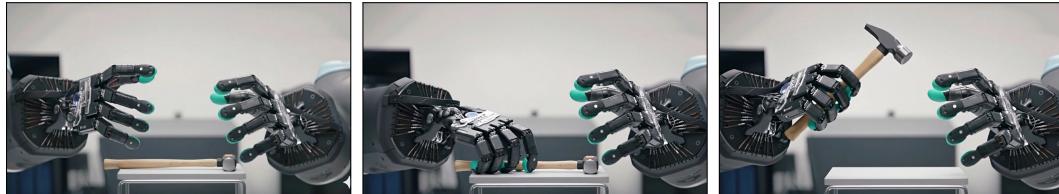
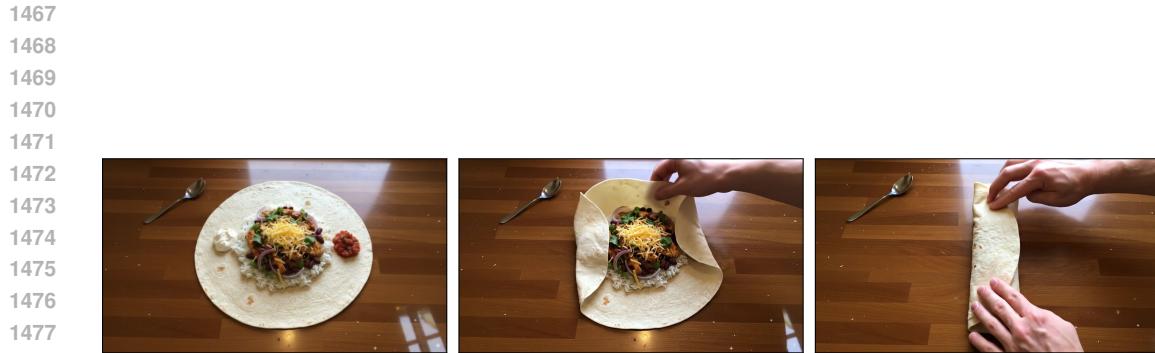


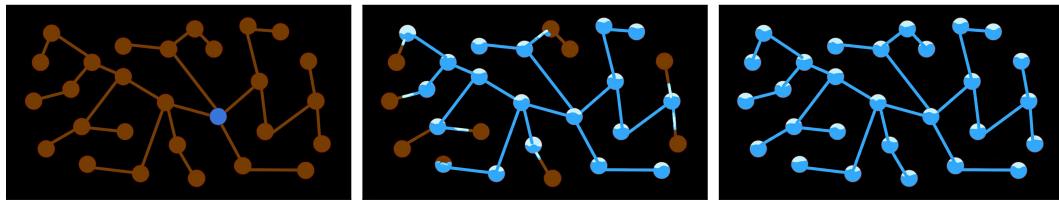
Figure 45: **Affordance recognition.** Prompt: “The robot hands mounted on robot arms pick up the hammer, naturally like how a human would.” Success rate: 0.5.

1465 **Figure 46: Drawing.** Prompt: “A person draws a square. Static camera, no pan, no zoom, no dolly.”
1466 Success rate: 0.33.



1478 **Figure 47: Visual instruction generation.** Prompt: “A montage clearly showing each step to roll a
1479 burrito.” Success rate: 0.25. Inspiration: [27] and [Reddit](#).

A.4 REASONING



1494 **Figure 48: Graph traversal.** Prompt: “Starting from the blue well, an unlimited supply of blue
1495 water moves through the connected channel system without spilling into the black area.” Success
1496 rate: 0.08.

1510 **Figure 49: Tree BFS.** Prompt: “From the blue water basin, an unlimited supply of water flows at
1511 constant speed into the cave system until all caves are filled. Static camera perspective, no zoom or
pan.” Success rate: 0.17.

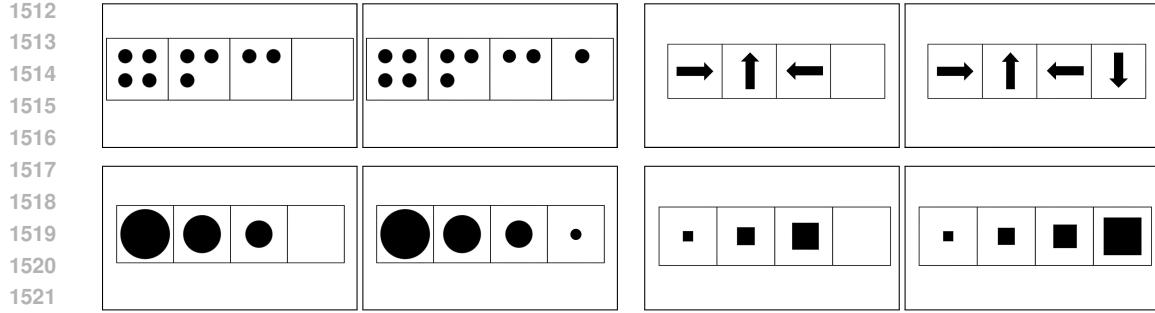


Figure 50: **Sequence completion** inspired by Raven’s progressive matrices. Each of the four pairs shows input (left) and generated output (right). Prompt: “Draw the figure that completes the pattern in the rightmost box. The images in the boxes are static. Do not modify the existing images, only draw in the empty box. Static camera, no zoom, no pan, no dolly.” Success rate: 0.33 for dots, 1.0 for arrows, 0.75 for shrinking circles, 0.83 for growing squares.

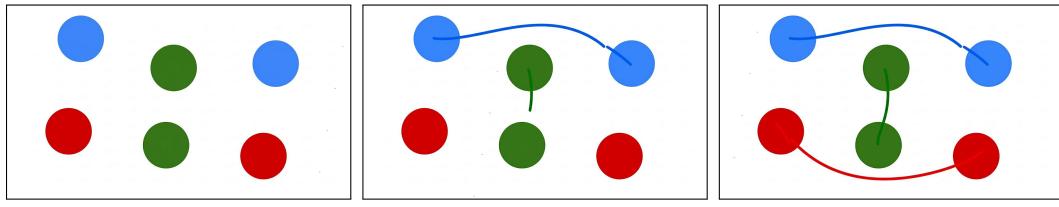


Figure 51: **Connecting colors**. Prompt: “Draw three curves, one connecting each pair of circles of the same color.” Success rate: 0.25.

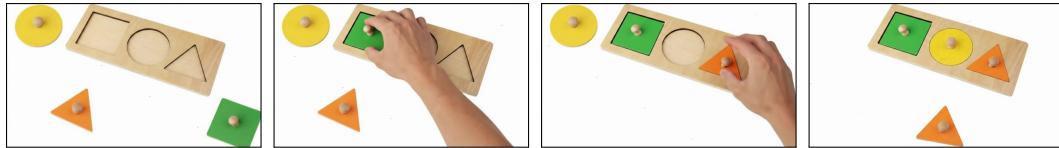


Figure 52: **Shape fitting**. Prompt: “The scene shows three colored pieces, and a wooden panel with three holes. Each colored piece fits into one and only one hole. A hand grabs each colored piece and puts it into an empty hole that has the exact same shape - if it doesn’t fit, the hand tries another hole. All the objects must be placed in their respective holes.” Success rate: 0.25.

