
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ACCELERATED PREDICTIVE CODING NETWORKS VIA
DIRECT KOLEN–POLLACK FEEDBACK ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Backpropagation (BP) is the cornerstone algorithm for training artificial neural
networks, yet its reliance on update-locked global error propagation limits bio-
logical plausibility and hardware efficiency. Predictive coding (PC), originally
proposed as a model of the visual cortex, relies on local updates that allow par-
allel learning across layers. However, practical implementations face two key
limitations: error signals must still propagate from the output to early layers
through multiple inference-phase steps, and feedback decays exponentially dur-
ing this process, leading to vanishing updates in early layers. These issues re-
strict the efficiency and scalability of PC, undermining its theoretical advantage
in parallelization over BP. We propose direct Kolen–Pollack predictive coding
(DKP-PC), which simultaneously addresses both feedback delay and exponential
decay, yielding a more efficient and scalable variant of PC while preserving up-
date locality. Leveraging the direct feedback alignment and direct Kolen–Pollack
algorithms, DKP-PC introduces learnable feedback connections from the output
layer to all hidden layers, establishing a direct pathway for error transmission.
This yields an algorithm that reduces the theoretical error propagation time com-
plexity from O(L), with L being the network depth, to O(1), enabling parallel
updates of the parameters. Moreover, empirical results demonstrate that DKP-PC
achieves performance at least comparable to, and often exceeding, that of stan-
dard PC, while offering improved latency and computational performance. By en-
hancing both scalability and efficiency of PC, DKP-PC narrows the gap between
biologically-plausible learning algorithms and BP, and unlocks the potential of
local learning rules for hardware-efficient implementations.

1 INTRODUCTION

Major advances in artificial intelligence, from image recognition (LeCun et al., 2002; Krizhevsky
et al., 2017; Alom et al., 2018) to image generation (Kingma & Welling, 2013; Parmar et al.,
2018; Goodfellow et al., 2020) and natural language processing (Hochreiter & Schmidhuber, 1997;
Vaswani et al., 2017; Beck et al., 2024), have all been enabled by backpropagation of error (BP),
the fundamental algorithm underlying the training of artificial neural networks (ANNs) (Linnain-
maa, 1970; Rumelhart et al., 1986; Werbos, 1988). However, several studies have put into question
the plausibility of its direct implementation in biological neural systems (Grossberg, 1987; Lillicrap
et al., 2016; Lillicrap & Santoro, 2019; Whittington & Bogacz, 2019; Ellenberger et al., 2024). Two
primary concerns come from (i) the reliance on a global error signal that must be propagated back-
ward and sequentially through the network hierarchy, thereby blocking parameter updates, and (ii)
early layers depending directly on error signals generated by distant nodes. These biological plau-
sibility issues of BP are commonly referred to as update locking and non-locality (Nøkland, 2016;
Frenkel et al., 2021; Ororbia, 2023). They also lead to inefficiencies in hardware implementations,
imposing memory and latency overheads (Mostafa et al., 2018; Frenkel et al., 2023).

Predictive coding (PC), originally proposed as a model of the visual cortex in the human brain (Rao
& Ballard, 1999; Huang & Rao, 2011), is emerging as an alternative algorithm that may alleviate
BP’s limitations in update locking and non-locality (Millidge et al., 2022a; Salvatori et al., 2023).
Its framework is grounded in Bayesian inference under the Free Energy Principle (Friston, 2005;
Friston et al., 2006; Friston & Kiebel, 2009), providing a rigorous mathematical foundation with
connections to information theory (Elias, 1955; 2003) and energy-based models (Millidge et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2022b;c). Rather than minimizing a global error signal, PC minimizes the network’s variational
free energy (FE), defined as the sum of layer-wise squared errors between each layer’s activity
and its incoming prediction. Unlike BP, where weights are directly updated, PC learning has two
phases. In the inference phase, neural activity is updated to minimize the FE, and in the learning
phase, weights are updated based on the optimized neural activity. While this framework yields
local and layer-wise update rules, the error in PC is still generated at the output and must propagate
backward during inference. This error-delay limitation causes PC to be significantly slower than BP,
and limits its efficiency and suitability for custom hardware implementations (Zahid et al., 2023).
Moreover, the delayed error decays exponentially with depth, yielding vanishing updates in early
layers (Pinchetti et al., 2024; Goemaere et al., 2025).

To address these limitations, we propose to propagate error information from the output layer to all
hidden layers, yielding an instantaneous error term across the hierarchy. We thus build on feedback
alignment methods (Lillicrap et al., 2014). Direct feedback alignment (DFA) (Nøkland, 2016) uses
random direct feedback connections to deliver error signals from the output to all hidden layers,
avoiding both error delay and decay. However, DFA scales poorly, especially in deep convolutional
networks. Direct Kolen-Pollack (DKP) (Webster et al., 2020) improves DFA by learning the feed-
back matrices, incorporating learning rules inspired by the Kolen-Pollack (KP) algorithm (Kolen &
Pollack, 1994; Akrout et al., 2019), thereby enhancing performance while preserving locality. Fig. 1
illustrates these frameworks and shows how our proposed direct KP predictive coding (DKP-PC)
integrates primitives of both PC and DKP.

Our contributions are summarized as follows:

1. We extend the empirical analysis of Webster et al. (2020) by providing a mathematical mo-
tivation for why DKP achieves closer alignment with BP than standard DFA. This novel
view further supports the integration of DKP within the PC framework as an efficient pre-
liminary weight update to generate an instantaneous error term at every layer.

2. We introduce the DKP-PC algorithm, which simultaneously mitigates the feedback error
delay and exponential decay limitations of BP while preserving locality. This, for the first
time, enables full parallelization in PC networks regardless of batch size. We further discuss
how our proposed PC variant has a time complexity of O(1), compared to O(L) for BP,
with L being the network depth, to O(1).

3. We empirically demonstrate that DKP-PC performs on par with, or outperforms, both DKP
and PC, benchmarking them across fully connected and convolutional networks of up to
VGG-9 on CIFAR-100. We further assess DKP-PC’s computational efficiency, showing
that it consistently achieves lower training times compared to PC, accelerating training by
over 200% for VGG-9.

2 BACKGROUND

In this section, we review the core concepts of BP, DFA/DKP, and PC, which form the basis of our
DKP-PC algorithm, from a mathematical perspective.

2.1 BACKPROPAGATION

BP enables recursive and efficient computation of parameter gradients by applying the chain rule of
calculus to propagate error derivatives from the output layer back through the network (Linnainmaa,
1970; Rumelhart et al., 1986). Let us consider a neural network as shown in Fig. 1(A), where each
layer ℓ ∈ {0, . . . , L} is associated with an activity vector xℓ ∈ Rdℓ , where x0 denotes the input and
xL the output, and dℓ is the number of neurons in layer ℓ. The forward pass is defined recursively as

zℓ = Θℓ−1xℓ−1, xℓ = f(zℓ), 1 ≤ ℓ ≤ L, (1)

where Θℓ−1 ∈ Rdℓ×dℓ−1 is the synaptic weight matrix mapping activity at layer ℓ−1 to layer ℓ, and
f : Rdℓ → Rdℓ is typically an element-wise nonlinear activation function. The output error is then
expressed in terms of the least-squared error (LSE)

L =
1

2
∥xL − y∥22, (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Θ0

Θ1

Θ2
Ψ2

Ψ1

ℒ

y

δ3

δ̃2

δ̃1

DFA/DKP(B)BP

Θ0

Θ1

Θ2

ΘT0

ΘT1

ΘT2

x0

x1

x2

x3

y

ℒ
δ3

δ2

δ1

(A)

Θ1 ΘT1δ2

y
ϵ3

ϵ1

Θ0 ΘT0δ1

Θ2 ΘT2δ3

ϵ2

PC(C)

Ψ2

Ψ1

δ̃2

δ̃1

Θ1 ΘT1δ2

y
ϵ3

ϵ1

Θ2 ΘT2δ3

ϵ2

Θ0 ΘT0δ1

DKP-PC(D)

Figure 1: DKP-PC embeds DKP within the PC framework to address the error feedback delay and
exponential decay issues of PC. Blue arrows represent forward connections, red arrows represent
feedback connections. Neural activities are shown as gray circles, with clamped values in darker
gray; x0 denotes the input, y the target. L is the loss function, with δℓ the BP error, δ̃ℓ its ap-
proximations, and ϵℓ the PC error neurons, represented as triangles. (A) BP propagates the global
error sequentially. (B) DFA and DKP propagate the error directly from the output to each layer.
(C) PC minimizes local errors through an inference phase, followed by a learning phase that up-
dates weights. (D) DKP-PC uses DKP’s direct feedback to provide instantaneous error signals at all
layers, accelerating the PC inference phase while preserving local weight updates.

where y ∈ RdL is the target vector. Applying the chain rule, the recursively backpropagated errors
∂L
∂zℓ

= δℓ ∈ Rdℓ are thus

δℓ =

{
xL − y if ℓ = L,

f ′(zℓ)⊙ (Θ⊤
ℓ δℓ+1) otherwise,

(3)

where⊙ denotes the Hadamard product between the activation derivative f ′(zℓ) ∈ Rdℓ and the error
term1. The weights are then updated according to

∆Θℓ = −α
∂L
∂Θℓ

= −α
(
δℓ+1x

⊤
ℓ

)
, (4)

where α ∈ (0, 1) is the weight learning rate.

