AN INTERACTIVE PARADIGM FOR DEEP RESEARCH

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have enabled deep research systems that synthesize comprehensive, report-style answers to open-ended queries by combining retrieval, reasoning, and generation. Yet most frameworks rely on rigid workflows with one-shot scoping and long autonomous runs, offering little room for course correction if user intent shifts mid-process. We present STEER, a framework for Steerable deEp Research that introduces interpretable, mid-process control into long-horizon research workflows. At each decision point, STEER uses a cost-benefit formulation to determine whether to pause for user input or to proceed autonomously. It combines diversity-aware planning with utility signals that reward alignment, novelty, and coverage, and maintains a live persona model that evolves throughout the session. **STEER** outperforms state-of-the-art open-source and proprietary baselines by up to 22.80% on alignment, leads on quality metrics such as breadth and balance, and is preferred by human readers in 85%+ of pairwise alignment judgments. We also introduce a persona-query benchmark and data-generation pipeline. To our knowledge, this is the first work to advance deep research with an interactive, interpretable control paradigm, paving the way for controllable, user-aligned agents in long-form tasks.

1 Introduction

Recent advances in large language models (LLMs) have shifted information access from ranked retrieval to systems that generate comprehensive, report-style answers to complex and open-ended queries. These *deep research* systems, spanning proprietary platforms (Google, 2024; OpenAI, 2025; xAI, 2025) and open-source frameworks (Elovic, 2025; LangChain, 2025), combine iterative retrieval with multi-step reasoning to synthesize well-supported outputs (Coelho et al., 2025). Common paradigms include multi-agent pipelines that divide planning, search, and synthesis (Huang et al., 2025; Alzubi et al., 2025; Li et al., 2025a; Zhang et al., 2025a), and RL-trained agents that learn to search and reason effectively (Zheng et al., 2025b; Jin et al., 2025; Song et al., 2025). Yet most systems follow a rigid workflow: one-time scoping (often with a single clarification), followed by a long autonomous run. If user intent shifts mid-process, there is little room to course-correct, resulting in wasted cost and misaligned reports. This highlights the need for an alternative design where mid-process interaction is central, not optional.

Two research threads closely relate to our work. *Personalization and alignment* examine how to tailor LLM outputs to user intent, from profile-conditioned generation (Wu et al., 2025) to long-form checklists (Salemi et al., 2024; Salemi & Zamani, 2025) and interactive preference elicitation. While these works show the value of personalization, most assume fixed personas or separate preference modeling from system control, lacking a principled way to determine when to seek input. *Interactive reasoning* investigates how LLMs ask clarifying questions (Andukuri et al.; Ren et al., 2023; Wu et al., 2024), model future turns (Zhang et al., 2025b), or learn clarification policies (Chen et al., 2025). Tools like INTERACTIVE REASONING (Pang et al., 2025) and REASONGRAPH (Li et al., 2025b) enhance transparency, but focus on local clarification or static visualization. Existing approaches thus either optimize autonomous agents or isolate clarification as a narrow skill. In contrast, we aim to offer an integrated control paradigm that governs when to pause, what to explore, and how to update personalization mid-process.

We introduce **STEER**, a framework for **St**eerable de**E**p **R**esearch that brings interactive control to long-horizon research workflows (Figure 1). The key intuition is that deep research should occasionally *ask*, not just *answer*: **STEER** uses a cost–benefit formulation at each decision point to

determine whether to pause for user input or to proceed autonomously. To remain both user-aligned and exploratory, it combines diversity-aware planning with utility signals that reward alignment, novelty, and coverage. A live persona is continuously updated based on interactions and conditions all downstream planning, scoring, and synthesis, enabling the system to adjust as user needs evolve.

Our contributions are as follows:

- We propose STEER, an interactive deep research framework that supports interpretable, midprocess control and dynamic user alignment throughout the research loop.
- Extensive experiments show that **STEER** outperforms the strongest open-source and proprietary OpenAI baselines on persona-tailoredness and report quality, while offering fine-grained control to tune trade-offs between alignment and user burden, as well as between under-exploration and overpersonalization. A human study further confirms its preference among readers, with significant gains in alignment, focus, and usability.
- We introduce a persona—query evaluation suite and a reusable data generation pipeline grounded in prior benchmarks, suitable for future evaluation and training of interactive deep research agents.

In summary, **STEER** consistently outperforms strong open and proprietary baselines, achieving 7.83%–22.80% higher alignment and leading on general quality metrics such as breadth and balance. Human readers prefer **STEER** in over 85% of alignment and 83% of focus pairwise comparisons. To our knowledge, *this is the first work to advance deep research with an interactive, interpretable control paradigm*. We believe that this paradigm shift will shape future long-horizon research agents, enabling decision policies that adapt to individual users and their evolving needs, rather than relying on a single upfront clarification.

2 STEER

2.1 PROBLEM SETUP AND OBJECTIVES

We formulate steerable deep research as an interactive planning task. Given a user query Q, the system incrementally constructs a research tree and produces a cited synthesis report R. The goal is to generate a report that is both high-quality and aligned with the evolving preferences of the user, while keeping the number of interruptions minimal and well-timed.

Each user is represented by a persona $P=(p_{\text{text}},\mathcal{A})$, where p_{text} is a natural-language description combining profile and personality traits (following Wu et al. (2025)), and \mathcal{A} is a set of aspects the user expects to see addressed in the final report. We evaluate reports along two complementary dimensions: (1) Alignment: the extent to which the report covers the aspects in \mathcal{A} ; and (2) Focus: the proportion of content that remains on-topic with respect to \mathcal{A} .

2.2 SYSTEM OVERVIEW

Figure 1: Overview of **STEER**. The upper panel shows the end-to-end pipeline. The lower panels zoom into the three core modules: *Planning*, *Pause Decision*, and *Persona Modeling*.

Our framework **STEER** transforms monolithic deep-research pipelines into an interactive process. The system is structured around three core components: **diversity-aware exploration**, **pause deci-**

sion, and **persona modeling**. At a high level, the framework incrementally builds a research tree that represents possible exploration paths and selectively engages the user at key checkpoints.

We denote the research tree as T=(N,E), where each node $n\in N$ represents a sub-problem query with partial research results and each edge $(n,n')\in E$ indicates a decomposition into sub-directions. The tree expands level by level up to a maximum depth D, a hyper-parameter controlling how many layers are explored before synthesis. At each step, the system operates at a **frontier node** \mathbf{n}^{\star} and performs the following actions (Figure 1):

- 1. **Diversity-aware exploration:** Generate candidate follow-up directions from n^* and select a diversified subset of size K to serve as potential expansions (see the *Planning* panel in Figure 1).
- 2. **Pause decision and expansion:** Compute branch utilities, execution costs, and the expected gain of asking, and compare this to the pause cost. If a pause occurs, present the diversified subset to the user and then expand the user-selected items together with any newly suggested directions. Otherwise, expand the system-proposed diversified subset directly. Sub-agents then perform retrieval and reasoning at each expanded child to produce node-level reports (see the *Pause Decision* panel in Figure 1).
- 3. **Persona modeling:** Update the inferred persona \hat{P} with signals from the query, initial profile, and any user feedback gathered during pauses. The updated persona conditions planning, utility scoring, and synthesis in subsequent steps (see the *Persona Modeling* panel in Figure 1).

The process terminates once all nodes at depth D have been expanded, at which point the accumulated node reports are aggregated into the final report R. This interactive loop enables reports that are better aligned with user goals while minimizing redundant or off-topic exploration.

2.3 DIVERSITY-AWARE EXPLORATION

As described in Section 2.2, at each frontier node n^* , the system generates a set of follow-up questions as potential next steps. To promote exploration and reduce redundancy, we explicitly prompt for *distinct facets* and include one *wild-card* direction (see Appendix I for prompt details). From this candidate set, we select a diversified subset of size K to either present to the user (if a pause is triggered) or expand automatically.

To select this subset, we apply a greedy Maximal Marginal Relevance (MMR) strategy (Carbonell & Goldstein, 1998; Wang et al., 2025), which balances confidence scores with dissimilarity to previously chosen directions. MMR is particularly well-suited to our setting: it is simple, efficient, and interpretable, while effectively encouraging topical coverage across different aspects. In contrast, alternative diversity methods (e.g., clustering or determinantal point processes) introduce additional complexity and hyper-parameters without clear gains in this context. Appendix C provides the full algorithmic details.

2.4 PAUSE DECISION AND EXPANSION

After the proposal stage has produced a diversified set of candidates, the system must decide whether to involve the user or continue autonomously. Asking everywhere is undesirable: user tolerance for interruptions is limited and varies widely. Some users prefer high-level guidance while trusting the system to handle details; others are more detail-oriented but want control only in specific themes. Preferences also shift across the depth of the research tree and over time. A well-calibrated system must respect these preferences while steering the exploration toward the user's goals. Below, we present the pause decision mechanism in a top-down structure: we begin with the overall decision rule and then unpack its components, including pause cost, expected gain, and branch utility.

Decision rule At each frontier node n^* , the system evaluates whether pausing to ask the user is beneficial. This decision is framed as a cost-benefit comparison:

$$a(n^{\star}) = \begin{cases} \text{PAUSEASK}, & \Delta EV(n^{\star}) > C(n^{\star}), \\ \text{PROCEED}, & \text{otherwise}. \end{cases}$$

Here, $\Delta EV(n^\star)$ denotes the expected utility gain from pausing – by allowing the user to refine or redirect the next steps – while $C(n^\star)$ denotes the cost of interruption, scaled by user-specific tolerance.

Pause cost Not all users interact in the same way. To model this, we assume two things: (1) a user's tolerance for interruptions decreases over time, and (2) users differ in how much interruption they are willing to tolerate in total, and how fast that tolerance depletes.

To capture this, we introduce two hyper-parameters:

- C₀ ∈ [0, 1]: the base pause cost. This reflects a user's general sensitivity to interruptions. A lower C₀ implies the user is open to frequent interaction; a higher C₀ indicates a preference for minimal disruption.
- Tol ∈ N: the *tolerance budget*. This governs how quickly the pause cost increases with the number of questions asked. Intuitively, Tol represents the approximate number of clarification questions the user is comfortable answering across the entire session.

A user may tolerate multiple clarifications within a single topic but become frustrated by interruptions scattered across too many unrelated ones. To reflect this, we distribute the global tolerance budget Tol across all active *top-level directions*, defined as the root's immediate children. While users may have different preferences across themes, we simplify by evenly dividing the tolerance budget across top-level directions. Each node n belongs to a top-level direction $j \in K'$, where K' denotes the number of currently active directions. If the system proceeds automatically, K' = K (the full diversified set). If a pause occurs, K' equals the number of user-selected plus user-added directions. The pause cost at a frontier node n^* is then computed as:

$$C(n^*) = C_0 \cdot \left(1 + \frac{\text{pauses}_j}{\text{Tol}_j}\right),$$

where $pauses_j$ is the number of times the system has previously paused in direction j. As the number of pauses grows within a direction, the cost of pausing again increases proportionally.

Pause gain The *gain of pausing* should reflect two factors: the utility we forgo by pruning branches and the execution cost we save by not pursuing them.

Let $\{n_k^\star\}_{k=1}^K$ be the candidate children at the frontier node, with branch utilities $U(n_k^\star)$ and normalized execution costs $C^{\mathrm{exec}}(n_k^\star)$. If we proceed automatically, we pursue all K, and the expected value of the frontier node without pausing is $EV^{\mathrm{no-ask}}(n^\star) = \sum_{k=1}^K U(n_k^\star) - \sum_{k=1}^K C^{\mathrm{exec}}(n_k^\star)$. If we pause, the user keeps a subset $S \subseteq \{1,\ldots,K\}$, so the expected value of the frontier node with pause is $EV^{\mathrm{ask}}(n^\star) = \sum_{k \in S} U(n_k^\star) - \sum_{k \in S} C^{\mathrm{exec}}(n_k^\star)$. To estimate S, we retain candidates whose upper utility bound overlaps the leader's lower bound, capturing all options that are plausibly optimal. Equivalently, this decision rule prunes all branches whose best-case utility still falls below the worst-case value of the current leader. See Appendix D for bound construction and filtering.