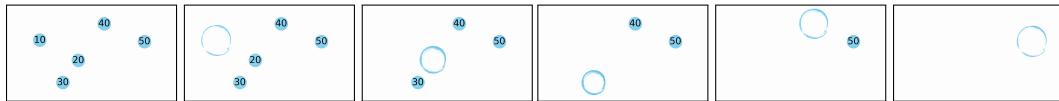


Figure 53: **Sorting numbers**. Prompt: “The video starts with some numbered bubbles. The bubbles pop and disappear one at a time, in numeric order, starting from the one with the smallest number.” Success rate: 0.08.

Figure 54: **Tool use**. Prompt: “A person retrieves the walnut from the aquarium.” Success rate: 0.92 (retrieval via tool) and 0.08 (retrieval via tool without intersecting the glass).

1566
1567
1568
1569
1570
1571
1572

4	2	3	1	
1	2			
2	4	1	3	
3	4	2		

4	2	3	1	
3	1	2		
2	4	1	3	
3	4	2		

4	2	3	1	
3	1	2	4	
2	4	1	3	
1	3	4	2	

1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Figure 55: Simple Sudoku completion. Prompt: “Create a static, smooth, animation that solves the given 4x4 sudoku. Enter the missing numbers one by one. Do not change anything else in the picture. Only fill the numbers in the empty cells so the sudoku is solved properly. A cursor moves and fills the correct number in the empty boxes.” Success rate: 0.67.

Figure 56: Water puzzle solving. Prompt: “The tap is turned on and water starts flowing rapidly filling the containers. Create a smooth, static animation showing the containers getting filled with water in the correct order.” (note: not all containers can be filled since some pipes are closed off, such as the pipe connecting container 2 to container 5. Veo fills the correct containers, in the right order.) Success rate: 0.5.

Figure 57: Maze solving. Prompt: “Without crossing any black boundary, the grey mouse from the corner skillfully navigates the maze by walking around until it finds the yellow cheese.” Success rate: 0.17.

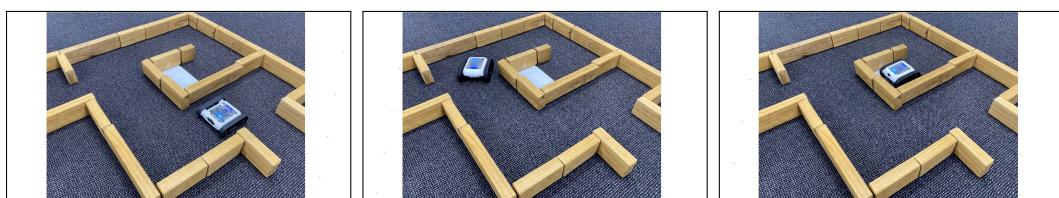


Figure 58: Robot navigation. Prompt: “The robot drives to the blue area. Static camera perspective, no movement no zoom no scan no pan.” Success rate: 0.58. Image credit: [Micromelon Robotics website](#) with permission from Tim Hadwen.

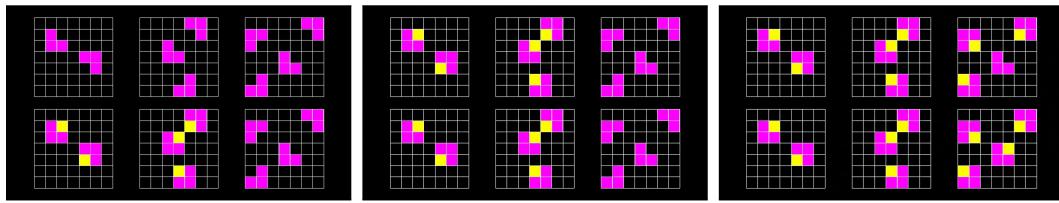


Figure 59: **Rule extrapolation** inspired by ARC-AGI [99]. Prompt: “*Modify the lower-right grid to adhere to the rule established by the other grids. You can fill cells, clear cells, or change a cell’s color. Only modify the lower-right grid, don’t modify any of the other grids. Static scene, no zoom, no pan, no dolly.*” Success rate: 0.08. While Veo 3 doesn’t follow the prompt perfectly, the output grid (bottom right) is completed correctly.

A.5 EVALUATION DETAILS

NEW

For each task, we generate 22 completions with Veo 3 based on the same prompt and initial frame. Twelve completions are annotated by one of the authors, another ten samples are each annotated by two authors and one external computer vision expert. All annotations follow the general and specific instructions outlined below. The final success rate is computed as the average success over all samples, where the success rate for a sample with multiple annotations is the average of its annotations.

NEW

We track the pair-wise inter-rater reliability between annotators for the ten samples using Cohen’s kappa [100]. κ is 0.82 between authors and 0.87 and 0.89 between each author and the external annotator, compared to an analytical upper bound of 1.0 [101]. This is considered *strong to almost perfect agreement* [100, 102], indicating a stable and objective evaluation.

NEW

NEW

NEW

NEW

Annotators were given the following general instructions:

- Indicate whether the generation fulfills the task outlined in the prompt (1) or not (0).
- For tasks where the target is a single image (e.g., edge detection, deblurring, ...), indicate 1 if there is at least one frame that fulfills the task.
- For tasks where the target is a video segment (e.g., robot navigation, ...), indicate 1 if there is a video segment that fulfills the task.
- After the task has been completed, subsequent hallucinations or other artifacts are okay and don’t invalidate the answer.
- While prompts may specify a static camera perspective, small camera movements are okay (e.g., zoom, pan, ...).
- Hallucinations or glitches are okay if they do not interfere with the task objective.
- Very small animations or local changes are okay if the task is otherwise fulfilled correctly.
- You can ignore any audio.

NEW

Additionally, annotators had the following specific instructions for some tasks

- **Background removal.** Some branches can be considered background or foreground.
- **Buoyancy (bottle cap).** Does the bottle cap float up after being submerged?
- **Buoyancy (rock).** Does the stone sink?
- **Categorizing objects.** Are all and only kids toys put in the bucket?
- **Color mixing (additive).** Is the overlapping light cyan?
- **Color mixing (subtractive).** Is the mixed paint green?
- **Dalmation illusion understanding.** Does the video reveal the Dalmatian?
- **Deblurring.** It is okay for the background to remain slightly out of focus.
- **Dexterous manipulation (jar opening).** The entire interaction should be plausible.