2.2 DIRECT KOLEN-POLLACK FEEDBACK ALIGNMENT

DFA explicitly addresses the challenge of iteratively backpropagating error information in BP, yield-
ing a local and more biologically plausible algorithm (Nøkland, 2016). To achieve this, DFA intro-
duces random matrices Ψℓ ∈ Rdℓ×dL that connect the output layer directly to each preceding layer
in the network, as illustrated in Fig. 1(B). These matrices enable the direct propagation of the error
signal δL ∈ RdL generated at the output layer, avoiding the iterative backward propagation in (3),
where

δ̃ℓ = f ′(zℓ)⊙ (ΨℓδL), (5)
thereby leading to the following local weight update rule:

∆Θ̃ℓ = −α
(
δ̃ℓ+1x

⊤
ℓ

)
. (6)

1Formally, f ′(zℓ) =
∂xℓ
∂zℓ

∈ Rdℓ×dℓ is the Jacobian matrix of the activation function. However, for element-
wise activations, this Jacobian is diagonal with entries f ′(zℓ), so the matrix-vector multiplication simplifies to
a Hadamard product.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

DKP (Webster et al., 2020) extends DFA by introducing a local learning rule for the feedback ma-
trices Ψℓ, inspired by the KP algorithm (Kolen & Pollack, 1994; Akrout et al., 2019). In contrast to
DFA where the random matrices Ψℓ are kept fixed, DKP updates them with

∆Ψℓ = −α
(
xℓ+1δ

⊤
L

)
, (7)

where the synaptic plasticity of Ψℓ depends only on the connected hidden layer’s activity and the
output error signal. Note that this update depends only on local information on top of global error
information that is shared across the network, and thus can be parallelized without update lock-
ing. In Appendix A.1, we extend the empirical work of Webster et al. (2020) by mathematically
demonstrating that the feedback matrices converge to values approximating the recursive chain in
(4), despite the dimensionality discrepancy between Ψℓ and Θℓ. This result offers a novel theoretical
explanation on why DKP aligns more closely with BP than DFA.

2.3 PREDICTIVE CODING

PC models the brain as a Bayesian hierarchical generative model, in which latent variables represent
the causes of sensory stimuli and are assumed to follow a Gaussian distribution (Rao & Ballard,
1999; Friston, 2005; Friston & Kiebel, 2009). Neural activities xℓ ∈ Rdℓ ∼ N (µℓ,Σℓ) represent
latent variables at layer ℓ, with mean µℓ ∈ Rdℓ and covariance matrix Σℓ ∈ Rdℓ×dℓ . As done by
several works in literature, we assume the generative model’s covariance to be the identity matrix
Σℓ = I (Pinchetti et al., 2022; Millidge et al., 2022a; Salvatori et al., 2024). The distribution’s
mean µℓ is parametrized by the previous layer’s state through the synaptic weights Θℓ ∈ Rdℓ×dℓ−1

connecting them, according to the relation µℓ = f(Θℓ−1xℓ−1), where f : Rdℓ → Rdℓ is a nonlinear
mapping. The joint generative model over all L+ 1 latent-variables layers is

p(x0, . . . , xL; Θ0, . . . ,ΘL−1) = N
(
x0;µ0,Σ0

) L∏
ℓ=1

N
(
xℓ; f(Θℓ−1xℓ−1),Σℓ

)
, (8)

where x0 and xL are clamped respectively to the input and target vectors, in classification settings.
The exact posterior distribution inference p(x0, . . . , xL−1 | xL) is generally intractable (Friston,
2005), so PC employs variational inference to approximate the latter with a tractable distribution
q(x0, . . . , xL), defined as

q(x0, . . . , xL−1) =

L−1∏
ℓ=0

q(xℓ), (9)

where q(xℓ) ∈ Rdℓ is the variational distribution over the layer ℓ. Following PC literature for
classification tasks, we model the variational posterior as a Dirac delta centered on parameter ϕℓ:

q(xℓ;ϕℓ) = δ(xℓ − ϕℓ), (10)

where ϕℓ ∈ Rdℓ approximates xℓ, which corresponds to the mode of the true posterior (Bogacz,
2017; Millidge et al., 2021; Pinchetti et al., 2022; Salvatori et al., 2024). This formulation provides a
deterministic approximation of the latent variables’ mode. Variational inference reduces the problem
of maximizing (8) to minimizing the Kullback–Leibler divergence between the variational and true
posterior distributions DKL (q||p). Equivalently, this corresponds to minimizing the variational FE,
which constitutes an upper bound on DKL(q ∥ p) (Friston & Kiebel, 2009). Under the assumptions
of identity covariance matrices for the generative model and a Dirac delta variational posterior, the
FE can be expressed as

F =
1

2

L∑
ℓ=1

∥ϵℓ∥22, (11)

where the prediction errors ϵℓ ∈ Rdℓ at layer ℓ are defined as

ϵℓ = ϕℓ − f(Θℓ−1ϕℓ−1), (12)

and are considered as dedicated units, represented by triangles in Fig. 1(C). In prediction tasks, ϕ0

is not inferred, as the input layer is clamped to the input vector, and the network is initialized via a
forward pass as in (1). After this initialization, the output layer ϕL is clamped to the target vector,
so it is also not inferred. Minimizing (11) results in local updates for both neurons and weights,
enabling layer-wise learning.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

PC learning is divided into two phases: the inference and the learning phases. During the inference
phase, (11) is optimized with respect to the variational parameters ϕℓ updating the neural activities
iteratively, whereas during the learning phase, the synaptic parameters Θℓ are updated using the
resulting neural configuration to minimize the same objective. This yields the local activity update

∆ϕℓ = −γ
∂F

∂ϕℓ
= γ

(
(f ′(Θℓϕℓ)⊙Θℓ)

⊤ ϵℓ+1 − ϵℓ

)
, (13)

where γ ∈ (0, 1) is the neural activity learning rate. The rule is local, as the activity of ϕℓ is
influenced only by the adjacent error nodes ϵℓ and ϵℓ+1. After the inference phase is completed, the
synaptic connections are updated using the final neural activity configuration ϕ∗

ℓ , following

∆Θℓ = −α
∂F

∂Θℓ
= α

(
f ′(Θℓϕ

∗
ℓ)⊙ ϵℓ+1 ϕ

∗⊤
ℓ

)
, (14)

where α ∈ (0, 1) is the weight learning rate. The weight update is local, as it depends only on the
error neurons of the next layer ϵℓ+1, and on the optimized neural activity of the current layer ϕ∗

ℓ .

3 METHODOLOGY

In this section, we first introduce the issues of error delay and error decay in PC, and subsequently
demonstrate how the proposed DKP-PC algorithm provides a unified solution to both issues.

3.1 FEEDBACK ERROR DELAY AND DECAY

Let us consider a forward-initialized PC network with L + 1 latent variables layers, whose neu-
ral dynamics evolve in discrete time steps t ∈ N0 according to (13), explicitly denoting the time
dependence of neural activities ϕℓ(t) and prediction errors ϵℓ(t) during the inference phase.

Error propagation delay – At the initial time t = 0, the neural activity of each layer corresponds to
the prediction from the previous one, resulting in null error values at every layer in the network:

ϕℓ(0) = f(Θℓ−1ϕℓ−1(0)) =⇒ ϵℓ(0) = ϕℓ(0)− f(Θℓ−1ϕℓ−1(0)) = 0. (15)

The network is thus at equilibrium, since the FE in (11) is minimized (Whittington & Bogacz, 2017).
Assuming an incorrect prediction, clamping the target vector y to the output layer at t = 0 induces
a nonzero error at the final layer ϵL(0) ̸= 0, as shown in Fig. 2(A). Since each layer updates its
activity based on its own and the subsequent layer’s error (see (13)), the error propagates backward
at most one layer per time step. Thus, the error takes t̂ = L− ℓ inference-phase steps to reach layer
ℓ (Zahid et al., 2023) (see theorem and proof in Appendix A.2).

