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Abstract

Note-level Automatic Singing Voice Transcrip-001
tion (AST) converts singing recordings into002
note sequences, facilitating the automatic an-003
notation of singing datasets for Singing Voice004
Synthesis (SVS) applications. Current AST005
methods, however, struggle with accuracy and006
robustness when used for practical annotation.007
This paper presents ROSVOT, the first robust008
AST model that serves SVS, incorporating009
a multi-scale framework that effectively cap-010
tures coarse-grained note information and en-011
sures fine-grained frame-level segmentation,012
coupled with an attention-based pitch decoder013
for reliable pitch prediction. We also estab-014
lished a comprehensive annotation-and-training015
pipeline for SVS to test the model in real-016
world settings. Experimental findings reveal017
that ROSVOT achieves state-of-the-art tran-018
scription accuracy with either clean or noisy019
inputs. Moreover, when trained on enlarged, au-020
tomatically annotated datasets, the SVS model021
outperforms its baseline, affirming the capabil-022
ity for practical application. Audio samples are023
available at https://rosvot.github.io.024

1 Introduction025

Note-level automatic singing voice transcription026

(AST) refers to converting a singing voice record-027

ing into a sequence of note events, including note028

pitches, onsets, and offsets (Mauch et al., 2015;029

Hsu et al., 2021; Wang et al., 2022a; Yong et al.,030

2023). As part of the music information retrieval031

(MIR) task, AST is widely used in professional mu-032

sic production and post-production tuning. With033

the recent advancements of singing voice synthesis034

(SVS) (Liu et al., 2022; Zhang et al., 2022b; He035

et al., 2023), there is a growing demand for anno-036

tated data, while AST methods just demonstrate037

the potential for automatic annotation.038

Note transcription from singing voices is par-039

ticularly difficult than from musical instruments,040

as the pitch component of human voices is highly041

dynamic. When singing, people articulate words, 042

leading to unstable pitches and blurry note bound- 043

aries. For instance, if a word starts with a voiceless 044

consonant, the pitch onset may be slightly delayed. 045

Also, singing techniques like vibrato and appog- 046

giatura further complicate boundary localization. 047
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Figure 1: AST and ASR systems serve SVS.

An AST task is mainly decomposed into two 048

steps: note segmentation and pitch estimation. The 049

first step predicts boundaries, or onset and offset of 050

each note, which is always implemented as classifi- 051

cation (Hsu et al., 2021; Yong et al., 2023) or object 052

detection (Wang et al., 2022a) tasks. For pitch esti- 053

mation, previous works primarily adopt weighted 054

median or average operations on F0 values. 055

Despite previous accomplishments, there is no 056

AST model that, to our knowledge, achieves a com- 057

plete annotation pipeline for training an SVS model. 058

Applying AST approaches to automated annotation 059

for SVS tasks still faces several challenges: 060

• Insufficient accuracy. Despite numerous efforts 061

to improve accuracy, the performance is still in- 062

sufficient for automatic annotation. Currently, 063

AST results serve merely as a preliminary guide, 064

necessitating additional manual refinement for 065

actual application (Zhang et al., 2022a). 066

• Asynchronization between notes and texts. 067

SVS models often require text-note synchro- 068

nized annotation. Currently, transcribing singing 069

voices without the supervision of word/phoneme 070

boundaries requires additional post-processing 071

for alignment, introducing accumulative errors. 072

• Inadequate robustness. Web crawling has be- 073

come a popular method for data collection (Ren 074
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et al., 2020), but the quality varies. Current AST075

methods are vulnerable to noise because sound076

artifacts tend to disrupt boundary localization and077

pitch perception.078

In this paper, we present ROSVOT, a RObust079

Singing VOice Transcription model that ultimately080

serves SVS. The note boundary prediction is formu-081

lated as one-dimensional semantic segmentation,082

and an attention-based decoder is employed for083

pitch prediction. To achieve both coarse-grained084

semantic modeling and fine-grained frame-level085

segmentation, we devise a multi-scale architecture086

by integrating Conformer (Gulati et al., 2020) and087

U-Net (Ronneberger et al., 2015). Moreover, the088

model incorporates word boundaries to guide the089

segmentation process. We randomly mix the in-090

put waveforms with MUSAN (Snyder et al., 2015)091

noise to simulate a noisy environment, forming a092

bottleneck and bolstering denoising capabilities.093

To demonstrate the potential of ROSVOT in prac-094

tical annotation applications, we conduct extensive095

experiments on a comprehensive annotation-and-096

training pipeline on an SVS task, simulating real-097

world scenarios. We choose and slightly modify098

RMSSinger (He et al., 2023), one of the state-of-099

the-art SVS models, to be the singing acoustic100

model. Experiments show that the SVS model101

trained with pure transcribed annotations achieves102

91% of the pitch accuracy compared to manually103

annotated data, without loss of overall quality. We104

also explore the generalization performance on105

cross-lingual tasks, where we use ROSVOT trained106

with Mandarin corpora to annotate an English cor-107

pus, which is then used to train an SVS model. Our108

contributions are summarized as follows:109
• We propose ROSVOT, the first robust AST model110

