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Abstract

We introduce a novel stochastic variational infer-
ence method for Gaussian process (GP) regression,
by deriving a GP posterior over a learnable set of
coresets: i.e., over pseudo-input/output, weighted
pairs. Unlike former free-form variational families
for stochastic inference, our coreset-based varia-
tional GP (CVGP)a is defined in terms of the GP
prior and the (weighted) data likelihood. This for-
mulation naturally incorporates inductive biases of
the prior, and ensures its kernel and likelihood de-
pendencies are shared with the posterior. We derive
a variational lower-bound on the log-marginal like-
lihood by marginalizing over the latent GP core-
set variables, and show that CVGP’s lower-bound
is amenable to stochastic optimization. CVGP re-
duces the dimensionality of the variational parame-
ter search space to linear O (M) complexity, while
ensuring numerical stability at O

(
M3
)

time com-
plexity and O

(
M2
)

space complexity. Evaluations
on real-world and simulated regression problems
demonstrate that CVGP achieves superior infer-
ence and predictive performance than state-of-the-
art, stochastic sparse GP approximation methods.

aCode is publicly available at
https://github.com/iurteagalab/cvgp_regression.

1 INTRODUCTION

Training GPs efficiently with large datasets has been a
long-standing challenge, as exact inference complexities
grow O(N3) in time and O(N2) in space requirements.
Successful state-of-the-art (SOTA) methods to scale GPs
—a detailed review can be found in [Liu et al., 2020]— are
based on sparse and low-rank approximations [Williams and
Seeger, 2000, Snelson and Ghahramani, 2005, Quinonero-

Candela and Rasmussen, 2005], often using inducing ran-
dom variables [Naish-Guzman and Holden, 2007, Titsias,
2009, Hensman et al., 2013, Wilson and Nickisch, 2015].

Amongst these techniques, variational learning of induc-
ing variables by Titsias [2009] allows for time and space
complexities of O(NM2) and O(NM), with clear benefits
when inducing point size M is small, i.e., M ≤ N . How-
ever, in real-world applications, N can be in the order of
millions, making model learning impractical. More recently,
Hensman et al. [2013] introduced stochastic variational in-
ference for Gaussian processes (SVGP), which reduces the
time and space complexities to O(M3) and O(M2), respec-
tively. This method has become the standard for training
GP models on large datasets. However, SVGP’s scalability
comes at a cost: it requires learning additional O(M2) pa-
rameters, resulting in an optimization problem that scales
quadratically with the number of inducing points.

In this work, we propose a coreset-based variational GP
(CVGP) technique that is amenable to stochastic optimiza-
tion (i.e., scalable to big datasets) at reduced O (M) param-
eter complexity (see Table 1), and demonstrate its accurate
inference and predictive performance in a wide range of
real-datasets (see results in Section 4).

We take inspiration from Titsias [2009]’s optimal variational
posterior, and ensure that CVGP’s variational family also
obeys (1) the GPs’ prior-conditional structure, and (2) the
GP prior’s dependencies in its posterior, all achieved via
Bayesian coreset principles [Huggins et al., 2016, Zhang
et al., 2021]. Specifically, we design and learn a variational
distribution for a GP-based probabilistic model, defined
through a subset of learnable pseudo-points and a weighted
likelihood function, in line with the Black-Box Bayesian
coreset framework [Manousakas et al., 2020, 2022].