Error exponential decay – The error at optimization time t̂ = L − ℓ, denoted ϵℓ(t̂), decays expo-
nentially as it propagates backwards through the network, as shown in Fig. 2(A). The decay rate is
determined by both the learning rate and the distance from the output layer (Goemaere et al., 2025),
and the squared ℓ2-norm ∥ϵℓ(t̂)∥22 is upper-bounded by a quantity∝ γ2(L−ℓ) (see theorem and proof
in Appendix A.3).

Both issues originate from the fact that the error is generated only at the output layer, with the delay
arising from its layer-by-layer propagation through the network and the exponential decay resulting
from its progressive reduction by the learning rate at each iteration.

3.2 DIRECT KOLEN-POLLACK PREDICTIVE CODING

We propose to introduce learnable feedback connections from the output layer to each hidden layer
Ψℓ ∈ Rdℓ×dL , ∀ ℓ ∈ {1, · · · , L − 1}, so as to enable a preliminary update of the forward weights
(Fig. 1(D)). This approach, inspired by the DKP algorithm, not only induces approximate alignment
with BP toward minimizing the output error (Appendix A.1), but also ensures that a nonzero error
term is generated at every layer at the beginning of the inference phase, since the condition in (15)
no longer holds (Fig. 2(B)).

The resulting algorithm, denoted as DKP-PC, not only solves the error propagation delay and expo-
nential decay issues of PC, but also allows speeding up the inference phase of PC. Indeed, after the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(A)

(B)

Figure 2: Error propagation in PC (A) and DKP-PC (B) during the inference phase of VGG-9
network trained on a CIFAR-10 dataset batch, at different neural activity learning rate γ. In (A),
PC exhibits both an error decay problem, where the error magnitude decreases exponentially with
network depth, and a delay problem, as the error signal flows through the network sequentially,
undermining the theoretical parallelism. White colour represents values under numerical precision.
In (B), DKP-PC mitigates both issues, generating a more uniform error signal to all layers at the
start of neural activity optimization.

error is directly propagated, we empirically show that a single inference-phase step is sufficient to
match or even surpass the performance of standard PC, which typically requires a number of steps at
least equal to, and often exceeding, the network depth (Pinchetti et al., 2024). Therefore, we suggest
that the inference phase acts as a correction on the preliminary update from DKP. We provide the
pseudocode of DKP-PC in Algorithm 1, and formally outline the main steps below.

Direct feedback alignment update – After the forward initialization of the network, assuming a non-
zero error at the output layer ϵL, we perturb the equilibrium by taking a first weight update according
to (6), using PC’s last layer error neurons:

Θ̃ℓ = Θℓ +∆Θ̃ℓ

= Θℓ − α
(
f ′(Θℓϕℓ)⊙ (Ψℓ+1ϵL)ϕ

⊤
ℓ

)
,

(16)

which can be performed in parallel for each layer, as there is no recursive dependency.

Inference phase – After this update, an error term is generated at every layer since the first timestep:

∥ϵℓ(0)∥22 = ∥ϕℓ(0)− f(Θ̃ℓ−1ϕℓ−1(0))∥22 > 0, (17)

where ϕℓ(0) = f(Θℓ−1ϕℓ−1(0)) after forward initialization. This provides a non-zero error term
instantaneously in every layer-wise component of the FE (11). Consequently, every layer can inde-
pendently update its neural activity according to (13), without performing null updates while waiting
for the propagation of the error from the last layer. Thus, the single-step neural activity optimization
performed takes the following form:

∆ϕℓ = γ
(
(Jf (Θ̃ℓϕℓ) Θ̃ℓ)

⊤ ϵℓ+1 − ϵℓ

)
. (18)

Learning phase and DKP update – After this single local update, both feedforward and feedback
weight matrices are updated, which can be fully parallelized. Starting from the feedforward weight
matrices Θℓ, the update rule is unchanged from the standard PC update in (14), with the only differ-
ence of using the neural activity resulting from (18). Feedback weight matrices Ψℓ now incorporate
PC’s optimized neural activity:

∆Ψℓ = −α
(
ϕ∗
ℓ+1ϵ

⊤
L

)
. (19)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Direct Kolen-Pollack Predictive Coding (DKP-PC)
1: for each (x, y) ∈ D do

0) Forward initialization
2: ϕ0 ← x
3: for ℓ = 1 to L− 1 do ▷ Sequential
4: ϕℓ ← f(Θℓ−1ϕℓ−1)
5: end for
6: ϕL ← y
7: ϵL ← y − f(ΘL−1ϕL−1)

1) Direct Feedback Alignment update
8: for ℓ = 0 to L− 1 do ▷ Parallel
9: Θℓ ← Θℓ − α

(
f ′(Θℓϕℓ)⊙ (Ψℓ+1ϵL)ϕ

⊤
ℓ

)
10: end for

2) Inference phase
11: for t = 0 to T do ▷ T=1 for DKP-PC
12: for ℓ = 1 to L− 1 do ▷ Parallel
13: ϵℓ ← ϕℓ − f(Θℓ−1ϕℓ−1)
14: ϕℓ ← ϕℓ − γ ∂F

∂ϕℓ

15: end for
16: end for

3) Learning phase
17: for ℓ = 0 to L− 1 do ▷ Parallel
18: Θℓ ← Θℓ − α ∂F

∂Θℓ

19: end for
4) Direct Kolen-Pollack update

20: for ℓ = 1 to L− 1 do ▷ Parallel
21: Ψℓ ← Ψℓ − αϕℓ+1ϵ

⊤
L

22: end for
23: end for

With DKP-PC, we introduce the first PC variant that is fully parallelizable. Indeed, each step of
DKP-PC involves only local updates, and can thus be fully parallelized across layers. This reduces
the backward time complexity of the network fromO(L) toO(1), as it no longer depends on the net-
work depth L. We note that DKP-PC goes beyond the incremental predictive coding (iPC) algorithm
(Salvatori et al., 2024), which delivers more stable training by alternating between neural activity
updates (13) and feedforward weight updates (14). While iPC partially unlocks PC’s parallelization
potential, it requires full-batch training to do so, whereas DKP-PC achieves this independently of
the training batch size.

4 RESULTS

In this section, we assess DKP-PC against BP, DKP, PC, and iPC, in terms of classification perfor-
mance and training speed.

Setup – We evaluate the scalability of DKP-PC from multi-layer perceptrons (MLPs) to VGG-like
convolutional neural networks (CNNs) (Simonyan & Zisserman, 2014). For the MLP experiments,
a 4-layer architecture is evaluated on MNIST and Fashion-MNIST (Yann, 2010; Xiao et al., 2017).
For the CNN experiments, we assess the performance of VGG-7 and VGG-9 on both CIFAR-10
and CIFAR-100 (Krizhevsky et al., 2009) datasets. For comparability with prior PC works and to
facilitate future benchmarking, we employ the architectures reported by Pinchetti et al. (2024) in
their discriminative mode experiments, and report their performance for PC, iPC and BP. Additional
implementation details are reported in Appendix A.4. All implementations are based on the PyTorch
framework and are available on GitHub.2

2Link omitted to preserve the double-blind review process. The GitHub repository will also contain all
hyperparameters for reproducibility.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Test accuracy in % (mean ± standard deviation) averaged over 5 random seeds. Results for
PC, iPC and BP are taken from Pinchetti et al. (2024). The best results among local algorithms are
highlighted in bold.

% Accuracy DKP PC iPC DKP-PC BP

MLP
MNIST 97.78±0.12 98.26±0.04 98.45±0.09 98.11±0.08 98.29±0.08

FashionMNIST 87.28±0.14 89.58±0.13 89.90±0.06 89.40±0.16 89.48±0.07

VGG-7
CIFAR-10 76.51±0.33 81.91±0.30 80.15±0.18 81.64±0.40 89.91±0.10

CIFAR-100 (Top-1) 37.09±0.89 37.52±2.60 43.99±0.30 50.61±0.26 65.36±0.15

CIFAR-100 (Top-5) 65.75±0.68 66.73±2.37 73.23±0.30 78.58±0.23 84.41±0.26

VGG-9
CIFAR-10 75.09±0.43 75.33±0.25 79.02±0.21 80.35±0.65 90.02±0.18

CIFAR-100 (Top-1) 39.42±0.44 39.57±0.18 44.76±0.40 49.17±0.79 65.51±0.23

CIFAR-100 (Top-5) 67.95±0.42 66.90±0.26 72.88±0.29 75.98±0.31 84.70±0.28

Classification performance – The classification results are summarized in Table 1. For the MLP
architecture, all algorithms achieve comparable performance on both MNIST and FMNIST, with
local algorithms even surpassing BP performance. For VGG-7 and VGG-9, DKP-PC outperforms
all local-learning variants, achieving up to 9.6% higher top-1 accuracy for VGG-9 on CIFAR-100
compared to standard PC, and 4.4% higher top-1 accuracy than its more stable variant, iPC. Further-
more, DKP-PC outperforms vanilla DKP in every setup evaluated, marking a gap of 9.75% top-1
accuracy for VGG-9 on CIFAR-100. Interestingly, by combining the advantages of DKP and PC,
DKP-PC delivers superior performance compared to DKP and PC alone, and reduces the gap with
BP, especially in deep architectures.