- **Dexterous manipulation (throwing and catching).** The entire interaction should be plausible.
- **Image editing with doodles.** Ignoring the speed at which the changes happen, are the changes that are introduced the requested ones (hat, snow, scarf)?
- **Drawing.** Is there a complete square, and each line is drawn with the pen? Lines can be drawn or re-drawn in any order.
- **Edge detection.** Does the model produce a plausible edge-map of the scene?
- **Graph traversal.** Are the edges/nodes filled in in the correct order? Not all edges/nodes have to be filled in during the 8s video. Score as failure if water appears somewhere without flowing from the initial well.
- **Gravity and air resistance (on earth).** Does the feather fall slower than the ball due to air resistance?
- **Gravity and air resistance (on the moon).** Do the feather and the ball fall at the same rate?
- **Professional headshot generation.** Is the likeness of the person preserved?
- **Material properties.** Does the paper burn in a plausible manner?
- **Memory of world states.** Does the scene in the end match the scene in the beginning?
- **Single-image novel view synthesis.** It's fine if the rotation isn't 360 degrees.
- **Character recognition.** At the moment the spinning color wheel appears, is only the correct symbol highlighted?
- **Character generation of variations.** Are the new characters plausible, hand-written variations of the original?
- **Character parsing into parts.** Is the character decomposed into plausible strokes?
- **Material optics (glass).** Is the image in the sphere inverted?
- **Material optics (mirror).** Is the image in the sphere right-side up?
- **3D-aware reposing.** Is there a frame showing the knight in the correct final pose, while maintaining his appearance? Implausible transformations are okay as long as the final pose is correct.
- **Physics body transform (rigid body).** Does the vase retain its shape and appearance?
- **Physics body transform (soft body).** Does the scarf drape plausibly over the vase?
- **Robot navigation.** Does the robot drive to the blue area in a physically plausible manner? (If e.g. a wall is knocked over by the robot, that could be plausible as well, as long as it could happen in reality)
- **Rule extrapolation.** Is the lower-right grid completed correctly? Modifications to the other grids are okay.
- **Scene composition.** The zebra does not have to maintain the pose from the image, but should be included plausibly in the scene (e.g., not hovering above the ground).
- **Segmentation.** Does the model produce a plausible segmentation of some key objects in the scene, while not introducing new objects?
- **Sequence completion.** Only focusing on the rightmost box and ignoring potential changes elsewhere, is the correct shape drawn?
- **Shape cue-conflict understanding.** Does the video show a family of cats?
- **Shape fitting.** Is there a moment when all holes are filled with the correct shape?
- **Style transfer.** Does the style of the image change to a painting?
- **Simple sudoku completion.** Are the correct numbers filled in? Top-left: 3, top-right: 4, bottom-left: 1. It is okay if other numbers are modified.
- **Tool use.** Is the walnut retrieved from the aquarium in a plausible manner?
- **Tree BFS.** Are the branches filled in a plausible manner (top to bottom)? Not all branches have to be filled in during the 8s video.

1728

- **Visual instruction generation.** Are all necessary steps shown? A time-lapse/montage is

1729 okay.

1730

- **Visual jenga.** Are the objects removed in a plausible order? Weird hand movements or

1731 object deformations are okay as long the order is plausible and objects are not reintroduced.

1732

- **Water puzzle solving.** Are only the correct containers filled in, and in the right order

1733 1-2-3-7?

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

Figure 60: **Graded Veo 3 edge map.** While false negatives reflect genuine oversights of Veo 3 (e.g., cracks in the road, lettering on the car), many false positives correspond to actual image details that seem to be erroneously excluded from the ground truth (e.g., the outline of the trees, the reflection in the car window, and the tire profiles).

B QUANTITATIVE RESULTS: EXPERIMENTAL DETAILS

Table 1: **Video count breakdown for quantitative tasks.** For segmentation, 2×1 splits indicate one test set with two different background color prompts (white/green). For the prompt sensitivity study on the symmetry task (App. C), 2×10 splits indicate 2 splits (random/shape) across 10 tested prompt variations. In total, there are 884 different starting images for the quantitative tasks, and 46 for the qualitative tasks (if all macaw-based images are counted as a single image). For the qualitative tasks, we additionally generated 1364 videos (62 tasks \times 22 samples).

Task	Splits	Imgs/split	Pass@	Video models	Total videos
Edge	1	50	10	2	1000
Segmentation	2×1	50	10	2	2000
Object extraction	1	54	10	2	1080
Editing	1	30	1	2	60
Maze	2×4	50	10	2	8000
Symmetry	2	25	10	2	1000
Symmetry prompt analysis	2×10	25	1	1	500
Analogy	4	50	10	2	4000
Total					17640

B.1 PERCEPTION: EDGE DETECTION

We provide details for the image editing task in Sec. 4.1.

Evaluation As is standard in the literature, we refine and binarize predicted edges and allow for small local shifts compared to the ground truth [103–106]. Concretely, we use non-maximum suppression, then binarize with one of 16 evenly-spaced thresholds, then thin the binary edge map. At each threshold, we find the optimal mapping between predicted and ground-truth edge pixels within a radius of 0.75% of the image diagonal (around 11 pixels). Fig. 60 shows an example rating of a Veo 3-generated edge map. We report the best OIS over k attempts (optimal image scale; the maximum F_1 -score over all thresholds) for the best/last frame.

Dataset We used all 50 test images from BIPEDv2 [64, 65].

Models & prompts We tested Veo 3 `veo-3.0-generate-preview` and Veo 2 `veo-2.0-generate-preview-001` through the Vertex AI API. We also tested Nano Banana `gemini-2.5-flash-image-preview` through Google AI Studio.

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

Veo

All edges in this image become more salient by transforming into black outlines. Then, all objects fade away, with just the edges remaining on a white background. Static camera perspective, no zoom or pan.

1846

1847

1848

1849

1850

1851

1852

Sampling We generated 10 videos per sample with a fixed prompt.

1853

1854

1855

1856

1857

B.2 PERCEPTION: SEGMENTATION

1858

1859

1860

We provide details for the image editing task in Sec. 4.2.

1861

1862

1863

1864

1865

Evaluation Since the model is free to choose any colors for segmentation masks, we first determine the number and hue of each mask by considering the hue-difference histogram between the original image and the extracted frame. We smooth the histogram with `scipy.ndimage.gaussian_filter1d` with a standard deviation of 2. Peaks with a minimum height of 10% of the maximum and at least 10 hue steps apart are considered to correspond to predicted segmentation masks. We then map each pixel to the mask with the closest hue.

1871

Contrary to classic instance segmentation [66] or promptable segmentation [11, 12], our prompts do not specify a class or list of possible classes, a location prior (e.g., point or bounding box), or the number of instances in the image. This also means that mapping between predictions and annotated instances is established. Instead, we pair each ground-truth mask (including the background) with the predicted mask with the highest IoU (intersection over union), if any. We report mIoU as the average IoU over all pairs (excluding the background).

1877

1878

1879

1880

1881

Dataset We evaluated on 50 randomly chosen test images from LVIS [66] that contain one to three objects, each with at least 5000 pixels.

1884

1885

1886

1887

1888

1889

Models & prompts We tested Veo 3 `veo-3.0-generate-preview` and Veo 2 `veo-2.0-generate-preview-001` through the Vertex AI API. We also tested Nano Banana `gemini-2.5-flash-image-preview` through Google AI Studio.

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

Veo

Create an animation of instance segmentation being performed on this photograph: each distinct entity is overlaid in a different flat color.

