
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ACCELERATED PREDICTIVE CODING NETWORKS VIA
DIRECT KOLEN–POLLACK FEEDBACK ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Backpropagation (BP) is the cornerstone algorithm for training artificial neural
networks, yet its reliance on update-locked global error propagation limits bio-
logical plausibility and hardware efficiency. Predictive coding (PC), originally
proposed as a model of the visual cortex, relies on local updates that allow par-
allel learning across layers. However, practical implementations face two key
limitations: error signals must still propagate from the output to early layers
through multiple inference-phase steps, and feedback decays exponentially dur-
ing this process, leading to vanishing updates in early layers. These issues re-
strict the efficiency and scalability of PC, undermining its theoretical advantage
in parallelization over BP. We propose direct Kolen–Pollack predictive coding
(DKP-PC), which simultaneously addresses both feedback delay and exponential
decay, yielding a more efficient and scalable variant of PC while preserving up-
date locality. Leveraging the direct feedback alignment and direct Kolen–Pollack
algorithms, DKP-PC introduces learnable feedback connections from the output
layer to all hidden layers, establishing a direct pathway for error transmission.
This yields an algorithm that reduces the theoretical error propagation time com-
plexity from O(L), with L being the network depth, to O(1), enabling parallel
updates of the parameters. Moreover, empirical results demonstrate that DKP-PC
achieves performance at least comparable to, and often exceeding, that of stan-
dard PC, while offering improved latency and computational performance. By en-
hancing both scalability and efficiency of PC, DKP-PC narrows the gap between
biologically-plausible learning algorithms and BP, and unlocks the potential of
local learning rules for hardware-efficient implementations.

1 INTRODUCTION

Major advances in artificial intelligence, from image recognition (LeCun et al., 2002; Krizhevsky
et al., 2017; Alom et al., 2018) to image generation (Kingma & Welling, 2013; Parmar et al.,
2018; Goodfellow et al., 2020) and natural language processing (Hochreiter & Schmidhuber, 1997;
Vaswani et al., 2017; Beck et al., 2024), have all been enabled by backpropagation of error (BP),
the fundamental algorithm underlying the training of artificial neural networks (ANNs) (Linnain-
maa, 1970; Rumelhart et al., 1986; Werbos, 1988). However, several studies have put into question
the plausibility of its direct implementation in biological neural systems (Grossberg, 1987; Lillicrap
et al., 2016; Lillicrap & Santoro, 2019; Whittington & Bogacz, 2019; Ellenberger et al., 2024). Two
primary concerns come from (i) the reliance on a global error signal that must be propagated back-
ward and sequentially through the network hierarchy, thereby blocking parameter updates, and (ii)
early layers depending directly on error signals generated by distant nodes. These biological plau-
sibility issues of BP are commonly referred to as update locking and non-locality (Nøkland, 2016;
Frenkel et al., 2021; Ororbia, 2023). Importantly, they lead to inefficiencies in hardware implemen-
tations, imposing memory and latency overheads (Mostafa et al., 2018; Frenkel et al., 2023).

Predictive coding (PC), originally introduced as a model of the visual cortex in the human brain (Rao
& Ballard, 1999; Huang & Rao, 2011), is emerging as a promising alternative to BP, potentially
alleviating its update-locking and non-locality limitations (Millidge et al., 2022a; Salvatori et al.,
2023). Its framework is grounded in Bayesian inference under the Free Energy Principle (Friston,
2005; Friston et al., 2006; Friston & Kiebel, 2009), providing a rigorous mathematical foundation
with connections to information theory (Elias, 1955; 2003) and energy-based models (Millidge et al.,
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2022b;c). Rather than minimizing a global error signal, PC minimizes the network’s variational free
energy (FE), defined as the sum of layer-wise squared errors between each layer’s activity and its
incoming prediction. Unlike BP, where weights are directly updated, PC learning has two phases.
In the inference phase, neural activity is updated to minimize the FE, and in the learning phase,
weights are updated based on the optimized neural activity. However, while this framework yields
local and layer-wise update rules, the error in PC is still generated at the output and must propagate
backward during inference. This error-delay limitation causes PC to be significantly slower than BP,
and limits its efficiency and suitability for custom hardware implementations (Zahid et al., 2023).
Moreover, the delayed error decays exponentially with depth, yielding vanishing updates in early
layers (Pinchetti et al., 2024; Goemaere et al., 2025).

To address these limitations, we propose to propagate error information from the output layer to all
hidden layers, yielding an instantaneous error term across the hierarchy. We thus build on feedback
alignment methods (Lillicrap et al., 2014). Direct feedback alignment (DFA) (Nøkland, 2016) uses
random direct feedback connections to deliver error signals from the output to all hidden layers,
avoiding both error delay and decay. However, DFA scales poorly, especially in deep convolutional
networks. Direct Kolen-Pollack (DKP) improves DFA by learning the feedback matrices (Web-
ster et al., 2020), incorporating learning rules inspired by the Kolen-Pollack (KP) algorithm (Kolen
& Pollack, 1994; Akrout et al., 2019), thereby enhancing performance while preserving locality.
Figure 1 illustrates these frameworks and shows how our proposed direct KP predictive coding
(DKP-PC) integrates primitives of both PC and DKP.

Our contributions are summarized as follows:

1. We extend the empirical analysis of Webster et al. (2020) by providing a mathematical mo-
tivation for why DKP achieves closer alignment with BP than standard DFA. This novel
view further supports the integration of DKP within the PC framework as an efficient pre-
liminary weight update to generate an instantaneous error term at every layer.

2. We introduce the DKP-PC algorithm, which simultaneously mitigates the feedback error
delay and exponential decay limitations of BP while preserving locality. This, for the first
time, enables full parallelization in PC networks regardless of batch size. We further discuss
how our proposed PC variant achieves a time complexity of O(1), compared to O(L) for
BP, with L being the network depth.

3. We provide a theoretical and empirical analysis of the synergy between DKP-PC compo-
nents, demonstrating how the PC neural activity update, under the DKP regime, leads to
improved feedback matrix update and, ultimately, to better and more stable gradient align-
ment with BP compared to standard DKP.

4. We empirically demonstrate that DKP-PC performs on par with, or outperforms, both
DKP and PC, benchmarking them across fully-connected and convolutional networks up to
VGG-9 on Tiny ImageNet. We further assess DKP-PC’s computational efficiency, showing
that it consistently achieves more than a 60% reduction in training time for both VGG-7
and VGG-9.

2 BACKGROUND

In this section, we review from a mathematical perspective the core concepts of BP, DFA/DKP, and
PC, which form the basis of our DKP-PC algorithm.

2.1 BACKPROPAGATION

BP enables recursive and efficient computation of parameter gradients by applying the chain rule of
calculus to propagate error derivatives from the output layer back through the network (Linnainmaa,
1970; Rumelhart et al., 1986). Let us consider a neural network as shown in Figure 1(A), where each
layer ℓ ∈ {0, . . . , L} is associated with an activity vector xℓ ∈ Rdℓ , where x0 denotes the input and
xL the output, and dℓ is the number of neurons in layer ℓ. The forward pass is defined recursively as

zℓ = Θℓ−1xℓ−1, xℓ = f(zℓ), 1 ≤ ℓ ≤ L, (1)
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Figure 1: DKP-PC embeds DKP within the PC framework to address the error feedback delay and
exponential decay issues of PC. Blue arrows represent forward connections, red arrows represent
feedback connections. Neural activities are shown as gray circles, with clamped values in darker
gray; x0 denotes the input, y the target. L is the loss function, with δℓ the BP error, δ̃ℓ its ap-
proximations, and ϵℓ the PC error neurons, represented as triangles. (A) BP propagates the global
error sequentially. (B) DFA and DKP propagate the error directly from the output to each layer.
(C) PC minimizes local errors through an inference phase, followed by a learning phase that up-
dates weights. (D) DKP-PC uses DKP’s direct feedback to provide instantaneous error signals at all
layers, accelerating the PC inference phase while preserving local weight updates.

where Θℓ−1 ∈ Rdℓ×dℓ−1 is the synaptic weight matrix mapping activity at layer ℓ−1 to layer ℓ, and
f : Rdℓ → Rdℓ is typically an element-wise non-linear activation function. The output error is then
expressed in terms of the least-squared error (LSE)

L =
1

2
∥xL − y∥22, (2)

where xL is the network’s output and y ∈ RdL is the target vector. Applying the chain rule, the
recursively backpropagated errors ∂L

∂zℓ
= δℓ ∈ Rdℓ are thus

δℓ =

{
xL − y if ℓ = L,

f ′(zℓ)⊙ (Θ⊤
ℓ δℓ+1) otherwise,

(3)

where⊙ denotes the Hadamard product between the activation derivative f ′(zℓ) ∈ Rdℓ and the error
term1. The weights are then updated according to

∆Θℓ = −α
∂L
∂Θℓ

= −α
(
δℓ+1x

⊤
ℓ

)
, (4)

where α ∈ (0, 1) is the weight learning rate.

2.2 DIRECT KOLEN-POLLACK FEEDBACK ALIGNMENT

DFA explicitly addresses the challenge of iteratively backpropagating error information in BP, yield-
ing a local and more biologically plausible algorithm (Nøkland, 2016). To achieve this, DFA intro-
duces random matrices Ψℓ ∈ Rdℓ×dL that connect the output layer directly to each hidden layer

1Formally, f ′(zℓ) =
∂xℓ
∂zℓ

∈ Rdℓ×dℓ is the Jacobian matrix of the activation function. However, for element-
wise activations, this Jacobian is diagonal with entries f ′(zℓ), so the matrix-vector multiplication simplifies to
the Hadamard product.