Training speed – Table 2 presents the training times, in minutes, for BP, DKP, PC, iPC, and DKP-
PC, which are necessary to produce the results reported in Table 1, with MLPs trained for 25 epochs
and VGGs for 50 epochs. Importantly, DKP-PC requires only a single PC inference-phase step to
achieve an accuracy equal or superior to iPC and PC, which require a number of steps of at least the
network depth (Pinchetti et al., 2024), e.g., 4, 7, and 9 for the MLP, VGG-7, and VGG-9 models,
respectively. All measurements were performed using PyTorch on an NVIDIA RTX A6000 GPU
where the parallelization opportunities offered by DKP and DKP-PC have not been leveraged as
they would require the use of custom CUDA kernels3. These models were thus executed sequen-
tially, a setting in which BP naturally exploits highly-optimized hardware mapping and execution.
Therefore, despite only highlighting speedup through reduced inference-phase steps and not through
parallelization, the speedup achieved by DKP-PC is notable and these results already show substan-
tial computational efficiency improvements: on VGG-9, DKP-PC respectively achieves > 200%
and > 400% improvements in training speed compared to PC and iPC, respectively. We elaborate
further on the computational trade-offs of DKP-PC in Appendix A.5.

5 CONCLUSION AND FUTURE WORK

We introduced DKP-PC, the first training algorithm that releases PC’s feedback error delay and
exponential decay toward enabling fully parallelized, local learning. We evaluated its classification
performance, training speed, and computational efficiency against BP, DKP, PC, and iPC. Our results
show that, by accelerating PC with DKP, DKP-PC scales better than the evaluated local-learning
algorithms, while exhibiting a substantial improvement in computational efficiency and training
time compared to PC and its newer variant iPC. These results indicate that local learning rules can
approach BP’s efficiency and scalability, which is particularly relevant for neuromorphic computing

3A standard parallelization of DKP-PC in PyTorch introduces significant thread management and synchro-
nization overhead, which cancels out the potential speedup.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Training time in minutes (mean ± standard deviation), averaged over 5 runs. MLPs are
trained for 25 epochs, while VGGs for 50 epochs.

Minutes DKP PC iPC DKP-PC BP

MLP
MNIST 2.44±0.05 3.61±0.07 5.38±0.11 2.78±0.09 2.42±0.06

FashionMNIST 2.41±0.03 3.58±0.10 5.46±0.08 2.74±0.05 2.38±0.07

VGG-7
CIFAR-10 7.37±0.09 28.52±0.07 49.51±0.51 10.94±0.16 7.38±0.05

CIFAR-100 7.17±0.08 28.61±0.08 49.47±0.11 11.30±0.13 7.22±0.11

VGG-9
CIFAR-10 7.26±0.10 45.68±0.05 82.47±0.24 14.18±0.08 7.31±0.22

CIFAR-100 7.21±0.18 45.73±0.09 82.54±0.04 14.58±0.08 7.15±0.08

and on-chip learning (Millidge et al., 2022a; Frenkel et al., 2023) as these algorithms also better
align with biological plausibility. Future work should focus on custom CUDA kernels to address the
thread management and synchronization overheads of the current PyTorch implementation. Indeed,
despite already a significant speedup compared to PC and iPC, the training time of DKP-PC will
still lag behind that of BP as long as parallelization opportunities are not fully exploited. Lastly,
as feedback matrices introduce memory overhead, sparsity and quantization of feedback weights
should be explored, as incentivized by prior work (Crafton et al., 2019; Han & Yoo, 2019).

6 ETHICS STATEMENT

We affirm that this work fully adheres to the ICLR Code of Ethics. This study does not involve
human subjects and relies exclusively on well-known open-source datasets. The research presents
no conflicts of interest and does not raise any privacy, security, or safety concerns. All experiments,
results, and comparisons have been conducted and presented with scientific integrity, ensuring accu-
racy, transparency, and reproducibility. Care has been taken to ensure fairness in the evaluation and
comparison of methods, avoiding bias in reporting or interpretation.

7 REPRODUCIBILITY STATEMENT

We are fully committed to ensuring the reproducibility of our results and research. We provide
detailed mathematical derivations and pseudocode to support a thorough theoretical understanding
of our method. Additionally, the appendix contains a comprehensive description of the experimental
settings and technical details to enable fair and complete reproducibility. Upon acceptance, we
will include a GitHub repository containing all code, experiments, and parameters necessary to
reproduce all results reported in this manuscript. These measures ensure transparency, integrity, and
reproducibility in accordance with the ICLR Code of Ethics.

REFERENCES

Kingma DP Ba J Adam et al. A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
1412(6), 2014.

Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed. Deep
learning without weight transport. Advances in neural information processing systems, 32, 2019.

Md Zahangir Alom, Tarek M Taha, Christopher Yakopcic, Stefan Westberg, Paheding Sidike,
Mst Shamima Nasrin, Brian C Van Esesn, Abdul A S Awwal, and Vijayan K Asari. The his-
tory began from alexnet: A comprehensive survey on deep learning approaches. arXiv preprint
arXiv:1803.01164, 2018.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. Advances in Neural Information Processing Systems, 37:107547–
107603, 2024.

Rafal Bogacz. A tutorial on the free-energy framework for modelling perception and learning.
Journal of mathematical psychology, 76:198–211, 2017.

Brian Crafton, Abhinav Parihar, Evan Gebhardt, and Arijit Raychowdhury. Direct feedback align-
ment with sparse connections for local learning. Frontiers in neuroscience, 13:525, 2019.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

Peter Elias. Predictive coding–ii. IRE Transactions on Information Theory, 1(1):24–33, 1955.

Peter Elias. Predictive coding–i. IRE Transactions on Information Theory, 1(1):16–24, 2003.

Benjamin Ellenberger, Paul Haider, Jakob Jordan, Kevin Max, Ismael Jaras, Laura Kriener, Federico
Benitez, and Mihai A Petrovici. Backpropagation through space, time, and the brain. arXiv
preprint arXiv:2403.16933, 2024.

Charlotte Frenkel, Martin Lefebvre, and David Bol. Learning without feedback: Fixed random
learning signals allow for feedforward training of deep neural networks. Frontiers in neuro-
science, 15:629892, 2021.

Charlotte Frenkel, David Bol, and Giacomo Indiveri. Bottom-up and top-down approaches for
the design of neuromorphic processing systems: Tradeoffs and synergies between natural and
artificial intelligence. Proceedings of the IEEE, 111(6):623–652, 2023.

Karl Friston. A theory of cortical responses. Philosophical transactions of the Royal Society B:
Biological sciences, 360(1456):815–836, 2005.

Karl Friston and Stefan Kiebel. Predictive coding under the free-energy principle. Philosophical
transactions of the Royal Society B: Biological sciences, 364(1521):1211–1221, 2009.

Karl Friston, James Kilner, and Lee Harrison. A free energy principle for the brain. Journal of
physiology-Paris, 100(1-3):70–87, 2006.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Cédric Goemaere, Gaspard Oliviers, Rafal Bogacz, and Thomas Demeester. Error optimiza-
tion: Overcoming exponential signal decay in deep predictive coding networks. arXiv preprint
arXiv:2505.20137, 2025.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Stephen Grossberg. Competitive learning: From interactive activation to adaptive resonance. Cog-
nitive science, 11(1):23–63, 1987.

Donghyeon Han and Hoi-jun Yoo. Efficient convolutional neural network training with direct feed-
back alignment. arXiv preprint arXiv:1901.01986, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Yanping Huang and Rajesh PN Rao. Predictive coding. Wiley Interdisciplinary Reviews: Cognitive
Science, 2(5):580–593, 2011.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

John F Kolen and Jordan B Pollack. Backpropagation without weight transport. In Proceedings of
1994 IEEE International Conference on Neural Networks (ICNN’94), volume 3, pp. 1375–1380.
IEEE, 1994.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 2002.