CVGP’s coreset-based variational GP posterior, learnable
via stochastic maximization of a lower-bound of the log-
marginal data likelihood, enables not only a more accurate
approximation to the true GP regression posterior, but a
more efficient optimization process.
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In summary, our contribution is a novel, coreset-based
stochastic variational GP inference (CVGP) algorithm that:

1. Finds a coreset-based, sparse variational posterior to faith-
fully approximate the true GP posterior, enabling up- and
down-weighting the influence of pseudo-points during
learning (Section 4.4 and Appendix D.1,D.3);

2. Maximizes a lower-bound over the marginal log-
likelihood that is amenable to efficient stochastic opti-
mization (Section 3.2);

3. Provides a numerically stable algorithm requiring only
O (M) parameters to be learned, at computational and
memory complexities of O

(
M3
)

and O
(
M2
)

(Table 1);

4. Outperforms SOTA stochastic variational GP inference
alternatives on real-world regression datasets (Section
4): CVGP not only provides improved predictive perfor-
mance (Section 4.2), but achieves a tighter lower varia-
tional bound than alternatives (Section 4.3).

2 BACKGROUND

We introduce the notation and foundations of GP regres-
sion in Section 2.1, and describe sparse approximations for
scalable GP inference in Section 2.2. We review the vari-
ational inducing point-based foundational work of Titsias
[2009] and Hensman et al. [2013], in Sections 2.3 and 2.4,
respectively. These are SOTA GP algorithms that will serve
as competitive baselines for the experiments in Section 4.

2.1 GP REGRESSION

A (univariate) GP is a non-parametric prior over functions
from input domain x ∈ X into scalar space y ∈ Y , de-
noted as f(x; Θ) ∼ GP (m(x; θm), k(x,x; θk)). A GP is
specified by its mean, m(x; θm) : X → IR, and covari-
ance (kernel), k(x,x; θk) : X ×X → IR, functions with
parameters θm and θk that are jointly referred to as GP
hyperparameters Θ = {θm, θk}.

The function f is a mapping from X to the real numbers
and we may equivalently write f ∈ IRX , viewing func-
tions as (infinite-dimensional) vectors with elements in-
dexed by members of X . Using vector notation, we de-
fine f = f(X) as the vector containing the GP prior val-
ues at a collection of points X = {xi}Ni=1. The GP prior
evaluated at any subset of points X follows a multivari-
ate Gaussian distribution p(f ; Θ) ∼ N (f | 0,KNN ), with
KNN = (k(xi,xj))1≤i,j≤N . We assume zero mean GP
priors without loss of generality, and suppress explicit de-
pendence on input points X to avoid notation clutter.

In GP regression with observations subject to Gaussian
noise, i.e., y = f(x; Θ) + ϵ, ϵ ∼ N

(
ϵ|0, σ2

)
, the data

marginal likelihood is given by

p(y) =

∫
f

p(y|f ;σ)p(f ; Θ) df = N
(
y|0, σ2I+KNN

)
.

(1)

Given some observed data X, the posterior over the GP
function at any input x⋆, f⋆ = f(x⋆), is a Gaussian distri-
bution computable in closed form, i.e.,

p(f⋆ | x⋆,y) = N
(
f | mf⋆|x⋆ , kf⋆|x⋆

)
, with (2)

mf⋆|x⋆ = k∗N
(
σ2I+KNN

)−1
y ,

kf⋆|x⋆ = k(x⋆,x⋆)− k∗N
(
σ2I+KNN

)−1
kN∗ .

where k∗N is the N -dimensional row vector of kernel func-
tion values between a new input x⋆ and observed data X.

2.2 SPARSE GAUSSIAN PROCESS REGRESSION

Even though posterior statistics in Equation (2) are analyti-
cally tractable, they raise computational challenges for big
data, as they require computation of the inverse of N ×N
matrices with, in general, O

(
N3
)

time and O
(
N2
)

space
complexity. An overview of sparse approximations to re-
duce such computational burden for GP regression can be
found in [Rasmussen et al., 2006, Chapter 8], with a unify-
ing view presented in [Quinonero-Candela and Rasmussen,
2005], summarized below. The innovation in sparse GPs is
to design approximate posteriors over GP function values
fM = f(XM ) at a subset of M inducing inputs XM .