3
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in the network, as illustrated in Figure 1(B). These matrices enable the direct propagation of the
error signal δL ∈ RdL generated at the output layer, avoiding the iterative backward propagation in
Eq. (3), by projecting it directly into each hidden layer as

δ̃ℓ = f ′(zℓ)⊙ (ΨℓδL), (5)

thereby leading to the following local weight update rule:

∆Θ̃ℓ = −α
(
δ̃ℓ+1x

⊤
ℓ

)
. (6)

DKP extends DFA by introducing a local learning rule for the feedback matrices Ψℓ (Webster et al.,
2020), inspired by the KP algorithm (Kolen & Pollack, 1994; Akrout et al., 2019). In contrast to
DFA where the random matrices Ψℓ are kept fixed, DKP updates them with

∆Ψℓ = −α
(
xℓδ

⊤
L

)
, (7)

where the synaptic plasticity of Ψℓ depends only on the connected hidden layer’s activity and the
output error signal. Note that this update depends only on local information on top of global error
information that is shared across the network, and thus can be parallelized without update locking.
In Appendix A.1, we extend the empirical analysis of Webster et al. (2020) by providing a mathe-
matical demonstration that, under linear assumptions, the feedback matrices converge to values that
incorporate the recursive chain in (4), despite the dimensionality mismatch between Ψℓ and Θℓ. This
offers a new theoretical perspective explaining why DKP aligns more closely with BP compared to
DFA, showing that it converges to a recursive Moore–Penrose pseudoinverse chain of the forward
weights:

ΨL−ℓ =

{
Θ⊤

L−ℓ if ℓ = 1,

Θ⊤
L−ℓ

(
Ψ⊤

L−ℓ+1

)+
if 1 < ℓ < L.

(8)

2.3 PREDICTIVE CODING

PC models the brain as a Bayesian hierarchical generative model, in which latent variables represent
the causes of sensory stimuli and are assumed to follow a Gaussian distribution (Rao & Ballard,
1999; Friston, 2005; Friston & Kiebel, 2009). Neural activities xℓ ∈ Rdℓ ∼ N (µℓ,Σℓ) represent
latent variables at layer ℓ, with mean µℓ ∈ Rdℓ and covariance matrix Σℓ ∈ Rdℓ×dℓ . As done by
several works in literature, we assume the generative model’s covariance to be fixed to the identity
matrix Σℓ = I (Pinchetti et al., 2022; Millidge et al., 2022a; Salvatori et al., 2024). The distribution’s
mean µℓ is parametrized by the previous layer’s state through the synaptic weights Θℓ ∈ Rdℓ×dℓ−1

connecting them, according to the relation µℓ = f(Θℓ−1xℓ−1), where f : Rdℓ → Rdℓ is a non-linear
mapping. The joint generative model over all L+ 1 latent-variables layers is

p(x0, . . . , xL; Θ0, . . . ,ΘL−1) = N
(
x0;µ0,Σ0

) L∏
ℓ=1

N
(
xℓ; f(Θℓ−1xℓ−1),Σℓ

)
, (9)

where x0 and xL are clamped respectively to the input and target vectors, in classification settings.
The exact posterior distribution inference p(x0, . . . , xL−1 | xL) is generally intractable (Friston,
2005), so PC employs variational inference to approximate the latter with a tractable distribution
q(x0, . . . , xL), defined as

q(x0, . . . , xL−1) =

L−1∏
ℓ=0

q(xℓ), (10)

where q(xℓ) ∈ Rdℓ is the variational distribution over the layer ℓ. Following PC literature for
classification tasks, we model the variational posterior as a Dirac delta centered on parameter ϕℓ:

q(xℓ;ϕℓ) = δ(xℓ − ϕℓ), (11)

where ϕℓ ∈ Rdℓ approximates xℓ, which corresponds to the mode of the true posterior (Bogacz,
2017; Millidge et al., 2021; Pinchetti et al., 2022; Salvatori et al., 2024). This formulation provides
a deterministic approximation of the latent variables’ mode. Variational inference reduces the prob-
lem of maximizing Eq. (9) to minimizing the Kullback–Leibler divergence between the variational

4
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and true posterior distributions DKL (q ∥ p). Equivalently, this corresponds to minimizing the vari-
ational FE, which constitutes an upper bound on DKL(q ∥ p) (Friston & Kiebel, 2009). Under the
assumptions of identity covariance matrices for the generative model and a Dirac delta variational
posterior, the FE can be expressed as

F =
1

2

L∑
ℓ=1

∥ϵℓ∥22, (12)

where the prediction errors ϵℓ ∈ Rdℓ at layer ℓ are defined as

ϵℓ = ϕℓ − f(Θℓ−1ϕℓ−1), (13)

and are considered as dedicated units, represented by triangles in Figure 1(C). In prediction tasks,
ϕ0 is not inferred, as the input layer is clamped to the input vector, and the network is initialized via
a forward pass as in Eq. (1). After this initialization, the output layer ϕL is clamped to the target
vector, so it is also not inferred. Minimizing Eq. (12) results in local updates for both neurons and
weights, enabling layer-wise learning.

PC learning is divided into two phases: the inference and the learning phases. During the inference
phase, Eq. (12) is optimized with respect to the variational parameters ϕℓ, updating the neural activ-
ities iteratively, whereas during the learning phase, the synaptic parameters Θℓ are updated using the
resulting neural configuration to minimize the same objective. This yields the neural activity update

∆ϕℓ = −γ
∂F

∂ϕℓ
= γ

(
(f ′(Θℓϕℓ)⊙Θℓ)

⊤ ϵℓ+1 − ϵℓ

)
, (14)

where γ ∈ (0, 1) is the neural activity learning rate. The rule is local, as the activity of ϕℓ is
influenced only by the adjacent error nodes ϵℓ and ϵℓ+1. After the inference phase is completed, the
synaptic connections are updated using the final neural activity configuration ϕ∗

ℓ , following

∆Θℓ = −α
∂F

∂Θℓ
= α

(
f ′(Θℓϕ

∗
ℓ )⊙ ϵℓ+1 ϕ

∗⊤
ℓ

)
, (15)

where α ∈ (0, 1) is the weight learning rate. The weight update is local, as it depends only on the
error neurons of the next layer ϵℓ+1, and on the optimized neural activity of the current layer ϕ∗

ℓ .

3 METHODOLOGY

In this section, we first introduce the issues of error delay and error decay in PC, and subsequently
demonstrate how the proposed DKP-PC algorithm provides a unified solution to both of them.

3.1 FEEDBACK ERROR DELAY AND DECAY

Let us consider a forward-initialized PC network with L + 1 latent variables layers, whose neural
dynamics evolve in discrete time steps t ∈ N0 according to Eq. (14), explicitly denoting the time
dependence of neural activities ϕℓ(t) and prediction errors ϵℓ(t) during the inference phase.

Error propagation delay – At the initial time t = 0, the neural activity of each layer corresponds to
the prediction from the previous one, resulting in null error values at every layer in the network:

ϕℓ(0) = f(Θℓ−1ϕℓ−1(0)) =⇒ ϵℓ(0) = ϕℓ(0)− f(Θℓ−1ϕℓ−1(0)) = 0. (16)

The network is thus at equilibrium, since the FE in Eq. (12) is minimized (Whittington & Bogacz,
2017). Assuming an incorrect prediction, clamping the target vector y to the output layer at t = 0
induces a non-zero error at the final layer ϵL(0) ̸= 0, as shown in Figure 2(A). Since each layer
updates its activity based on its own and the subsequent layer’s error (see Eq. (14)), the error prop-
agates backward at most one layer per time step. Thus, the error takes t̂ = L − ℓ inference-phase
steps to reach layer ℓ (Zahid et al., 2023) (see theorem and proof in Appendix A.2).

Error exponential decay – The error at optimization time t̂ = L− ℓ, denoted ϵℓ(t̂), decays exponen-
tially as it propagates backwards through the network, as shown in Figure 2(A). The decay rate is
determined by both the learning rate and the distance from the output layer (Goemaere et al., 2025),

5
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Figure 2: Error propagation in PC (A) and DKP-PC (B) during the inference phase of a VGG-9
network trained on a single CIFAR-10 batch, at different magnitudes of the neural activity learning
rate γ. In (A), PC exhibits both an error decay problem, where the error magnitude decreases
exponentially with network depth, and an error delay problem, as the error signal flows through the
network sequentially, undermining the theoretical parallelism. White colour represents values equal
to zero or below the numerical precision. In (B), DKP-PC mitigates both issues, generating a more
uniform error signal across all layers at the start of neural activity optimization.

and the squared ℓ2-norm ∥ϵℓ(t̂)∥22 is upper-bounded by a quantity∝ γ2(L−ℓ) (see theorem and proof
in Appendix A.3).

Both issues originate from the fact that the error is generated only at the output layer, with the delay
arising from its layer-by-layer propagation through the network and the exponential decay resulting
from its progressive reduction by the neural activity learning rate at each iteration.

3.2 DIRECT KOLEN-POLLACK PREDICTIVE CODING

We propose to introduce learnable feedback connections from the output layer to each hidden layer
Ψℓ ∈ Rdℓ×dL , ∀ ℓ ∈ {1, · · · , L − 1}, to enable a preliminary update of the forward weights (Fig-
ure 1(D)). This approach, inspired by the DKP algorithm, not only induces approximate alignment
with BP toward minimizing the output error (Appendix A.1), but also ensures that a non-zero er-
ror term is generated at every layer at the beginning of the inference phase, since the condition in
Eq. (16) no longer holds (Figure 2(B)).

The resulting algorithm, denoted as DKP-PC, not only solves the error propagation delay and expo-
nential decay issues of PC, but also allows speeding up the inference phase of PC. Indeed, after the
error is directly propagated, we empirically show that a single inference-phase step is sufficient to
match or even surpass the performance of standard PC, which typically requires a number of steps
at least equal to, and often exceeding, the network depth (Pinchetti et al., 2024). We provide the
pseudocode of DKP-PC in Algorithm 1, and formally outline the main steps below.