Scene:

- *The animation starts from the provided, unaltered photograph.*
- *The scene in the photograph is static and doesn't move.*
- *First, the background fades to {white, green}.*
- *Then, the first entity is covered by a flat color, perfectly preserving its silhouette.*
- *Then the second entity, too, is covered by a different flat color, perfectly preserving its silhouette.*
- *One by one, each entity is covered by a different flat color.*
- *Finally, all entities are covered with different colors.*

Camera:

- *Static shot without camera movement.*
- *No pan.*
- *No rotation.*
- *No zoom.*
- *No glitches or artifacts.*

Nano Banana

Perform instance segmentation on this image: Mask each distinct entity in a different opaque flat color that only preserves the silhouette and turn the background green.

1920 **Sampling** We generated 10 videos per sample and prompt.

1922 **B.3 MANIPULATION: OBJECT EXTRACTION**

1924 We provide details for the image editing task in Sec. 4.3.

1926 **Evaluation** We extract the last frame from each generated video; the resulting image is converted to greyscale, a binary mask with threshold 200 is applied, and the number of connected components is extracted using `scipy.ndimage.label`, resulting in the count estimate. We also report the chance baseline which can be calculated as: $\text{random} - \text{chance} = 1 - (1 - p)^k$ where p is the probability to get the count correct via guessing (here: $p = \frac{1}{9}$) and $k \in [1, 10]$.

1932 **Dataset** We generated an animal counting dataset using Nano Banana. Starting from a white 16:9 image, we used the following prompt, where `number` is in [1, 9] and `animal` is in ['dog', 'elephant', 'cat', 'brown bear', 'horse', 'rabbit', 'raccoon']. We manually evaluated the generated dataset for correctness; the resulting dataset has 54 images (exactly 6 per count).

Nano Banana

Exchange the white space with a realistic photograph of: exactly {number} {animal}, outside, not overlapping, in a natural landscape.

1942 **Models & prompts** We tested Veo 3 `veo-3.0-generate-preview` and Veo 2 `veo-2.0-generate-preview-001` through the Vertex AI API.

1944

1945

1946

Veo*The background changes to white. Then:*

1947

- *If there is just a single animal: the animal sits in the middle of the image, looking straight at the camera.*
- *If there are multiple animals: all animals line up in a row, with ample white space between them.*

1951

1952

1953

Sampling We generated 10 videos per sample with a fixed prompt.

1954

1955

B.4 MANIPULATION: IMAGE EDITING

1956

We provide details for the image editing task in Sec. 4.4.

1957

1958

Evaluation We perform a human study with three human raters to evaluate *fidelity* (correct edit) and *precision* (correct edit with no unintended changes like zooming).

1959

1960

Dataset We used a random sample of 30 images from the test set of the Emu-edit dataset [67].

1961

1962

1963

1964

1965

1966

Models & prompts We tested Veo 3 `veo-3.0-generate-preview` and Veo 2 `veo-2.0-generate-preview-001` through the Vertex AI API.

1967

1968

Veo*Create a smooth, static animation that slowly {image specific edit direction}. Do not change anything else. No zoom, no pan, no dolly.*

1969

1970

1971

1972

1973

Sampling For each image, we generated two samples and use the first sample for human rating.

1974

1975

B.5 REASONING: MAZE SOLVING

1976

1977

We provide details for the image editing task in Sec. 4.5.

1978

1979

Evaluation Our evaluation process is tailored to the model type. For Veo, we analyze the generated video frame-by-frame, extracting the path taken by the agent (red circle). We check for any invalid moves, such as jumping over walls, clipping through boundaries, or any alteration of the goal’s position. We report the success rate as the fraction of k attempts where the agent successfully reaches the goal (green circle) without any illegal moves.

1980

1981

1982

1983

For Nano Banana, which generates the full path in one edit, we assess whether the drawn path connects the start and end points (allowing for minor discontinuities) and crucially, whether it intersects with any maze walls or goes off the valid path.

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

Dataset For rectangular mazes, we generated 50 random mazes per size using `maze-dataset` [107], but replacing the square start and end with circles and swapping their colors. We also drew 10 irregular mazes by hand and flipped/rotated them to obtain 40 unique samples.

1998

Models & prompts We tested Veo 3 `veo-3.0-generate-preview` and Veo 2 `veo-2.0-generate-preview-001` through the Vertex AI API. We also tested Nano Banana `gemini-2.5-flash-image-preview` and Gemini 2.5 Pro `gemini-2.5-pro` through Google AI Studio.

1998

1999

2000

2001

2002

2003

2004
Maze:

2005

2006

2007

2008

2009

2010

2011

2012

2013

Veō

Create a 2D animation based on the provided image of a maze. The red circle slides smoothly along the white path, stopping perfectly on the green circle. The red circle never slides or crosses into the black areas of the maze. The camera is a static, top-down view showing the entire maze.

Scene:

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

Camera:

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052
2053
2054
2055
2056
2057**Gemini 2.5 Pro I2T**

SYSTEM

Think step by step as needed and output in xml format:
 <think>thinking process</think>
 <final_answer>final answer</final_answer>

2058
2059
2060
2061
2062
2063
2064
2065

USER

The following image shows a maze, represented by colored squares:

- *Black squares represent walls and cannot be passed through.*
- *White squares are empty and can be passed through.*
- *The red square is the starting point.*
- *The green square is the end point.*

2066
2067
2068
2069
2070

Please solve the maze by providing a path from the starting point to the end point. The path should be provided as a list of coordinates of each step, where each coordinate is a (row, col) tuple, and row, col are 0-based indices. Consider the origin (0, 0) to be the top-left corner. Overall, the path should be provided in the format of [(row1, col1), (row2, col2), ...].

2071
2072
2073
2074
2075
2076
2077
2078
2079
2080

A valid path must:

- *Start at the starting point (the red square).*
- *End at the end point (the green square).*
- *Avoid the walls (the black squares).*
- *Pass only through empty space (the white squares).*
- *Move one square at a time.*
- *Only move up, down, left, and right, not diagonally.*

Correct your answer if you spot any errors.

2081
2082

Here is the maze image: {image}

2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103**Nano Banana**

Mark the correct path from the red to the green circle through the maze in blue.

2104
2105

2106
 2107 **Gemini 2.5 Pro T2T**
 2108 SYSTEM
 2109 *Think step by step as needed and output in xml format:*
 2110 *<think>thinking process</think>*
 2111 *<final_answer>final answer</final_answer>*
 2112
 2113 USER
 2114 *The following is an ASCII-representation of a maze:*
 2115

- ‘#’ represents walls which cannot be passed through.
- ‘ ’ represents empty spaces that can be passed through.
- ‘S’ is the starting point.
- ‘E’ is the end point.