Quinonero-Candela and Rasmussen [2005] presented the
Fully Independent Training Conditional (FITC) technique,
as a unifying framework for many of the sparse GP formu-
lations that had previously been presented, e.g., [Csató and
Opper, 2002, Smola and Bartlett, 2000, Snelson and Ghahra-
mani, 2005]. FITC, which was later connected to methods
that approximate the GP posterior via Expectation Propa-
gation [Snelson, 2008, Yuan et al., 2012, Bui et al., 2017],
uses —unlike previous methods [Csató and Opper, 2002,
Seeger et al., 2003]— the marginal likelihood to jointly
learn the hyperparameters and the inducing points [Snelson
and Ghahramani, 2005]. This relaxes the constraint of hav-
ing the inducing points limited to a subset of the dataset,
and turns a discrete inducing point selection problem into
a continuous optimization one. Careful inspection of these
sparse methodologies and, in particular, FITC [Quinonero-
Candela and Rasmussen, 2005, Bauer et al., 2016] pointed
out several limitations related to their tendency to overesti-
mate marginal likelihood, which motivated Titsias [2009] to
propose a variational formulation for sparse GP regression.

2.3 VARIATIONAL SPARSE GP

Titsias [2009] revisited sparse GP inference and pose it
as a variational optimization problem on jointly learning



M inducing inputs XM (and GP hyperparameters Θ), by
maximizing a lower-bound of the log-marginal likelihood:

log p(y) ≥ LSparseGP = Eq(f ,fM )

{
log

p(y, f , fM )

q(f , fM )

}
,

(3)

which is equivalent to minimizing the Kullback–Leibler
(KL) divergence between the variational family q ∈ Q and
the GP posterior, i.e., KL [q(f , fM )∥p(f , fM |y)].
Titsias [2009] showed that, for a factorization of the varia-
tional family of the q(f , fM ) = p(f | fM )q(fM ) form, one
can marginalize over the GP inducing variables fM =
f(XM ), to derive the following analytical lower-bound

LSparseGP = logN
(
y | 0, σ2I+KNMK−1

MMKMN

)
− 1

2σ2
tr
{
KNN −KNMK−1

MMKMN

}
, (4)

which can be computed in O
(
NM2

)
time and O (NM)

space complexity. Equation (4) is the result of integrating
out the optimal Gaussian variational posterior q∗(fM ), avail-
able in closed form for a set of inducing points XM , and
expressed in terms of the prior modeling choices of kernel
and likelihood noise, only used implicitly in inference.

2.4 STOCHASTIC VARIATIONAL GP

Hensman et al. [2013] revisited Titsias [2009]’s evidence
lower-bound (ELBO), and showed that it can be amenable
to stochastic variational inference for GPs (SVGP), by re-
organizing it and avoiding direct marginalization over in-
ducing variables XM , i.e.,

log p(y) ≥ LSV GP = Eq(fM )

{
Eq(f |fM ) {log p(y|f)}

}
−KL [q(fM )∥p(fM )] . (5)

SVGP proceeds by defining a free-form variational family
q(fM ) = N (fM | m,S) and analytically computing the
revised ELBO:

LSV GP = logN
(
y | KNMK−1

MMm, σ2I
)

(6)

− 1

2σ2
tr
{
KNN −KNMK−1

MMKMN

}
− 1

2σ2
tr
{
KNMK−1

MMSK−1
MMKMN

}
−KL [q(fM )∥p(fM )] .

Equation (6) allows for data subsampling, hence enabling
stochastic optimization to learn the free variational pa-
rameters {m,S} in q(fM ) = N (fM | m,S), of order
O
(
2M +M2

)
, where an unbiased estimate of the SVGP

loss can be computed with O
(
M3
)

time- and O
(
M2
)

space-complexity.

The optimum of Equation (6) matches that of Equation (4),
yet the latter directly leverages the optimal variational dis-
tribution q∗(fM ), while the former resorts to stochastic opti-
mization of its free-form, variational O

(
M2
)

parameters to
find it. Namely, SparseGP operates by maximizing a tight
—based on the optimal q∗(fM ))— lower-bound, with the dis-
advantage of not being able to use stochastic optimization.