Timothy P Lillicrap and Adam Santoro. Backpropagation through time and the brain. Current
opinion in neurobiology, 55:82–89, 2019.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random feedback
weights support learning in deep neural networks. arXiv preprint arXiv:1411.0247, 2014.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature communications, 7(1):
13276, 2016.

S Linnainmaa. The representation of the cumulative rounding error of an algorithm as a Taylor
expansion of the local rounding errors (Doctoral dissertation, Master’s Thesis. PhD thesis, MA
thesis. University of Helsinki, 1970.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Beren Millidge, Anil Seth, and Christopher L Buckley. Predictive coding: a theoretical and experi-
mental review. arXiv preprint arXiv:2107.12979, 2021.

Beren Millidge, Tommaso Salvatori, Yuhang Song, Rafal Bogacz, and Thomas Lukasiewicz. Pre-
dictive coding: Towards a future of deep learning beyond backpropagation? arXiv preprint
arXiv:2202.09467, 2022a.

Beren Millidge, Yuhang Song, Tommaso Salvatori, Thomas Lukasiewicz, and Rafal Bogacz. Back-
propagation at the infinitesimal inference limit of energy-based models: Unifying predictive cod-
ing, equilibrium propagation, and contrastive hebbian learning. arXiv preprint arXiv:2206.02629,
2022b.

Beren Millidge, Yuhang Song, Tommaso Salvatori, Thomas Lukasiewicz, and Rafal Bogacz. A
theoretical framework for inference and learning in predictive coding networks. arXiv preprint
arXiv:2207.12316, 2022c.

Hesham Mostafa, Vishwajith Ramesh, and Gert Cauwenberghs. Deep supervised learning using
local errors. Frontiers in neuroscience, 12:608, 2018.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. Advances in
neural information processing systems, 29, 2016.

Alexander G Ororbia. Brain-inspired machine intelligence: A survey of neurobiologically-plausible
credit assignment. arXiv preprint arXiv:2312.09257, 2023.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In International conference on machine learning, pp. 4055–
4064. PMLR, 2018.

Luca Pinchetti, Tommaso Salvatori, Yordan Yordanov, Beren Millidge, Yuhang Song, and Thomas
Lukasiewicz. Predictive coding beyond gaussian distributions. arXiv preprint arXiv:2211.03481,
2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Luca Pinchetti, Chang Qi, Oleh Lokshyn, Gaspard Olivers, Cornelius Emde, Mufeng Tang, Amine
M’Charrak, Simon Frieder, Bayar Menzat, Rafal Bogacz, et al. Benchmarking predictive coding
networks–made simple. arXiv preprint arXiv:2407.01163, 2024.

Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional interpreta-
tion of some extra-classical receptive-field effects. Nature neuroscience, 2(1):79–87, 1999.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Tommaso Salvatori, Ankur Mali, Christopher L Buckley, Thomas Lukasiewicz, Rajesh PN Rao,
Karl Friston, and Alexander Ororbia. Brain-inspired computational intelligence via predictive
coding. arXiv preprint arXiv:2308.07870, 13, 2023.

Tommaso Salvatori, Yuhang Song, Yordan Yordanov, Beren Millidge, Zhenghua Xu, Lei Sha, Cor-
nelius Emde, Rafal Bogacz, and Thomas Lukasiewicz. A stable, fast, and fully automatic learning
algorithm for predictive coding networks. arXiv preprint arXiv:2212.00720, 2024.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Matthew Bailey Webster, Jonghyun Choi, et al. Learning the connections in direct feedback align-
ment. 2020.

Werbos. Backpropagation: past and future. In IEEE 1988 International Conference on Neural
Networks, pp. 343–353 vol.1, 1988. doi: 10.1109/ICNN.1988.23866.

James CR Whittington and Rafal Bogacz. An approximation of the error backpropagation algorithm
in a predictive coding network with local hebbian synaptic plasticity. Neural computation, 29(5):
1229–1262, 2017.

James CR Whittington and Rafal Bogacz. Theories of error back-propagation in the brain. Trends
in cognitive sciences, 23(3):235–250, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

LeCun Yann. Mnist handwritten digit database. ATT Labs., 2010.

Umais Zahid, Qinghai Guo, and Zafeirios Fountas. Predictive coding as a neuromorphic alternative
to backpropagation: a critical evaluation. Neural Computation, 35(12):1881–1909, 2023.

A APPENDIX

A.1 CONVERGENCE OF FEEDBACK MATRICES UNDER THE DIRECT KOLEN–POLLACK
ALGORITHM

In this appendix, we extend the empirical observations of Webster et al. (2020) by providing a
mathematical argument for why DKP achieves a better alignment with BP than DFA. While their
work demonstrates this empirically, it does not provide a formal theoretical justification, instead
attributing the behavior to analogies with KP. However, while it has been proven for KP that the
feedback matrices Ψℓ converge to Θ⊤

ℓ for all layers (Kolen & Pollack, 1994; Akrout et al., 2019), in
DKP this result strictly holds only for the last layer, as all other hidden layers have a dimensionality
mismatch between Ψℓ and Θℓ. Here, we offer a novel theoretical perspective on the work of Webster

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

et al. (2020), demonstrating that DKP drives the feedback matrices toward values approximating the
chain of transposed forward weights, similar to BP, up to the Moore-Penrose pseudoinverse.

Let us consider a feedforward neural network with L layers, where dℓ denotes the number of neurons
at layer ℓ. The weight matrix Θℓ ∈ Rdℓ+1×dℓ maps activations from layer xℓ ∈ Rdℓ to the next layer
xℓ+1 ∈ Rdℓ+1 , according to

xℓ+1 = f(Θℓxℓ) , (20)
where f(·) denotes an arbitrary nonlinear activation function. In the following derivations, we as-
sume an identity activation function, so that the derivative of the activation function can be omitted.

In DFA, error feedback is provided by fixed random matrices Ψℓ ∈ Rdℓ×dL that project the output
error term δL directly to each hidden layer ℓ. These matrices replace the layer-specific error term δℓ
used in BP, computed by transporting the error backward from the next layer through the transposed
weight matrix Θ⊤

ℓ−1, as described by

δℓ = Θ⊤
ℓ+1δℓ+1. (21)

In DFA, as illustrated in Fig. 1, this layer-specific error term δℓ is instead approximated by

δ̃ℓ = ΨℓδL. (22)

In contrast, DKP allows the feedback matrices to be updated following the local update rule

∆Ψℓ = xℓ+1 δ
⊤
L . (23)

With both forward and feedback weights subject to a decay term, this learning has been empirically
shown to enable Ψℓ to provide a more BP-aligned update for Θℓ compared to standard DFA (Webster
et al., 2020). We extend their work by demonstrating that the feedback matrices gradually align with
the pseudoinverses of the forward weight matrices in a recursive dependency, thereby yielding a
closer approximation of BP error propagation compared to DFA.

Starting from the last layer, the update rule for the weight matrix preceding it, denoted as ΘL−1 ∈
RdL×dL−1 , is the same for BP, DFA, and DKP, and is given by

∆ΘL−1 = −α
(
δLx

⊤
L−1 +ΘL−1

)
, (24)

where α ∈ (0, 1) is the learning rate, and the second term of the update is the weight decay term.
According to (23) and assuming the same learning rate for the feedback weights, the update rule for
the feedback matrix connecting the last layer to the penultimate one is given by

∆ΨL−1 = −α
(
xL−1δ

⊤
L +ΨL−1

)
. (25)

In this specific case, ΘL−1 has the shape of Ψ⊤
L−1 and their updates are transposes of each other. As

training progresses, both matrices converge to the same value, since the contribution of the initial
condition vanishes under the effect of the learning rate α (Kolen & Pollack, 1994; Akrout et al.,
2019). Indeed, following KP, by defining

ΩL−1(t+ 1) = ΘL−1(t+ 1)−Ψ⊤
L−1(t+ 1), (26)

and using the update rules (24) and (25), we obtain

ΩL−1(t+ 1) = (ΘL−1(t) + ∆ΘL−1(t))−
(
Ψ⊤

L−1(t) + ∆Ψ⊤
L−1(t)

)
= ΘL−1(t)−Ψ⊤

L−1(t)− α
(
δL(t)x

⊤
L−1(t) + ΘL−1(t)− δL(t)x

⊤
L−1(t)−Ψ⊤

L−1(t)
)

= ΘL−1(t)−Ψ⊤
L−1(t)− α

(
ΘL−1(t)−Ψ⊤

L−1(t)
)

=
(
1− α

) (
ΘL−1(t)−Ψ⊤

L−1(t)
)

=
(
1− α

)
ΩL−1(t),

(27)
We can now further unroll (27) in time, resulting in

ΩL−1(t+ 1) =
(
1− α

)t
ΩL−1(0)

=
(
1− α

)t (
ΘL−1(0)−Ψ⊤

L−1(0)
)
.