Direct feedback alignment update – After the forward initialization of the network, assuming a non-
zero error at the output layer ϵL, we perturb the equilibrium by taking a first weight update according
to Eq. (6), using PC’s last layer error neurons:

Θ̃ℓ = Θℓ +∆Θ̃ℓ

= Θℓ − α
(
f ′(Θℓϕℓ)⊙ (Ψℓ+1δL)ϕ

⊤
ℓ

)
= Θℓ + α

(
f ′(Θℓϕℓ)⊙ (Ψℓ+1ϵL)ϕ

⊤
ℓ

)
,

(17)

which can be performed in parallel for each layer, as there is no recursive dependence.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Direct Kolen-Pollack Predictive Coding (DKP-PC)
1: for each (x, y) ∈ D do

0) Forward initialization
2: ϕ0 ← x
3: for ℓ = 1 to L− 1 do ▷ Sequential
4: ϕℓ ← f(Θℓ−1ϕℓ−1)
5: end for
6: ϕL ← y
7: ϵL ← y − f(ΘL−1ϕL−1)

1) Direct Feedback Alignment update
8: for ℓ = 0 to L− 1 do ▷ Parallel
9: Θℓ ← Θℓ + α

(
f ′(Θℓϕℓ)⊙ (Ψℓ+1ϵL)ϕ

⊤
ℓ

)
10: end for

2) Inference phase
11: for t = 0 to T do ▷ T=1 for DKP-PC
12: for ℓ = 1 to L do ▷ Parallel
13: ϵℓ ← ϕℓ − f(Θℓ−1ϕℓ−1)
14: ϕℓ ← ϕℓ − γ ∂F

∂ϕℓ

15: end for
16: end for

3) Learning phase
17: for ℓ = 0 to L− 1 do ▷ Parallel
18: Θℓ ← Θℓ − α ∂F

∂Θℓ

19: end for
4) Direct Kolen-Pollack update

20: for ℓ = 1 to L− 1 do ▷ Parallel
21: Ψℓ ← Ψℓ + αϕℓϵ

⊤
L

22: end for
23: end for

Inference phase – After this update, an error term is generated at every layer since the first time step:

∥ϵℓ(0)∥22 = ∥ϕℓ(0)− f(Θ̃ℓ−1ϕℓ−1(0))∥22 > 0, (18)
where ϕℓ(0) = f(Θℓ−1ϕℓ−1(0)) after forward initialization. This provides a non-zero error term
instantaneously in every layer-wise component of the FE in Eq. (12). Consequently, every layer
can independently update its neural activity according to Eq. (14), without performing null updates
while waiting for the propagation of the error from the last layer. Thus, the single-step neural activity
optimization performed takes the following form:

∆ϕℓ = γ
(
(Jf (Θ̃ℓϕℓ) Θ̃ℓ)

⊤ ϵℓ+1 − ϵℓ

)
. (19)

Furthermore, in contrast to standard PC, the neural activity now incorporates the information in-
jected into the forward weights by the preliminary DKP update. In Appendix A.4.1, we show the-
oretically in Eq. (64) that, under linear assumptions, this corresponds to enforcing alignment and
regularization through the single-step neural activity update, which in turn improves the alignment
of the forward and feedback weights, as further supported by empirical evidence in Appendix A.4.2.
Lastly, although the update in Eq. (19) is applied only once to maximize the acceleration of PC
networks afforded by DKP-PC, our method is not limited to this setting. As further discussed in
Appendix A.4.3, DKP-PC can leverage the same trade-off as standard PC networks, it can further
minimize the network’s FE to achieve higher classification accuracy by making use of multiple
inference steps, at the cost of increased training time.

Learning phase and DKP update – After this single local update, both feedforward and feedback
weight matrices are updated, which can be fully parallelized. Starting from the feedforward weight
matrices Θℓ, the update rule is unchanged from the standard PC update in Eq. (15), with the differ-
ence of using the neural activity resulting from Eq. (19). Feedback weight matrices Ψℓ now also
incorporate PC’s optimized neural activity:

∆Ψℓ = −α
(
ϕ∗
ℓδ

⊤
L

)
= α

(
ϕ∗
ℓ ϵ

⊤
L

)
. (20)
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With DKP-PC, we introduce the first PC variant that is fully parallelizable.Although its sequential
formulation between stages may appear to challenge parallelizability and strict biological plausi-
bility, each stage relies exclusively on locally available variables. This enables full parallelization
across layers and preserves the locality of computation throughout the entire learning process, which
is a hallmark of biologically plausible learning.As a result, the backward time complexity of the net-
work is reduced from O(L) to O(1), as it no longer depends on the network depth L. We note that
DKP-PC goes beyond the incremental predictive coding (iPC) algorithm (Salvatori et al., 2024),
which delivers more stable training by alternating between neural activity updates Eq. (14) and
feedforward weight updates Eq. (15). While iPC partially unlocks PC’s parallelization potential, it
requires full-batch training to do so, whereas DKP-PC achieves this independently of the training
batch size.

4 RESULTS

In this section, we assess DKP-PC against BP, DKP, PC, iPC, and center-nudging PC (CN-PC), in
terms of classification performance and training speed.

Setup – We evaluate the scalability of DKP-PC from multi-layer perceptrons (MLPs) to VGG-like
convolutional neural networks (CNNs) (Simonyan & Zisserman, 2014). For the MLP experiments,
a three-layer architecture is evaluated on MNIST and Fashion-MNIST (Yann, 2010; Xiao et al.,
2017). For the CNN experiments, we assess the performance of VGG-7 and VGG-9 on the CIFAR-
10, CIFAR-100, and Tiny ImageNet datasets (Krizhevsky et al., 2009; Le & Yang, 2015). For
comparability with prior PC works and to facilitate future benchmarking, we employ the architec-
tures reported by Pinchetti et al. (2024) in their discriminative mode experiments, and report their
performance for PC, iPC and BP. Additional implementation details are reported in Appendix A.5.
All implementations are based on the PyTorch framework and are available on GitHub. 2

Classification performance – The classification results are summarized in Table 1. For the MLP
architecture, all algorithms achieve comparable performance on both MNIST and FMNIST, with
local algorithms even surpassing the test accuracy of BP. For VGG-7 and VGG-9 on CIFAR-10 and
CIFAR-100, DKP-PC outperforms DKP, PC and iPC, achieving up to 14% higher top-1 accuracy for
VGG-9 on CIFAR-100 compared to standard PC, and 9% higher top-1 accuracy than its more stable
variant, iPC. However, CN-PC is the best local learning algorithm for all the settings mentioned so
far. When moving to the Tiny ImageNet dataset, representing the most complex one evaluated in
our experiments, we can see that DKP-PC outperforms all the local learning algorithms, achieving a
final test accuracy of 35.04%, compared to 31.50% for CN-PC. Furthermore, DKP-PC outperforms
vanilla DKP in every setup evaluated, marking a gap of even 13% top-1 accuracy for VGG-7 on
CIFAR-100. Interestingly, by leveraging the complementary strengths of DKP and PC, DKP-PC
consistently delivers higher accuracy than either method alone and substantially narrows the perfor-
mance gap with BP, particularly in deeper architectures where local learning typically struggles.

Training speed – Table 2 shows the training times for one epoch, in seconds, for BP, DKP, PC,
iPC, and DKP-PC, averaged over 5 trials, using the same experimental settings as in Table 1. CN-
PC is omitted since, after nudging the final layer, its training dynamics match those of standard
PC (up to the update sign (Pinchetti et al., 2024)). Importantly, DKP-PC requires only a single
PC inference step to achieve the accuracies reported in Table 1. In contrast, PC models typically
need a number of inference steps equal to or larger than the network depth to reach the reported
accuracy (Pinchetti et al., 2024). Consequently, in our timing evaluation, we set the number of PC
inference steps equal to the network depth. Therefore, the reported PC training times should be
interpreted as a lower bound. All measurements were performed using PyTorch on an NVIDIA
RTX A6000 GPU where the parallelization opportunities offered by DKP and DKP-PC have not
been leveraged, as they would require the use of custom CUDA kernels3. These models were thus
executed sequentially, a setting in which BP naturally exploits highly-optimized hardware mapping
and execution. Therefore, despite only highlighting speedup through reduced inference-phase steps
and not through parallelization, the speedup achieved by DKP-PC compared to other PC algorithms

2Link omitted to preserve the double-blind review process. The GitHub repository will also contain all
hyperparameters for reproducibility.

3A standard parallelization of DKP-PC in PyTorch introduces significant thread management and synchro-
nization overhead, which cancels out the potential speedup.
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Table 1: Test accuracy in % (mean ± standard deviation) averaged over 5 random seeds. Results
for PC, iPC, CN-PC and BP are taken from Pinchetti et al. (2024). The best results among local
algorithms are highlighted in bold.

% Accuracy DKP PC iPC CN-PC DKP-PC BP

MLP
MNIST 98.03±0.10 98.26±0.04 98.45±0.09 98.23±0.09 98.02±0.09 98.29±0.08

FashionMNIST 88.86±0.13 89.58±0.13 89.90±0.06 89.56±0.05 89.42±0.25 89.48±0.07

VGG-7
CIFAR-10 77.98±0.39 81.91±0.30 80.15±0.18 88.40±0.12 82.36±0.18 89.91±0.10

CIFAR-100 (Top-1) 36.96±0.62 37.52±2.60 43.99±0.30 64.76±0.17 50.42±0.38 65.36±0.15

CIFAR-100 (Top-5) 64.93±0.46 66.73±2.37 73.23±0.30 84.65±0.18 77.24±0.60 84.41±0.26

VGG-9
CIFAR-10 77.12±0.33 75.33±0.25 79.02±0.21 87.19±0.41 81.95±0.19 90.02±0.18

CIFAR-100 (Top-1) 46.07±1.00 39.57±0.18 44.76±0.40 58.92±1.61 53.80±0.64 65.51±0.23

CIFAR-100 (Top-5) 72.80±1.06 66.90±0.26 72.88±0.29 81.56±0.63 79.26±0.63 84.70±0.28

Tiny ImageNet (Top-1) 29.61±0.60 21.78±0.15 26.34±0.03 31.50±0.70 35.04±2.64 65.51±0.23

Tiny ImageNet (Top-5) 53.03±0.73 44.43±0.09 50.48±0.05 54.67±0.68 58.61±3.12 84.70±0.28

Table 2: Training time per epoch in seconds (mean ± standard deviation), averaged over 5 trials.

Seconds DKP PC iPC DKP-PC BP

MLP
MNIST 4.70±0.10 4.71±0.06 4.79±0.09 4.74±0.09 4.70±0.06

FashionMNIST 4.62±0.06 4.77±0.13 5.07±0.13 4.70±0.14 4.62±0.07

VGG-7
CIFAR-10 7.21±0.26 31.39±0.20 54.48±0.12 11.13±0.09 7.27±0.19

CIFAR-100 7.11±0.06 31.48±0.17 54.69±0.22 11.67±0.04 7.15±0.04

VGG-9
CIFAR-10 7.21±0.09 34.10±0.15 69.34±0.10 12.06±0.03 7.09±0.08

CIFAR-100 7.17±0.06 34.18±0.04 69.73±0.09 12.53±0.01 6.95±0.05

Tiny ImageNet 35.37±3.57 158.48±1.59 303.14±0.19 54.10±0.13 38.27±5.45

is notable. Indeed, while on very small networks GPU and kernel overheads dominate the runtime,
making algorithmic differences negligible, as depth increases the computational gap grows sharply.
On the evaluated CNNs, DKP-PC delivers approximately an average training time reduction of 64%
compared to PC and 81% compared to iPC. We elaborate further on the computational trade-offs of
DKP-PC in Appendix A.6.