that serves SVS, which achieves state-of-the-art111

transcription accuracy under either clean or noisy112

environments.113

• We construct a comprehensive annotation-and-114

training pipeline to investigate the effect of auto-115

matically transcribed annotations on SVS tasks.116

• The proposed multi-scale model outperforms the117

previous best published method by 17% relative118

improvement on pitch transcription, and by 23%119

with noisy inputs.120

• By incorporating automatically annotated large-121

scale datasets, the SVS model outperforms its122

baseline in terms of overall quality, demonstrat-123

ing the ROSVOT’s capability of practical applica-124

tion and the opportunity to alleviate data scarcity125

in SVS.126

• We explore the cross-lingual generalization capa- 127

bilities of ROSVOT. 128

2 Related Works 129

2.1 Automatic Singing Voice Transcription 130

AST is useful not only in automatic music transcrip- 131

tion (AMT) (Bhattarai and Lee, 2023), but also a 132

promising task for audio language models (Yang 133

et al., 2023) and speech-singing interaction model- 134

ing (Li et al., 2023). TONY (Mauch et al., 2015) 135

predicts note events by applying hidden Markov 136

models (HMM) on extracted pitch contours. VO- 137

CANO (Fu and Su, 2019; Hsu et al., 2021) consid- 138

ers the note boundary prediction as a hierarchical 139

classification task. and leverages a hand-crafted 140

signal representation for feature engineering. Mu- 141

sicYOLO (Wang et al., 2022a) adopts object detec- 142

tion methods from image processing to localize the 143

onset and offset positions. Despite their success, 144

the overall accuracy is still insufficient for practical 145

application. Considering the linguistic characteris- 146

tic of singing voices, Yong et al. (2023) introduces 147

extra phonetic posteriorgram (PPG) information to 148

improve accuracy. However, a PPG extractor re- 149

quires an extra training process and makes the AST 150

model difficult to generalize across languages. 151

2.2 Singing Voice Synthesis 152

Recently, there has been notable progress in the 153

field of SVS. HifiSinger (Chen et al., 2020) and 154

WeSinger (Zhang et al., 2022c) employ GAN-based 155

networks for high-quality synthesis. (Liu et al., 156

2022) introduces a shallow diffusion mechanism 157

to address over-smoothness issues in the general 158

Text-to-Speech (TTS) field. Taking inspiration 159

from VITS (Kim et al., 2021), VISinger (Zhang 160

et al., 2022b) constructs an end-to-end architecture. 161

To achieve singer generalization, NaturalSpeech 2 162

(Shen et al., 2023) and StyleSinger (Zhang et al., 163

2023) utilize a reference voice clip for timbre and 164

style extraction. To bridge the gap between realistic 165

musical scores and MIDI annotations, RMSSinger 166

(He et al., 2023) proposes word-level modeling 167

with a diffusion-based pitch modeling approach. 168

Open-source singing voice corpora also boost the 169

development of SVS (Huang et al., 2021; Zhang 170

et al., 2022a; Wang et al., 2022b). However, the 171

quantity of annotated singing voice corpora is still 172

small compared to speech, while note annotations 173

of some corpora are even unavailable. 174
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3 Method175

3.1 Problem Formulation176

In the note segmentation step, the model pre-177

dicts onset/offset states at each timestep t, where178

t ∈ [1, T ] and T is the temporal length of the spec-179

trogram. Without loss of generality, we introduce180

silence notes to connect each note in the entire181

sequence end-to-end, replacing the onset/offset tu-182

ples by a single note boundary notation sequence183

ybd = [y1bd, y
2
bd, ..., y

T
bd], where ytbd = 1 if the state184

is boundary at timestep t and 0 is not. The si-185

lence note has a pitch value of 0. Notice that186 ∑
ybd = len(p) − 1, where p = [p1, p2, ..., pL]187

is the pitch value sequence, L is the total number188

of notes, and len(·) computes lengths of sequences.189

Therefore, the first step can be treated as semantic190

segmentation, predicting a binary-label sequence.191

The second step is to predict the pitch sequence p.192

3.2 Overview193

As shown in Figure 1, a common data collec-194

tion pipeline for SVS consists of two stages: a)195

phoneme/word annotation and b) note annotation,196

where the former can be achieved by utilizing au-197

tomatic speech recognition (ASR) approaches and198

forced alignment tools, such as MFA (McAuliffe199

et al., 2017). The second stage, however, is far from200

reaching a fully automatic level. Arduous manual201

annotation hinders large-scale data collection. A202

high-precision and robust annotator is required.203

Note segmentation is a multi-scale classifica-204

tion task, in that the note events are coarse-grained205

while the predicted boundary sequence ybd is fine-206

grained. Therefore, we construct a multi-scale207

model, combining a U-Net backbone and a down-208

sampled Conformer, as illustrated in Figure 2. The209

model takes Mel-spectrograms, F0 contours, and210

word boundaries as inputs. To improve robust-211

ness, we train the model under noisy environments212

and apply various data augmentation operations.213

For pitch prediction, we adopt an attention-based214

method to obtain dynamic temporal weights and215

perform weighted averages. The note segmentation216

part and the pitch prediction part are trained jointly217

to acquire optimal results.218

3.3 Data Augmentation219

3.3.1 Label Smoothing220

The exact temporal positions of note onset and221

offset are difficult to demarcate on a microscopic222

scale, because transitions between notes are con- 223

tinuous and smooth. Therefore, label smoothing is 224

a popular strategy in AST tasks (Hsu et al., 2021; 225

Yong et al., 2023). Also, soft labels carry more 226

information than hard labels, such as the desired 227

confidence for the model. Specifically, we apply 228

temporal convolution operation between the label 229

sequence ybd and a Gaussian filter G[n]: 230

G[n] =

{
1√
2πσ

e−
τ2

2σ2 , if |n| ≤ ⌊WG
2 ⌋

0, otherwise
(1) 231

ỹbd = ybd ∗
(

G[n]
max(G[n])

)
(2) 232

where the filter G[τ ] is normalized before convo- 233

lution, so the middle of each soft label remains 1. 234

WG indicates the window length of the filter. 235

3.3.2 Noise 236

We mix realistic noise signals with waveforms be- 237

fore extracting spectrograms. MUSAN noise cor- 238

pus is utilized to randomly incorporate the inter- 239

ference. MUSAN corpus consists of a variety of 240

noises, such as babble, music, noise, and speech. 241

The intensity of incorporated noise is randomly ad- 242

justed according to a signal-to-noise ratio (SNR) 243

interval of [6, 20]. The noise signal is repeated 244

or chunked to meet the length of each training 245

sample. In the training stage, we conduct noise 246

mixing followed by on-the-fly extraction of Mel- 247

spectrograms: 248

ỹ = y + ynoise ×
RMS(y/10(SNR/20))