A pause only changes which branches we do *not* execute. The gain of pausing at the frontier node is the saved cost minus the lost utility of those pruned branches:

$$\Delta EV(n^{\star}) = EV^{\mathrm{ask}}(n^{\star}) - EV^{\mathrm{no\text{-}ask}}(n^{\star}) = \sum_{k \in S^{c}} \left(-U(n_{k}^{\star}) + C^{\mathrm{exec}}(n_{k}^{\star}) \right).$$

Branch utility. We score each candidate child n_k^* using a weighted combination of three factors:

$$U(n_k^{\star}) = \Delta \text{Align}(n_k^{\star}) + \lambda_{\text{exp}} \text{Explore}(n_k^{\star}) + \lambda_{\text{info}} \text{InfoGain}(n_k^{\star}),$$

where each component is scaled to [0,1] for direct comparability with the pause cost. (See Appendix D for exact computations and normalization.)

- Alignment gain (Δ Align) computes predicted increase in persona alignment relative to the parent under the current inferred aspects \hat{A}_s . It rewards branches that cover more of what the user actually cares about.
- Exploration bonus (Explore) adds a small reward for under-explored facets to discourage repeatedly selecting the same angle. We capture this "reward under-explored, penalize over-explored" behavior using a Upper Confidence Bound (UCB) algorithm (Auer, 2002; Auer et al., 2002; Li et al., 2010), which assigns larger bonuses to rarely used facets and decays naturally as they are chosen more frequently.

• Information gain (InfoGain) measures the content-level novelty of a candidate's expected evidence relative to accumulated learnings. While Explore encourages facet-level diversity, InfoGain focuses on semantic-level novelty, prioritizing branches that are more likely to yield genuinely new information from the web.

 $\lambda_{\rm exp}$ and $\lambda_{\rm info}$ balance breadth and novelty against alignment. Both Explore and InfoGain complement the diversify-aware exploration described in Section 2.3: while the latter ensures that the *initial question set* spans distinct facets, it does not guarantee that the resulting content will be diverse. Explore and InfoGain help mitigate this by promoting long-term diversity at the facet and content levels, respectively. While our process uses a minimal three-factor utility for clarity and stability, the framework is easily extensible – additional criteria (e.g., risk, credibility) can be incorporated as needed.

Execution cost. $C^{\text{exec}}(n_k^{\star})$ estimates remaining work if we expand n_k^{\star} . It is also normalized to [0,1] so it is commensurate with utilities. We approximate the cost by the tokens of a saturated subtree beneath n_k^{\star} , as tokens provide a consistent, model-agnostic proxy, and correlate with both latency and spend. See Appendix D for computation details.

2.5 Persona Modeling

Beyond deciding *when* to ask (Section 2.4), the system must also know *who* it is optimizing for. In deep research, users often do not know exactly what they want at the start. Their goals shift as they encounter new information, and partial results may reveal new priorities. Fixing a full persona upfront risks overfitting to stale assumptions or flooding the system with irrelevant detail. To address this, we maintain a *live* persona that evolves dynamically as the research progresses.

At each n^* , **STEER** maintains an updated persona estimate $\hat{P}(n^*) = (\hat{p}_{\text{text}}(n^*), \hat{\mathcal{A}}(n^*))$, where $\hat{p}_{\text{text}}(n^*)$ captures the user's profile and $\hat{\mathcal{A}}(n^*)$ represents the current inferred set of aspects the user cares about. When a pause occurs, we update $\hat{P}(n^*)$ based on user-selected directions and any new suggestions, and implicitly incorporate recent research findings. This evolving persona conditions all downstream modules: it guides research and follow-up question generation, shapes the branch utility score via alignment to $\hat{\mathcal{A}}(n^*)$ (decision), and steers final report synthesis. See Appendix I for full details on how the persona is inferred and updated using LLM prompts (*Persona Checklist Inference* and *Persona Modeling* prompts), and how the evolving $\hat{P}(n^*)$ is used across the planning, research, and synthesis pipeline.

A live persona keeps the interaction tightly aligned with the user's current interests. It prevents drift caused by outdated assumptions, reduces unnecessary questions by filtering irrelevant directions, and adapts to new priorities that emerge during exploration.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Evaluation data We synthesize query–persona pairs by adapting established datasets and methods, with light modifications to better suit our goals. We begin with 1k queries from the *Researchy Questions* dataset (Rosset et al., 2024), as used in *DeepResearchGym* (Coelho et al., 2025). For each query, we generate a plausible user persona p_{text} by adapting the ALOE profile–personality paradigm (Wu et al., 2025): we seed from ALOE profiles and prompt an LLM to propose new profiles that would reasonably ask the given query. To ensure diversity, we apply SBERT-based filtering (Reimers & Gurevych, 2019) and keep only distinct, plausible personas, following prior work (Wu et al., 2025; Wang et al., 2023).

Given each p_{text} , we generate 5–8 evaluation aspects \mathcal{A} using prompts inspired by Salemi & Zamani (2025), following their checklist format to ensure that the aspects are actionable, measurable, and grounded in the persona. This enables robust alignment and focus evaluation, avoiding the ambiguity of more generic rubrics.

Compared to Wu et al. (2025) and Salemi & Zamani (2025), our adaptations are minimal but tailored to deep research: (i) persona generation is query-conditioned to ensure relevance, (ii) diversity

filtering is stricter to avoid near-duplicates, and (iii) aspects are framed for long-form, cited outputs. We evaluate on a held-out set of 200 queries. Full details of data generation are in Appendix E.

User Agent simulation To enable scalable, repeatable evaluation, we simulate user interactions with a User Agent conditioned on the full persona $P=(p_{\text{text}},\mathcal{A})$. The agent selects directions that best align with \mathcal{A} and proposes a new follow-up when uncovered aspects remain, yielding realistic steering signals without human-in-the-loop variability. (See Appendix L for the full prompt.)

Metrics We evaluate persona-tailored quality using two proposed metrics: **Alignment** and **Focus**, both judged by *gpt-4.1-mini* following *DeepResearchGym*. (Prompts used to obtain these metrics are listed in Appendix K.)

- Alignment: Given aspect set \mathcal{A} and report R, we compute: $\mathrm{Align}(R,\mathcal{A}) = \frac{1}{2|\mathcal{A}|} \sum_{a \in \mathcal{A}} \mathrm{align}(R,a)$, $\mathrm{align}(R,a) \in \{0,1,2\}$. Here, 0 means that the aspect is not addressed, 1 means that it is partially addressed (e.g., mentioned or vaguely covered), and 2 means that it is fully addressed with sufficient detail and evidence, all scored by the LLM-judge. This gives an interpretable, per-aspect measure of user alignment.
- Focus: We extract a set of keypoints \mathcal{KP} short, evidence-bearing spans from R using an LLM, and then ask the judge whether each keypoint $(k \in \mathcal{KP})$ maps to at least one user aspect: Focus_{kp} $(R, \mathcal{A}) = \frac{1}{|\mathcal{KP}|} \sum_{k \in \mathcal{KP}} \mathbf{I}[\max(k) \neq \varnothing]$. While alignment is akin to *recall* over aspects, focus acts as a form of *precision*, rewarding dense, on-target content.

In addition, we report *DeepResearchGym*'s quality metrics, including clarity, depth, breadth, and insight, to evaluate general writing quality beyond persona targeting.

Baselines We compare **STEER** to two strong open-source frameworks: *GPT-Researcher* (Elovic, 2025) and *Open Deep Research* (LangChain, 2025), both evaluated as top-performing frameworks (Coelho et al., 2025). On the proprietary model side, we benchmark against OpenAI's o4-mini-deep-research model.

We compare systems under a controlled setting: for **STEER** and the open-source frameworks, all agents use GPT-40, the research tree is fixed (depth 3, breadth 3), outputs share the same token cap, and the only variable is persona information. For fairness, all baselines are run under three input settings: (1) query only, (2) query + initial persona (first sentence of p_{text}), and (3) query + full persona. This allows us to assess how well each baseline adapts to different levels of user information. Note that **STEER** always operates with only the initial persona, and must infer preferences dynamically throughout the interaction.

3.2 How Much Does SteER Improve Persona-Tailored Quality?

$Metric \rightarrow$	Person	a-Tailored	Quality				
System ↓	Align	Focus _{kp}	Clarity	Depth	Breadth	Insight	Balance
GPT-Researcher	66.63	78.42	81.80	86.30	88.40	76.60	81.25
GPT-Researcher _{initial-persona}	74.59	81.68	79.05	87.37	88.71	75.52	81.71
GPT-Researcher _{full-persona}	<u>79.48</u>	83.83	77.93	87.09	90.31	79.05	82.58
OpenDeepResearch	62.74	83.72	74.90	82.40	88.85	68.39	81.25
OpenDeepResearch _{initial-persona}	69.79	85.45	72.51	81.64	84.12	68.98	77.44
OpenDeepResearch _{full-persona}	77.20	<u>86.10</u>	74.02	83.42	87.62	73.18	79.44
o4-mini-deep-research _{initial-persona}	72.73	86.09	75.76	89.10	89.51	86.74	82.76
o4-mini-deep-research _{full-persona}	75.72	86.02	75.54	87.19	87.36	<u>85.01</u>	82.63
STEER	85.70	86.45	<u>79.97</u>	88.67	91.29	83.04	84.19

Table 1: Performance comparison between **STEER** and baselines. For **STEER**, we report performance at $C_0 = 0.7$ (see Section 3.3 for selection rationale).

From Table 1, we see that **STEER** achieves the strongest persona-tailored performance on both metrics across all systems (e.g. 7.83% higher alignment than the runner-up GPT-Researcher_{full-persona}), even though some of those baselines are given the full persona, while **STEER** only receives the first sentence. This highlights the effectiveness of **STEER**'s interactive pausing and live persona modeling, which enable accurate mid-process adaptation without relying on full upfront persona

input. This has practical appeal: real-world deployments often face privacy constraints, onboarding friction, or noisy user profiles. **STEER**'s ability to achieve strong alignment under minimal initial input makes it more robust in such settings.

STEER also leads in breadth and balance, reflecting the role of **STEER**'s diversity-aware exploration and utility components, Explore and InfoGain, in promoting semantic novelty and facet diversity. **STEER** also significantly outperforms the open-source baselines in depth and insight, though it falls slightly short of the proprietary OpenAI model on these metrics.

3.3 How Does Steer Provide Interpretable Controls for Optimal Pausing?

Figure 3: Effect of base pause cost on alignment (*left*) and focus (*right*). Baseline scores are shown as horizontal reference lines for comparison.

As introduced in Section 2.4, **STEER** offers two interpretable knobs to control pausing behavior: the base pause cost C_0 , which sets the system's aversion to interruptions, and the tolerance budget Tol, which controls how quickly pause cost grows within a top-level direction. In this study, we vary C_0 while keeping Tol = 3 fixed. This is because, in shallow trees (depth 3), the effect of Tol is limited. Tol is more impactful in long-horizon tasks where user fatigue may accumulate across levels. Conceptually, Tol captures a user-specific interaction limit. Once set, we can tune C_0 based on two criteria: (a) which value yields pause counts closest to Tol, and (b) which value yields the highest gain per pause.

To benchmark against intuitive alternatives, we introduce a *PauseAgent* baseline that uses an LLM agent to predict pause vs. proceed at each frontier node (prompt in Ap-

Figure 2: Alignment per pause across base pause cost values.

pendix L). As shown in Figure 6 (Appendix F.2), *PauseAgent* pauses excessively, far exceeding the Tol=3 budget. In contrast, **STEER** with $C_0 \geq 0.4$ remains within budget, averaging fewer than 3 pauses.