 2116
 2117
 2118
 2119
 2120 *Please solve the maze by providing a path from the starting point to the end point. The path*
 2121 *should be provided as a list of coordinates of each step, where each coordinate is a (row, col)*
 2122 *tuple, and row, col are 0-based indices. Consider the origin (0, 0) to be the top-left corner.*
 2123 *Overall, the path should be provided in the format of [(row1, col1), (row2, col2), ...].*
 2124
 2125 *A valid path must:*
 2126

- *Start at the starting point ‘S’.*
- *End at the end point ‘E’.*
- *Avoid the walls ‘#’.*
- *Pass only through empty space ‘ ’.*
- *Move one square at a time.*
- *Only move up, down, left, and right, not diagonally.*

 2127 *Correct your answer if you spot any errors.*
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135 *Here is the maze in ASCII format: {maze}*

2137
 2138 **Sampling** We generated 10 videos per sample with a fixed prompt. Note that for Gemini 2.5 Pro
 2139 I2T, we represented the maze as a grid where the red and green positions are marked as squares
 2140 (not circles) to make the setup grid-like (i.e., a matrix with cells), since this might be easier for a
 2141 language model.
 2142

2143 **B.6 REASONING: VISUAL SYMMETRY SOLVING**
 2144

2145 We provide details for the visual symmetry task in Sec. 4.6.
 2146

2147 **Evaluation** We prompt Veo with input images containing a 10×16 grid where a pattern is drawn
 2148 on the left half. The goal is to complete the pattern on the empty right half so that the final pattern
 2149 is symmetrical along the central vertical axis.
 2150

2151 We compare Veo’s best-frame and last-frame solutions with the ground-truth symmetrical grid and
 2152 compute the number of incorrectly-colored cells. A cell is determined as incorrectly-colored if the
 2153 average color across pixels in the cell is perceptually distinct from the ground-truth average color in
 2154 the matching cell. We compute perceptual color differences of the average cell color in the CIELAB
 2155 color space, with a difference threshold of 15.0. In Fig. 8, we report the percentage of attempts in
 2156 which the best or last frame solution has zero incorrect cells for $k = 1$.
 2157

2158 **Dataset** We created a synthetic grid coloring image dataset to evaluate visual symmetry. We gen-
 2159 erated 25 samples using common symmetrical symbols, objects and shapes such as english letters
 (e.g., A, H, M, X), geometric shapes (e.g., square, triangle), symmetrical objects (e.g., wineglass,

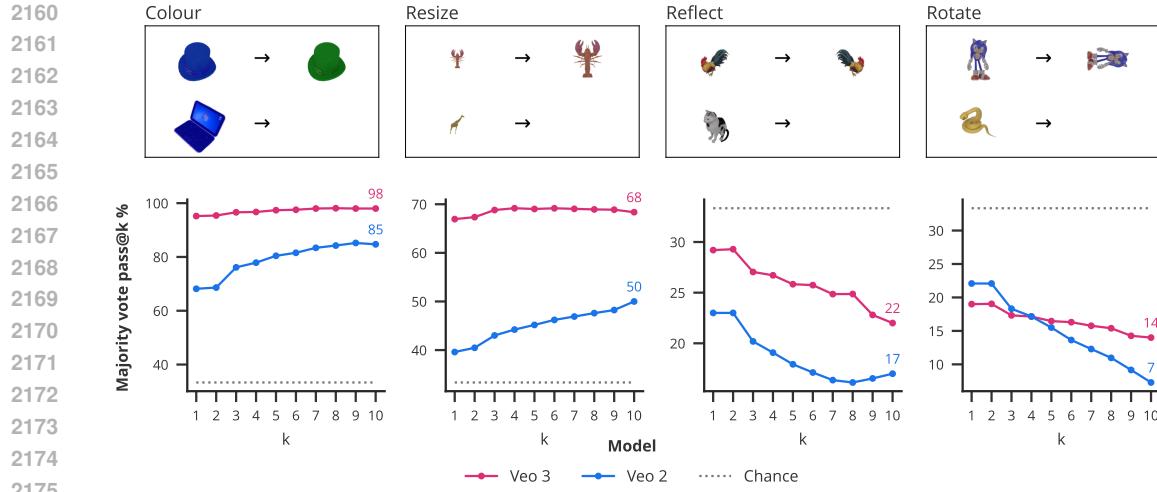


Figure 61: **Visual analogy performance over 10 attempts.** In contrast to other plots in this paper, we here report not the best performance over k attempts, but instead the performance when choosing the *majority vote* from k attempts. As a result, performance is not necessarily monotonic in k . In fact, for *reflect* and *rotate*, performance *decreases* with k , indicating that both models have systematic, erroneous biases. In the case of Veo 3, the model tends to perform reflections and rotations, but not along the same axis as shown in the image. Veo 2 simply tends to copy the object without applying any transformation.

balloon; together, the *shape* condition). We also generated 25 samples consisting of randomly-colored cells (the *random* condition).

Models & prompts We tested Veo 3 `veo-3.0-generate-preview` and Veo 2 `veo-2.0-generate-preview-001` through the Vertex AI API. We also tested Nano Banana `gemini-2.5-flash-image-preview` through Google AI Studio.

Veo

Instantly reflect this pattern along the central, vertical axis while keeping the existing colored pattern without modification. Static camera perspective, no zoom or pan.

Sampling We generated 10 videos per sample with a fixed prompt.

B.7 REASONING: VISUAL ANALOGY COMPLETION

We provide details for the visual analogy task in Sec. 4.7.

Evaluation We prompt Veo to solve visual analogies with an input image showing a reference object pair and a test object. The object images are sourced from the Kid-inspired Visual Analogies benchmark [KiVA, 70]. Consistent with the multi-choice format in the KiVA benchmark, we evaluated Veo’s generation by cropping out the generated target object in the lower-right region of the last frame and compare Veo’s generated object with three candidate object choices using an autorater (see details below).

In Fig. 9, we report the pass@1 accuracy across different conditions for both Veo 2 and Veo 3 for $k = 1$. Fig. 61 shows performance for $k = 10$.

Dataset We used the test trials and choice images from the KiVA benchmark [70].

Models & prompts We tested Veo 3 `veo-3.0-generate-preview` and Veo 2 `veo-2.0-generate-preview-001` through the Vertex AI API.

2214 We used Gemini 2.5 Pro `gemini-2.5-pro` through Google AI Studio to identify which image
 2215 choice Veo’s generation is most similar with. To enhance the autorater’s image comparison accu-
 2216 racy for this task, Gemini is prompted with privileged information about the values in the dataset
 2217 conditions (see below for the full autorater prompt). If no object is visible in the lower-right region
 2218 of Veo’s generated last frame or if the generated object is of a different object type, we randomly
 2219 sampled one of three choices as Veo’s choice. In pilot experiments, we found that the Gemini-
 2220 assisted autorater’s ratings achieve above 88% agreement with expert human ratings by the authors
 2221 on 25 samples within each conditions.

2222 Note that in the prompt, words in `{ }` are updated based on the test condition of the current generation
 2223 (one of `color`, `resize`, `reflect`, and `rotate`) to provide more information of the feature name and values
 2224 to direct the image comparison. Image choice orders are shuffled for each prompt.