(28)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Therefore, ΩL−1(t) converges to zero as training progresses, with the initial difference between the
forward and feedback matrices decaying exponentially due to the learning rate α. In other words,
we have that

lim
t→∞

ΩL−1(t) = 0 =⇒ lim
t→∞

Ψ⊤
L−1(t) = ΘL−1(t). (29)

The DKP update rule for ΘL−2 is given by

∆ΘL−2 = −α
(
δ̃L−1x

⊤
L−2 +ΘL−2

)
= −α

(
ΨL−1δLx

⊤
L−2 +ΘL−2

)
,

(30)

which effectively approximates the BP update for ΘL−2 and ultimately matches it as t → ∞, as
using (29) yields

lim
t→∞

∆ΘL−2 = −α
(
Θ⊤

L−1δLx
⊤
L−2 +ΘL−2

)
. (31)

Here and throughout the rest of this appendix, we omit the time index since we consider the limit
t → ∞. Therefore, we approximate ΨL−1 by Θ⊤

L−1, noting that this approximation introduces a
small error, since exact equality holds only at the limit.

Unfortunately, the convergence obtained for ΨL−1 in (29) does not directly apply to ΨL−2 ∈
RdL−2×dL , as its dimensions do not match those of ΘL−2 ∈ RdL−1×dL−2 . The update rule for
ΨL−2, given by

∆ΨL−2 = −α
(
xL−2δ

⊤
L +ΨL2

)
, (32)

can be substituted into (31), leading to

∆ΘL−2 = −α
(
Θ⊤

L−1δLx
⊤
L−2 +ΘL−2

)
= −α

(
Θ⊤

L−1

(
−α−1∆Ψ⊤

L−2 −Ψ⊤
L−2

)
+ΘL−2

)
= Θ⊤

L−1∆Ψ⊤
L−2 − α

(
ΘL−2 −Θ⊤

L−1Ψ
⊤
L−2

)
.

(33)

Here, we neglect the decay terms, since they vanish asymptotically during training, as previously
discussed for ΘL−1 and ΨL−1. We can now transpose both sides, and multiply them by Θ⊤

L−1,
resulting in

∆ΨL−2ΘL−1Θ
⊤
L−1 = ∆Θ⊤

L−2Θ
⊤
L−1. (34)

This allows us to link the update of ΨL−2 to that of ΘL−2 through

∆ΨL−2 = ∆Θ⊤
L−2Θ

⊤
L−1

(
ΘL−1Θ

⊤
L−1

)−1

= ∆Θ⊤
L−2Θ

+
L−1,

(35)

where Θ+
L−1 ∈ RdL−1×dL is the Moore-Penrose pseudoinverse of ΘL−1, assuming the latter has

full row rank. On the one hand, the BP update of ΘL−3 is given by

∆ΘL−3 = −α
(
δL−2x

⊤
L−3 +ΘL−3

)
= −α

(
Θ⊤

L−2δL−1x
⊤
L−3 +ΘL−3

)
= −α

(
Θ⊤

L−2Θ
⊤
L−1δLx

⊤
L−3 +ΘL−3

)
.

(36)

On the other hand, by making use of (35), which is valid under the previously mentioned assump-
tions and approximations, the DKP update can be expressed as

∆ΘL−3 = −α
(
δ̃L−2x

⊤
L−3 +ΘL−3

)
= −α

(
Ψ⊤

L−2δLx
⊤
L−3 +ΘL−3

)
= −α

(
Θ⊤

L−2Θ
+
L−1δLx

⊤
L−3 +ΘL−3

)
.

(37)

Hence, the DKP update of ΘL−3 approximates the BP one, and is exact if Θ+
L−1 = Θ⊤

L−1, meaning
that ΘL−1 is orthogonal. We now move on to the DKP update of ΨL−3, given by

∆ΨL−3 = −α
(
xL−3δ

⊤
L +ΨL−3

)
. (38)

By repeating the same procedure as for ΨL−2, we substitute (38) into (37), resulting in

∆ΘL−3 = −α
(
Θ⊤

L−2Θ
+
L−1

(
− α−1∆ΨL−3 −ΨL−3

)⊤
+ΘL−3

)
= Θ⊤

L−2Θ
+
L−1∆Ψ⊤

L−3 − α
(
ΘL−3 −Θ⊤

L−2Θ
+
L−1Ψ

⊤
L−3

)
.

(39)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

We now again do not consider the terms decaying with time, as they tend to zero as the training
goes on, and focus only on the term the update converges to. As done previously, after dropping the
decay term, we transpose both sides, yielding

∆ΨL−3

((
Θ+

L−1

)⊤
ΘL−2

)
= ∆Θ⊤

L−3, (40)

and multiply them by
((

Θ+
L−1

)⊤
ΘL−2

)⊤
, leading to

∆ΨL−3

((
Θ+

L−1

)⊤
ΘL−2

)((
Θ+

L−1

)⊤
ΘL−2

)⊤
= ∆Θ⊤

L−3

((
Θ+

L−1

)⊤
ΘL−2

)⊤
. (41)

Lastly, by multiplying both sides by the inverse of the product of matrices on the right of ∆ΨL−3,
we obtain

∆ΨL−3 = ∆Θ⊤
L−3

((
Θ+

L−1

)⊤
ΘL−2

)⊤ [((
Θ+

L−1

)⊤
ΘL−2

)((
Θ+

L−1

)⊤
ΘL−2

)⊤]−1

= ∆Θ⊤
L−3

((
Θ+

L−1

)⊤
ΘL−2

)+
,

= ∆Θ⊤
L−3

((
Θ⊤

L−1

)+
ΘL−2

)+
,

(42)

where again, the feedback matrix includes a chain of forward matrix pseudoinverses. More gener-
ally, under the assumption of t→∞ and that Θℓ is a full row rank rectangular matrix, we have

ΨL−ℓ =

{
Θ⊤

L−ℓ if ℓ = 1,

Θ⊤
L−ℓ

(
Ψ⊤

L−ℓ+1

)+
if 1 < ℓ < L,

(43)

It should be noted that in practice, the assumptions we made are never perfectly met, since neural
network training does not proceed for an infinite number of iterations, meaning that the decay terms
we neglected do not completely vanish, and also involves the derivatives of the nonlinear activa-
tion functions. Nonetheless, our derivation demonstrates how DKP extends DFA by updating the
feedback random matrices with terms that also appear in BP’s error propagation, providing a clearer
understanding of why DKP achieves better alignment and consequently improves performance com-
pared to standard DFA Webster et al. (2020).

A.2 ERROR PROPAGATION DELAY

In this section, we introduce and provide a formal proof of Theorem 1, which quantifies the delay in
error propagation in forward-initialized PC networks. Specifically, we show that the feedback error
signal reaches a given layer with a delay equal to its distance from the output (Zahid et al., 2023).
Theorem 1 (Error propagation delay). Consider a forward-initialized PC network with discrete-
time updates. Assuming an incorrect prediction, the neural activity ϕℓ at layer ℓ requires at least
t̂ = L− ℓ inference-phase steps before it deviates from equilibrium and begins to evolve according
to (13) (proof provided in Appendix A.2).

Proof. Let us consider a forward-initialized PC network with L+1 layers, where the neural activity
evolves in discrete time steps t ∈ N0, and each layer is initialized as ϕℓ(0) = f(Θℓ−1ϕℓ−1(0)).
The error neurons at layer ℓ are defined as ϵℓ(0) = ϕℓ(0)− f(Θℓ−1ϕℓ−1(0)). By construction, after
forward initialization, all error neurons vanish and the network’s dynamics is at equilibrium:

∥ϵℓ(0)∥22 = ∥ϕℓ(0)− f(Θℓ−1ϕℓ−1(0))∥22
= ∥ϕℓ(0)− ϕℓ(0)∥22
= 0 for 0 < ℓ ≤ L.