RMS(ynoise)
(3) 249

X̃ = F(ỹ) (4) 250

where F(·) is Mel-spectrogram extraction opera- 251

tion, RMS(·) is root-mean-square operation, and 252

X̃ is the resulting spectrogram. 253

In addition to spectrograms, we also add noise to 254

F0 contours and label sequences. Since the model 255

takes F0 contours as input, a clean F0 contour can 256

leak information. We simply add Gaussian noise to 257

logarithmic F0 contours and soft labels to improve 258

robustness. 259

3.4 Word Boundary Condition 260

To regulate segmentation results and better suit 261

practical annotation, we incorporate word bound- 262

ary conditions. The word boundary sequence ywbd 263

has the same form as note boundaries ybd, involv- 264

ing silence or "NONE" words. The regulation is 265
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Figure 2: The overall architecture. EM, EB, and EP represent encoders of Mel-spectrogram, word boundaries, and
F0 contour input. DB and DP stand for decoders of note boundaries and pitches. The "Down" and "Up" parts denote
the encoder and decoder of the U-Net backbone. The "Seg." and "Smooth" notations indicate temporal segmentation
and label smoothing operations. EW indicates an optional extractor used to provide word boundaries.
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Figure 3: Word-note synchronization.

necessary because, in practical annotation, word266

sequence and note sequence need to be temporally267

synchronized, as shown in Figure 3. In other words,268

the presence of a word boundary at timestep t im-269

plies the existence of a note boundary at t, but the270

reverse may not hold true. This is because melisma271

is a commonly used singing technique. Without272

regulation, additional post-processing is required273

to synchronize words and note sequences.274

Since in practice, the note annotation stage fol-275

lows the phoneme annotation stage, word bound-276

aries should already be obtained through forced277

alignment tools like MFA. We directly encode word278

boundaries as an additional condition to ensure279

word-note synchronization. However, to provide280

note-only support, we train an extra word boundary281

extractor EW to deal with scenarios like vocal tun-282

ing in music industries, where word alignment is283

unavailable. More details are listed in Appendix A.284

3.5 Multi-scale Architecture285

The semantic information of note events is coarse-286

grained and high-level, while the segmentation re-287

sult ybd is fine-grained and frame-level. To tackle288

this problem, we design a multi-scale model, in- 289

corporating multiple feature encoders and a pitch 290

decoder, illustrated in Figure 2. 291

For precise segmentation, high-resolution results 292

are essential to prevent rounding errors. Hence, we 293

employ a U-Net architecture for its ability to down- 294

sample representations while ensuring detailed re- 295

construction. To capture the high-level features as- 296

sociated with note events, we utilize a Conformer 297

network, one of the most popular ASR models. The 298

U-Net architecture envelops the Conformer, direct- 299

ing its focus towards the downsampled features and 300

easing the computational load of processing long 301

sequences. Through the integration of skip con- 302

nections, our model achieves refined frame-level 303

accuracy by fusing features across multiple scales. 304

The U-Net backbone’s encoder and decoder each 305

comprise K downsampling and upsampling layers, 306

respectively. The downsampling rate is set to 2, and 307

the channel dimension remains the same as input 308

to alleviate overfitting. The intermediate part of the 309

backbone is replaced by a 2-layer Conformer block 310

with relative position encoding (Dai et al., 2019). 311

The detailed architecture is listed in Appendix B. 312

3.6 Decoders and Objectives 313

3.6.1 Note Segmentation 314

We adopt a note boundary decoder, denoted as DB, 315

to transform the output feature Z from the U-Net 316

backbone into logits ŷbd, where Z ∈ RT×C and C 317

is the channel dimension. DB is implemented by a 318

single matrix WB ∈ RC×1. A binary cross-entropy 319
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(BCE) loss is applied to train note segmentation:320

LB =
1

T

∑
BCE(ybd, ŷbd)321

=− 1

T

T∑
t=1

(ytbd ln(σ(ŷ
t
bd/T1))322

+ (1− ytbd) ln(1− σ(ŷtbd/T1))) (5)323

where T1 is the temperature hyperparameter, and324

σ(·) stands for sigmoid function.325

It is worth mentioning that in the note segmenta-326

tion task, there is a significant imbalance between327

positive and negative samples, with a ratio of ap-328

proximately 1:5001. Furthermore, the inclusion of329

word boundary conditions results in varying clas-330

sification difficulties, with some boundaries being331

inherently easier to classify than others. To tackle332

this imbalance problem, we employ a focal loss333

(Lin et al., 2017) to focus more on hard samples:334

pt = ybdσ(ŷbd) + (1− ybd)(1− σ(ŷbd)) (6)335

αt = αybd + (1− α)(1− ybd) (7)336

LFC =
1

T

∑
αt(1− pt)

γBCE(ybd, ŷbd) (8)337

where α is a hyperparameter controlling weight of338

positive samples, and γ controls balance between339

easy and hard samples.340

3.6.2 Pitch Prediction341

For pitch value prediction DP, we leverage an342

attention-based weighted average operation to ag-343

gregate the fine-grained features, instead of simply344

applying a weighted median or average. Given345

the output feature Z ∈ RT×C , we obtain an atten-346

tion weight matrix S through a projection matrix347

WA ∈ RC×H : S = σ(ZWA), where S ∈ RT×H348

and H denotes the number of attention heads.349

Then we perform an outer product operation be-350

tween each vector of Z and S along the time di-351

mension to obtain a pre-weighted representation:352

Zt
1 = Zt ⊗ St and Z1 ∈ RT×C×H , which is fur-353

ther averaged along the head dimension to acquire354

the weighted representation Q ∈ RT×C . In addi-355

tion, we compute the averaged weights s ∈ RT by356

averaging along the head dimension.357

Subsequently, we use the note boundary se-358

quence ybd to segment Q along the time axis, re-359

sulting in a group sequence G = [G1, G2, ..., GL]360

with length of L, number of notes. Each group Gi361

1Statistically, there are approximately 2.42 note boundaries
per second in our datasets.