Frequent pausing also hurts efficiency. Figure 2 shows that alignment per pause drops sharply at low C_0 , while higher C_0 yields fewer but more impactful interventions. This trade-off is evident in Figure 3: while absolute alignment declines as C_0 increases, both alignment and focus reach local maxima around $C_0 = 0.7$, suggesting it as a practical sweet spot.

In summary, **STEER** supports calibrated control of interaction. C_0 adjusts interruption cost directly, and Tol governs how that cost compounds over time. This formulation provides both interpretability and personalization, outperforming the *PauseAgent* baseline in effectiveness and flexibility.

3.4 How Does Steer Avoid Under-Exploration Driven by Personalization?

A potential failure mode is overfitting to personalization: when optimization focuses solely on aspect alignment, the system quickly collapses to a narrow trajectory, branch utilities flatten as $\Delta A lign$ approaches zero, and exploration stalls. To prevent this, **STEER** integrates three complementary signals at different axes.

First, diversity-aware exploration ensures that research directions span distinct facets at each step, avoiding early myopia. As shown in Table 2, removing this component causes the largest drops in depth, breadth, and focus, along with a significant decline in alignment, underscoring its role in maintaining structural and semantic diversity throughout the session.

Method ↓	Alignment	Focus _{kp}	Depth	Breadth
STEER	85.82	87.79	90.27	93.15
(w/o) Explore	84.98 \(\pi_{0.98\%}\)	85.17 _{12.98%}	89.86 10.45%	$92.60_{\downarrow 0.59\%}$
(w/o) InfoGain	82.81 _{13.51%}	86.40 _{11.58%}	90.41 _{↑0.15%}	92.73 10.45%
(w/o) Div Explore	84.57 _{11.46} %	84.29 13.99%	$88.63_{\downarrow 1.82\%}$	$91.09_{\downarrow 2.21\%}$

Table 2: Ablation study on novelty and exploration components. Darker red indicates a larger performance drop relative to **STEER**.

In addition, two utility terms guide exploration: Explore encourages rotation across underrepresented facets, while InfoGain prioritizes semantic novelty. Ablating Explore leads to a large focus drop and notable declination in depth and breadth, with only a small impact on alignment, showing its importance in sustaining report-wide diversity. In contrast, removing InfoGain yields the largest alignment drop but only relatively modest effects on other metrics. This suggests that without semantic novelty, the system tends to dig deeper into already-favored lines, satisfying more user aspects while producing redundant evidence. These complementary behaviors introduce an interpretable trade-off: increasing $\lambda_{\rm info}$ prioritizes aspect satisfaction, while increasing $\lambda_{\rm exp}$ favors breadth and coverage. We set both to 0.5 for balance, but these can be tuned to suit different tasks.

While our experiments focus on novelty and exploration, the utility function is extensible. Additional signals, such as factuality or plausibility, can be integrated into the same calibrated framework. Our primary contribution lies not in these specific factors, but in the interaction paradigm that supports modular, interpretable control over research behavior.

3.5 USER STUDY EVALUATION

Figure 4: Pairwise human preference win rates on *Alignment* and *Focus*.

To complement the automated LLMjudged metrics, we conducted a user study to evaluate whether STEER is preferred by human users. We compared **STEER** with GPT-Researcher and o4-mini-deep-research on 20 query–persona pairs. 12 annotators (all NLP/CS graduate students) viewed two reports for the same pair (one from STEER, one from a baseline) in randomized order on our custom annotation platform. For each comparison, annotators judged *Alignment* (better coverage of persona aspects), Focus (more on-topic with less redundancy), Coverage (aspect-level

Figure 5: Human ratings on *Coverage* and *Findability*. *Left:* Average aspect-level *Coverage* scores of **STEER** and baselines. *Right:* Average *Findability* scores of **STEER** and baselines.

0–2, averaged), and *Findability* (report-level 0–2 for ease of locating relevant information).

This design captures both quality and usability: *Alignment* and *Focus* reflect perceived persona-fit¹; *Coverage* measures how thoroughly user interests are addressed, and *Findability* assesses how easily users can locate what matters. Full platform design and annotator instructions are in Appendix G.

¹Note that the *Alignment* and *Focus* metrics used in the user study are based on pairwise human preferences and are not directly comparable to the automatic metrics defined in Section 3.1.

We collected 58 valid pairwise annotations. As shown in Figure 4, STEER is preferred in about 86-90% of cases for Alignment and about 83% for Focus across GPT-Researcher and o4-mini-deep-research.

Figure 5 shows significant gains in *Coverage* and *Findability* for **STEER**. On a 0–2 aspect-coverage scale, **STEER** improves the average by +0.623 (from 0.828 to 1.451, p=3.05e-12), a relative improvement of about 75% which indicates a shift from below "somewhat covered" toward between "somewhat" and "fully" covered. On the 0–2 Findability scale, **STEER** improves by +0.690 (from 0.845 to 1.534, p=1.64e-11), moving readers from mostly difficult-to-medium retrieval to comfortably above medium and closer to "easy to find." Together these results indicate that **STEER**'s reports both better aligned with persona needs and easier to navigate.

4 DISCUSSION

User Agent simulation To understand how our pause policy translates into user-facing behavior, we analyzed the User Agent used in offline evaluation (Appendix F.4). The User Agent maintains very high precision across base-pause costs (> 0.97), while recall declines as C_0 increases, and report alignment closely tracks User Agent recall ($r \approx 0.81$). This indicates that pausing affects outcomes primarily by changing how many promising directions are retained and developed, offering a controllable alignment–effort frontier via C_0 . We view the User Agent as a diagnostic tool for sweeping policies and stress-testing settings, but acknowledge that real users may be noisier and value exploration differently; future work will calibrate the User Agent with human logs and run counterfactual replays to quantify gaps between simulated and actual behavior.

Persona modeling We also examine how well **STEER**'s live persona tracks report quality. A useful takeaway from Appendix F.3 is that **STEER** not only pauses effectively but also recovers and maintains an accurate persona during a run. Even with only the first persona sentence as input, the inferred persona's alignment with the ground-truth aspect set strongly tracks final report alignment ($r \approx 0.85$, $p < 10^{-3}$), indicating that the learned persona is informative rather than decorative. As C_0 increases, pauses become fewer, the inferred persona is less specified, and downstream alignment declines. In practice, persona–report agreement is a useful diagnostic for selecting C_0 : choosing the smallest C_0 that achieves a target agreement while balancing the alignment–effort trade-off.

Broader application Beyond our experiments, **STEER** suggests a general pattern for long-horizon, high-stakes tasks that must balance personalization with exploration under interpretable control. For instance, scientific-discovery agents and research stacks could benefit from pausing and live-persona steering to curb drift while preserving exploration (Team et al., 2025; Schmidgall & Moor, 2025; Zheng et al., 2025a). Likewise, high-stakes domains such as financial advising and trading (Zhang et al., 2024; Yu et al., 2024) and law and policy research (Li et al., 2024; Pipitone & Alami, 2024) are natural application areas for **STEER**'s interpretable, user-steerable control. Because of **STEER**'s modularity, domains can add factors such as factuality, citation quality, or safety alongside novelty and exploration. We view validating these extensions as promising future work.

5 CONCLUSION AND FUTURE WORK

We have presented **STEER**, proposing a new *interactive paradigm* for deep research. **STEER** couples a cost–benefit pause policy with interpretable controls, a live persona that adapts mid-process, and diversity–novelty utility signals that keep exploration purposeful. Our experiments show that **STEER** improves persona-tailored quality by 7.83%–22.80% over strong open-source and proprietary systems, leads on generic quality metrics, and is preferred by human readers in over 85% of alignment and 83% of focus pairwise judgments. We also release a persona–query evaluation suite and data pipeline to support reproducible testing and future model development.

Looking ahead, several directions appear especially promising. On the system side, exploring speculative pre-execution to reduce latency, a dynamic breadth-depth planner, and policy learning for pause and branch selection could further strengthen real-time usability. On the evaluation side, end-to-end user studies that judge the full interaction, measuring task success, time to insight, perceived control and trust, and cognitive load, would provide a fuller picture of real-world value.

REFERENCES

- Salaheddin Alzubi, Creston Brooks, Purva Chiniya, Edoardo Contente, Chiara von Gerlach, Lucas Irwin, Yihan Jiang, Arda Kaz, Windsor Nguyen, Sewoong Oh, et al. Open deep search: Democratizing search with open-source reasoning agents. *arXiv* preprint arXiv:2503.20201, 2025.
- Chinmaya Andukuri, Jan-Philipp Fränken, Tobias Gerstenberg, and Noah Goodman. Star-gate: Teaching language models to ask clarifying questions. In *First Conference on Language Modeling*.
- Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. *Journal of machine learning research*, 3(Nov):397–422, 2002.
- Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. *Machine learning*, 47(2):235–256, 2002.
- Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for reordering documents and producing summaries. In *Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval*, pp. 335–336, 1998.
- Maximillian Chen, Ruoxi Sun, Tomas Pfister, and Sercan Ö. Arik. Learning to clarify: Multi-turn conversations with action-based contrastive self-training. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.* OpenReview.net, 2025. URL https://openreview.net/forum?id=SIE6VFps9x.
- João Coelho, Jingjie Ning, Jingyuan He, Kangrui Mao, Abhijay Paladugu, Pranav Setlur, Jiahe Jin, Jamie Callan, João Magalhães, Bruno Martins, et al. Deepresearchgym: A free, transparent, and reproducible evaluation sandbox for deep research. *arXiv preprint arXiv:2505.19253*, 2025.
- Assaf Elovic. Gpt researcher: Llm-based autonomous agent for deep research. 2025. URL https://github.com/assafelovic/gpt-researcher.
- Ivar Frisch and Mario Giulianelli. LLM agents in interaction: Measuring personality consistency and linguistic alignment in interacting populations of large language models. In Ameet Deshpande, EunJeong Hwang, Vishvak Murahari, Joon Sung Park, Diyi Yang, Ashish Sabharwal, Karthik Narasimhan, and Ashwin Kalyan (eds.), *Proceedings of the 1st Workshop on Personalization of Generative AI Systems (PERSONALIZE 2024)*, pp. 102–111, St. Julians, Malta, March 2024. Association for Computational Linguistics. URL https://aclanthology.org/2024.personalize-1.9/.
- Google. Try deep research and our new experimental model in gemini, your ai assistant. 2024. URL https://blog.google/products/gemini/google-gemini-deep-research/.
- Lisheng Huang, Yichen Liu, Jinhao Jiang, Rongxiang Zhang, Jiahao Yan, Junyi Li, and Wayne Xin Zhao. Manusearch: Democratizing deep search in large language models with a transparent and open multi-agent framework. *arXiv preprint arXiv:2505.18105*, 2025.
- Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. lil'ucb: An optimal exploration algorithm for multi-armed bandits. In *Conference on Learning Theory*, pp. 423–439. PMLR, 2014.
- Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement learning. *arXiv preprint arXiv:2503.09516*, 2025.
- LangChain. Open deep research. 2025. URL https://github.com/langchain-ai/ open_deep_research?tab=readme-ov-file.
- Haitao Li, Junjie Chen, Jingli Yang, Qingyao Ai, Wei Jia, Youfeng Liu, Kai Lin, Yueyue Wu, Guozhi Yuan, Yiran Hu, et al. Legalagentbench: Evaluating llm agents in legal domain. *arXiv preprint arXiv:2412.17259*, 2024.

- Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to personalized news article recommendation. In *Proceedings of the 19th international conference on World wide web*, pp. 661–670, 2010.
 - Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *arXiv preprint arXiv:2501.05366*, 2025a.
 - Zongqian Li, Ehsan Shareghi, and Nigel Collier. Reasongraph: Visualisation of reasoning paths. *arXiv preprint arXiv:2503.03979*, 2025b.
 - OpenAI. Deep research system card. *Technical Report, OpenAI*, 2025. URL https://cdn.openai.com/deep-research-system-card.pdf.
 - Rock Yuren Pang, KJ Feng, Shangbin Feng, Chu Li, Weijia Shi, Yulia Tsvetkov, Jeffrey Heer, and Katharina Reinecke. Interactive reasoning: Visualizing and controlling chain-of-thought reasoning in large language models. *arXiv preprint arXiv:2506.23678*, 2025.
 - Nicholas Pipitone and Ghita Houir Alami. Legalbench-rag: A benchmark for retrieval-augmented generation in the legal domain. *arXiv preprint arXiv:2408.10343*, 2024.
 - Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 3982–3992, Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1410. URL https://aclanthology.org/D19-1410/.
 - Allen Z Ren, Anushri Dixit, Alexandra Bodrova, Sumeet Singh, Stephen Tu, Noah Brown, Pen Xu, Leila Takayama Takayama, Fei Xia, Jake Varley, et al. Robots that ask for help: Uncertainty alignment for large language model planners. In *Conference on Robot Learning (CoRL)*. Proceedings of the Conference on Robot Learning (CoRL), 2023.
 - Corby Rosset, Ho-Lam Chung, Guanghui Qin, Ethan C Chau, Zhuo Feng, Ahmed Awadallah, Jennifer Neville, and Nikhil Rao. Researchy questions: A dataset of multi-perspective, decompositional questions for llm web agents. *arXiv preprint arXiv:2402.17896*, 2024.
 - Alireza Salemi and Hamed Zamani. Lamp-qa: A benchmark for personalized long-form question answering. *arXiv preprint arXiv:2506.00137*, 2025.
 - Alireza Salemi, Sheshera Mysore, Michael Bendersky, and Hamed Zamani. LaMP: When large language models meet personalization. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7370–7392, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.399. URL https://aclanthology.org/2024.acl-long.399/.
 - Samuel Schmidgall and Michael Moor. Agentrxiv: Towards collaborative autonomous research. *arXiv preprint arXiv:2503.18102*, 2025.
 - Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning. *arXiv preprint arXiv:2503.05592*, 2025.
 - NovelSeek Team, Bo Zhang, Shiyang Feng, Xiangchao Yan, Jiakang Yuan, Zhiyin Yu, Xiaohan He, Songtao Huang, Shaowei Hou, Zheng Nie, et al. Novelseek: When agent becomes the scientist–building closed-loop system from hypothesis to verification. *arXiv preprint arXiv:2505.16938*, 2025.
 - Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 13484–13508, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.754. URL https://aclanthology.org/2023.acl-long.754/.

- Zhichao Wang, Bin Bi, Yanqi Luo, Sitaram Asur, and Claire Na Cheng. Diversity enhances an llm's performance in rag and long-context task. *arXiv preprint arXiv:2502.09017*, 2025.
 - Cheng-Kuang Wu, Zhi Rui Tam, Chao-Chung Wu, Chieh-Yen Lin, Hung-yi Lee, and Yun-Nung Chen. I need help! evaluating LLM's ability to ask for users' support: A case study on text-to-SQL generation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 2191–2199, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.131. URL https://aclanthology.org/2024.emnlp-main.131/.
 - Shujin Wu, Yi R. Fung, Cheng Qian, Jeonghwan Kim, Dilek Hakkani-Tur, and Heng Ji. Aligning LLMs with individual preferences via interaction. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), *Proceedings of the 31st International Conference on Computational Linguistics*, pp. 7648–7662, Abu Dhabi, UAE, January 2025. Association for Computational Linguistics. URL https://aclanthology.org/2025.coling-main.511/.
 - xAI. Grok 3. 2025. URL https://x.ai/news/grok-3.
 - Zhouhang Xie, Junda Wu, Yiran Shen, Yu Xia, Xintong Li, Aaron Chang, Ryan Rossi, Sachin Kumar, Bodhisattwa Prasad Majumder, Jingbo Shang, et al. A survey on personalized and pluralistic preference alignment in large language models. *arXiv* preprint arXiv:2504.07070, 2025.
 - Yangyang Yu, Zhiyuan Yao, Haohang Li, Zhiyang Deng, Yuechen Jiang, Yupeng Cao, Zhi Chen, Jordan Suchow, Zhenyu Cui, Rong Liu, et al. Fincon: A synthesized llm multi-agent system with conceptual verbal reinforcement for enhanced financial decision making. *Advances in Neural Information Processing Systems*, 37:137010–137045, 2024.
 - Dingchu Zhang, Yida Zhao, Jialong Wu, Baixuan Li, Wenbiao Yin, Liwen Zhang, Yong Jiang, Yufeng Li, Kewei Tu, Pengjun Xie, et al. Evolvesearch: An iterative self-evolving search agent. *arXiv preprint arXiv:2505.22501*, 2025a.
 - Michael Zhang, W. Bradley Knox, and Eunsol Choi. Modeling future conversation turns to teach Ilms to ask clarifying questions. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu (eds.), *International Conference on Representation Learning*, volume 2025, pp. 60722–60742, 2025b. URL https://proceedings.iclr.cc/paper_files/paper/2025/file/97e2df4bb8b2f1913657344a693166a2-Paper-Conference.pdf.
 - Weizhi Zhang, Xinyang Zhang, Chenwei Zhang, Liangwei Yang, Jingbo Shang, Zhepei Wei, Henry Peng Zou, Zijie Huang, Zhengyang Wang, Yifan Gao, et al. Personaagent: When large language model agents meet personalization at test time. *arXiv preprint arXiv:2506.06254*, 2025c.
 - Wentao Zhang, Lingxuan Zhao, Haochong Xia, Shuo Sun, Jiaze Sun, Molei Qin, Xinyi Li, Yuqing Zhao, Yilei Zhao, Xinyu Cai, et al. A multimodal foundation agent for financial trading: Toolaugmented, diversified, and generalist. In *Proceedings of the 30th acm sigkdd conference on knowledge discovery and data mining*, pp. 4314–4325, 2024.
 - Tianshi Zheng, Zheye Deng, Hong Ting Tsang, Weiqi Wang, Jiaxin Bai, Zihao Wang, and Yangqiu Song. From automation to autonomy: A survey on large language models in scientific discovery. *arXiv preprint arXiv:2505.13259*, 2025a.
 - Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environments. *arXiv preprint arXiv:2504.03160*, 2025b.

A RELATED WORK

Deep research LLM-based research agents combine retrieval and multi-step reasoning to produce long-form answers (Coelho et al., 2025). Among the open-source frameworks, two dominant paradigms are multi-agent pipelines that split planning, browsing, and reading across roles (Huang et al., 2025; Alzubi et al., 2025; Li et al., 2025a; Zhang et al., 2025a) and RL-trained agents that learn to search and reason (Zheng et al., 2025b; Jin et al., 2025; Song et al., 2025). Despite progress, most systems still follow one-shot scoping with at most a single clarification, then a long autonomous run

and a monolithic report, offering little mid-process control when user needs evolve.

Personalization and alignment A growing line of work pursues personalization for LLM agents, moving from static profile–personality conditioning and long-form checklists (Wu et al., 2025; Salemi et al., 2024; Salemi & Zamani, 2025) toward interactive, test-time adaptation and multistakeholder alignment (Xie et al., 2025). Recent trends probe persona behavior in interaction (e.g., consistency and drift under dialogue) (Frisch & Giulianelli, 2024) and build agent mechanisms that adapt actions to user preferences at inference time (Zhang et al., 2025c). While this work establishes that preferences should be updated during use, most approaches still lack *interpretable*, *end-to-end controls* for deciding *when* to seek input and *how* to steer long-horizon generation as goals evolve.

Interactive reasoning and control Another closely related line of work equips LLMs with interactive reasoning via clarification. Prior studies train models to ask when information is missing (Andukuri et al.; Ren et al., 2023; Wu et al., 2024), model future turns to decide ask vs. answer (Zhang et al., 2025b), and learn clarification policies with contrastive objectives (Chen et al., 2025). Visualization tools improve transparency and user steering over chains of thought (Pang et al., 2025; Li et al., 2025b). However, these efforts mostly address local interactions or static control, rather than providing interpretable, end-to-end controls for *when* to pause, *what* to explore, and *how* to adapt personalization mid-process in long-horizon research.

B USE OF LLMS FOR WRITING ASSISTANCE

We used ChatGPT-40 *only* for language-level editing. Concretely:

- Polishing prose, tightening sentences, fixing grammar and LaTeX wording, reordering or shortening paragraphs, and suggesting alternative titles or section headers.
- No ideas, methods, claims, proofs, experiments, numbers, figures, tables, code, prompts, or citations were produced by the model. All technical content, analyses, and results were authored and verified by the authors.
- We supplied already written passages or outlines and requested editing (for example, "polish wording, keep all technical details unchanged").
- The model was not given proprietary data, code, or unpublished results beyond the text to be edited. All outputs were reviewed by the authors for accuracy and tone.

C DIVERSIFIED SUBSET SELECTION

For completeness, we include the pseudocode of the greedy MMR selection used in our framework. Given a candidate set of follow-up questions $\mathcal{C} = \{q_1, \dots, q_M\}$ with confidence scores $\mathrm{conf}(q_i)$ and embeddings \mathbf{e}_i , the algorithm selects a diversified subset \mathcal{C}' of size K:

```
702
             Require: Candidate list C = \{q_1, \ldots, q_M\} with confidences conf(q_i), embeddings e_i; desired
703
                    subset size K
704
             Ensure: Diversified subset C'
705
               1: \mathcal{C} \leftarrow \operatorname{sort} \mathcal{C} in non-increasing order of \operatorname{conf}(q_i)
706
               2: C' \leftarrow \emptyset, I_{C'} \leftarrow \emptyset
               3: while |\mathcal{C}'| < K do
708
                         C \leftarrow \{i \mid i \notin I_{\mathcal{C}'}\}
               4:
709
                         if I_{\mathcal{C}'} = \emptyset then
               5:
710
                               i^{\star} \leftarrow \min C
               6:
                                                                                                                             ⊳ top-confidence question
               7:
711
                         else
712
               8:
                               for i \in C do
                                    d_i \leftarrow \max_{j \in I_{C'}} \operatorname{sim}(\mathbf{e}_i, \mathbf{e}_j) + \varepsilon
713
714
              10:
715
                               i^{\star} \leftarrow \arg\min_{i \in C} d_i
             11:
                                                                                                716
             12:
                         end if
                         \mathcal{C}' \leftarrow \mathcal{C}' \cup \{q_{i^*}\}, \quad I_{\mathcal{C}'} \leftarrow I_{\mathcal{C}'} \cup \{i^*\}
717
             13:
             14: end while
718
             15: return C
719
```

D DETAILS FOR GAIN OF PAUSING IMPLEMENTATION

720 721

722 723

724

725

726

727 728

729

730

731

732

733 734

735 736

737

738

739

740 741

742

743744745746

747

748

749

750 751 752

753

754

Alignment gain Let r(n) denote the chunk report at node n, formed by concatenating the learnings $\{\ell_i\}_{i=1}^m$ (if there are m learnings at the node), and let \hat{A}_n be the inferred aspect set at that node. For the k-th child node of a frontier node n_k^* ,

$$\Delta \operatorname{Align}(n_k^{\star}) = \operatorname{Align}(r(n_k^{\star}), \hat{A}_{n^{\star}}) - \operatorname{Align}(r(n^{\star}), \hat{A}_{n^{\star}}).$$

Exploration bonus For each chunk report, we prompt an LLM to assign short tags (see Appendix I, *Search Result Processing* prompt). We maintain the global tag set \mathcal{T} and a cumulative usage count count(T) for each tag T up to the current step. With a small constant $\epsilon > 0$, the exploration bonus is

$$\operatorname{Explore}(n_k^{\star}) = \frac{1}{|\mathcal{T}|} \sum_{T \in \mathcal{T}} \frac{\epsilon}{1 + \sqrt{\operatorname{count}(T)}}.$$

This UCB-style term grants larger bonus to under-tried tags and decays as a tag is reused.