Our goal here is to leverage the best of each world and
to design a variational posterior that incorporates the de-
pendencies set by the prior GP model (i.e., the kernel and
the likelihood noise) for approximate GP inference that is
amenable to stochastic optimization.

3 CORESET-BASED VARIATIONAL
POSTERIOR GP (CVGP)

We use Bayesian coreset principles to derive an sparse ap-
proximation to the true GP regression posterior that is learn-
able via stochastic variational inference.

Bayesian coresets search for samples from a smaller data
subset that can, via weighted likelihoods, approximate other-
wise hard to compute posterior distributions [Huggins et al.,
2016, Campbell and Broderick, 2018, 2019, Jubran et al.,
2019]. From an optimization perspective, Bayesian coresets
can also be understood as a set of learnable (observed or
unobserved) points selected to minimize some divergence
to a distribution of interest [Manousakas et al., 2020, 2022].

Inspired by such framework, we posit a coreset-based, varia-
tional posterior distribution for GPs (CVGP): i.e., we learn
a small subset of pseudo-inputs XM = {x1, · · · ,xM},
and pseudo-observations yM = {y1, · · · , yM}, that
if reweighted appropriately with parameters βM =
(β1, · · · , βM ), approximate the GP posterior accurately.
Contrary to standard Bayesian coreset methodology, the
coreset tuple {XM ,yM} is composed by learnable pseudo-
points in the input-output data space —not restricted to the
observed empirical data.

For accurate approximation of the posterior, and inspired by
Titsias [2009]’s optimal solution, we ensure that CVGP’s
posterior obeys the GP prior-conditional and it’s induc-
tive biases (see Section 3.1). We learn the CVGP posterior
by formulating a variational lower-bound objective that is
amenable to its stochastic maximization (see Section 3.2).

3.1 THE CORESET-BASED GP POSTERIOR

CVGP’s key novelty is a coreset-based distribution designed
to incorporate the GP’s prior model and likelihood charac-
terizations into the CVGP posterior.

We formulate a coreset-based distribution q(fM ) over GP
variables fM = f(XM ) at pseudo-inputs XM = {xm}Mm=1



and associated pseudo-observations yM = {ym}Mm=1 as

q(fM | XM ,yM ,βM ) =
q(yM | fM ,βM )p(fM | XM )

p(yM | XM ,βM )

=

(∏M
m=1 p(ym|fm)βm

)
p(fM |XM )

p(yM |XM ,βM )
, (7)

where the data likelihood for each pseudo-observation
p(ym|fm),m ∈ {1, · · · ,M}, is raised to the power of learn-
able parameters βM = (β1, · · · , βM ). The CVGP poste-
rior is a tempered distribution, which can be understood
as if a small subset M ≤ N of pseudo-input/output pairs
{Xm, ym} are each drawn βm ≥ 0 times.

For a Gaussian observation likelihood,1 we derive in Ap-
pendix Section A.1.1 the closed-form multivariate Gaussian
distribution of CVGP’s posterior over GP function variables
fM , given coreset triplet {XM ,yM ,βM}:

q(fM | XM ,yM ,βM ) = N
(
fM |mfM |yM

,KfM |yM

)
,

(8)

mfM |yM
= KMM (KMM +ΣβM

)−1yM ,

KfM |yM
= KMM −KMM (KMM +ΣβM

)−1KMM ,

where ΣβM
= σ2 · diag

{
β−1
M

}
.