(44)

At the beginning of the inference phase, where the network’s neural activity evolves to minimize
(11), we clamp the target vector y to the output layer ϕL. Assuming an incorrect prediction, i.e.,
y − f(ΘL−1ϕL−1(0)) ̸= 0, the prediction error satisfies

∥ϵL(0)∥22 = ∥y − f(ΘL−1ϕL−1(0))∥22 ≥ 0. (45)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Consequently, according to (13), the activity at layer L− 1 has a nonzero update at t = 1:
ϕL−1(1) = ϕL−1(0) + ∆ϕℓ(0)

= ϕL−1(0)− γ
∂F

∂ϕL−1
(0)

= ϕL−1(0)− γ
(
JϕL−1

(0)⊤ϵL − ϵL−1

)
= ϕL−1(0)− γ

(
JϕL−1

(0)⊤ϵL

)
,

(46)

where Jϕℓ
(0) = ∂f(Θℓϕℓ)

∂ϕℓ
(0) ∈ Rdℓ+1×dℓ is the Jacobian matrix of prediction by layer ℓ with respect

to its neural activity. For all preceding layers, we have that ∆ϕℓ(0) = 0, since both ϵℓ and ϵℓ+1 are
null.

After ϕL−1 has been updated at time t = 1, the corresponding error becomes nonzero:
∥ϵL−1(1)∥22 = ∥ϕL−1(1)− f(ΘL−2, ϕL−2(1))∥22

= ∥ϕL−1(1)− f(ΘL−2, ϕL−2(0))∥22
= ∥ϕL−1(1)− ϕL−1(0)∥22
= ∥∆ϕL−1(1)∥22
≥ 0.

(47)

At the subsequent timestamp t = 2, layer L − 2 also receives a nonzero error and updates accord-
ingly:

ϕL−2(2) = ϕL−2(1) + ∆ϕL−2(1)

= ϕL−2(1)− γ
∂F

∂ϕL−2
(1)

= ϕL−2(0)− γ
∂F

∂ϕL−2
(0)

= ϕL−2(0)− γ
(
JϕL−2

(0)⊤ϵL−1 − ϵL−2

)
= ϕL−2(0)− γ

(
JϕL−2

(0)⊤ϵL−1

)
,

(48)

where ϕL−2(1) = ϕL−2(0) and ∂F
∂ϕL−2

(1) = ∂F
∂ϕL−2

(0), since ϕL−2 has remained unchanged at
t = 1, due to ϵL−2(0) = ϵL−1(0) = 0. Again, at time t = 2 all previous layers ϕℓ(2) , 0 < ℓ <
L − 2 remain unchanged, as ϵL−ℓ(1) = ϵL−ℓ+1(1) = 0. By induction, it follows that under these
assumptions, any layer ℓ requires at least t̂ = L − ℓ timestamps to update its neural activity and
corresponding error neurons.

For the general case, at a specific time t, the error neurons at layer L− t can be expressed as
∥ϵL−t(t)∥22 = ∥ϕL−t(t)− f(ΘL−t−1, ϕL−t−1(t− 1))∥22

= ∥ϕL−t(t)− f(ΘL−t−1, ϕL−t−1(0))∥22
= ∥ϕL−t(t)− ϕL−t(0)∥22,

(49)

where ϕL−t(t)−ϕL−t(0) ̸= 0 if and only if ϕL−t(t) ̸= ϕL−t(0). Crucially, this condition can occur
only after t̂ = L− ℓ timestamps. According to (13), the update of layer L− t depends on the errors
from the current and subsequent layers, ϵL−t and ϵL−t+1, respectively. Since ϵL−t is itself blocked
until ϕL−t changes, the driving term is provided by ϵL−t+1. However, the latter becomes nonzero
only after the previous layer has been updated. Therefore, the propagation of activity changes and
error signals strictly follows the network’s hierarchy, advancing at most one layer per timestamp,
starting from ϵL at t = 0 and reaching layer ℓ only after t̂ = L− ℓ steps.

A.3 ERROR EXPONENTIAL DECAY

In this section, we introduce and provide a formal proof of Theorem 2, showing that the squared-ℓ2-
norm of the feedback error signal for a layer ℓ generated at time t̂ = L− ℓ is bounded by a quantity
that decays exponentially proportional to t (Goemaere et al., 2025).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Theorem 2 (Error exponential decay). Consider a forward-initialized PC network with discrete-
time updates. Assuming an incorrect prediction, the squared ℓ2-norm of the feedback error signal
at layer ℓ, ∥ϵℓ(t̂)∥22, at time t̂ = L− ℓ, is upper-bounded by a quantity that decays ∝ γ2(L−ℓ) (proof
provided in Appendix A.3).

Proof. Let us consider a forward-initialized PC network with L + 1 layers, where the neural
activity evolves in discrete time steps t ∈ N0, and each hidden layer ϕℓ(t) is initialized as
ϕℓ(0) = f(Θℓ−1ϕℓ−1(0)). The error neurons are defined as ϵℓ(t) = ϕℓ(t) − f(Θℓ−1ϕℓ−1(t)).
Here, we make the time dependence of neural activities explicit, as they evolve with time during
the inference phase of PC. Considering the update of an arbitrary neuron ϕℓ−1 , 1 < ℓ ≤ L at time
t̂+ 1, with t̂ = L− ℓ:

ϕℓ−1(t̂+ 1) = ϕℓ−1(t̂)− γ
∂F

∂ϕℓ−1
(t̂), (50)

where we can move the on the left side the current neural activity value, obtaining:

ϕℓ−1(t̂+ 1)− ϕℓ−1(t̂) = −γ
∂F

∂ϕℓ−1
(t̂)

∆ϕℓ−1(t̂+ 1) = −γ ∂F

∂ϕℓ−1
(t̂)

= −γ

(
ϵℓ−1(t̂)−

∂f
(
Θℓ−1ϕℓ−1(t̂)

)
∂ϕℓ−1(t̂)

⊤

ϵℓ(t̂)

)

= γ

(
∂f
(
Θℓ−1ϕℓ−1(t̂)

)
∂ϕℓ−1(t̂)

⊤

ϵℓ(t̂)

)
,

(51)

where ϵℓ−1(t̂) = 0 is implied by Theorem 1, since L − ℓ − 1 < t̂. We defined
∂f(Θℓ−1ϕℓ−1(t̂))

∂ϕℓ−1(t̂)
=

Jϕℓ−1
∈ Rdℓ×dℓ−1 the Jacobian matrix of f at layer ℓ − 1. Here, we have omitted time in ϕℓ−1 for

brevity, as ϕℓ−1(t̂) = ϕℓ−1(0), following again from Theorem 1. Continuing from (51), we expand
the error neurons according to their definition and apply Theorem 1, resulting in:

∆ϕℓ−1(t̂+ 1) = γJ⊤
ϕℓ−1

[
ϕℓ(t̂)− f

(
Θℓ−1ϕℓ−1(t̂)

)]
= γJ⊤

ϕℓ−1

[
ϕℓ(t̂− 1)− γ

∂F

∂ϕℓ
(t̂− 1)− f (Θℓ−1ϕℓ−1(0))

]
= γJ⊤

ϕℓ−1

[
ϕℓ(0)− γ

∂F

∂ϕℓ
(t̂− 1)− f(Θℓ−1ϕℓ−1(0))

]
= γJ⊤

ϕℓ−1

[
f (Θℓ−1ϕℓ−1(0))− γ

∂F

∂ϕℓ
(t̂− 1)− f (Θℓ−1ϕℓ−1(0))

]
,

(52)

where on the first line we have substituted ϕℓ(t̂) with its definition in (50). According to Theorem 1,
ϕℓ(t̂ − 1) = ϕℓ(0) as L − ℓ < t̂ − 1, thus this allows to re-write it using the forward initialization
definition, as done on the fourth line. By repeating the same steps as in (51), we obtain

∆ϕℓ−1(t̂+ 1) = γJ⊤
ϕℓ−1

[
−γ ∂F

∂ϕℓ
(t̂− 1)

]
= γJ⊤

ϕℓ−1

[
−γ
(
ϵℓ(t̂− 1)− J⊤

ϕℓ
ϵℓ+1(t̂− 1)

)]
= γ2J⊤

ϕℓ−1
J⊤
ϕℓ
ϵℓ+1(t̂− 1).

(53)

By unrolling the formulation backward until the last layer, we get:

∆ϕℓ−1(t̂+ 1) = γL−ℓ+1

(
L−ℓ∏
i=0

J⊤
ϕℓ−1+i

)
ϵL(0). (54)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

By substituting (51) in (54), we can continue as follows:

γ
(
J⊤
ϕℓ−1

ϵℓ(t̂)
)
= γL−ℓ+1

(
L−ℓ∏
i=0

J⊤
ϕℓ−1+i

)
ϵL(0), (55)

which can be further simplified by eliding common terms, resulting in:

ϵℓ(t̂) = γL−ℓ

(
L−ℓ∏
i=1

J⊤
ϕℓ−1+i

)
ϵL(0). (56)

By writing the squared-ℓ2 norm of (56), we finally derive the upper-bound for the error term:

∥ϵℓ(t̂)∥22 = ∥γL−ℓ

(
L−ℓ∏
i=1

J⊤
ϕℓ−1+i

)
ϵL(0)∥22

≤ γ2(L−ℓ)

(
L−ℓ∏
i=1

∥J⊤
ϕℓ−1+i

∥22

)
∥ϵL(0)∥22.