Information gain To reward novelty relative to what has already been learned, we compare a candidate's node embedding to the centroid of accumulated learnings. Let \mathbf{e}_{ℓ} be the embedding of a learning ℓ . For node n with number of learnings $L(n) = \{\ell_i\}_{i=1}^{m(n)}$, define its embedding $\mathbf{e}_n = \frac{1}{m(n)} \sum_{i=1}^{m(n)} \mathbf{e}_{\ell_i}$ (when m(n) > 0). Let \mathcal{L} be the set of all learnings gathered so far, $M = |\mathcal{L}|$, and $\mu = \frac{1}{M} \sum_{\ell \in \mathcal{L}} \mathbf{e}_{\ell}$. Then

$$\operatorname{InfoGain}(n_k^\star) = \begin{cases} 1 - \operatorname{sim}(\mathbf{e}_{n_k^\star}, \mu), & m(n_k^\star) > 0 \text{ and } M > 0, \\ 0, & m(n_k^\star) = 0, \\ 1, & \text{otherwise.} \end{cases}$$

Execution cost Let D be the max depth, d(n) the depth of node n, and K the branching factor. For child n_k^{\star} , the remaining depth is $d_{\text{rem}} = D - d(n_k^{\star})$. The number of nodes in a saturated K-ary subtree is

$$N_{
m rem} = egin{cases} rac{K^{\,d_{
m rem}+1}-1}{K-1}, & K>1, \ d_{
m rem}+1, & K=1. \end{cases}$$

With a running average token cost Tok_{avg} per node, the estimated tokens are $T_k^{est} = Tok_{avg} N_{rem}$, and the normalized execution cost is

$$C^{\rm exec}(n_k^{\star}) = \frac{T_k^{\rm est}}{T_k^{\rm est} + {\rm Tok_{avg}}} = \frac{N_{\rm rem}}{N_{\rm rem} + 1}.$$

Filtering candidates when pausing Let $U_k = U(n_k^*)$ and $conf_k \in [0,1]$ be a confidence score generated by the LLM (see Appendix I, Search Result Processing prompt). Define the uncertainty radius

$$r_k = (1 - conf_k) \left(\max_{i \in K} U_i - \min_{i \in K} U_i \right), \qquad U_k^{\text{upper}} = U_k + r_k, \quad U_k^{\text{lower}} = U_k - r_k.$$

The *could-be-the-best* set is

$$S = \left\{ k \, \big| \, U_k^{\text{upper}} \ge \max_{i \in K} U_i^{\text{lower}} \right\}.$$

This mirrors upper and lower confidence bounds for best-arm filtering Jamieson et al. (2014).

E DATA CONSTRUCTION DETAILS

To evaluate our method, we need a dataset with deep research worthy questions paired with realistic personas, where personas are, as defined in Section 2.1, $(p_{\text{text}}, \mathcal{A})$, where p_{text} is a string, combining the user's profile and personality, and \mathcal{A} is a set of aspects that the user is interested to see in a high-quality, well-aligned final report. We construct our dataset on top of the subset of 1,000 queries from Researchy Questions dataset Rosset et al. (2024) used in DeepResearchGym Coelho et al. (2025).

Data Split \rightarrow	All	Eval
Total Queries Total Query-Persona Pairs	1000 1381	200 286
Queries with 1 Persona Queries with 2 Personas Queries with 3 Personas	327 _(32.7%) 27 _(2.7%)	125 _(62.5%) 64 _(32.0%) 11 _(5.5%)

Table 3: Data Statistics

For each query, we first generate one or more (p_{text})

that would be reasonable to ask the query. For this, we adopt a two-step approach. In the first step, inspired by Wu et al. (2025) and Wang et al. (2023), we use an iterative self-generation and filtering pipeline. In each round, 3 profiles are randomly selected from the profiles in the ALOE dataset Wu et al. (2025) and used as input to an off-the-shelf LLM (GPT-40) to generate 3 new profiles that would be reasonable to ask the query per iteration. Then we introduce an automatic filtering process based on semantic similarity to ensure the distinctiveness and diversity of the generated profiles. Same as Wu et al. (2025), we use Sentence Transformers Reimers & Gurevych (2019) to compute embedding of the generated profiles and measure the cosine similarity among the generated new profiles. For each new profile, if the highest similarity score compared to the other profiles exceeds 0.65, the profile is considered too similar to at least one of the other profiles and discarded. Otherwise, it will be accepted as a successful new profile to pair with the query. We repeat the process until 3 new accepted profiles are generated. In step 2, for each accepted profile, we generate a reasonable personality with GPT-40 to pair with it. For this, we randomly sample personalities from personality pool of the ALOE dataset as sample personalities fed into the LLM for generation.

Once we have generated one or more p_{text} for each query, we then generate the set of aspects \mathcal{A} for each p_{text} . We adopt the same approach as in Salemi & Zamani (2025) to generate 5-8 specific aspects that a user (described by p_{text}) would expect to see in a comprehensive and helpful report to the query, along with an evidence and a reasoning for each aspect, attributed from p_{text} .

Table 3 details the statistics of our generated dataset. All prompts for persona/profile/aspect generation are provided in Appendix J.

F ADDITIONAL EXPERIMENT DETAILS

F.1 ADDITIONAL METRICS

Table 4 reports sentence-level focus and DeepResearchGym relevance (support \uparrow and contradiction \downarrow). We do not use sentence-level focus as a primary metric because it is length sensitive: the score Focus_{st} is the fraction of sentences mapped to any aspect, so longer reports with a few connective or background sentences are penalized, whereas terse styles can inflate the ratio. Still, **STEER** achieves competitive values (e.g., 80.67 at C_0 =0.1), on par with the proprietary model and higher than the open-source baselines, indicating that personalization does not come at the cost of sentence-level topicality.

System	Focus _{st} ↑	Relevance _{sup} ↑	$Relevance_{con}\downarrow$
GPT-Researcher	67.07	61.39	1.02
GPT-Researcher _{initial-persona}	69.18	60.82	1.11
GPT-Researcher _{full-persona}	70.78	59.94	1.04
OpenDeepResearch	73.15	60.36	0.69
OpenDeepResearch _{initial-persona}	75.61	57.07	0.81
OpenDeepResearch _{full-persona}	78.84	57.06	0.81
o4-mini-deep-research _{initial-persona}	78.41	67.36	1.74
o4-mini-deep-research _{full-persona}	80.60	66.45	1.94
$\overline{\mathbf{STEER}_{[C_0=0.7]}}$	78.51	60.47	1.13
$\mathbf{STEER}^{[C_0=0.1]}_{[C_0=0.1]}$	80.67	60.19	1.10

Table 4: Performance comparison between **STEER** and baseline frameworks on sentence-level focus score and report relevance scores.

DeepResearchGym relevance compares a report to a pre-extracted, task-generic keypoint list; because **STEER** steers into personalized directions, it is expected to score lower on relevance_{sup} than a system optimized for the generic keypoints (e.g., o4-mini-deep-research), while maintaining moderate relevance_{con}. In our results, **STEER**'s relevance_{sup} is similar to GPT-Researcher and OpenDeepResearch, with contradiction around 1.10–1.13; the proprietary model attains higher support but also substantially higher contradiction, whereas OpenDeepResearch shows low contradiction but lower support. Taken together, these metrics are complementary diagnostics: sentence-level focus confirms topicality at the sentence granularity, and DeepResearchGym relevance reflects overlap with generic keypoints rather than user-specific goals.

F.2 BASE PAUSE COST VS. PAUSE BEHAVIOR

To better understand system behavior, Figure 6 shows the distribution of number of pauses per run. As expected, lowering base pause cost increases the number of pauses, with median pauses dropping from around $10~(C_0=0.0)$ to fewer than $2~(C_0\geq0.8)$. Compared to an LLM-based Pause-Agent baseline, which issues many more questions, STEER's cost-sensitive mechanism achieves tighter control over the frequency of interruptions. This suggests that base pause cost provides a direct and interpretable knob for regulating user burden.

F.3 **STEER**'S PERSONA MODELING ANALYSIS

To assess the effectiveness of **STEER**'s dynamic persona modeling, we examine how well the inferred persona aligns with the system's final report over the course of interaction. Specifically, we track the alignment score between the generated report and the inferred persona at different base pause $cost(C_0)$

Figure 6: Distribution of number of pauses per run across base pause cost values.

settings, alongside the alignment between the report and the ground-truth persona provided at the start.

Report Alignment Tracks Persona Alignment As shown in the right panel of Figure 7, there is a strong positive correlation between **STEER**'s report alignment and the alignment of its inferred persona to the ground-truth aspect set. The Pearson correlation is r=0.85 ($p=8.7\times10^{-4}$), indicating that improvements in inferred persona accuracy are tightly coupled with improvements in report quality. This supports the intuition that **STEER**'s performance stems not only from architectural advances like mid-process pausing, but also from its ability to incrementally build an accurate model of user goals.

Figure 7: Analysis of User Agent and Persona Modeling Performance across Base Pause Cost (C_0) . Left: User Agent precision, recall, and **STEER** report alignment scores plotted across varying base pause cost values. Right: Alignment scores of **STEER**'s inferred persona and final report, both evaluated against the ground-truth aspect set \mathcal{A} , plotted across varying base pause cost values.

Impact of Base Pause Cost We observe a general downward trend in both inferred persona alignment and report alignment as base pause cost increases. This confirms that higher interruption costs reduce the frequency of clarifying interactions, resulting in less accurate persona estimates and, consequently, less aligned outputs. In contrast, low C_0 values allow STEER to query the user more frequently, leading to refined persona inference and stronger downstream alignment.

These results highlight the central role of interactive refinement in personalized research workflows. Rather than relying solely on upfront persona injection, **STEER** learns about the user incrementally – and this process is empirically shown to improve alignment. The correlation between inferred and actual persona alignment validates the design of our live persona model and its integration into the decision-making process.

F.4 USER AGENT PERFORMANCE ANALYSIS

To enable scalable, automatic evaluation of **STEER**, we employ a User Agent that simulates a real user interacting with the system. This User Agent is responsible for selecting preferred research directions based on a target persona and proposing new follow-up questions when relevant aspects remain uncovered. Its effectiveness directly impacts the utility of our offline evaluation framework.

As shown in the left panel of Figure 7, the User Agent maintains consistently high precision across a wide range of C_0 values, with scores above 0.97. This suggests that when the agent chooses to retain a direction, it is highly likely to align with the user's intended aspects. In contrast, recall is more sensitive to the pausing configuration. At lower C_0 (e.g., 0.1), the User Agent achieves peak recall near 0.95, but recall steadily declines as C_0 increases, falling to approximately 0.85 by C_0 = 1.0. This reflects the agent's conservative behavior under higher interruption costs, where it refrains from selecting additional directions that could be beneficial.

We also observe that the alignment score of the final report generated by **STEER** (in purple) closely tracks the recall curve of the User Agent. The Pearson correlation between the two is strong and statistically significant ($r=0.81, p=2.49\times10^{-3}$), as annotated in the plot. This indicates that the breadth of information the agent retains during interaction is highly predictive of the alignment quality of the final report. The stronger the agent's coverage of relevant aspects (recall), the more aligned the report tends to be with the user's needs.

These results confirm that the simulated User Agent is not only a faithful proxy for real user behavior but also a critical driver of **STEER**'s alignment performance. Its high precision ensures quality, while its recall effectively governs how much of the user's goals are ultimately realized in the research output.

G USER STUDY DETAILS

To complement automated evaluation, we conducted a human annotation study to directly assess how well **STEER** reports align with user personas compared to baseline systems. We developed a

Start A compared from the Compared of Secure Indian Compared Indian

custom web-based annotation platform (Figure 8) that guides annotators through a structured evaluation procedure with clear instructions and embedded report viewers.

Figure 8: User study interface.

G.1 SETUP

Annotators were provided with a **persona card** containing (i) the query, (ii) a short persona description, and (iii) the persona's **interested aspects**—the specific information needs that the final report should cover. These interested aspects formed the primary basis of evaluation. Annotators then evaluated two reports for the same query–persona pair: one generated by **STEER** and one by a baseline system (either GPT-Researcher or Open Deep Research). Report order was randomized to reduce bias.