contains li vectors: Gi = [Qj+1, Qj+2, ..., Qj+li ], 362

where
∑L

i=1 li = T , i ∈ [1, L], j ∈ [1, T ], and 363

yjbd = 1. We also do the same for the averaged 364

weights s: Gi
s = [sj+1, sj+2, ..., sj+li ]. For each 365

group, we compute a weighted average zi: 366

zi =

∑
Gi∑
Gi

s

=

∑li
k=1Q

j+k∑li
k=1 s

j+k
(9) 367

Finally, we multiply z with a matrix WO to com- 368

pute the logits: p̂ = zWO, where z ∈ RL×C and 369

WO ∈ RC×P . P is the number of pitch categories. 370

A cross-entropy (CE) loss is utilized: 371

LP = − 1

L

L∑
i=1

P∑
c=1

pic ln

(
exp(p̂ic/T2)∑C
k=1 exp(p̂

k
c/T2)

)
(10) 372

where T2 is the temperature hyperparameter. 373

3.7 Training and Inference Pipeline 374

In the training stage, we use ground-truth (GT) note 375

boundaries to segment the intermediate features 376

and optimize the pitch decoder. The overall loss 377

L = λBLB + λFCLFC + λPLP is controlled by 378

balancing parameters λB, λFC, and λP. 379

In the inference stage, firstly we compute the 380

boundary probability σ(ŷbd) and use a threshold µ 381

to decide the boundary state. That is, a note bound- 382

ary exists at time step t if σ(ŷbd) > µ, otherwise, 383

it does not. The predicted results will undergo post- 384

processing to clean up boundaries with excessively 385

small spacing between them. Finally, we segment 386

the intermediate feature Z and decode pitches. 387

It is worth mentioning that µ can control the 388

granularity of generated notes. In other words, a 389

lower µ may result in more fine-grained and sub- 390

divided pitches, while a higher one ignores small 391

fluctuations. This is because a lower µ allows more 392

boundaries. 393

3.8 Singing Voice Synthesis System 394

Once we complete the inference and automatically 395

annotate a dataset, the new datasets are used to train 396

an SVS system to further investigate the practical 397

performance. We choose RMSSinger as the singing 398

acoustic model and a pre-trained HiFi-GAN (Kong 399

et al., 2020) model as the vocoder. RMSSinger is 400

originally proposed for word-level realistic music 401

score inputs, denoted as S . To suit our settings, we 402

drop the word-level attention module and directly 403

use the fine-grained MIDI input. The alignment be- 404

tween MIDI notes and phonemes and other settings 405

are reproduced according to He et al. (2023). 406
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4 Experiments407