5 CONCLUSION AND FUTURE WORK

We introduced DKP-PC, the first training algorithm that releases PC’s feedback error delay and
exponential decay toward enabling fully parallelized, local learning. We evaluated its classifica-
tion performance, training speed, and computational efficiency against BP, DKP, PC, and iPC. Our
results show that, by accelerating PC with DKP, DKP-PC scales better than the evaluated local-
learning algorithms, while exhibiting a substantial improvement in computational efficiency and
training time compared to PC and its newer variants iPC and CN-PC. These results indicate that
local learning rules can approach BP’s efficiency while narrowing the scalability gap, which is par-
ticularly relevant for neuromorphic computing and on-chip learning (Millidge et al., 2022a; Frenkel
et al., 2023). Future work should focus on custom CUDA kernels to address the thread management
and synchronization overheads of the current PyTorch implementation. Indeed, despite already a
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significant speed-up compared to PC, the training time of DKP-PC will still lag behind that of BP
as long as parallelization opportunities are not fully exploited. Furthermore, as feedback matrices
introduce memory overhead, sparsity and quantization of feedback weights should be explored, as
incentivized by prior work (Crafton et al., 2019; Han & Yoo, 2019). Lastly, this novel combination
of feedback-alignment methods and PC might pave the way for a new class of algorithms focused
on exploiting the synergy between the two frameworks and leveraging their specific dynamics. An
interesting research direction is to directly use the feedback information to perturb the neural ac-
tivity dynamics, without relying on a preliminary weight update step, thereby outlining faster and
more efficient local update rules for the neural activity dynamics. Future work could also focus on
a tailored integration of DKP with advanced PC variants, such as nudging PC based on equilibrium
propagation (Scellier & Bengio, 2017; Scellier et al., 2023; Pinchetti et al., 2024), combining their
dynamics with the DKP learning rules for both forward and feedback weights. This integration
could allow the different formulations to complement each other and further reduce the performance
gap with BP.

6 ETHICS STATEMENT

We affirm that this work fully adheres to the ICLR Code of Ethics. This study does not involve
human subjects and relies exclusively on well-known open-source datasets. The research presents
no conflicts of interest and does not raise any privacy, security, or safety concerns. All experiments,
results, and comparisons have been conducted and presented with scientific integrity, ensuring accu-
racy, transparency, and reproducibility. Care has been taken to ensure fairness in the evaluation and
comparison of methods, avoiding bias in reporting or interpretation.

7 REPRODUCIBILITY STATEMENT

We are fully committed to ensuring the reproducibility of our results and research. We provide
detailed mathematical derivations and pseudocode to support a thorough theoretical understanding
of our method. Additionally, the appendix contains a comprehensive description of the experimental
settings and technical details to enable fair and complete reproducibility. Upon acceptance, we
will include a GitHub repository containing all code, experiments, and parameters necessary to
reproduce all results reported in this manuscript. These measures ensure transparency, integrity, and
reproducibility in accordance with the ICLR Code of Ethics.
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A APPENDIX

A.1 CONVERGENCE OF FEEDBACK MATRICES UNDER THE DIRECT KOLEN–POLLACK
ALGORITHM

In this appendix, we extend the empirical observations of Webster et al. (2020) by providing a
mathematical argument for why DKP achieves a better alignment with BP than DFA. While their
work demonstrates this empirically, it does not provide a formal theoretical justification, instead
attributing the behavior to analogies with KP. However, while it has been proven for KP that the
feedback matrices Ψℓ converge to Θ⊤

ℓ for all layers (Kolen & Pollack, 1994; Akrout et al., 2019), in
DKP this result strictly holds only for the last layer, as all other hidden layers have a dimensionality
mismatch between Ψℓ and Θℓ. Here, we offer a novel theoretical perspective on the work of Webster
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et al. (2020), demonstrating that DKP drives the feedback matrices toward values approximating the
chain of transposed forward weights, similar to BP, up to the Moore-Penrose pseudoinverse.

Let us consider a feedforward neural network with L layers, where dℓ denotes the number of neurons
at layer ℓ. The weight matrix Θℓ ∈ Rdℓ+1×dℓ maps activations from layer xℓ ∈ Rdℓ to the next layer
xℓ+1 ∈ Rdℓ+1 , according to

xℓ+1 = f(Θℓxℓ) , (21)
where f(·) denotes an arbitrary non-linear activation function. In the following derivations, we
assume an identity activation function, so that the derivative of the activation function can be omitted.

In DFA, error feedback is provided by fixed random matrices Ψℓ ∈ Rdℓ×dL that project the output
error term δL directly to each hidden layer ℓ. These matrices replace the layer-specific error term δℓ
used in BP, computed by transporting the error backward from the next layer through the transposed
weight matrix Θ⊤

ℓ−1, as described by

δℓ = Θ⊤
ℓ+1δℓ+1. (22)

In DFA, as illustrated in Figure 1, this layer-specific error term δℓ is instead approximated by

δ̃ℓ = ΨℓδL. (23)

In contrast, DKP allows the feedback matrices to be updated following the local update rule

∆Ψℓ = xℓ δ
⊤
L . (24)

With both forward and feedback weights subject to a decay term, this learning has been empirically
shown to enable Ψℓ to provide a more BP-aligned update for Θℓ compared to standard DFA (Webster
et al., 2020). We extend their work by demonstrating that the feedback matrices gradually align with
the pseudoinverses of the forward weight matrices in a recursive dependency, thereby yielding a
closer approximation of BP error propagation compared to DFA.

Starting from the last layer, the update rule for the weight matrix preceding it, denoted as ΘL−1 ∈
RdL×dL−1 , is the same for BP, DFA, and DKP, and is given by

∆ΘL−1 = −α
(
δLx

⊤
L−1 +ΘL−1

)
, (25)

where α ∈ (0, 1) is the learning rate, and the second term of the update is the weight decay term.
According to Eq. (24) and assuming the same learning rate for the feedback weights, the update rule
for the feedback matrix connecting the last layer to the penultimate one is given by

∆ΨL−1 = −α
(
xL−1δ

⊤
L +ΨL−1

)
. (26)

In this specific case, ΘL−1 has the shape of Ψ⊤
L−1 and their updates are transposes of each other. As

training progresses, both matrices converge to the same value, since the contribution of the initial
condition vanishes under the effect of the learning rate α (Kolen & Pollack, 1994; Akrout et al.,
2019). Indeed, following KP, by defining

ΩL−1(t+ 1) = ΘL−1(t+ 1)−Ψ⊤
L−1(t+ 1), (27)

and using the update rules Eq. (25) and Eq. (26), we obtain

ΩL−1(t+ 1) = (ΘL−1(t) + ∆ΘL−1(t))−
(
Ψ⊤

L−1(t) + ∆Ψ⊤
L−1(t)

)
= ΘL−1(t)−Ψ⊤

L−1(t)− α
(
δL(t)x

⊤
L−1(t) + ΘL−1(t)− δL(t)x

⊤
L−1(t)−Ψ⊤

L−1(t)
)

= ΘL−1(t)−Ψ⊤
L−1(t)− α

(
ΘL−1(t)−Ψ⊤

L−1(t)
)

=
(
1− α

) (
ΘL−1(t)−Ψ⊤

L−1(t)
)

=
(
1− α

)
ΩL−1(t),

(28)
We can now further unroll Eq. (28) in time, resulting in

ΩL−1(t+ 1) =
(
1− α

)t
ΩL−1(0)

=
(
1− α

)t (
ΘL−1(0)−Ψ⊤

L−1(0)
)
.

(29)
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Therefore, ΩL−1(t) converges to zero as training progresses, with the initial difference between the
forward and feedback matrices decaying exponentially due to the learning rate α. In other words,
we have that

lim
t→∞

ΩL−1(t) = 0 =⇒ lim
t→∞

Ψ⊤
L−1(t) = ΘL−1(t). (30)

The DKP update rule for ΘL−2 is given by

∆ΘL−2 = −α
(
δ̃L−1x

⊤
L−2 +ΘL−2

)
= −α

(
ΨL−1δLx

⊤
L−2 +ΘL−2

)
,

(31)

which effectively approximates the BP update for ΘL−2 and ultimately matches it as t → ∞, as
using Eq. (30) yields

lim
t→∞

∆ΘL−2 = −α
(
Θ⊤

L−1δLx
⊤
L−2 +ΘL−2

)
. (32)

Here and throughout the rest of this appendix, we omit the time index since we consider the limit
t → ∞. Therefore, we approximate ΨL−1 by Θ⊤

L−1, noting that this approximation introduces a
small error, since exact equality holds only at the limit.

Unfortunately, the convergence obtained for ΨL−1 in Eq. (30) does not directly apply to ΨL−2 ∈
RdL−2×dL , as its dimensions do not match those of ΘL−2 ∈ RdL−1×dL−2 . The update rule for
ΨL−2, given by

∆ΨL−2 = −α
(
xL−2δ

⊤
L +ΨL2

)
, (33)

can be substituted into Eq. (32), leading to

∆ΘL−2 = −α
(
Θ⊤

L−1δLx
⊤
L−2 +ΘL−2

)
= −α

(
Θ⊤

L−1

(
−α−1∆Ψ⊤

L−2 −Ψ⊤
L−2

)
+ΘL−2

)
= Θ⊤

L−1∆Ψ⊤
L−2 − α

(
ΘL−2 −Θ⊤

L−1Ψ
⊤
L−2

)
.

(34)

Here, we neglect the decay terms, since they vanish asymptotically during training, as previously
discussed for ΘL−1 and ΨL−1. We can now transpose both sides, and multiply them by Θ⊤

L−1,
resulting in

∆ΨL−2ΘL−1Θ
⊤
L−1 = ∆Θ⊤

L−2Θ
⊤
L−1. (35)

This allows us to link the update of ΨL−2 to that of ΘL−2 through

∆ΨL−2 = ∆Θ⊤
L−2Θ

⊤
L−1

(
ΘL−1Θ

⊤
L−1

)−1

= ∆Θ⊤
L−2Θ

+
L−1,

(36)

where Θ+
L−1 ∈ RdL−1×dL is the Moore-Penrose pseudoinverse of ΘL−1, assuming the latter has

full row rank. On the one hand, the BP update of ΘL−3 is given by

∆ΘL−3 = −α
(
δL−2x

⊤
L−3 +ΘL−3

)
= −α

(
Θ⊤

L−2δL−1x
⊤
L−3 +ΘL−3

)
= −α

(
Θ⊤

L−2Θ
⊤
L−1δLx

⊤
L−3 +ΘL−3

)
.