G.2 EVALUATION PROCEDURE

- Step 1: Aspect Coverage. Annotators skimmed both reports and rated, for each aspect, how well the report addressed it on a 3-point scale: **0 = not covered**, **1 = somewhat covered**, **2 = fully covered**. When assigning a score of 1 or 2, annotators were instructed to copy-paste a short supporting quote (1–2 sentences) from the report to ground their judgment. This ensured ratings were evidence-backed rather than impressionistic.
- Step 2: Findability. Annotators rated how easy it was to locate content relevant to each aspect in the report on a 3-point scale: **0 = difficult**, **1 = medium**, **2 = easy**. This step captured not only whether the aspect was present, but also whether it was readily discoverable by a reader.
- **Step 3: Report Comparison.** Based on their coverage and findability assessments, annotators selected a winner between the two reports along two dimensions: **Alignment** (which report better served the persona's aspects) and **Focus** (which report stayed more on-topic versus digressing into irrelevant content).

Interface Design. The interface (Figure 8) displayed both reports side by side in embedded PDF viewers, alongside the persona's aspects in a draggable panel for quick reference. Each evaluation step was clearly separated into dedicated panels, with concise instructions and tips (e.g., "**You don't need to read every word**—scan section titles and opening sentences for relevant content"). Progress indicators guided annotators through the sequence, ensuring consistency. Importantly, the

972 platform emphasized that judgments should be made from the persona's perspective, not based on 973 annotators' personal preferences. 974 975 976 What You'll Do in Each Item 977 Step 0 - Read the persona card 978 You'll see: 979 The query 980 981 The persona's interested aspects — the specific key information they expect in a high-quality report for this query 982 983 Tip: The interested aspects are the most important and concise part. You don't need to read every word of the full persona text, but do read the aspects list carefully 984 985 986 Step 1 - Rate aspect coverage for each report 987 Skim both full reports (embedded PDFs) and for each aspect, rate how well the report covers it: 988 0 = not covered 989 990 2 = fully covered If you choose 1 or 2, copy-paste a short quote from that report (1-2 sentences or a short paragraph) that supports your rating. 991 992 Tip: You don't need to read every word. To find evidence quickly, you can: 993 1. Scan headings for relevant sections. 994 2. If you'd like, open the report in a new tab and use Ctrl/Cmd-F to search keywords from the aspect. 995 996 Step 2 - Findability 997 998 For each report, rate how easy it was to find content covering the aspects: 0 = difficult 999 1 = medium 1000 1001 Base your rating on how easy it was for you to complete Step 1 for each report 1002 1003 Step 3 - Compare two reports (A vs B) Based on your ratings in the previous steps, pick a winner for: 1005 Alignment – Which report better serves the persona's aspects? Focus – How much of the report stays on the persona's aspects vs. irrelevant information? 1007 Tip: You don't need to read every word. A quick scan of section titles plus the first 1–2 sentences of each section is 1008 usually enough to judge. Some reports have a table of contents that can help you navigate, but don't judge a report only 1009 by whether it has one 1010 1011 1012 **Important** 1013 1. You must finish all steps for a item before moving to the next one. 1014 2. Your progress is shown at the top of the page 1015 3. Judge from the persona's perspective, not your personal preferences. 1016 4. We trust your judgment — do your best.

Figure 9: User study instructions.

Instructions and Quality Control. The study followed a three-step protocol:

As displayed in Figure 9, annotators were instructed to:

1017 1018

1019

1021

1022 1023

1024

- 1. Read the persona aspects carefully, treating them as the ground truth for evaluation.
- 2. Provide evidence quotes for all non-zero aspect coverage ratings.
- 3. Complete all steps in sequence (coverage \rightarrow findability \rightarrow comparison).

Figure 10: Interface of **STEER** web application.

4. Judge strictly by persona relevance, not by report verbosity, formatting, or personal opinion.

These safeguards helped ensure high-quality, reproducible annotations grounded in persona-aligned judgments.

H STEER WORKING PROTOTYPE

To illustrate the functionality of **STEER**, we build an interactive web-based prototype (Figure 10) that visualizes the **STEER** framework in action. The interface consists of three synchronized panels: (i) a conversation pane for clarification prompts and user feedback, (ii) a dynamically expanding research tree that reflects the research status and partial research results, and (iii) a live persona tracker that displays the evolving inferred persona \hat{P} and monitors the updating alignment between cumulative research results and the inferred user aspects $\hat{\mathcal{A}}$. This prototype supports interactive research sessions, allowing users to guide the exploration by selecting preferred subtopics or introducing new follow-up questions mid-process.

I PROMPT TEMPLATES IN STEER

1080

1081 1082

1083

1084

1085

We include here the core prompt templates used in our **STEER** framework, organized by functionality. Each block shows the **system prompt** and the corresponding **user prompt**. Placeholders such as {query}, {persona_text}, and {checklist_items} are substituted at runtime.

```
1086
      Research Planning
1087
        System Prompt
1088
        You are an expert researcher working with a specific user persona.
1089
        Your task is to analyze the original query and search results, then
        generate targeted questions that explore different directions and time
1090
        periods of the topic, specifically tailored to the user's interests
1091
        and checklist items.
1092
1093
        User Prompt
1094
        Original query: {query}
1095
        Current time: {current_time}
1096
1097
        User persona: {persona_text}
1098
1099
        User checklist (aspects they care about):
        {checklist_items}
1100
1101
        Search results:
1102
        {search_results}
1103
1104
        Based on these results, the original query, the user's persona, and
1105
        their checklist, generate 5-8 unique follow-up questions that:
        1. Explore different directions relevant to this query
1106
        2. Cover a good wide range of topics and aspects of the query
1107
        Consider recent developments up to {current_time}
1108
        4. Are somewhat tailored to the user's background and needs, but not
1109
        constrained by the user's persona and interests
1110
        5. Each follow-up question should cover a distinct thematic facet - do
        not repeat other questions
1111
1112
        For each question, provide a confidence score between 0.0 and 1.0
1113
        indicating:
1114
        - Relevance of the question to the main research query
1115
        - Insightfulness of the question that would be useful for the final
        report generation
1116
        - How likely this question is to lead to valuable information for this
1117
1118
1119
        Return your response as a JSON object with the following structure:
1120
          "follow_up_questions": [
1121
1122
              "follow_up_question": "follow-up question text",
1123
              "confidence": 0.0-1.0,
1124
              "reasoning": "why this is a good follow-up question"
1125
          ]
1126
        }
```

Search Result Processing

System Prompt

112711281129

1130

1131

1132

1133

You are an expert researcher analyzing search results for a specific user persona. Focus on extracting learnings and follow-up questions that are most relevant to the user's interests and checklist items.

```
1134
1135
        User Prompt
1136
        Given the following research results for the query '{query}', extract
1137
        key learnings and suggest 5-8 follow-up questions that are
        specifically relevant to the user's persona and interests.
1138
1139
        User persona: {persona_text}
1140
1141
        User checklist (aspects they care about):
1142
        {checklist_items}
1143
        Previously seen tags: {seen_tags}
1144
1145
        Focus on:
1146
        1. Learnings that address the user's checklist items
1147
        2. Information relevant to their background and interests
        3. Follow-up questions that would help address their specific needs
1148
        4. Each follow-up question should cover a distinct thematic facet - do
1149
        not repeat other questions
1150
1151
        For each follow-up question, provide a confidence score between 0.0
1152
        and 1.0 indicating:
1153
        - How likely this question is to lead to valuable information for this
1154
        - Alignment with user's persona and checklist items
1155
        - Relevance to the original research query
1156
1157
        Additionally, ALWAYS generate one "wild-card" question in the separate
1158
        wild_card_question field that goes outside the inferred persona but is
        plausibly useful for broader understanding of the topic.
1159
1160
        Additionally, assign tags to categorize what aspects this research
1161
        content covers. Tags should be short phrases (2-4 words) that describe
1162
        the key topics, themes, or domains covered by the query, context, and
        learnings. Be very cautious about adding new tags:
1163
        - FIRST, check if any of the previously seen tags are relevant to this
1164
        content
1165
        - REUSE existing tags whenever possible
        - ONLY add new unseen tags if the content covers aspects not captured
1167
        by existing tags
1168
        - Keep tags concise and descriptive
1169
        Return your response as a JSON object with the following structure:
1170
1171
          "learnings": [
1172
              "insight": "key insight or finding relevant to the user",
1173
              "source_url": "URL of the source (if available)",
1174
              "relevance_to_user": "how this learning relates to the user's
1175
              interests"
1176
1177
1178
          "follow_up_questions": [
1179
              "follow_up_question": "follow-up question text",
1180
              "confidence": 0.0-1.0,
1181
              "reasoning": "why this is a good follow-up question"
1182
1183
          ],
          "wild_card_question": {
1184
            "question": "wild-card question that goes outside the persona but
1185
            is plausibly useful",
1186
            "confidence": 0.0-1.0,
1187
```

```
"reasoning": "why this wild-card question could be valuable"
},
"tags": ["tag1", "tag2", "tag3"]
}

Research query: {query}

Search results: {context}
```

Follow-up Questions to Search Queries

1198

```
1199
        System Prompt
1200
        You are an expert search query optimizer. Your task is to convert
1201
        follow-up research questions into effective search queries that will
1202
        yield relevant search results.
1203
        User Prompt
1204
        Convert the following follow-up question into an optimized search
1205
        query that will yield relevant search results.
1206
1207
        Original research query: {original_query}
1208
        User persona: {persona_text}
1209
1210
        User checklist (aspects they care about):
1211
        {checklist_items}
1212
        For each of the following follow-up question, create a search query
1213
        that:
1214
        1. Effectively searches for information to answer the follow-up
1215
        question
1216
        2. Is optimized for search engines
1217
        3. Maintains connection to the original research query
        4. Considers the user's persona and interests
1218
1219
        For each search query, also provide a clear research goal that
1220
        describes:
1221
        - What specific information or insights this search aims to discover
1222
        - How it relates to the original research question
        - What direction of the topic it will explore
1223
1224
1225
1226
        Follow-up questions:
1227
        {followup_questions}
1228
        ______
1229
1230
        Return your response as a JSON object with the following structure:
1231
1232
          "search_queries": [
1233
              "follow_up_question": "input follow-up question text",
1234
              "search_query": "optimized search query",
1235
              "research_goal": "clear description of what this search aims to
1236
              discover and how it relates to the original research question"
1237
          1
1238
1239
```

Persona Checklist Inference

```
1242
        System Prompt
1243
        You are an expert at understanding user personas and inferring what
1244
        aspects they would care about in research responses. Your task is to
1245
        analyze a user's persona and generate specific checklist items they
1246
        would expect to see addressed.
1247
        User Prompt
1248
        Given the following user persona and their research query, infer a
1249
        checklist of specific aspects that this user would expect to see
1250
        addressed in a comprehensive research response.
1251
        User persona: {persona_text}
1252
1253
        Research query: {query}
1254
1255
        Based on this persona and query, generate 5-8 specific checklist items
1256
        that this user would expect to see in a helpful response. Each item
        should be:
1257
        1. Specific to this user's background and interests
1258
        2. Relevant to the research query
1259
        3. Actionable and measurable
1260
        4. Distinct from other items
1261
        Return your response as a JSON object with the following structure:
1262
1263
          "checklist_items": [
1264
            "specific aspect this user would expect to see addressed",
1265
            "another specific aspect relevant to their interests"
1266
          ]
        }
1267
1268
```

Persona Modeling

System Prompt

You are an expert at understanding user personas and updating them based on user interactions. Your task is to analyze a user's response and infer additional information about their persona and interests.