In this section, we begin by showcasing experi-408

ments on AST tasks, followed by simulations and409

comparisons of a comprehensive annotation-and-410

training pipeline for an SVS task. We also inves-411

tigated the model’s performance in low-resource412

scenarios; however, due to space limitations, this413

part is included in Appendix E.414

4.1 Experimental Setup415

Data We utilize two Mandarin datasets. The first is416

M4Singer (Zhang et al., 2022a), a multi-singer and417

multi-style singing voice corpus, which is approxi-418

mately 26.5 hours after pre-processing. Secondly,419

we collect and annotate a high-quality song corpus,420

denoted as D1. D1 is composed of songs sung by421

12 professional singers, with a total length of 20.9422

hours. For training AST models, these two datasets423

are used jointly, with two 3% subsets used as the424

validation and the testing sets. The details of data425

collection are listed in Appendix C.426

Implementation and Training We sample wave-427

forms with a sample rate of 24k Hz. F0 contours are428

extracted through a pre-trained RMVPE (Wei et al.,429

2023) estimator, where each F0 value is quantized430

into 256 categories. The length of softened bound-431

aries is set to 80 ms. The U-Net backbone is con-432

structed with 4 down- and up-sampling layers, with433

16× downsampling rate. For inference, the bound-434

ary threshold µ is set to 0.8. We train the model435

for 60k steps using 2 NVIDIA 2080Ti GPUs with436

a batch size of 60k max frames. An AdamW opti-437

mizer is used with β1 = 0.9, β2 = 0.98, ϵ = 10−8.438

The learning rate is set to 10−5 with a decay rate of439

0.998 and a decay step of 500 steps. More details440

are listed in Appendix B.441

Evaluation We utilize the mir_eval library (Raf-442

fel et al., 2014) for performance evaluation. Specif-443

ically, we compute F1, precision, and recall scores444

of onset, offset, and pitch value. An average over-445

lap ratio (AOR) is also calculated for correctly tran-446

scribed notes. In addition, we compute the melody447

measures to reflect the overall perception perfor-448

mance, by transforming the GT and predicted note449

events into frame-level and computing raw pitch450

accuracy (RPA). For ROSVOT, we remove silence451

notes and designate the boundaries that enclose452

each note as onset and offset. This step is unnec-453

essary for other baselines. The onset tolerance is454

set to 50 ms, and the offset tolerance is the larger455

value between 50 ms and 20% of note duration.456

The pitch tolerance is set to 50 cents. All numbers 457

demonstrated are multiplied by 100. 458

Baselines We compare ROSVOT, denoted as M, 459

with multiple baselines: 1) TONY (Mauch et al., 460

2015), a automatic software with visualization; 2) 461

VOCANO (Hsu et al., 2021), retrained on the joint 462

datasets; 3) MusicYOLO, retrained; 4) (Yong et al., 463

2023), reproduced and retrained. We also com- 464

pare the results of several variants of M: 1) M 465

(conformer), where the U-Net is dropped and the 466

backbone is the Conformer alone; 2) M (conv), 467

where the middle Conformer blocks are replaced 468

by 8-layer convolution blocks; 3) M (w/o wbd), 469

canceling word boundary condition; 4) M (w/o 470

noise), which is identical to M but trained without 471

noisy environment; 5) M (w/ EW), meaning that 472

the GT word boundaries are not available and need 473

to be extracted from the extractor EW. 474

4.2 Main Results 475

We run two sets of experiments under clean and 476

noisy environments, respectively. The noisy envi- 477

ronment is produced by mixing MUSAN noises 478

with a probability of 0.8 and an SNR range of 479

[6, 20]. The main results are listed in Table 1. For 480

the sake of brevity, only F1 scores, averaged over- 481

lap ratios, and raw pitch accuracies are listed here, 482

and the complete scores are listed in Appendix D. 483

From the results, we can see that 1) the proposed 484

multi-scale model achieves better performances for 485

both boundary detection and pitch prediction by 486

a large margin, even without noises; 2) Training 487

under a noisy environment significantly improves 488

the robustness, while the performances of baselines 489

are severely degraded when facing noisy inputs; 3) 490

The involvement of noises in training stage also 491

improves the inference performance facing clean 492

waveforms, this may because the noise mixing op- 493

eration forms a bottleneck to force the model to 494

focus on note-related information. 495

4.3 Ablation Study 496

To demonstrate the effectiveness of several designs 497

in the proposed method, we conduct ablation stud- 498

ies and compare the results of different hyperpa- 499

rameters. From Table 1 we can see that dropping 500

the U-Net backbone or replacing the Conformer 501

with convolution blocks decreases the performance. 502

In particular, the performance of M (conformer) 503

significantly deteriorates when dealing with noisy 504

inputs, suggesting that the downsampling layers 505

contribute to a denoising effect. This is also vali- 506
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Method Onset (F) ↑ Offset (F) ↑ Pitch (F) ↑ Pitch (AOR) ↑ Melody (RPA) ↑
clean noisy clean noisy clean noisy clean noisy clean noisy

TONY 67.5 49.2 57.8 47.0 43.9 28.4 73.8 46.6 73.9 45.2
VOCANO 75.8 64.7 71.2 66.1 50.2 43.4 81.4 71.9 76.6 59.8
MusicYOLO 82.2 79.7 81.7 76.5 58.9 51.5 85.4 78.6 81.6 78.9
(Yong et al., 2023) 92.0 88.5 91.4 89.7 65.8 62.1 91.6 86.4 83.1 80.6

M (conformer) 92.1 90.6 91.8 90.8 70.3 69.8 95.9 95.3 83.9 83.1
M (conv) 91.6 91.5 92.6 92.6 70.9 70.8 96.8 96.8 84.1 84.1
M (w/o wbd) 91.3 91.1 91.8 91.2 70.2 69.9 95.5 95.1 83.8 83.4
M (w/o noise) 93.8 90.9 94.2 91.5 76.4 70.1 97.1 95.2 87.1 83.1
M (w/ EW) 93.3 93.5 93.2 92.9 77.1 77.0 96.5 96.2 87.5 87.2

M (ours) 94.0 93.8 94.5 94.4 77.4 77.0 97.0 97.1 87.6 87.4

Table 1: Evaluation results of AST systems.

dated in the results of M (w/o noise), indicating507

that even though it is trained with clean samples,508

it still exhibits a certain level of robustness. For509

a fair comparison, we test M (w/ EW) to demon-510

strate the performance in note-only scenarios. The511

results indicate that despite the accumulated errors512

introduced by the word boundary extractor EW, the513

performance does not decline significantly.514

Rate Step (ms) Onset Offset Pitch

2 10.7 92.7 92.4 70.7
4 21.3 93.9 93.6 73.6
8 42.7 94.4 94.1 76.8
16 85.3 94.0 94.5 77.4
32 170.7 94.3 94.1 77.2

Table 2: Comparisons of different downsampling rates.
"Step" denotes the downsampled step size in the Con-
former, measured in milliseconds.

We record the comparison results of different515

overall downsampling rates of the U-Net backbone516

in Table 2, where only F1 scores are listed. The517

results align remarkably well with the length of518

the soft labels, which are both about 80 ms. We519

choose the rate of 16 in the final architecture M as520

it achieves better overall performance.521

For pitch prediction, we compare the results be-522

tween the proposed attention-based method and the523

weighted median method used in previous works.524

We drop the pitch decoder DP and apply a weighted525

median algorithm on the F0 contours according to526

(Yong et al., 2023). The F1 and AOR scores of527

this algorithm with clean inputs are 70.5 and 92.6,528

while the scores with noisy inputs are 63.2 and 86.6.529

The results indicate that a simple weighted median530

is insufficient in dealing with fluctuated pitches in531

singing voices, which are full of expressive tech- 532

niques like portamentos. Also, its performance is 533

largely dependent on the F0 extractor. 534

4.4 Towards Automatic Annotation 535

The experimental results indicate that ROSVOT 536

achieves superior performance, but what practical 537

significance does it hold? In this section, we estab- 538

lish a comprehensive SVS pipeline, using ROSVOT 539

as the automatic annotator. 540

4.4.1 Implementation and Pipeline 541

Data. We re-align and re-annotate the OpenSinger 542

corpus (Huang et al., 2021), which consists of 84.8 543

hours of singing voices recorded by 93 singers. We 544

also perform cross-lingual generalization by anno- 545

tating an English corpus D2, which has a length 546

of 6 hours. For future reference, we use the term 547

pseudo-annotations for the automatically generated 548

transcriptions. Details are listed in Appendix D. 549

Evaluation. For objective evaluation, we also ap- 550

ply the RPA score to measure the reconstructed F0 551

contours. The RPA scores for GT Mel are com- 552

puted between F0s from GT vocoder generations 553

and GT waveforms, while the others are between 554

GT and generations. For subjective evaluation, 555

we conducted crowdsourced mean opinion score 556

(MOS) listening tests. Specifically, we score MOS- 557

P and MOS-Q corresponding to pitch reconstruc- 558

tion and overall quality. The metrics are rated from 559

1 to 5 and reported with 95% confidence intervals. 560

4.4.2 SVS Results 561

Firstly, we investigate the effect of training with 562

pseudo-annotations at different ratios. We only 563

utilize M4Singer to train ROSVOT M, which is 564

used to generate the pseudo annotations. Pseudo 565
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Real R. Size Pseudo P. Size RPA MOS-P MOS-Q
R P R P R P