(37)

On the other hand, by making use of Eq. (36), which is valid under the previously mentioned as-
sumptions and approximations, the DKP update can be expressed as

∆ΘL−3 = −α
(
δ̃L−2x

⊤
L−3 +ΘL−3

)
= −α

(
Ψ⊤

L−2δLx
⊤
L−3 +ΘL−3

)
= −α

(
Θ⊤

L−2Θ
+
L−1δLx

⊤
L−3 +ΘL−3

)
.

(38)

Hence, the DKP update of ΘL−3 approximates the BP one, and is exact if Θ+
L−1 = Θ⊤

L−1, meaning
that ΘL−1 is orthogonal. We now move on to the DKP update of ΨL−3, given by

∆ΨL−3 = −α
(
xL−3δ

⊤
L +ΨL−3

)
. (39)

By repeating the same procedure as for ΨL−2, we substitute Eq. (39) into Eq. (38), resulting in

∆ΘL−3 = −α
(
Θ⊤

L−2Θ
+
L−1

(
− α−1∆ΨL−3 −ΨL−3

)⊤
+ΘL−3

)
= Θ⊤

L−2Θ
+
L−1∆Ψ⊤

L−3 − α
(
ΘL−3 −Θ⊤

L−2Θ
+
L−1Ψ

⊤
L−3

)
.

(40)
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We now again do not consider the terms decaying with time, as they tend to zero as the training
goes on, and focus only on the term the update converges to. As done previously, after dropping the
decay term, we transpose both sides, yielding

∆ΨL−3

((
Θ+

L−1

)⊤
ΘL−2

)
= ∆Θ⊤

L−3, (41)

and multiply them by
((

Θ+
L−1

)⊤
ΘL−2

)⊤
, leading to

∆ΨL−3

((
Θ+

L−1

)⊤
ΘL−2

)((
Θ+

L−1

)⊤
ΘL−2

)⊤
= ∆Θ⊤

L−3

((
Θ+

L−1

)⊤
ΘL−2

)⊤
. (42)

Lastly, by multiplying both sides by the inverse of the product of matrices on the right of ∆ΨL−3,
we obtain

∆ΨL−3 = ∆Θ⊤
L−3

((
Θ+

L−1

)⊤
ΘL−2

)⊤ [((
Θ+

L−1

)⊤
ΘL−2

)((
Θ+

L−1

)⊤
ΘL−2

)⊤]−1

= ∆Θ⊤
L−3

((
Θ+

L−1

)⊤
ΘL−2

)+
,

= ∆Θ⊤
L−3

((
Θ⊤

L−1

)+
ΘL−2

)+
,

(43)

where again, the feedback matrix includes a chain of forward matrix pseudoinverses. More gener-
ally, under the assumption of t→∞ and that Θℓ is a full row rank rectangular matrix, we have

ΨL−ℓ =

{
Θ⊤

L−ℓ if ℓ = 1,

Θ⊤
L−ℓ

(
Ψ⊤

L−ℓ+1

)+
if 1 < ℓ < L,

(44)

It should be noted that in practice, the assumptions we made are never perfectly met, since neural
network training does not proceed for an infinite number of iterations, meaning that the decay terms
we neglected do not completely vanish, and also involves the derivatives of the non-linear activa-
tion functions. Nonetheless, our derivation demonstrates how DKP extends DFA by updating the
feedback random matrices with terms that also appear in BP’s error propagation, providing a clearer
understanding of why DKP achieves better alignment and consequently improves performance com-
pared to standard DFA Webster et al. (2020).

A.2 ERROR PROPAGATION DELAY

In this section, we introduce and provide a formal proof of Theorem 1, which quantifies the delay in
error propagation in forward-initialized PC networks. Specifically, we show that the feedback error
signal reaches a given layer with a delay equal to its distance from the output (Zahid et al., 2023).
Theorem 1 (Error propagation delay). Consider a forward-initialized PC network with discrete-
time updates. Assuming an incorrect prediction, the neural activity ϕℓ at layer ℓ requires at least
t̂ = L− ℓ inference-phase steps before it deviates from equilibrium and begins to evolve according
to Eq. (14) (proof provided in Appendix A.2).

Proof. Let us consider a forward-initialized PC network with L+1 layers, where the neural activity
evolves in discrete time steps t ∈ N0, and each layer is initialized as ϕℓ(0) = f(Θℓ−1ϕℓ−1(0)).
The error neurons at layer ℓ are defined as ϵℓ(0) = ϕℓ(0)− f(Θℓ−1ϕℓ−1(0)). By construction, after
forward initialization, all error neurons vanish and the network’s dynamics is at equilibrium:

∥ϵℓ(0)∥22 = ∥ϕℓ(0)− f(Θℓ−1ϕℓ−1(0))∥22
= ∥ϕℓ(0)− ϕℓ(0)∥22
= 0 for 0 < ℓ ≤ L.

(45)

At the beginning of the inference phase, where the network’s neural activity evolves to minimize
Eq. (12), we clamp the target vector y to the output layer ϕL. Assuming an incorrect prediction, i.e.,
y − f(ΘL−1ϕL−1(0)) ̸= 0, the prediction error satisfies

∥ϵL(0)∥22 = ∥y − f(ΘL−1ϕL−1(0))∥22 ≥ 0. (46)
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Consequently, according to Eq. (14), the activity at layer L− 1 has a non-zero update at t = 1:
ϕL−1(1) = ϕL−1(0) + ∆ϕℓ(0)

= ϕL−1(0)− γ
∂F

∂ϕL−1
(0)

= ϕL−1(0)− γ
(
JϕL−1

(0)⊤ϵL − ϵL−1

)
= ϕL−1(0)− γ

(
JϕL−1

(0)⊤ϵL

)
,

(47)

where Jϕℓ
(0) = ∂f(Θℓϕℓ)

∂ϕℓ
(0) ∈ Rdℓ+1×dℓ is the Jacobian matrix of prediction by layer ℓ with respect

to its neural activity. For all preceding layers, we have that ∆ϕℓ(0) = 0, since both ϵℓ and ϵℓ+1 are
null.

After ϕL−1 has been updated at time t = 1, the corresponding error becomes non-zero:
∥ϵL−1(1)∥22 = ∥ϕL−1(1)− f(ΘL−2, ϕL−2(1))∥22

= ∥ϕL−1(1)− f(ΘL−2, ϕL−2(0))∥22
= ∥ϕL−1(1)− ϕL−1(0)∥22
= ∥∆ϕL−1(1)∥22
≥ 0.

(48)

At the subsequent timestamp t = 2, layer L− 2 also receives a non-zero error and updates accord-
ingly:

ϕL−2(2) = ϕL−2(1) + ∆ϕL−2(1)

= ϕL−2(1)− γ
∂F

∂ϕL−2
(1)

= ϕL−2(0)− γ
∂F

∂ϕL−2
(0)

= ϕL−2(0)− γ
(
JϕL−2

(0)⊤ϵL−1 − ϵL−2

)
= ϕL−2(0)− γ

(
JϕL−2

(0)⊤ϵL−1

)
,

(49)

where ϕL−2(1) = ϕL−2(0) and ∂F
∂ϕL−2

(1) = ∂F
∂ϕL−2

(0), since ϕL−2 has remained unchanged at
t = 1, due to ϵL−2(0) = ϵL−1(0) = 0. Again, at time t = 2 all previous layers ϕℓ(2) , 0 < ℓ <
L − 2 remain unchanged, as ϵL−ℓ(1) = ϵL−ℓ+1(1) = 0. By induction, it follows that under these
assumptions, any layer ℓ requires at least t̂ = L − ℓ timestamps to update its neural activity and
corresponding error neurons.

For the general case, at a specific time t, the error neurons at layer L− t can be expressed as
∥ϵL−t(t)∥22 = ∥ϕL−t(t)− f(ΘL−t−1, ϕL−t−1(t− 1))∥22

= ∥ϕL−t(t)− f(ΘL−t−1, ϕL−t−1(0))∥22
= ∥ϕL−t(t)− ϕL−t(0)∥22,

(50)

where ϕL−t(t) − ϕL−t(0) ̸= 0 if and only if ϕL−t(t) ̸= ϕL−t(0). Crucially, this condition can
occur only after t̂ = L − ℓ timestamps. According to Eq. (14), the update of layer L − t depends
on the errors from the current and subsequent layers, ϵL−t and ϵL−t+1, respectively. Since ϵL−t

is itself blocked until ϕL−t changes, the driving term is provided by ϵL−t+1. However, the latter
becomes non-zero only after the previous layer has been updated. Therefore, the propagation of
activity changes and error signals strictly follows the network’s hierarchy, advancing at most one
layer per timestamp, starting from ϵL at t = 0 and reaching layer ℓ only after t̂ = L− ℓ steps.

A.3 ERROR EXPONENTIAL DECAY

In this section, we introduce and provide a formal proof of Theorem 2, showing that the squared-ℓ2-
norm of the feedback error signal for a layer ℓ generated at time t̂ = L− ℓ is bounded by a quantity
that decays exponentially proportional to t (Goemaere et al., 2025).
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Theorem 2 (Error exponential decay). Consider a forward-initialized PC network with discrete-
time updates. Assuming an incorrect prediction, the squared ℓ2-norm of the feedback error signal
at layer ℓ, ∥ϵℓ(t̂)∥22, at time t̂ = L− ℓ, is upper-bounded by a quantity that decays ∝ γ2(L−ℓ) (proof
provided in Appendix A.3).