2225

2226 **Veo**

2227 *Create a smooth animation to generate the missing object in the lower right region and solve
 2228 the visual analogy. The original three objects must remain still. Static shot, no zoom no pan
 2229 no dolly.*

2230

2231 **Gemini 2.5 Pro autorater**

2232 SYSTEM

2233 *You are an expert visual judge. You will be presented with a “target image” and three
 2234 “choice images” labeled A, B, and C. Your goal is to identify the choice image that is most
 2235 visually similar to the target image.*

2236

2237 *Follow these steps:*

- 2238 *1. Analyze each provided image and describe the objects shown. Focus on the object
 2239 {color}. That is, if the objects appear {green}, {blue}, or {red}.*
- 2240 *2. Determine if the primary object in the target image is of the same general category
 2241 or type as the objects in the choice images. For example, if the target image shows
 2242 a dog, and the choices show a cat, the object types are considered different. If no
 2243 object is visible in the target image, the object type is considered to be mismatched.*
- 2244 *3. If the object type matches between the target image and the choice images, identify
 2245 the choice that is most visually similar to the target image in terms of the object
 2246 {color}.*

2247 *Provide a brief justification for your choice, explaining why it is the best match and why the
 2248 others are less suitable. Conclude your response with the final answer on a new line in the
 2249 format:*

2250 *“Final Answer: [answer]”*

2251 *where “answer” is one of (“A”, “B”, “C”, or “different object type”). Do not use markdown
 2252 format for the final answer line.*

2253

2254 USER

2255 *Please evaluate the following images.*

2256 *— TARGET IMAGE —*

2257 *{target object image}*

2258 *— CHOICE IMAGES —*

2259 *CHOICE A: {image choice} CHOICE B: {image choice} CHOICE C: {image choice}*

2260 *Which choice image is most similar to the target image?*

2261

2262 **Sampling** We generated 10 videos per sample with a fixed prompt.

2263

2264

2265

2266

2267

2268 **C PROMPTING BEST PRACTICES**

2270 **Table 2: Prompt sensitivity study on the visual symmetry task.** We report best frame pass@1 %
2271 and the average number of incorrectly-colored cells across 25 samples on each split (shape/random).
2272

2273

No.	Prompt	Pass@1		Avg incorrect cells	
		Shape	Random	Shape	Random
1	Instantly reflect this pattern along the central, vertical axis while keeping the existing colored pattern without modification.	48	68	4.16	7.00
2	Instantly reflect this pattern along the central, vertical axis while keeping the existing colored pattern without modification. Static camera perspective, no zoom or pan.	42	65	5.00	3.52
3	Instantly reflect this pattern along the central, vertical axis while keeping the existing colored pattern without modification. The result needs to be mirror-symmetrical along the vertical axis. Static camera perspective, no zoom or pan.	36	52	6.28	9.04
4	One by one, cells in the right half of the grid are filled in to complete the pattern. The pattern is mirror-symmetrical along the central vertical line. Static shot; no zoom, no pan, no dolly.	32	12	10.76	14.08
5	Reflect this pattern along the central, vertical axis.	28	40	9.76	4.52
6	An animation showing the left half of the grid being mirrored onto the right half to create a symmetrical pattern. Static shot; no zoom, no pan, no dolly.	24	12	10.96	16.32
7	You’re a master symmetry solver. Your task is to fill the cells on the right side of the grid to mirror the pattern on the left, such that it’s symmetrical along the vertical axis.	24	8	9.20	17.72
8	Fill color in the appropriate cells on the right side of the grid to complete the pattern. The final image should be symmetrical along the central vertical line. Static shot, no zoom no pan no dolly.	13	9	10.30	14.74
9	Create a static, smooth, realistic animation completing the pattern in the image by filling the grid on the right hand side. Do not change anything else. No zoom, no pan.	12	4	14.88	21.00
10	A timelapse of a professional pixel artist drawing a symmetrical pattern onto a white canvas. Static shot; no zoom, no pan, no dolly.	8	20	14.20	12.64

2306 The results in Secs. 3 and 4 are best-effort estimates of Veo’s performance using carefully chosen
2307 prompts. Generally, performance varies greatly with the exact task description provided in the
2308 prompt, as illustrated by a prompt sensitivity study on the visual symmetry task in Table 2. Here are
2309 best practices from this sensitivity analysis and our other experiments:
2310

2311

2312 - **Remove ambiguity.** Tasks can be solved in a variety of ways, and natural language descriptions
2313 tend to leave a lot of room for interpretation. The goal should be formulated clearly, e.g., saying “symmetrical along the central, vertical axis”, rather than just “symmetrical”.
2314 - **Specify what shouldn’t change.** Veo has a tendency to change any part of the input to
2315 create interesting, dynamic scenes. Including not only a positive task description, but also
2316 specifying what *not* to change can help mitigate this, e.g., “keep the existing colored pattern
2317 without modification”.
2318 - **Providing an outlet.** As mentioned above, Veo has a strong prior to keep things moving.
2319 Providing a “motion outlet” in the form of, e.g., a spinning ball can help keep the rest of
2320 the scene static.
2321 - **Let the model decide when its done.** The motion prior also means that Veo often keeps
modifying the scene, even after solving the task. Providing a visual indicator, e.g., “add a

2322 glowing red dot once the goal is reached” allows for easy extraction of the solution from
 2323 the generated video.
 2324

- **Scene and camera controls.** Phrases like “static camera, no zoom, no pan, no dolly” can help keeping the scene static, e.g., for image-to-image tasks.
- **Speed control.** Some tasks like maze solving benefit from being solved step-by-step. For other tasks, especially image-to-image tasks, specifying instant changes can help avoid artifacts.
- **Realism.** Veo was trained to generate plausible, realistic-looking videos. Translating an abstract task into a realistic setting (including, but not limited to editing the original image to depict realistic, 3D scenes rather than abstract shapes) can improve generation results. A similar effect was observed in [108], and we expect *visual prompt engineering* to emerge as a powerful tool for video models.

D VEO INFERENCE DETAILS

NEW

2335 For both qualitative and quantitative tasks, we generate videos via the Vertex AI API. We do not
 2336 manually specify a seed, making generation non-deterministic and subject to Vertex’s default sam-
 2337 pling behavior. All videos are generated without audio and with a default length of eight seconds.
 2338

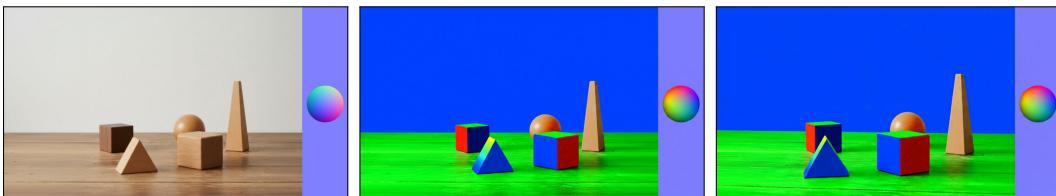
2339 At the time of writing, generation costs 0.20 USD/s for Veo 3 and 0.50 USD/s for Veo 2.
 2340

2341 Video generation took 18.2s on average per video; this includes not only the time to generate the
 2342 video but also the potential waiting time until resources become available and the computation is
 2343 scheduled, as well as the time it takes to transfer the input from our local machine to the datacenter
 2344 and the output video back to the local machine. In principle, all of these steps can be parallelized
 2345 (e.g., when running a larger dataset), subject to network bandwidth and compute availability.
 2346

2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375

2376 E FAILURE CASES
2377
2378
2379

2380
2381
2382
2383
2384
2385
2386
Figure 62: **Monocular depth estimation.** Prompt: “*The image transitions to a depth-map of the scene: Darker colors represent pixels further from the camera, lighter colors represent pixels closer to the camera. The exact color map to use is provided on the right side of the image. Static scene, no pan, no zoom, no dolly.*” Failure: Veo 3 seems generally unable to color pixels by depth beyond a binary foreground/background mapping and specifically struggles with using a provided color map.
2391
2392
2393
2394