- - - - 95.5 4.16±0.11 4.08±0.08

D1 20.9 - 0.0 67.6 61.1 3.69±0.09 3.54±0.07 3.81±0.04 3.74±0.05
D1 × 50% 10.5 D1 × 50% 10.5 66.0 61.0 3.62±0.03 3.56±0.08 3.76±0.07 3.72±0.03
D1 × 10% 2.1 D1 × 90% 18.8 65.9 61.3 3.65±0.05 3.55±0.05 3.71±0.08 3.73±0.04
D1 × 5% 1.0 D1 × 95% 19.9 63.0 63.3 3.61±0.05 3.57±0.04 3.73±0.05 3.78±0.03
D1 × 1% 0.2 D1 × 99% 20.7 63.5 64.7 3.60±0.04 3.59±0.04 3.74±0.06 3.76±0.04

- 0.0 D1 20.9 61.8 64.6 3.60±0.06 3.58±0.03 3.73±0.04 3.73±0.08

M4 26.5 - 0.0 68.1 67.7 3.63±0.05 3.60±0.04 3.79±0.05 3.77±0.07
M4 + D1 47.4 - 0.0 67.4 66.5 3.67±0.07 3.59±0.08 3.81±0.04 3.80±0.06

M4 26.5 D1 20.9 66.6 64.9 3.64±0.08 3.61±0.04 3.80±0.07 3.80±0.04
M4 26.5 D1 + OP 105.7 66.1 64.1 3.63±0.10 3.60±0.07 3.83±0.09 3.81±0.08

Table 3: Evaluation results of SVS pipelines. The first row is for GT Mel, where we generate waveforms using the
vocoder from GT Mel-spectrograms. "M4" denotes M4Singer, and "OP" denotes OpenSinger. "R" and "P" denote
inference results using real or pseudo annotations, respectively. The sizes are measured in hours.

Model RPA MOS-P MOS-Q

S(large) 45.2 3.36 ± 0.12 3.45 ± 0.09

Table 4: Results of cross-lingual generalization.

annotations with different ratios are mixed into D1566

to form the training set. For inference, we reserve567

two 1% segments from each real and pseudo group568

for validation and testing. The results are listed in569

Table 3, rows 2-7. From the results, we can see570

that the pitch accuracy of real annotation inputs571

decreases when mixing more pseudo annotations,572

but the accuracy of pseudo inputs increases. This573

suggests a minor discrepancy in the distributions574

of real and pseudo annotations. However, the per-575

formance degradation is not significant: 99% of576

the pseudo mixing contributes only a 6% drop in577

performance. The MOS-Q scores share a similar578

pattern, but they involve a comprehensive evalua-579

tion with considerations of audio quality and more.580

A decrease in pitch accuracy does not necessarily581

lead to an overall decline in quality.582

We further investigate the performance as data583

size increases. While the AST model remains the584

same, we train S only using M4Singer as the base-585

line. Next, we gradually mix D1 and OpenSinger586

to expand the data size. To consume the largest587

datasets in the last row, we construct a large ver-588

sion of RMSSinger with 320-dimensional channels589

and a 6-layer decoder2, denoted as S(large). The590

results are listed in Table 3, rows 8-11. A slight591

2The dictionary of the text encoder is also merged with
English phonemes for the following cross-lingual experiments

reduction in pitch accuracy can be observed when 592

integrating diverse datasets, which may result from 593

the inherent differences in dataset characteristics 594

and annotation styles. However, the overall quality 595

improves, as the model has been exposed to a suf- 596

ficient variety of pronunciation styles and singing 597

patterns, and the modeling becomes more stable 598

and robust. This indicates that ROSVOT provides 599

an opportunity for SVS models to scale up. 600

4.4.3 Cross-lingual Generalization 601

For cross-lingual experiments, we finetune the pre- 602

trained model S(large) on the English corpus D2. 603

Note that D2 only has 6 hours, with all the anno- 604

tations generated automatically. We finetune both 605

stages 1 and 2 for 100k steps. The results are listed 606

in Table 4, which shows that the proposed method 607

has the capability of cross-lingual generalization. 608

5 Conclusion 609

In this paper, we introduce ROSVOT, the first ro- 610

bust AST model that ultimately serves SVS. We 611

leverage a multi-scale architecture to achieve a bal- 612

ance between coarse-grained note modeling and 613

fine-grained segmentation. An attention-based de- 614

coder with dynamic weight is devised for pitch 615

regression. Additionally, we establish a compre- 616

hensive pipeline for SVS training. Experimental 617

results reveal that our model achieves the best per- 618

formance under either clean or noisy environments. 619

Annotating and incorporating larger datasets im- 620

proves the SVS model’s performance, indicating 621

the capability of practical annotation of ROSVOT. 622
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6 Limitations and Potential Risks623

The proposed method acknowledges two primary624

limitations. First, the cross-lingual capability is625

only tested on a small-scale English dataset, neces-626

sitating extensional experiments for a comprehen-627

sive evaluation of generalization performance. Sec-628

ond, due to space constraints, only one SVS model629

is examined as the baseline. Additional verifica-630

tions involving different SVS models are required631

to fully demonstrate practical performance. Future632

work will involve testing automatically annotated633

transcriptions on a more diverse set of SVS models.634

The misuse of the proposed model for singing635

voice synthesis could potentially lead to copyright-636

related issues. To address this concern, appropriate637

constraints will be implemented to mitigate any638

illegal or unauthorized usage.639
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A Word Boundary Condition 806