Proof. Let us consider a forward-initialized PC network with L + 1 layers, where the neural
activity evolves in discrete time steps t ∈ N0, and each hidden layer ϕℓ(t) is initialized as
ϕℓ(0) = f(Θℓ−1ϕℓ−1(0)). The error neurons are defined as ϵℓ(t) = ϕℓ(t) − f(Θℓ−1ϕℓ−1(t)).
Here, we make the time dependence of neural activities explicit, as they evolve with time during
the inference phase of PC. Considering the update of an arbitrary neuron ϕℓ−1 , 1 < ℓ ≤ L at time
t̂+ 1, with t̂ = L− ℓ:

ϕℓ−1(t̂+ 1) = ϕℓ−1(t̂)− γ
∂F

∂ϕℓ−1
(t̂), (51)

where we can move the on the left side the current neural activity value, obtaining:

ϕℓ−1(t̂+ 1)− ϕℓ−1(t̂) = −γ
∂F

∂ϕℓ−1
(t̂)

∆ϕℓ−1(t̂+ 1) = −γ ∂F

∂ϕℓ−1
(t̂)

= −γ

(
ϵℓ−1(t̂)−

∂f
(
Θℓ−1ϕℓ−1(t̂)

)
∂ϕℓ−1(t̂)

⊤

ϵℓ(t̂)

)

= γ

(
∂f
(
Θℓ−1ϕℓ−1(t̂)

)
∂ϕℓ−1(t̂)

⊤

ϵℓ(t̂)

)
,

(52)

where ϵℓ−1(t̂) = 0 is implied by Theorem 1, since L − ℓ − 1 < t̂. We defined
∂f(Θℓ−1ϕℓ−1(t̂))

∂ϕℓ−1(t̂)
=

Jϕℓ−1
∈ Rdℓ×dℓ−1 the Jacobian matrix of f at layer ℓ − 1. Here, we have omitted time in ϕℓ−1

for brevity, as ϕℓ−1(t̂) = ϕℓ−1(0), following again from Theorem 1. Continuing from Eq. (52), we
expand the error neurons according to their definition and apply Theorem 1, resulting in:

∆ϕℓ−1(t̂+ 1) = γJ⊤
ϕℓ−1

[
ϕℓ(t̂)− f

(
Θℓ−1ϕℓ−1(t̂)

)]
= γJ⊤

ϕℓ−1

[
ϕℓ(t̂− 1)− γ

∂F

∂ϕℓ
(t̂− 1)− f (Θℓ−1ϕℓ−1(0))

]
= γJ⊤

ϕℓ−1

[
ϕℓ(0)− γ

∂F

∂ϕℓ
(t̂− 1)− f(Θℓ−1ϕℓ−1(0))

]
= γJ⊤

ϕℓ−1

[
f (Θℓ−1ϕℓ−1(0))− γ

∂F

∂ϕℓ
(t̂− 1)− f (Θℓ−1ϕℓ−1(0))

]
,

(53)

where on the first line we have substituted ϕℓ(t̂) with its definition in Eq. (51). According to The-
orem 1, ϕℓ(t̂ − 1) = ϕℓ(0) as L − ℓ < t̂ − 1, thus this allows to re-write it using the forward
initialization definition, as done on the fourth line. By repeating the same steps as in Eq. (52), we
obtain

∆ϕℓ−1(t̂+ 1) = γJ⊤
ϕℓ−1

[
−γ ∂F

∂ϕℓ
(t̂− 1)

]
= γJ⊤

ϕℓ−1

[
−γ
(
ϵℓ(t̂− 1)− J⊤

ϕℓ
ϵℓ+1(t̂− 1)

)]
= γ2J⊤

ϕℓ−1
J⊤
ϕℓ
ϵℓ+1(t̂− 1).

(54)

By unrolling the formulation backward until the last layer, we get:

∆ϕℓ−1(t̂+ 1) = γL−ℓ+1

(
L−ℓ∏
i=0

J⊤
ϕℓ−1+i

)
ϵL(0). (55)
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By substituting Eq. (52) in Eq. (55), we can continue as follows:

γ
(
J⊤
ϕℓ−1

ϵℓ(t̂)
)
= γL−ℓ+1

(
L−ℓ∏
i=0

J⊤
ϕℓ−1+i

)
ϵL(0), (56)

which can be further simplified by eliding common terms, resulting in:

ϵℓ(t̂) = γL−ℓ

(
L−ℓ∏
i=1

J⊤
ϕℓ−1+i

)
ϵL(0). (57)

By writing the squared-ℓ2 norm of Eq. (57), we finally derive the upper-bound for the error term:

∥ϵℓ(t̂)∥22 = ∥γL−ℓ

(
L−ℓ∏
i=1

J⊤
ϕℓ−1+i

)
ϵL(0)∥22

≤ γ2(L−ℓ)

(
L−ℓ∏
i=1

∥J⊤
ϕℓ−1+i

∥22

)
∥ϵL(0)∥22.

(58)

A.4 THEORETICAL AND EMPIRICAL ANALYSIS OF DKP-PC INTEGRATION

In this appendix, we further analyse DKP-PC, providing the reader with additional theoretical and
empirical insights into the mechanisms through which the DKP and PC stages interact. Building
on the results presented in the main text, we show how the single-step neural activity optimization
introduced by the PC stage improves both the updates of the forward and feedback weights of the
network.

A.4.1 THEORETICAL ANALYSIS OF DKP-PC UPDATES

In this subsection, we derive analytically the neural activity and feedback weight updates within
the proposed DKP-PC algorithm. We will follow the steps of the DKP-PC algorithm outlined in
Algorithm 1. Besides, for the sake of mathematical tractability, we make the same assumption of
linearity of the network as in Appendix A.1.

1) Direct feedback alignment update – First, the forward weights Θℓ are updated using the approxi-
mate gradients δ̃ℓ = ΨℓδL, provided through the DKP feedback matrices Ψℓ. This results in updated
forward weights

Θ̃ℓ = Θℓ +∆Θℓ, (59)

where the DKP forward weights’ update is given by

∆Θℓ = −αδ̃ℓ+1ϕ
⊤
ℓ = −αΨℓ+1δLϕ

⊤
ℓ . (60)

2) Inference phase – The DKP forward weights’ update is followed by a single update of the neural
activity ϕℓ, aiming to minimize the network’s FE, as opposed to several steps for usual PC algorithms
for spreading the error information. This leads to the following optimized neural activity:

ϕ∗
ℓ = ϕℓ +∆ϕ̃ℓ. (61)

The updated neural activity ϕ∗
ℓ now incorporates the information injected in the forward weights

through the DKP update, as the error neurons are computed with the new forward weights values as
ϵ̃ℓ+1 = ϕℓ+1 − Θ̃ℓϕℓ, as shown by computing the neural activity update ∆ϕ̃ℓ based on the FE after
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the DKP weight update F̃ :

∆ϕ̃ℓ = −γ
∂F̃

∂ϕℓ

= γ
(
Θ̃⊤

ℓ ϵ̃ℓ+1 − ϵ̃ℓ

)
= γ

[
Θ̃⊤

ℓ

(
ϕℓ+1 − Θ̃ℓϕℓ

)
−
(
ϕℓ − Θ̃ℓ−1ϕℓ−1

)]
= γ

[
(Θℓ +∆Θℓ)

⊤
(ϕℓ+1 − (Θℓ +∆Θℓ)ϕℓ)− (ϕℓ − (Θℓ−1 +∆Θℓ−1)ϕℓ−1)

]
= γ

[
(Θℓ +∆Θℓ)

⊤
(ϕℓ+1 −Θℓϕℓ −∆Θℓϕℓ)− (ϕℓ −Θℓ−1ϕℓ−1 −∆Θℓ−1ϕℓ−1)

]
= γ

[
(Θℓ +∆Θℓ)

⊤
(ϵℓ+1 −∆Θℓϕℓ)− (ϵℓ −∆Θℓ−1ϕℓ−1)

]
= γ

[
Θ⊤

ℓ ϵℓ+1 − ϵℓ +∆Θ⊤
ℓ ϵℓ+1 − (Θℓ +∆Θℓ)

⊤
∆Θℓϕℓ +∆Θℓ−1ϕℓ−1

]
= γ

(
∇ϕℓ

F +∆Θ⊤
ℓ ϵℓ+1 − Θ̃⊤

ℓ ∆Θℓϕℓ +∆Θℓ−1ϕℓ−1

)
.

(62)

From Eq. (62), we can see how Eq. (61) can be reformulated as the original FE gradient with respect
to the neural activity before the DKP weight update, denoted as ∇ϕℓ

F , plus terms resulting from
the DKP weight update itself.

Note that, because of the forward-initialization of the network, we have ϕℓ+1 = Θℓϕℓ for ℓ < L−1,
except at layer L− 1, as ϕL has been clamped to the target label at the beginning of this stage. This
implies that, for intermediate layers ℓ = 1 to L− 1, the error nodes ϵℓ are equal to zero for a single
inference step. The DKP-PC neural activity update thus simplifies to

∆ϕ̃ℓ = γ
(
−Θ̃⊤

ℓ ∆Θℓϕℓ +∆Θℓ−1ϕℓ−1

)
. (63)

By now substituting the weight update term from Eq. (60) in Eq. (63), we obtain

∆ϕ̃ℓ = γ
(
−Θ⊤

ℓ ∆Θℓϕℓ −∆Θ⊤
ℓ ∆Θℓϕℓ +∆Θℓ−1ϕℓ−1

)
= αγ

(
Θ⊤

ℓ Ψℓ+1δLϕ
⊤
ℓ ϕℓ − αϕℓδ

⊤
LΨ⊤

ℓ+1Ψℓ+1δLϕ
⊤
ℓ ϕℓ −ΨℓδLϕ

⊤
ℓ−1ϕℓ−1

)
= αγ

(
∥ϕℓ∥22Θ⊤

ℓ Ψℓ+1δL − α∥ϕℓ∥22∥Ψℓ+1δL∥22ϕℓ − ∥ϕℓ−1∥22ΨℓδL
)

= αγ
(
∥ϕℓ∥22Θ⊤

ℓ δ̃ℓ+1 − ∥ϕℓ−1∥22δ̃ℓ
)

︸ ︷︷ ︸
Alignment term

−α2γ
(
∥ϕℓ∥22∥δ̃ℓ+1∥22ϕℓ

)
︸ ︷︷ ︸

Regularization term

.

(64)

The first term in the neural activity update quantifies the discrepancy between two estimates of the
error at layer ℓ, namely the direct projection of the output error δL onto layer ℓ, given by ΨℓδL = δ̃ℓ,
and the backward projection produced by PC from layer ℓ + 1 through the error node, given by
Θℓ⊤Ψℓ+1δL = Θ⊤

ℓ δ̃ℓ+1. Note that these projections are respectively weighted by the squared ℓ2
norm of neural activities ϕℓ−1 and ϕℓ. The second term of the update is an activity regulariza-
tion term whose strength evolves dynamically throughout training and proportionally to ∥ϕℓ∥2 and
∥δ̃ℓ+1∥2 = ∥Ψℓ+1δL∥2. Note that this specific interpretation holds only in the single-step inference
phase regime, which is anyway the one considered in this paper.

3) Learning phase – Following the consecutive updates of the forward weights Θℓ and the neural
activity ϕℓ, the PC forward weights’ update, which aims to minimize the FE, is given by

∆Θ̃ℓ ∝
∂F̃

∂Θ̃ℓ

∝ ϵ̃ℓ+1ϕ
∗⊤
ℓ .