(57)

A.4 DETAILS OF CLASSIFICATION EXPERIMENTS

Models and datasets – For MLP architectures, we use MNIST and Fashion-MNIST (Yann, 2010;
Xiao et al., 2017), consisting of 28×28 grayscale images with 60k training and 10k test samples,
across 10 classes. For CNNs, we use CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009), con-
sisting of 32×32 RGB images with 50k training and 10k test samples, with 10 and 100 classes,
respectively. Data normalization is applied, and for CIFAR datasets, data augmentation includes
random horizontal flipping (50% probability) and random cropping to 32×32 with 4-pixel padding.
MLPs consist of three hidden layers with 128 units each. VGG-like CNNs of 7 and 9 layers (Si-
monyan & Zisserman, 2014) are tested on CIFAR-10 and CIFAR-100. For standardized comparison
with prior PC work and future benchmarking, we adopt the architectures employed in Pinchetti et al.
(2024). As Pinchetti et al. (2024) do not specify VGG-9 details, we assume it to be consistent with
other recent works in the PC literature (Goemaere et al., 2025).

Training setup – MLPs are trained for 25 epochs and CNNs for 50 epochs, using a batch size of
128, consistent with Pinchetti et al. (2024). Forward weights are optimized with a warmup-cosine-
annealing scheduler without restart. Optimizers considered include Adam and AdamW. Feedback
connections are learned with a separate optimizer, using an exponentially-decaying learning rate
updated per batch (decay factor η ∈ [0.999, 1], with η = 1 corresponding to no decay). Vari-
ous feedback initializations are tested during the hyperparameters search: Xavier-uniform/normal
(Glorot & Bengio, 2010), Kaiming-uniform/normal (He et al., 2015), and orthogonal (Saxe et al.,
2013). Feedback optimizers include Adam, AdamW, and Nadam (Adam et al., 2014; Dozat, 2016;
Loshchilov & Hutter, 2017). All optimal hyperparameters and precise network specifications are
available in our GitHub repository.

A.5 COMPUTATIONAL TRADE-OFFS

Resource consumption experiments focus on latency and floating-point operations (FLOPs), evalu-
ated on both an MLP and a CNN. For the MLP, experiments are conducted on a network with 256
units per layer using a single sample from MNIST, whereas for the CNN, a VGG-like model with
64-channel 3 × 3 convolutions is evaluated on a single sample from CIFAR-10. Latency is defined
as the time required for a complete parameter update, including feedforward initialization and the
update of forward and feedback matrices (when applicable). Computational cost is estimated by
counting FLOPs in forward and backward passes, restricted to core MAC operations, with 1 MAC
= 2 FLOPs4.

4Variable contributions, such as activation function FLOPs, are excluded as they depend on the specific
nonlinearity. Accordingly, the reported FLOPs represent a lower-bound estimate of the actual computational
cost

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 3: The first row compares the training time on a logarithmic scale, measured as the sum
of the forward pass and the complete parameter updates, with the contribution of the forward pass
illustrated as a red dashed line. Results are averaged over 20 samples. The second row compares the
minimum FLOPs requirements, estimated from the core MAC operations. In all plots, for both PC
and iPC, the number of inference-phase steps is assumed to equal the network depth. In contrast,
for DKP-PC, only a single step is considered, as it has been empirically demonstrated to be enough
to achieve comparable performance.

The first row of Fig. 3 illustrates the differences in training time, expressed in milliseconds, across
the various models. Training time includes the forward pass and a complete backward pass, encom-
passing both forward and feedback weight updates, if applicable. The forward pass contribution is
indicated by a red dashed line. The fastest algorithm is DKP, owing to the reduced dimensionality
introduced in its update in (23). BP is the second fastest algorithm, followed by DKP-PC. The latter,
as well as the other local algorithms, have been evaluated in sequential mode, and therefore their
parallelization potential is not considered in this section. Nevertheless, this already highlights the
speedup of DKP-PC compared to standard PC or iPC, as it consistently requires less time to fully
update its parameters for both the MLP and CNN.

The second row of Fig. 3 compares the minimum FLOPs requirements across algorithms. DKP
emerges as the most efficient method in architectures where hidden layers exceed the output layer in
size. In this scenario, computing the intermediate error term δℓ only requires multiplying the output
error δL ∈ RdL by the random matrix Ψℓ ∈ Rdℓ×dL , which entails fewer MAC operations than BP.
In contrast, BP requires multiplying Θ⊤

ℓ+1 ∈ Rdℓ+1×dℓ+2 with the higher-layer error δℓ+2 ∈ Rdℓ+2 ,
typically with dL < dℓ for all ℓ ∈ {0, . . . , L− 1}. BP is the second most efficient algorithm overall,
followed in order by DKP-PC, PC, and iPC. The logarithmic scale of the plot highlights the growth
in computational complexity for PC and iPC as depth increases, since both the minimal number of
inference-phase steps and the number of multiple matrix–vector multiplications per inference-phase
step increase with depth. DKP-PC scales better than PC and iPC as it requires only one inference-
phase step to match or surpass their accuracy, achieving nearly an order of magnitude fewer FLOPs,
thereby underscoring its efficiency advantage.

A.6 ANALYSIS OF PARALLEL EXECUTION

While a fully-parallel implementation of PC is theoretically possible, it has so far been practically
limited by the signal error delay and exponential decay problems (Zahid et al., 2023; Pinchetti et al.,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

2024; Goemaere et al., 2025) detailed in Section 3.1. Here, we discuss how DKP-PC overcomes
these limitations, yielding an algorithm capable of achieving lower training latency than BP.

Referring to Algorithm 1 and excluding the forward initialization, which incurs the same computa-
tional cost as BP, we first consider the Direct Feedback Alignment update (1). Since each forward
weight update depends only on the local neural activity and the error signal propagated from the
output layer via the corresponding feedback matrix, all updates can be executed in parallel, reducing
the time complexity of this phase from O(L) to O(1). In the subsequent Inference phase (2), which
is typically executed over multiple steps (T ≥ L) in PC, we empirically demonstrate in Table 1 that
a single step suffices to achieve accuracy comparable to or exceeding that of standard PC, reducing
the time complexity from O(T) to O(1). Within this phase, updates of error neurons and neural
activities are also parallelizable, as each relies solely on locally available information, resulting in
O(1) time complexity. For completeness, we highlight that synchronization is still required, as error
terms must be computed before updating neural activities. Successively, the Learning phase (3) and
Direct Kolen-Pollack update (4) are executed sequentially, though they are independent and can be
performed simultaneously. While these phases respectively have to iterate over all L − 1 forward
and backward parameter matrices, their computations are entirely local and hence can be executed
in parallel across layers, reducing the time complexity from O(L) to O(1).
In summary, DKP-PC consists of four phases, each theoretically fully parallelizable with time com-
plexity O(1). Each phase blocks the next, except for the final two, which may run concurrently.
Consequently, DKP-PC’s time complexity is independent of network depth, in contrast to BP, which
requires O(L). For sufficiently deep networks, we claim that the overall training time of DKP-PC
will be significantly lower than that of BP. In practice, however, this advantage is challenged by
existing hardware, which is heavily optimized for BP, and by the synchronization overhead inher-
ent in software-based parallelization. These limitations could nevertheless be overcome by custom
hardware accelerators designed to fully exploit DKP-PC’s parallelizability.

A.7 LARGE LANGUAGE MODELS USAGE DISCLOSURE

Large Language Models (LLMs) were employed only for language polishing, such as grammar and
phrasing refinement. They were not used for content generation, results analysis, or methodological
development.

20

	Introduction
	Background
	Backpropagation
	Direct Kolen-Pollack Feedback Alignment
	Predictive Coding

	Methodology
	Feedback error delay and decay
	Direct Kolen-Pollack Predictive Coding

	Results
	Conclusion and Future Work
	Ethics Statement
	Reproducibility Statement
	Appendix
	Convergence of Feedback Matrices under the Direct Kolen–Pollack Algorithm
	Error propagation delay
	Error exponential decay
	Details of Classification Experiments
	Computational Trade-offs
	Analysis of parallel execution
	Large Language Models usage disclosure