Word boundary conditions are introduced to regu- 807

late segmentation results. It seems similar to Yong 808

et al. (2023), but a word boundary sequence forms 809

a much narrower information bottleneck without 810

introducing unnecessary information. In practice, 811

we embed the word boundary sequences to inform 812

the model of boundary conditions. Also, we use 813

the word boundary sequence as a reference to reg- 814

ulate the predicted note boundaries. Specifically, 815

we remove the note boundaries that are too close to 816

the reference word boundaries, where the threshold 817

is 40 ms. 818

This regulation is only for automatic annota- 819

tion. For a note-only application, word-note syn- 820

chronization is not necessary. In this scenario, 821

we build a word boundary extractor EW to pro- 822

vide weak linguistic supervision. The extractor 823

shares the same architecture as the note segmenta- 824

tion part of ROSVOT. The multi-scale architecture 825

also functions well in localizing frame-level word 826

boundaries. Specifically, we use an MFA-aligned 827

AISHELL-3 Mandarin corpus to pre-train EW, fol- 828

lowed by fine-tuning it with M4Singer and D1. 829

B Architecture and Implementation 830

Details 831

B.1 Hyperparameters 832

For hyperparameters, we sample waveforms with 833

a sample rate of 24000 Hz. Mel-spectrograms are 834
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computed with a window size of 512, and a hop835

size of 128. The number of Mel bins is set to 80. To836

form a bottleneck and alleviate overfitting, we only837

use the first 30 bins (low-frequency part) as input.838

MUSAN noises are added to the waveforms with839

a probability of 0.8 and an SNR range of [6, 20].840

Gaussian noise is added to the logarithmic F0 con-841

tours with a random standard deviation range of842

[0, 0.04], and is added to the softened boundary843

labels with [0, 0.002]. F0 contours are extracted844

through a pre-trained RMVPE (Wei et al., 2023)845

estimator, where each F0 value is quantized into846

256 categories. We set P , the number of pitch cate-847

gories, to 120, where each pitch number is the exact848

MIDI number. The length of softened boundaries849

is set to 80 ms, indicating a 15-frame window WG .850

The temperature parameters T1 and T2 are set to 0.2851

and 0.01. To balance the various objectives, we set852

λB, λFC, andλP to 1.0, 3.0, and 1.0. For inference,853

the boundary threshold µ is set to 0.8. The hyperpa-854

rameters α and γ in the boundary decoder are set to855

1/(2.42× 128/24000) and 5.0, where the 2.42 in856

the former indicates the number of note boundaries857

in one second, and 128 and 24000 indicate the hop858

size and the audio sample rate.859

B.2 Architecture860

For model architecture, we apply three encoders861

EM, EB, EP to encode Mel-spectrograms, word862

boundaries, and F0 contours. The encoders con-863

sist of a linear projection or an embedding layer,864

followed by residual convolution blocks.865

The U-Net backbone’s encoder and decoder each866

comprise K downsampling and upsampling layers,867

respectively, where K = 4 in our case, with 16×868

downsampling rate. A downsampling layer con-869

sists of a residual convolution block and an average870

pooling layer with a downsampling rate of 2, result-871

ing in an overall downsampling rate of 2K . For an872

upsampling layer, the input feature is firstly upsam-873

pled through a transposed convolution layer, and is874

then concatenated with the corresponding skipped875

feature before a final convolution block. The down-876

sampling rate is set to 2, and the channel dimension877

remains the same as input to alleviate overfitting.878

The intermediate part of the backbone is replaced879

by a 2-layer Conformer block with relative position880

encoding. The Conformer network is 2-layer with881

a kernel size of 9 and a head size of 4. The head882

dimension in the pitch decoder is 4. The overall883

channel dimension is 256. The overall architecture884

is listed in Table 5.885

As for the N-layer residual convolution blocks 886

mentioned many times in the main text, the config- 887

uration is illustrated in Figure 4. 888

LayerNorm

Conv1D

LeakyReLU

Conv1D

LayerNorm

Conv1D

/ sqrt(dim)
N ×

Figure 4: N-layer Residual convolution blocks.

C Data 889

We recruit 12 professional singers (8 female, 4 890

male) to record D1 and 8 singers (5 female, 3 male) 891

for D2. Each singer was compensated at an hourly 892

rate of $600. Singers were informed that the record- 893

ings were for scientific research use. Then we auto- 894

matically annotate the phonemes and notes through 895

an ASR model (Radford et al., 2023), MFA, and 896

the proposed AST model. The length of D1 is 20.9 897

hours and D2 is 6 hours. We use all the datasets 898

under license CC BY-NC-SA 4.0. 899

D Additional Experimental Results 900

The additional experimental results are listed in 901

Table 7 and Table 8, where the former is under 902

clean environment and the latter is noisy. 903

E Low-resource Scenarios 904

Considering the scarcity of annotated singing voice 905

datasets, we investigate the performance of the pro- 906

posed method under low-resource scenarios. We 907

use M4Singer as the training set and test the model 908

on D1. Firstly, we gradually decrease the amount 909

of training data to see the performance degrada- 910

tion. After that, we incorporate features extracted 911

from a pre-trained self-supervised learning (SSL) 912

framework to enhance the performance. 913
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Hyperparameter Model

Mel
Encoder

Encoder Kernel 3
Encoder Layers 2
Encoder Hidden 256

Condition
Encoder

Pitch Embedding 300
UV Embedding 3

WBD Embedding 3
Encoder Kernel 3
Encoder Layers 1
Encoder Hidden 256

U-Net

Kernel 3
Enc & Dec Layers 4

Downsampling Rate 16
Enc & Dec Hidden 256

Conformer

Kernel 9
Heads 4
Layers 2

Attention Hidden 256
FFN Hidden 1024

Total Number of Parameters 12M

Table 5: Hyperparameters of the proposed modules.
"WBD" represents word boundary.

Conformer 

Blocks
Down Up

ES

Noise

Figure 5: Injection of self-supervised features.