(65)

While the unrolled mathematical expression of this update under the DKP regime results in a com-
plex formulation that offers limited intuition, we empirically demonstrate in Appendix A.4.2 that
the alignment term injected into the neural activity, and consequently into the subsequent weight up-
date, is essential for achieving a more stable and stronger alignment between feedback and forward
weights, thereby providing clearer insight into its role within DKP-PC.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

4) Direct Kolen-Pollack update – Finally, the feedback matrices Ψℓ are updated following

∆Ψℓ ∝ ϕ∗
ℓ ϵ̃

⊤
L . (66)

As for the previous case, although the explicit derivation of this update leads to a complex expression
even in the linear case, our experiments in Appendix A.4.2 again confirm that the alignment compo-
nent introduced through the neural activity update, and thus propagated into the feedback matrices,
is crucial for obtaining better alignment between feedback and forward weights, demonstrating its
contribution within DKP-PC.

Our analysis shows that the initial DKP forward-weight update induces non-zero errors ϵℓ across all
layers, enabling the neural activities to be updated in a single inference step. This feature solves two
key limitations of PC: the error delay by generating non-zero errors right away, and the error expo-
nential decay, by directly projecting the output error δL to each layer through the feedback weights.
Furthermore, the optimized neural activity ϕ∗

ℓ from DKP-PC includes alignment information that is
successively injected into the PC forward weights’ update and the DKP feedback weights’ update.
This leads to faster convergence than PC or DKP individually, as it enables earlier and stronger er-
ror signals and improves the alignment between forward and feedback pathways, producing weight
updates that more closely approximate those of BP.

A.4.2 EMPIRICAL ANALYSIS OF GRADIENT ALIGNMENT

In this subsection, we empirically analyse the alignment between the forward weight gradients com-
puted according to DKP-PC and standard DKP algorithms, in comparison with BP. The alignment
is quantified using the cosine similarity cos(θ) ∈ [−1, 1], which measures the directional agreement
between two arbitrary vectors u ∈ Rn and v ∈ Rn as follows:

cos(θ) =
u · v
∥u∥∥v∥

, (67)

where ∥ · ∥ denote the Euclidean norm. The cosine similarity reaches a maximum value of 1 when
the vectors are perfectly aligned (θ = 0), a minimum value of −1 when they are diametrically
opposed (θ = π), and a value of 0 when the vectors are orthogonal (θ = π/2), indicating no
directional correlation. Figure 3 depicts the alignment across the nine layers of the VGG9-like CNN
from Section 4 trained for 50 epochs on CIFAR-100. For both DKP and DKP-PC networks, the
hyperparameters correspond to the best-performing configuration reported in Appendix A.5. All
curves consider instantaneous gradients, excluding weight decay and momentum contributions, and
are smoothed using an exponential moving average with a window of 100 batches. The gradient
for DKP-PC is computed by summing the gradients resulting from its DKP and PC phases. First,
we analyse the alignment’s behaviour of DKP-PC to that of standard DKP. Then, we analyse the
effect of disabling the update of feedback and forward weights after computing the neural activity
optimization, to empirically support our claims in the previous subsection.

From Figure 3, we can observe that, although standard DKP (brown curves) exhibits a positive gra-
dient alignment with BP, its convergence is slow, and the alignment progressively deteriorates with
increasing distance from the output layer, consistent with the analysis in Appendix A.1. Several
batches are required before reaching high cosine similarity, and alignment degradation is also ob-
served at the end of training, particularly in layers 6 and 7, consistently with observations made in
the FA literature (Refinetti et al., 2021). In contrast, DKP-PC (yellow curves) achieves a faster and
higher alignment with BP than standard DKP across all nine layers. DKP-PC indeed converges with
fewer batches and exhibits better and more stable alignment throughout training. These observa-
tions not only align with the improved performance observed in the classification experiments but
also support the theoretical analysis presented in the previous subsection. As shown in Eq. (64), the
neural activity update incorporates both an alignment and a regularization terms, which contribute to
the forward weight update in Eq. (65). Consequently, this stage can be interpreted as a regularization
factor applied to the preliminary DKP update in DKP-PC, which over time stabilizes alignment and
compensates for the error introduced by the Moore–Penrose pseudoinverse (for both forward and
feedback weights). To further support this claim, Figure 3 also includes two versions of DKP-PC in
which the PC forward weight update and the DKP feedback weight update have respectively been
ablated. For DKP-PC without PC forward weight update (light blue curves), alignment collapses
in all hidden layers and deteriorates even in the output layer, highlighting the key role of injecting
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Figure 3: Forward weight gradients alignment across layers of a VGG9-like CNN trained for 50
epochs on CIFAR-100. Each curve shows the cosine similarity between the instantaneous forward-
weight gradient produced by DKP and DKP-PC algorithms, compared to the one computed with BP.
All gradients exclude weight decay and momentum and are smoothed using an exponential moving
average with a window of 100 batches. DKP (brown) displays positive but slow alignment with BP,
progressively deteriorating with increasing distance from the output layer. DKP-PC (yellow) gradi-
ent is computed as sum of the gradients resulting from DKP and PC stages. It achieves consistently
faster, higher, and more stable alignment across all layers compared to standard DKP. The light
blue curve shows that disabling the PC forward-weight update in DKP-PC causes alignment to col-
lapse in all layers, confirming its role in injecting alignment information into the forward weights.
The blue curve, obtained by disabling the feedback-weight update in DKP-PC, demonstrates that
the alignment and regularization terms introduced by the PC stage also improve the update of the
feedback matrices, resulting in worse alignment when disabled.

alignment information in the forward weights through the updated neural activity. Moreover, the
improvement in DKP-PC alignment also arises from the influence of the alignment and regular-
ization terms in Eq. (64) on the feedback matrix update via Eq. (66). This yields a better-aligned
update and again compensates for the distortion introduced by the Moore–Penrose pseudoinverse.
This claim is empirically supported by the results for DKP-PC without DKP feedback weight update
(blue curves). Consistent with expectations, alignment decreases relative to DKP-PC, exhibiting a
slower and less effective value in every layer.

Through this analysis, we complement the preceding theoretical subsection by empirically demon-
strating the synergy between the DKP and PC stages in DKP-PC. We show that DKP not only helps
PC overcome two of its main limitations, exponential error decay and error propagation delay, but
that PC, in turn, acts as a regularizer for the DKP update, improving gradient alignment with BP
across all layers and yielding a more effective learning algorithm. These results also reveal a possi-
ble alternative interpretation of DKP-PC: it may be viewed both as an acceleration mechanism for
training PC networks and, alternatively, as a method to enhance alignment in feedback-alignment ap-
proaches. Furthermore, DKP-PC achieves these improvements without compromising performance
or the locality of computations and updates, thereby preserving the hardware-friendly properties of
both PC and DKP.

A.4.3 EMPIRICAL ANALYSIS OF THE INFERENCE PHASE

In this section, we empirically analyse the inference phase of the DKP-PC algorithm and its incre-
mental version, denoted iDKP-PC. DKP-PC performs the update of the forward weights, given by
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Eq. (15) at the end of the inference phase, after optimizing the neural activity following Eq. (14).
In contrast, as introduced in Salvatori et al. (2024), iPC performs an update of the forward weights
after every step of the neural activity optimization. The same concept can be applied to DKP-PC
under a multiple–inference–steps regime (as opposed to the single-step regime considered in the
main text of the paper). Indeed, once the forward weights are perturbed by the DKP update, they
can be further optimized after each neural activity update, exactly as in iPC. The key difference is
that an error signal is already available at the very beginning of the inference phase, both for the
neural activity and for the forward weights.

Figure 4 compares the energy of four different four-layer MLP models trained on a Fashion-MNIST
batch and averaged over 10 trials, while varying the magnitude of the neural activity learning rate.
The curves depict the energy evolution during the inference phase for DKP-PC (blue), iDKP-PC
(light blue), PC (brown), and iPC (yellow). Both DKP-PC and iDKP-PC start from a higher en-
ergy than PC and iPC, as mitigating the error-delay problem provides an error term at every layer,
leading to larger energy values. In both cases, the incremental algorithms decrease toward a lower
minimum than the non-incremental ones. This follows from the additional degree of freedom intro-
duced by updating the forward parameters during inference. Interestingly, DKP-PC and iDKP-PC
respectively converge to similar energy values than PC and iPC, suggesting that after several neural
activity updates, the gradient term from PC in Eq. (62) dominates the dynamics, driving the net-
works toward similar low-energy regions. However, unlike standard PC, DKP-PC requires more
optimization steps to reach these low energy values, likely due to both the larger error present at
every layer and the presence of two distinct driving forces in the neural activity update: the stan-
dard PC gradient and the term implicitly introduced by DKP. Notably, the incremental version of
DKP-PC demonstrates a convergence speed similar to that of standard iPC instead. This suggests
that allowing forward parameters to update during inference compensates for the additional com-
plexity introduced by DKP, effectively stabilizing the dynamics and enabling the network to exploit
the immediate availability of error signals.

Figure 4: Energy evolution of four-layer MLP networks on a Fashion-MNIST batch for three differ-
ent neural activity learning rate magnitudes. DKP-PC and its incremental variant are shown in blue
and light blue, respectively, while standard PC and iPC are represented in brown and yellow. Both
DKP-PC variants start from higher energy values due to the immediate error term at every layer,
and converge to levels similar to those of the standard PC and iPC networks. Although DKP-PC ex-
hibits slower convergence due to the additional terms in the neural activity dynamics, its incremental
version equals the convergence speed of iPC across all evaluated learning rates, suggesting that up-
dating forward parameters during inference effectively compensates for the additional complexity
introduced by DKP.

While in principle the neural activity optimization in PC can be run until full minimization of the
FE, in practice it is performed for a finite number of steps (Pinchetti et al., 2024), typically exceed-
ing the network’s depth to achieve the best results (Goemaere et al., 2025). Figure 5 presents the
corresponding behaviour for DKP-PC and iDKP-PC by reporting their test accuracy as a function
of the total number of inference steps, with boxplots showing the distribution across 30 trials. The
evaluated networks are the same as for Figure 4. Both algorithms exhibit a positive correlation be-
tween the number of neural activity optimization steps per batch and the final test accuracy, with
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higher numbers of inference steps yielding the best results in both cases. This also highlights a fun-
damental trade-off for DKP-PC networks, consistently with PC networks, between training time and
performance. Nevertheless, as also noted in the main text, our proposed DKP-PC approach enables
a better exploitation of the trade-off, as even a single inference step is sufficient to achieve results
that surpass both baselines and advanced PC variants.