User Prompt

Given the following current persona and a user's response to a research proposal, infer additional information about this user's persona and interests.

```
Current persona: {current_persona}

Current checklist items they already care about: {current_checklist}

User's response: {user_response}

Based on this response, identify additional information about the user's:

1. Background and interests
2. Specific preferences and priorities
3. Communication style and concerns
```

4. Any new aspects they care about

IMPORTANT: Do NOT output repetitive information:

- Only include NEW persona information that isn't already covered in the current persona

- Only include NEW checklist items that aren't already in the current checklist $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

```
1296
        - If nothing new can be inferred, return empty strings and empty
1297
1298
1299
        Return your response as a JSON object with the following structure:
1300
          "additional_persona_info": "new information to append to the persona
1301
          (empty if nothing new)",
1302
          "new_checklist_items": [
1303
            "new aspect they mentioned or implied they care about (only if not
1304
            already in checklist)",
1305
            "another new aspect if applicable"
          ]
1306
        }
1307
1308
```

Clarification Question Generation

System Prompt

 You are an expert research assistant. Your task is to generate clear, helpful clarification questions that present concise summaries of research directions to users for selection.

User Prompt

Based on the following research context, generate a structured clarification question that presents concise summaries of the available research directions to the user for selection.

```
Research query: {query}
Available research directions (search queries):
{research_directions}
```

1325 Create a structured question that:
1. Starts with a natural introduction

User persona: {persona_text}

3. For each direction, provide a concise summary (1 sentence) that captures the essence of what that search query would explore, rather than showing the raw search query $\frac{1}{2}$

4. Provides clear selection instructions:To select directions: just type the bullet numbers (e.g., "1, 3")

- To suggest new follow-up questions: start a new line with "New follow-up questions:" followed by each new follow-up question on separate lines

5. Matches the user's communication style

Return your response as a JSON object with the following structure:
{
 "clarification_question": "your structured question to the user with concise summaries"
}

Report Generation

System Prompt

You are a professional research report writer specializing in persona-aware reports. Create comprehensive, well-structured reports based on research data with proper citations, tailored to the specific user's background and interests.

User Prompt

```
1350
       Using the following hierarchically researched information and
1351
        citations:
1352
1353
        "{context}"
1354
       Write a comprehensive research report answering the query: "question"
1355
1356
       User persona: {persona_text}
1357
1358
       User interests (checklist items they care about):
1359
       {checklist_items}
1360
       The report should:
1361
       1. Synthesize information from multiple levels of research depth
1362
        2. Integrate findings from various research branches
1363
       3. Present a coherent narrative that builds from foundational to
       advanced insights
1364
       4. Maintain proper citation of sources throughout
1365
       5. Be well-structured with clear sections and subsections
1366
       6. Have a minimum length of {total_words} words
       7. Follow {report_format} format with markdown syntax
1368
       8.\ \mbox{Use markdown tables, lists and other formatting features when }
       presenting comparative data, statistics, or structured information
        9. Be tailored to the user's persona and interests
1370
1371
       Additional requirements:
1372
       - Prioritize insights that emerged from deeper levels of research
1373
        - Highlight connections between different research branches
1374
        - Include relevant statistics, data, and concrete examples
        - Focus on directions that align with the user's interests and
1375
       checklist
1376
        - Use language and explanations appropriate for the user's background
1377
         Address the user's specific concerns and priorities
1378
        - You MUST determine your own concrete and valid opinion based on the
       given information. Do NOT defer to general and meaningless
1379
       conclusions.
1380
        - You MUST prioritize the relevance, reliability, and significance of
1381
       the sources you use. Choose trusted sources over less reliable ones.
       - You must also prioritize new articles over older articles if the
1383
       source can be trusted.
        - Use in-text citation references in {report_format} format and make it
1384
       with markdown hyperlink placed at the end of the sentence or paragraph
1385
       that references them like this: ([in-text citation](url)).
1386
        - Write in {language}
1387
1388
       Citation requirements:
        - You MUST write all used source URLs at the end of the report as
1389
       references
1390
        - Make sure to not add duplicated sources, but only one reference for
1391
       each
1392
        - Every URL should be hyperlinked: [url website] (url)
1393
        - Include hyperlinks to the relevant URLs wherever they are referenced
1394
       in the report
        - Format example: Author, A. A. (Year, Month Date). Title of web page.
1395
       Website Name. [url website] (url)
1396
1397
       Please write a thorough, well-researched report that synthesizes all
1398
       the gathered information into a cohesive whole, tailored specifically
       to this user's persona and interests.
       Assume the current date is {current_date}.
1400
```

Persona Alignment Evaluation

```
1404
        System Prompt
1405
        You are an expert evaluator specializing in assessing how well
        research content aligns with user personas and interests. Your task is
1407
        to analyze content and determine how well it addresses specific
1408
        directions important to the user.
1409
        User Prompt
1410
        You are evaluating how well research content aligns with a user's
1411
        persona and interests.
1412
1413
        # User Persona: {persona_text}
1414
        # Research Content:
1415
        {content}
1416
1417
        # Key Learnings:
        {learnings}
1418
1419
        # Checklist Items to Evaluate:
1420
        {checklist_items}
1421
1422
        For each checklist item, evaluate how well the research content and
        learnings address it.
        Provide a score from 0-2 for each item:
1424
        - 0: Not addressed or covered
1425
        - 1: Somewhat addressed or partially covered
1426
        - 2: Well addressed or thoroughly covered
1427
1428
        Return your evaluation as a JSON object with the following structure:
1429
          "evaluations": [
1430
1431
              "item": "checklist item text",
1432
              "score": 0-2,
              "reasoning": "brief explanation of the score"
1433
1434
          ]
1435
        }
1436
```

J PROMPT TEMPLATES FOR DATA GENERATION

We include here the prompt templates used in data generation.

Profile Generation Prompt

1437 1438

1439 1440

1441 1442

1443 User Prompt 1444 Generate a user profile for someone who would logically and reasonably 1445 ask the following question: "{query}" 1446 1447 The profile should include demographic and background information such as age range, occupation, hobbies, family structure, education 1448 background, or any other relevant facts. Note that you don't need to 1449 include all of these details for each persona. You can use any kinds 1450 of combinations and please think about other aspects other than 1451 these. You should include something that can be elicited from daily and natural conversations. You should not include too much information 1452 about this person's work content and you should not give any description about the user's personality traits. Focus on objective 1454 facts about the person. 1455 1456 Here are some example profiles for reference: 1457 {profile_examples}

Generate a single user profile that contains around 8-10 distinct facts about the person. The profile should logically connect to why this person would ask the given question. You should only output the profile in plain text format.

IMPORTANT: Try to be creative and comprehensive. Make sure the profile makes it realistic for this person to ask the specific question.

Personality Generation Prompt

User Prompt

Generate personality traits for a person with the following profile who would ask this question: "{query}"

Profile:
{generated_profile}

Based on this profile and the question they would ask, generate appropriate personality traits. You should include something that can be elicited from daily and natural conversations. Each description should contain around 8--10 personality traits about the person.

Here are some example personality descriptions for reference: {personality_examples}

Generate personality traits that are consistent with the profile and make it logical for this person to ask the given question. You should only output the personality description in plain text format.

IMPORTANT: You should not include any other content that is beyond personality traits, such as occupation or demographic information (those are already in the profile). Focus only on personality characteristics, behavioral patterns, and psychological traits. Be creative and make sure the personality aligns with both the profile and the research question.

Aspect Generation Prompt

User Prompt

Given a user's persona and their query, generate a list of specific aspects that this user would expect to see addressed in a high-quality response to their query. These aspects will serve as evaluation criteria to assess how well a response meets this specific user's needs and expectations.

Query: "{query}"

User Persona:
{persona}

Based on this persona and query, generate 5-8 specific aspects that this user would expect to see in a comprehensive and helpful response. Each aspect should be:

- 1. Specific to this user's background, needs, and context
- 2. Actionable and measurable (can be used to evaluate a response)
- 3. Relevant to the query and persona
- 4. Distinct from other aspects (no overlap)

```
1512
        Format your response in JSON format where each aspect is a clear,
1513
        specific expectation that can be used to evaluate whether a response
        adequately addresses this user's needs and provide a clear explanation
1515
        of why each aspect is significant for the user and what specific
1516
        details they would expect to see in the response. Focus on what
        content, depth, style, or approach would be most valuable for this
1517
        specific user.
1518
1519
        Each aspect should have the following fields:
1520
        - aspect: a string that is the name of the aspect that is important to
1521
        be present in the response
        - evidence: a string that points to specific details from the user's
1522
        persona that indicate this aspect is important
1523
        - reason: a string that explains why the aspect is important for the
1524
1525
1526
        Use the following JSON structure:
1527
          "aspects": [
1528
            {
1529
              "aspect": "Name of the aspect",
1530
              "evidence": "Specific details from the user's persona that
              indicate this aspect is important",
              "reason": "Explanation of why this aspect is important for the
1532
              user"
1533
1534
          ]
1535
        }
1536
        IMPORTANT: Make the aspects specific to this user's unique situation
1537
        and needs, not generic aspects that would apply to any user asking
1538
        this question.
1539
```

PROMPT TEMPLATES FOR EVALUATION

We include here the prompt templates used in evaluation scripts.

Alignment Evaluation Prompt

1540 1541

1542 1543

```
1545
1546
        User Prompt
1547
        You are a fair and insightful judge with exceptional reasoning and
1548
        analytical abilities. Your task is to evaluate a user's question, a
1549
        generated response to that question, and multiple aspects that are
1550
        important to the user. Based on this information, assess how well each
        aspect is addressed in the generated response. Provide a clear and
1551
        accurate assessment for each aspect.
1552
1553
        # Your input:
1554
        - question: the question asked by the user
1555
        - persona: the user's persona (profile and personality) that the
        aspects are based on
1556
        - response: a generated response to the user's question
1557
        - aspects: a list of aspects that are important to the user, each
1558
        consisting of:
1559
         - aspect: the title for the aspect
          - reason: the reason that this aspect is important for the user
1560
          - evidence: the evidence from the user persona that the aspect was
          extracted from
1562
1563
        # Your output:
1564
       Your output should be a valid JSON object in ```json ``` format
1565
        containing the following fields:
```

```
1566
        - evaluations: A list of evaluations for each aspect, where each
1567
        evaluation contains:
          - aspect: the aspect title
1569
          - match_score: A score between 0 to 2 that indicates how well the
1570
          generated response addresses this aspect, where:
            * O means the response does not cover this aspect
1571
            * 1 means the response somewhat covers this aspect
1572
            * 2 means the response covers this aspect very well
1573
          - reasoning: A detailed explanation of why this score was assigned,
1574
          including specific examples from the response
1575
        # Question: {question}
1576
1577
        # Persona: {persona}
1578
1579
        # Response: {response}
1580
        # Aspects:
1581
        {aspects_formatted}
1582
1583
        Output:
1584
```

Sentence Focus Evaluation Prompt

"type": "object",

User Prompt

1585

1586 1587

1588

1589

1590 1591

1592

1593

1594

1595

1596

1597

1599

1600

1601

1602

1603 1604

1605

1606

1607

1608

1609

1610

1611 1612

1613

1614

1615 1616

1617

1618

1619

You are an expert judge evaluating whether sentences in a report cover specific user aspects. For each sentence, determine which aspects (if any) it addresses. # Your input: - sentences: numbered sentences from a report - aspects: user aspects with IDs, titles, and reasons # Your task: For each sentence, identify whether it covers any of the user aspects. **BE EXTREMELY STRICT** in your evaluation. A sentence covers an aspect ONLY if it: 1. Directly addresses the specific concern or interest described in the aspect 2. Provides substantive, detailed information that would be valuable to someone with that specific aspect 3. Goes beyond mere keyword mentions or general background information A sentence does NOT cover an aspect if it: - Only provides general background or introductory information - Mentions keywords related to the topic but doesn't address the specific concern - Gives broad overviews without targeting the particular interest - Describes general principles without connecting to the specific - Is just factual information that doesn't serve the user's particular need **Default to NOT covering aspects unless there is clear, direct, substantial relevance to the specific user concern.** # JSON Schema for output: "type": "object", "patternProperties": { "^d+\$": {

```
1620
               "properties": {
1621
                 "cover_aspects": {
                   "description": "A list of aspect IDs that the sentence
1623
                   covers. If the sentence does not cover any of the aspects,
1624
                   the list should be empty.",
                   "type": "array",
1625
                   "items": {"type": "integer"}
1626
1627
                 "reasoning": {"type": "string"}
1628
1629
               "required": ["cover_aspects", "reasoning"]
1630
1631
1632
1633
        # Sentences:
1634
        {sentences_formatted}
1635
        # Aspects:
1636
        {aspects_formatted}
1637
1638
        Output valid JSON:
```