Model Ratio Onset (F) Offset (F) Pitch (F)

M 100% 93.7 94.3 77.1
M 50% 93.6 93.9 79.6
M 10% 93.0 92.6 71.6
M 1% 92.0 91.7 68.4

M(ssl) 100% 94.3 94.0 76.2
M(ssl) 50% 94.0 93.7 74.9
M(ssl) 10% 93.8 93.9 73.5
M(ssl) 1% 93.7 93.8 73.6

Table 6: Results under low-resource scenarios. "Ratio"
indicates the proportion of the training set that is uti-
lized.

Specifically, we modify the model architecture 914

by introducing a latent feature encoder ES, trans- 915

forming the additional SSL representations into 916

256-dimensional features, and performing a fusion 917

by element-wise addition. This fusion can be illus- 918

trated as Figure 5. ES comprises two convolution 919

layers and a convolution block, where the former 920

reduces the dimension of the input features to the 921

model channel dimension. The output of ES is di- 922

rectly added to the output of the U-Net’s encoder 923

to perform the fusion. 924

We choose XLSR-53 (Conneau et al., 2020), 925

a wav2vec 2.0 (Baevski et al., 2020) model pre- 926

trained on 56k hours of speech in 53 languages, 927

to be the SSL feature extractor. We believe that 928

the knowledge of a pre-trained self-supervised 929

model alleviates data scarcity. To simulate the 930

low-resource environment, we actually can get ac- 931

cess to singing voice corpora, only without anno- 932

tations. Therefore, we use all the training data 933

mentioned before to fine-tune the XLSR-53 model 934

with a batch size of 1200k tokens for 20k steps. In 935

this case, we incorporate self-supervised learning 936

to cope with the low-resource problem. 937

According to Singla et al. (2022), features from 938

the second layer of a 12-layer wav2vec 2.0 model 939

are the most related to audio features like pitch 940

and unvoiced ratio, we extract features from the 941

4th layer of the 24-layer XLSR-53 to be the input 942

feature, which has a dimension of 1024. Before 943

feeding the features to the model, we add Gaussian 944

noises with a standard deviation of 0.05 to perform 945

the data augmentation. The SSL-augmented model 946

is denoted as M(ssl). 947

The results are listed in Table 6. From the results, 948

we can see that there is no significant improvement 949

after involving SSL features, if enough training 950
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data is utilized. However, when decreasing the951

training data, the original model M exhibits a de-952

cline in performance, while M(ssl) experiences a953

comparatively smaller decrease.954

F Details of Evaluation955

For each SVS experiment task, 20 samples are ran-956

domly selected from our test set for subjective eval-957

uation. Professional listeners, totaling 20 individ-958

uals, are engaged to assess the performance. In959

MOS-Q evaluations, the focus is on overall synthe-960

sis quality, encompassing clarity and naturalness.961

For MOS-P, listeners are exposed to GT samples962

and instructed to concentrate on pitch reconstruc-963

tion, disregarding audio quality. In both MOS-Q964

and MOS-P evaluations, participants rate various965

singing voice samples on a Likert scale from 1966

to 5. It is crucial to highlight that all participants967

were remunerated for their time and effort, compen-968

sated at a rate of $10 per hour, resulting in a total969

expenditure of approximately $300 on participant970

compensation. Participants were duly informed971

that the data were for scientific research use.972
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Method Onset Offset Pitch Melody
P R F P R F P R F AOR RPA

TONY 65.0 70.2 67.5 59.6 56.1 57.8 46.1 42.1 43.9 73.8 73.9
VOCANO 73.7 78.1 75.8 69.1 73.5 71.2 48.4 52.1 50.2 81.4 76.6
MusicYOLO 84.1 80.4 82.2 83.7 79.8 81.7 61.3 56.8 58.9 85.4 81.6
(Yong et al., 2023) 93.7 90.0 92.0 92.3 90.4 91.4 65.3 66.3 65.8 91.6 83.1

M (conformer) 90.2 93.0 93.7 92.3 96.0 94.1 75.3 77.4 76.3 97.0 86.9
M (conv) 92.2 91.0 91.6 92.8 92.3 92.6 71.6 70.2 70.9 96.8 84.1
M (w/o noise) 94.5 93.2 93.8 94.7 93.7 94.2 76.0 76.8 76.4 97.1 87.1
M (w/o wbd) 92.1 94.5 93.3 91.6 94.8 93.2 75.9 78.4 77.1 96.5 87.5

M (ours) 92.4 96.2 94.0 93.0 96.8 94.5 76.4 78.9 77.4 97.0 87.6

Table 7: Complete results of AST systems. These results are from clean inputs.

Method Onset Offset Pitch Melody
P R F P R F P R F AOR RPA

TONY 48.6 49.8 49.2 45.9 48.2 47.0 25.8 31.7 28.4 46.6 45.2
VOCANO 63.7 65.8 64.7 64.7 67.5 66.1 42.9 44.0 43.4 71.9 59.8
MusicYOLO 81.3 78.2 79.7 79.6 73.7 76.5 53.9 49.9 51.5 78.6 78.9
(Yong et al., 2023) 89.7 87.2 88.5 90.1 89.3 89.7 63.4 60.8 62.1 86.4 80.6

M (conformer) 89.8 92.6 91.2 91.2 93.0 92.1 73.7 75.9 74.8 96.9 86.3
M (conv) 92.4 90.6 91.5 93.3 91.9 92.6 71.1 70.6 70.8 96.8 84.1
M (w/o noise) 91.9 89.9 90.9 92.3 90.7 91.5 70.2 70.0 70.1 95.2 83.1
M (w/o wbd) 92.4 94.6 93.5 91.6 94.2 92.9 76.3 77.7 77.0 96.2 87.2

M (ours) 92.9 94.7 93.8 93.5 95.3 94.4 76.7 77.3 77.0 97.1 87.4

Table 8: Complete results of AST systems. These results are from noisy inputs.
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