2395
2396
2397
2398
2399
2400
2401
Figure 63: **Monocular surface normal estimation.** Prompt: “*The image transitions to a surface-normal map of the scene: the red/green/blue color channel specify the direction of the surface-normal at each point, as illustrated on the right side of the image on a sphere. Static scene, no pan, no zoom, no dolly.*” Failure: While Veo 3 shows some promise in coloring surfaces according to their orientation (e.g., the cube in the front), coloration is inconsistent (compare the two cubes) and doesn’t correctly interpolate colors (e.g., for the slope on the triangle).
2407
2408
2409

2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
Figure 64: **Force & motion prompting**, inspired by [109, 110]. **Force prompting** (top). Prompt: “*The balls move in the direction indicated by the arrows. Balls without an arrow don’t move. Static scene, no pan, no zoom, no dolly.*” **Motion trajectory prompting** (bottom). Prompt: “*Each car drives out of the frame following the indicated trajectory. Static camera, no zoom, no pan, no dolly.*” Failure: Veo 3 seems unable to follow force/motion annotations with any consistency. Providing annotations for the first frame and letting the model remove them before generating the scene in motion does not work, either.
2429

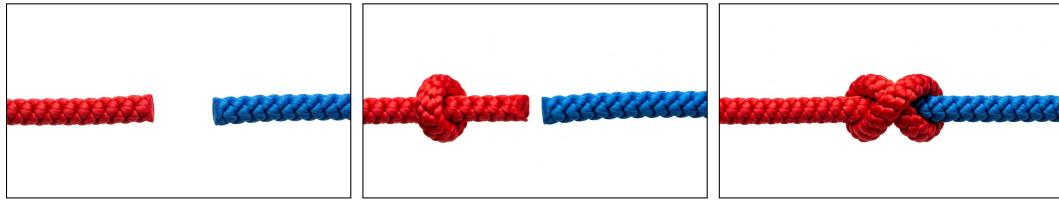


Figure 65: **Tying the knot.** Prompt: “A knot is tied connecting these two rope ends.” Failure: physics violation, impossible rope movement.

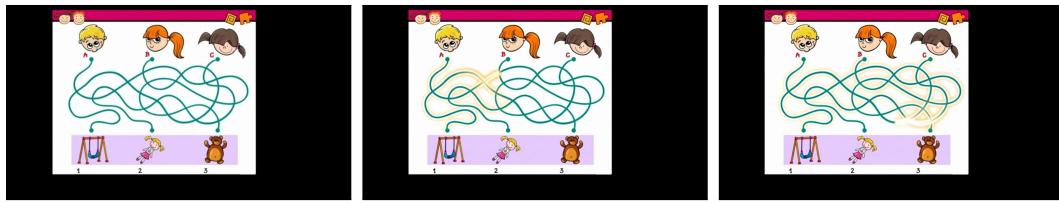


Figure 66: **Connect the path puzzle.** Prompt: “The path connecting the boy to the object starts glowing slowly. Nothing else changes. No zoom, no pan, no dolly.” Failure: hallucinations, lighting up of all paths.

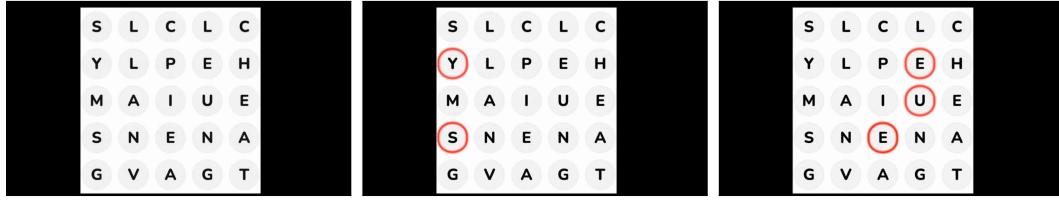


Figure 67: **Five letter word search.** Prompt: “Generate a static video animation using the provided letter grid. The task is to highlight the only 5-letter English word CHEAT, which may be oriented in any direction (horizontally, vertically, or diagonally). The animation should consist of a semi-transparent red rectangle with rounded corners smoothly fading into view, perfectly encapsulating the five letters of the word. The rectangle should have a subtle, soft glow. Do not change anything else in the image. The camera must remain locked in place with no movement. No zoom, no pan, no dolly.” Failure: does not recognize words; highlights individual letters randomly.

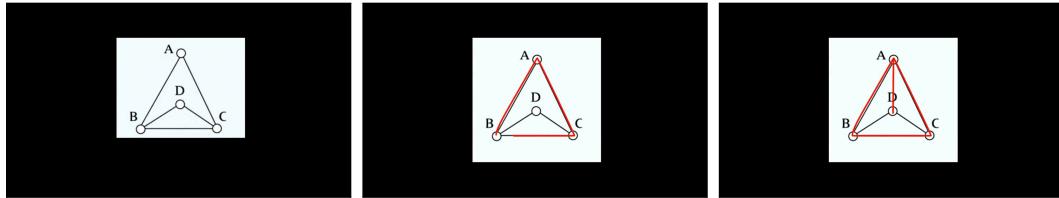


Figure 68: **Eulerian path.** Prompt: “Create a smooth animation where a red pen traces all existing edges in a continuous path without lifting the pen. All edges need to be traced. Do not visit any edge twice and do not lift the pen. No zoom, no pan.” Failure: does not trace the edges exactly, traces non-existent edges.

2484
 2485

$$\begin{bmatrix} 2 & 3 & -2 \\ 1 & 0 & -4 \\ 2 & -1 & -6 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$$
 2486

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$$
 2487

$$x = 3, y = 1, z = 4$$
 2488

$$x_1 = 3, y_1 = 1, z_1 = 4$$
 2489

$$x_2 = 3, y_2 = 1, z_2 = 4$$
 2490

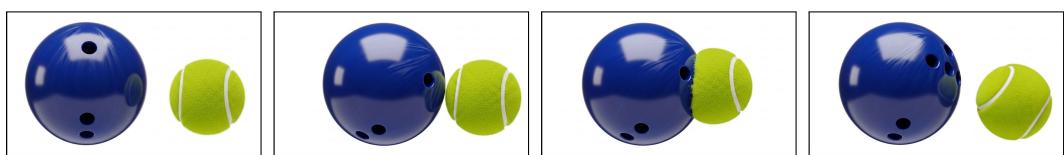
2491 **Figure 69: Solving system of linear equations.** Prompt: “A hand appears and solves the set of
 2492 linear equations. It replaces the x, y, z matrix with their correct values that solves the equation. Do
 2493 not change anything else.” Failure: hallucinations with text on the blackboard.

2501 **Figure 70: Spot the difference.** Prompt: “There are two images. The left image is different from
 2502 the right image in 5 spots. Create a static, realistic, smooth animation where a cursor appears and
 2503 points at each place where the left image is different from the right image. The cursor points one
 2504 by one and only on the left image. Do not change anything in the right image. No pan. No zoom.
 2505 No movement. Keep the image static.” Failure: does not identify all the differences. Hallucinates
 2506 differences.