Key Point Extract Prompt

1640 1641 1642

1672 1673

```
1643
        User Prompt
1644
        Based on the report provided, identify key points in the report that
1645
        directly help in responding to the query. The key points are not
1646
        simply some key content of the text, but rather the key points that
        are important for **answering the query**. IMPORTANT: Ensure each
1647
        point is helpful in responding to the query. Keep the point using the
1648
        original language and do not add explanations. IMPORTANT: Each span
1649
        must be a single consecutive verbatim span from the corresponding
1650
        passages. Copy verbatim the spans, don't modify any word! Your
1651
        response should state the point number, followed by its content, and
        spans in the text that entail the key point. Respond strictly in JSON
        format:
1653
1654
          "points": [ {
1655
            "point_content": point_content,
            "spans": [span1, span2, ...]
          }, ... ]
1657
1658
1659
        Remember:
1660
        - Key points can be abstracted or summarized, but the span must be a
1661
        copy of the original text. The content of the key point does NOT need
        to be the same as that of the span.
1662
        - These keypoints must be helpful in responding to the query.
1663
        - If thereare multiple spans for a point, add all of them in the spans
1664
        list.
1665
1666
        Report: {report}
1667
        Query: {query}
1668
1669
        Output:
1670
1671
```

Key Point Focus Evaluation Prompt

```
1674
        User Prompt
1675
        You are an expert judge evaluating whether key points of a report
        cover specific user aspects to answer a query. For each key point,
1677
        determine which aspects (if any) it addresses. **BE EXTREMELY STRICT**
        in your evaluation.
1678
1679
        A key point covers an aspect ONLY if it:
1680
        1. Directly addresses the specific concern or interest described in
1681
        the aspect
1682
        2. Provides substantive, detailed information that would be valuable
1683
        to someone with that specific aspect
        3. Goes beyond mere keyword mentions or general background information
1684
1685
        A key point does NOT cover an aspect if it only provides introductory
1686
        information or broad overviews
1687
        **Default to NOT covering aspects unless there is clear, direct,
        substantial relevance to the specific user concern.**
1688
1689
        Response strictly in JSON format:
1690
1691
          "point_number": {
1692
            "cover_aspects": [aspect1, aspect2, ...],
1693
            "reasoning": reasoning
          },
1694
1695
1696
        # Query:
1697
        {query}
1698
        # Report Key Points:
1699
        {key_points_formatted}
1700
1701
        # UserAspects:
1702
        {aspects_formatted}
1703
        Output:
1704
1705
```

User Agent Alignment Evaluation Prompt

User Prompt

 You are a fair and insightful judge with exceptional reasoning and analytical abilities. Your task is to evaluate a user's follow-up questions in regard to a query, and multiple aspects that are important to the user. Based on this information, assess how well the follow-up questions trying to cover the user's interested aspects. An aspect is considered covered if there are follow-up questions are trying to initiate research directions that are related to the aspect. Provide a clear and accurate assessment for each aspect.

```
# Your input:
    query: the query asked by the user
    persona: the user's persona (profile and personality) that the aspects are based on
    follow-up questions: a list of follow-up questions that the user asked
    aspects: a list of aspects that are important to the user, each consisting of:
    aspect: the title for the aspect
    reason: the reason that this aspect is important for the user
    evidence: the evidence from the user persona that the aspect was extracted from
# Your output:
```

```
1728
        Your output should strictly be a valid JSON object:
1729
1730
          "evaluations": [ {
1731
            "aspect": aspect,
1732
            "match_score": match_score,
            "reasoning": A detailed explanation of why this score was
1733
            assigned, including specific examples from the follow-up questions
1734
1735
1736
1737
        "match_score" is a score between 0 to 2 that indicates how well the
        follow-up questions addresses this aspect, where:
1738
            \star 0 means the follow-up questions does not cover this aspect
1739
            * 1 means the follow-up questions somewhat covers this aspect
1740
            \star 2 means the follow-up questions covers this aspect very well
1741
1742
        # Query: {query}
1743
        # Persona: {persona}
1744
1745
        # Follow-up Questions:
1746
        {follow_up_questions_formatted}
1747
        # Aspects:
1748
        {aspects_formatted}
1749
1750
        Output:
1751
```

User Response Precision Evaluation Prompt

```
User Prompt.
```

```
1754
1755
        You are an expert judge evaluating whether a user's follow-up
1756
        questions or responses are truly targeted to specific user aspects for
        answering a query. For each follow-up, determine which aspects (if
1757
        any) it substantively targets. BE EXTREMELY STRICT.
1758
1759
        A follow-up COVERS an aspect ONLY if it:
1760
        1) Clearly aims to gather information directly relevant to the
1761
        specific concern described by the aspect; AND
        2) Goes beyond surface keywords or generic curiosity.
1762
1763
        A follow-up does NOT cover an aspect if it:
1764
        - Is a broad/background question without tailoring to that aspect; OR
1765
        - Only mentions related keywords but lacks a targeted objective tied
1766
        to the aspect; OR
         - Is unrelated to the user's stated concerns.
1767
1768
        Respond strictly in JSON format:
1769
1770
          "response_number": {
            "cover_aspects": [aspect_id_1, aspect_id_2, ...],
1771
            "reasoning": reasoning
1772
          },
1773
1774
1775
1776
        # Query:
        {query}
1777
1778
        # User Responses (indexed from 0):
1779
        {user_responses_formatted}
1780
1781
        # User Aspects (IDs start at 0):
```

1783 1784

1785

```
{aspects_formatted}
Output:
```

```
1786
      Final Persona State Evaluation Prompt
1787
        User Prompt
1788
        You are a fair and insightful judge with exceptional reasoning and
1789
        analytical abilities. Your task is to evaluate how well items from a
1790
        final persona state checklist cover user aspects. Given the user's
1791
        query, the original persona, a list of checklist items, and the user
1792
        aspects, assess for each aspect how well the checklist covers it.
1793
        # Your input:
1794
        - query: the query asked by the user
1795
        - persona: the user's original persona text
1796
        - checklist: a list of items inferred that might be important for the
1797
        user to answer the query
        - aspects: a list of aspects that are indeed important to the user as
1798
        ground truth, each consisting of aspect, reason, and evidence
1799
1800
        # Your output:
1801
        Return strictly valid JSON of the form:
1802
          "evaluations": [{
1803
            "aspect": aspect_title,
            "match_score": 0|1|2,
1805
            "reasoning":
1806
            detailed_reasoning_referencing_specific_checklist_items
1807
1808
1809
        Interpret match_score as:
1810
        - 0: the checklist does not cover this aspect
1811
        - 1: the checklist somewhat covers this aspect
1812
        - 2: the checklist covers this aspect very well
1813
        # Query: {query}
1814
1815
        # Persona: {persona}
1816
1817
        # Checklist Items:
        {checklist_formatted}
1818
1819
        # Aspects:
1820
        {aspects_formatted}
1821
1822
        Output:
```

L ADDITIONAL PROMPT TEMPLATES

We include here the prompt templates used for User Agent and Pause Agent.

User Agent

1823 1824

1825 1826

1827 1828

1829

1830

1831

1832

1833

1834 1835

System Prompt

You are simulating a real user with a specific persona and interests. Your task is to respond to SteER's research proposals by selecting relevant directions and suggesting new directions based on your persona and research interests.

User Prompt

```
1836
        You are acting as a user with the following persona:
1837
1838
        # User Persona:
1839
        {persona_text}
1840
        # Aspects and directions You Care About:
1841
        {aspects_text}
1842
1843
        # History of your previous asked questions:
1844
        {questions_history_text}
1845
        # Research Query:
1846
        {query}
1847
1848
        # SteER's Proposal:
1849
        {steer_proposal}
1850
        SteER is presenting research directions as numbered bullet points.
1851
        Based on your persona and interests, respond as this user would by:
1852
        1. Selecting ONLY the most relevant direction numbers that have the
1853
        highest priority for this research
1854
        2. Suggesting new follow-up questions ONLY if you feel there's a very
1855
        important direction missing from the proposal
        3. Providing natural commentary as this user would speak
1856
1857
        **IMPORTANT CONSTRAINTS:**
1858
        - **DO NOT select directions or suggest questions that are outside
1859
        your persona and aspects/interests**
1860
        - **DO NOT suggest questions you have already asked before or that are
        similar to the questions you have already asked (check your history
1861
        above) **
1862
        - Only focus on areas that align with your specific expertise,
1863
        interests, and concerns as described in your persona
1864
        - If all current directions seem unrelated to your interests, it's
1865
        better to select none and suggest relevant alternatives
1866
        Focus on quality over quantity - select only the directions that truly
1867
        matter most to you and align with your expertise. You should refrain
1868
        from suggesting new follow-up questions unless something critical is
1869
        missing and directly relates to your interests.
1870
        You should at most suggest 1 new follow-up question.
1871
1872
        The probability of you suggesting a new follow-up question is 50%.
1873
1874
        Your response should reflect how this person would actually
1875
        communicate when discussing their research preferences.
1876
        Return your response as a JSON object with the following structure:
1877
1878
          "selected_directions": [
1879
              "number": 1,
1880
              "direction": "direction name from the proposal",
1881
              "reasoning": "why this direction is most important to you and
1882
              aligns with your interests"
1883
1884
1885
          "new_follow_up_questions": [
1887
```

```
1890
               "follow_up_question": "suggested new follow-up question. Most of
1891
               the time you should not suggest new follow-up questions. But
               only if you feel there's a very important direction missing from
               the proposal, suggest one new follow-up question at most", "reasoning": "why this follow-up question is important, missing,
1893
1894
               and relevant to your interests"
1895
1896
           ],
           "user_response": "natural response as this user would speak (in the
1898
           format: selected numbers with reasoning in parentheses, then 'New
1899
           follow-up questions: ' if any)",
           "additional_context": "any additional preferences or clarifications
1900
           related to your expertise"
1901
1902
```

Pause Agent

1903 1904

1905

1906

1907

1908

1910 1911

1912

1913

1914 1915

1916 1917

1918 1919

1920

1921

1922

1923 1924

1925

1926 1927

1928

1929

1930

1931

1932

1933

1934

1935 1936

1937

1938

1939

1940

1941

1942 1943

System Prompt

You are an expert research assistant specialized in making optimal pause decisions during deep research. Your task is to analyze the current research state and decide whether it's a good time to pause and ask for user guidance on which research branches to pursue, or to proceed with the current research plan.

User Prompt

```
You need to decide whether to pause and ask for user guidance or
proceed with the current research plan.
**Original Query:** {original_query}
**Current Research Goal:** {current_research_goal}
**User Persona: ** {persona_text}
**User Interests (Checklist):**
{checklist_items}
**Current Search Depth:** {current_depth} / {max_depth}
# Available Research Branches:
branch_summaries
# Decision Criteria:
Consider pausing (PAUSEASK) when:
- User input would help prioritize which direction to pursue
- There's uncertainty about which direction aligns best with the
user's specific interests
Analyze the situation and make your decision. Your reasoning should be
specific to the current research context, user persona, and branch
characteristics.
Respond in the following JSON format:
  "type": "object",
  "properties": {
    "action": {
      "type": "string",
      "enum": ["PROCEED", "PAUSEASK"],
      "description": "Decision to proceed with research or pause to
      ask user for guidance"
    "reasoning": {
```

```
1944
                "type": "string",
1945
                "description": "Detailed explanation of the decision based on
1946
                research context and user persona"
1947
           },
"required": ["action", "reasoning"]
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
```