Figure 5: Test accuracy distributions over 30 trials are shown as a function of the total number
of neural activity optimization steps. Blue boxplots correspond to a four-layer MLP trained on
Fashion-MNIST with DKP-PC, while light blue boxplots show the same architecture trained with
iDKP-PC. In line with PC theory, both methods display a positive correlation between the number
of optimization steps and the final test accuracy.

A.5 DETAILS OF CLASSIFICATION EXPERIMENTS

Models and datasets – The MLP models are evaluated on the MNIST and Fashion-MNIST datasets,
which contain 28×28 grayscale images and comprise 60k training and 10k test samples across
10 classes. The CNN architectures are evaluated on CIFAR-10, CIFAR-100, and Tiny ImageNet.
CIFAR-10 and CIFAR-100 consist of 32×32 RGB images with 50k training and 10k test samples
for 10 and 100 classes, respectively. Tiny ImageNet contains 200 classes with 100k training and 10k
validation images of size 64×64. The MLPs use two hidden layers with 128 units each. The VGG-
like CNNs include six convolutional layers and either one or three fully-connected layers, depending
on the variant. To ensure comparability with prior work and to support future benchmarking efforts,
we adopt the same architectures as Pinchetti et al. (2024). The full architectural specifications are
reported in Table 3. For completeness and to ensure reproducibility, Table 4 reports the optimal
DKP-PC hyperparameters identified through our hyperparameter search, which were successively
used to evaluate the model and obtain the results presented in Section 4.

Table 3: Architectural details. FC size refers to the number of units in the fully-connected layers
after the convolutional ones (if any).

MLP VGG-7 VGG-9
Conv. channels – [128x2, 256x2, 512x2] [128x2, 256x2, 512x2]
Kernel sizes – [3, 3, 3, 3, 3, 3] [3, 3, 3, 3, 3, 3]
Strides – [1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1]
Paddings – [1, 1, 1, 0, 1, 0] [1, 1, 1, 1, 1, 1]
Pool window – 2× 2 2× 2
Pool stride – 2 2
FC size [128, 128, output] [output] [4096, 4096, output]
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Table 4: Hyperparameters employed for the DKP-PC networks in our experiments.

MLP VGG-7 VGG-9
MNIST FMNIST CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 Tiny ImageNet

activation gelu gelu gelu tanh leaky leaky gelu
fw-lr 4.616e−4 5.254e−4 1.458e−4 2.482e−4 1.609e−4 1.602e−4 7.373e−5
fw-decay 3.737e−2 2.744e−5 3.626e−4 9.664e−2 5.271e−2 1.040e−2 2.893e−5
fw-opt adamw adamw adam adam adam adam adamw
i-lr 1.068e−3 8.297e−1 5.655e−2 1.036e−2 1.113e−3 1.169e−2 3.136e−3
i-mom 0 0 0 0 0 0 0
i-steps 1 1 1 1 1 1 1
fb-init ka-unif. ka-unif. orthog. ka-norm. ka-unif. xav-unif. orthog.
fb-lr 3.024e−5 4.702e−5 1.533e−3 1.333e−3 1.664e−3 9.405e−4 2.839e−4
fb-decay 2.446e−3 2.744e−5 5.215e−5 4.406e−5 1.099e−4 1.040e−2 4.656e−5
fb-opt adamw nadam adamw adamw adam nadam adam
fb-gamma 0.99975 0.9995 1 0.99995 0.9999 0.9995 0.99925

Training setup – Consistently with the work of Pinchetti et al. (2024), MLPs are trained for 25 epochs
and CNNs for 50 epochs, using a batch size of 128. Data augmentation is applied in the CNN exper-
iments. For CIFAR-10 and CIFAR-100, images are randomly cropped to 32×32 pixels with 4-pixel
padding during training. For Tiny ImageNet, random crops of 56×56 pixels are used during training
without padding, while the test set is evaluated using centered crops of 56×56 pixels, also without
padding. The forward weights’ learning rate is updated using a warmup-cosine-annealing scheduler
without restarts. The optimizers considered include Adam and AdamW. Feedback connections are
trained with a separate optimizer than the forward weights, using an exponentially decaying learn-
ing rate updated per batch via an exponential learning rate scheduler, with the update parameter
fb-gamma reported in Table 4. Different feedback initializations are explored during the hyper-
parameter search: Xavier-uniform/normal (Glorot & Bengio, 2010), Kaiming-uniform/normal (He
et al., 2015), and orthogonal (Saxe et al., 2013). Feedback optimizers include Adam, AdamW, and
Nadam (Adam et al., 2014; Dozat, 2016; Loshchilov & Hutter, 2017). All additional experimental
details are available on our GitHub repository [link will be included after double-blinded revision].

A.6 COMPUTATIONAL TRADE-OFFS

Resource consumption experiments focus on latency and floating-point operations (FLOPs), evalu-
ated on both an MLP and a CNN. For the MLP, experiments are conducted on a network with 256
units per layer using a single sample from MNIST, whereas for the CNN, a VGG-like model with
64-channel 3 × 3 convolutions is evaluated on a single sample from CIFAR-10. Latency is defined
as the time required for a complete parameter update, including feedforward initialization and the
update of forward and feedback matrices (when applicable). Computational cost is estimated by
counting FLOPs in forward and backward passes, restricted to core MAC operations, with 1 MAC
= 2 FLOPs4.

The first row of Figure 6 illustrates the differences in training time, expressed in milliseconds, across
the various models. Training time includes the forward pass and a complete backward pass, encom-
passing both forward and feedback weight updates, if applicable. The forward pass contribution is
indicated by a red dashed line. The fastest algorithm is DKP, owing to the reduced dimensionality
introduced in its update in Eq. (24). BP is the second fastest algorithm, followed by DKP-PC. The
latter, as well as the other local algorithms, have been evaluated in sequential mode, and therefore
their parallelization potential is not considered in this section. Nevertheless, this already highlights
the speed-up of DKP-PC compared to standard PC or iPC, as it consistently requires less time to
fully update its parameters for both the MLP and CNN.

4Variable contributions, such as activation function FLOPs, are excluded as they depend on the specific
non-linearity. Accordingly, the reported FLOPs represent a lower-bound estimate of the actual computational
cost
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Figure 6: The first row compares the training time on a logarithmic scale, measured as the sum
of the forward pass and the complete parameter updates, with the contribution of the forward pass
illustrated as a red dashed line. Results are averaged over 20 samples. The second row compares the
minimum FLOPs requirements, estimated from the core MAC operations. In all plots, for both PC
and iPC, the number of inference-phase steps is assumed to equal the network depth. In contrast,
for DKP-PC, only a single step is considered, as it has been empirically demonstrated to be enough
to achieve comparable performance.

The second row of Figure 6 compares the minimum FLOPs requirements across algorithms. DKP
emerges as the most efficient method in architectures where hidden layers exceed the output layer in
size. In this scenario, computing the intermediate error term δℓ only requires multiplying the output
error δL ∈ RdL by the random matrix Ψℓ ∈ Rdℓ×dL , which entails fewer MAC operations than BP.
In contrast, BP requires multiplying Θ⊤

ℓ+1 ∈ Rdℓ+1×dℓ+2 with the higher-layer error δℓ+2 ∈ Rdℓ+2 ,
typically with dL < dℓ for all ℓ ∈ {0, . . . , L− 1}. BP is the second most efficient algorithm overall,
followed in order by DKP-PC, PC, and iPC. The logarithmic scale of the plot highlights the growth
in computational complexity for PC and iPC as depth increases, since both the minimal number of
inference-phase steps and the number of multiple matrix–vector multiplications per inference-phase
step increase with depth. DKP-PC scales better than PC and iPC as it requires only one inference-
phase step to match or surpass their accuracy, achieving nearly an order of magnitude fewer FLOPs,
thereby underscoring its efficiency advantage.

A.7 ANALYSIS OF PARALLEL EXECUTION

While a fully-parallel implementation of PC is theoretically possible, it has so far been practically
limited by the signal error delay and exponential decay problems (Zahid et al., 2023; Pinchetti et al.,
2024; Goemaere et al., 2025) detailed in Section 3.1. Here, we discuss how DKP-PC overcomes
these limitations, yielding an algorithm capable of achieving lower training latency than BP.

Referring to Algorithm 1 and excluding the forward initialization, which incurs the same computa-
tional cost as BP, we first consider the Direct Feedback Alignment update (1). Since each forward
weight update depends only on the local neural activity and the error signal propagated from the
output layer via the corresponding feedback matrix, all updates can be executed in parallel, reducing
the time complexity of this phase from O(L) to O(1). In the subsequent Inference phase (2), which
is typically executed over multiple steps (T ≥ L) in PC, we empirically demonstrate in Table 1 that
a single step suffices to achieve accuracy comparable to or exceeding that of standard PC, reducing
the time complexity from O(T ) to O(1). Within this phase, updates of error neurons and neural
activities are also parallelizable, as each relies solely on locally available information, resulting in
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O(1) time complexity. For completeness, we highlight that synchronization is still required, as error
terms must be computed before updating neural activities. Successively, the Learning phase (3) and
Direct Kolen-Pollack update (4) are executed sequentially, though they are independent and can be
performed simultaneously. While these phases respectively have to iterate over all L − 1 forward
and backward parameter matrices, their computations are entirely local and hence can be executed
in parallel across layers, reducing the time complexity from O(L) to O(1).
In summary, DKP-PC consists of four phases, each theoretically fully parallelizable with time com-
plexity O(1). Each phase blocks the next, except for the final two, which may run concurrently.
Consequently, DKP-PC’s time complexity does not grow with network depth, unlike BP, whose
time complexity scales linearly as O(L). For sufficiently deep networks, we claim that the overall
training time of DKP-PC will be significantly lower than that of BP. In practice, however, this ad-
vantage is challenged by existing hardware, which is heavily optimized for BP, and by the synchro-
nization overhead inherent in software-based parallelization. These limitations could nevertheless
be overcome by custom hardware accelerators designed to fully exploit DKP-PC’s parallelizability.

A.8 LARGE LANGUAGE MODELS USAGE DISCLOSURE

Large Language Models (LLMs) were employed only for language polishing, such as grammar and
phrasing refinement. They were not used for content generation, results analysis, or methodological
development.
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