2515 **Figure 71: Visual IQ test.** Prompt: “Create a static, smooth, animation that solves the puzzle in
 2516 the given image. The correct pattern should appear at the bottom right to solve the puzzle. Do not
 2517 change anything else in the picture. No zoom, no pan, no dolly.” Failure: incorrect figure pattern.

2525 **Figure 72: Glass falling.** Prompt: “The object falls. Static camera, no pan, no zoom, no dolly.”
 2526 Failure: physics violation, glass does not break, and orients itself to be vertical after landing on the
 2527 floor.



2535 **Figure 73: Collisions.** Prompt: “The two objects collide in slow motion. Static camera, no pan, no
 2536 zoom, no dolly.” Failure: not physically plausible, the objects pause at the moment of impact and
 2537 then are pushed together by an invisible force.

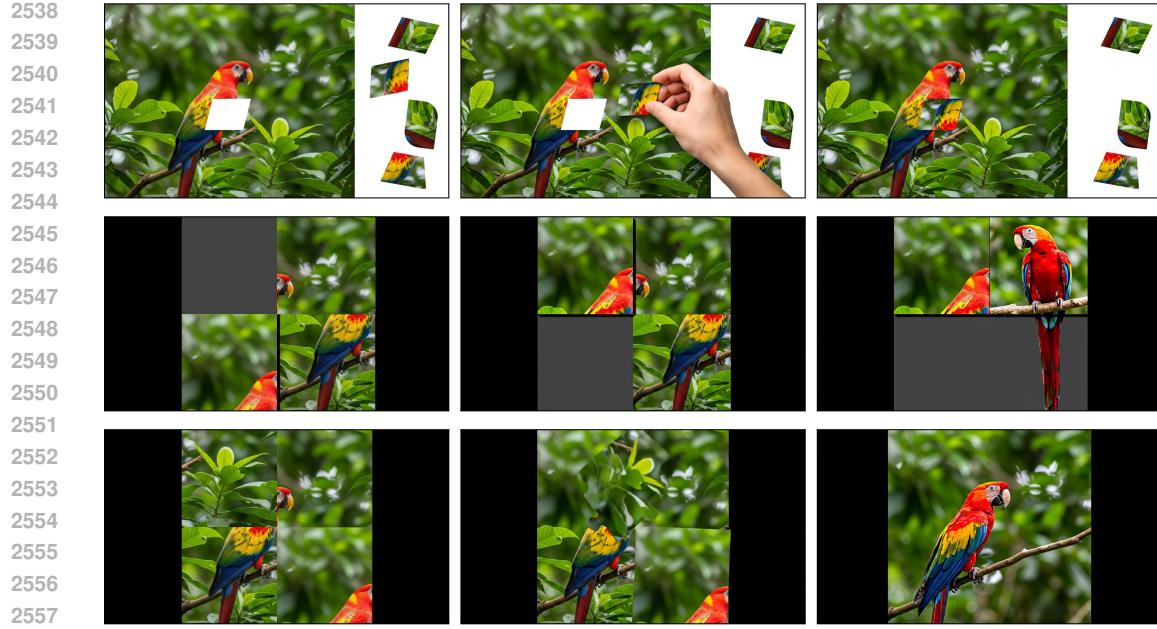


Figure 74: **Tiling puzzles.** **Jigsaw puzzle** (top). Prompt: “A hand takes the fitting puzzle piece from the right, rotates it to be in the correct orientation, then puts it into the hole, completing the puzzle. Static scene, no pan, no zoom, no dolly.” Failure: wrong piece orientation. **Sliding puzzle** (middle). Prompt: “Slide the pieces of this sliding puzzle around one-at-a-time until all edges align.” Failure: doesn’t maintain piece integrity while sliding, hallucinates new pieces. **Scrambled puzzle** (bottom). Prompt: “Unscramble this image.” Failure: image details are inconsistent with original pieces.

Figure 75: **Bottleneck.** Prompt: “A person tries to put the golf ball in the vase. Static camera, no pan, no zoom, no dolly.” Failure: not physically plausible, golf ball is too large to pass through the bottleneck of the vase.

Figure 76: **Laundry folding.** Prompt: “Generate a video of two metal robotic arms properly folding the t-shirt on the table.” Failure: physics violation, implausible folding movements.

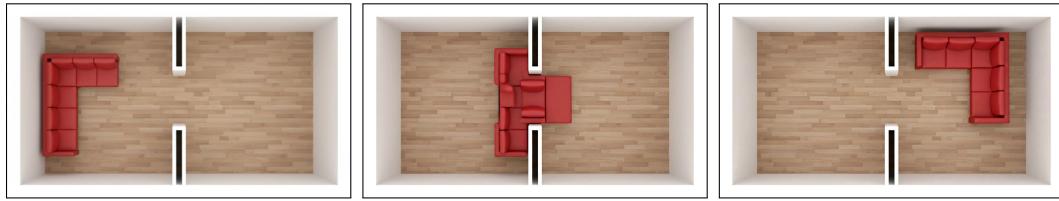


Figure 77: **Motion planning**; inspired by the piano mover’s problem. Prompt: “*The red couch slides from the left room over into the right room, skillfully maneuvering to fit through the doorways without bumping into the walls. The walls are fixed: they don’t shift or disappear, and no new walls are introduced. Static camera, no pan, no zoom, no dolly.*” Failure: violating rigid-body integrity, not keeping to permissible transformations (rotation, translation).

F LLM USE

Gemini 2.5 Flash and Gemini 2.5 Pro [2] were used for brainstorming task ideas, suggesting related work that we might have otherwise missed, coding support, and to polish human writing.

G IMAGE SOURCES

Where not stated in the figure caption, images were obtained as follows.

- Figs. 10 to 15, 32 to 38 and 74: The original macaw image was generated with Gemini and, depending on the figure, subsequently modified by the authors (e.g., conversion to grayscale, adding noise, adding the monkey with Nano Banana).
- Fig. 16: The input image was obtained from [here](#) (Apache 2.0 license) based on the LOLv2 dataset [93] and randomly selected. The image was slightly cropped to fit a 16:9 aspect ratio.
- Figs. 17, 21 to 24, 26 to 29, 31, 39, 41, 42, 46, 47, 52, 54, 65, 69, 72, 73 and 75 to 77: generated with Gemini.
- Fig. 25: The input image was obtained from [here](#) (CC0 license).
- Fig. 30: hand drawn by us, inspired by Fig. 1 of the Omniglot paper [56].
- Fig. 40: sample from Objaverse [98]
- Figs. 48 to 51, 53, 55 and 57: created by us.
- Figs. 56, 66, 67 and 70: original image from Reddit.
- Fig. 59: hand drawn by us, inspired by ARC-AGI [99].
- Fig. 60: sample from BIPEDv2 [64, 65].
- Figs. 62 to 64: generated with Gemini, then annotated by us.
- Figs. 68 and 71: hand drawn by us. Inspired by original images from Reddit.
- Figs. 44 and 45: The robot hands are extracted from a frame in [this video](#) and were subsequently adapted with Nano Banana. The hands holding Baoding balls were obtained from [here](#).