With this coreset-based distribution over coreset GP values
q(fM ),2 we now accommodate the GP prior’s conditional
dependency, q(f , fM ) = p(f | fM )q(fM ), where

p(f | fM ) = N
(
f |mf |fM ,Kf |fM

)
, with (9)

mf |fM = KNMK−1
MM fM ,

Kf |fM = KNN −KNMK−1
MMKMN ,

and compute the variational posterior of interest,
q(f | XM ,yM ,βM ) over GP function values f = f(X),
by marginalizing the coreset-based, tempered posterior of
Equation (8) from the joint distribution q(f , fM ). The result-
ing CVGP coreset-based variational posterior is

q(f | XM ,yM ,βM ) = N
(
f |mf |yM

,Kf |yM

)
, (10)

mf |yM
= KNM

(
KMM +ΣβM

)−1
yM ,

Kf |yM
= KNN −KNM

(
KMM +ΣβM

)−1
KMN .

If one were to follow standard Bayesian coreset procedures,
we would directly aim to learn the coresets that best approx-
imate q(f | XM ,yM ,βM ) to the true posterior —which
requires computing the GP posterior in Equation (2) of
O
(
N3
)

complexity [Manousakas et al., 2022]. On the con-
trary, we learn the coreset triplet {XM ,yM ,βM} using a
variational objective that aims to minimize the divergence
between such two distributions at reduced computational
cost, and in a form amenable to its stochastic minimization.

1Derivation of closed-form, coreset-based posteriors for non-
Gaussian likelihoods is part of future investigations.

2The interested reader can find the complementary weight-
space derivations in Appendix Section A.2.

3.2 CVGP’S VARIATIONAL LOWER-BOUND

We denote with q(·) a generic variational family of dis-
tributions over a GP . Whenever q(f) ̸= p(f | y), we can
lower-bound the log-marginal distribution,

log p(y) ≥ L = Eq(f) {log p(y | f)} −KL [q(f)∥p(f)] ,

incurring on a gap determined by the Kullback–Leibler
(KL) divergence between the variational distribution and the
GP posterior. Hence, maximizing the loss L is equivalent
to minimizing the KL divergence between the variational
family q(f) and the true posterior p(f |y), i.e., minimizing
the gap ∆(f) = KL [q(f)∥p(f | y)].
In CVGP, we use the coreset-based posteriors of Equa-
tions (8) and (10) to maximize the lower-bound, i.e.,

LCV GP = Eq(f |yM ,XM ,βM ) {log p(y|f)}
−KL [q(fM |yM ,XM ,βM )∥p(fM )] , (11)

which has the following analytical solution:

LCV GP = logN
(
y|mf |yM

, σ2I
)
− 1

2σ2
tr
{
Kf |yM

}
+

1

2

[
tr {AKMM} − y⊤

MAKMMAyM + ln
∣∣AΣβM

∣∣] ,
(12)

where A =
(
KMM +ΣβM

)−1
. Full details of the deriva-

tion are provided in Appendix Section A.

CVGP’s lower-bound LCV GP : optimality at reduced
complexity and increased numerical stability. Maximiza-
tion of the variational lower-bound in Equation (12) to learn
CVGP’s coreset-based posterior in Equation(10) gives rise
to the following desirable properties:

1. The maximum of Equation (12) is identical to the loss in
Equation (4) derived by Titsias [2009]: i.e., SparseGP and
CVGP have the same optimum —see proofs in Appendix
Section A.3.

2. The lower-bound in Equation (12) is amenable to data-
subsampling. Due to the uncorrelated Gaussian likelihood
term and properties of the trace, we can apply stochastic
optimization for its maximization, computing unbiased
loss estimates with reduced (a single) data sample.

3. The algorithmic complexity of CVGP, for coreset size M ,
is O

(
M3
)

in computational time and O
(
M2
)

in space
complexity. Importantly, CVGP’s parameter complexity
is of reduced O (M) order, as it only requires learning
coreset triplets (XM ,yM ,βM ), each of size M —see
Table 1 for a full comparison.

4. CVGP’s posterior and lower-bound inherently provide
a numerically stable stochastic algorithm, as all ma-
trix inverse operations in Equation(12) involve A =



(
KMM +ΣβM

)−1
: the sum of a diagonal matrix (ΣβM

)
defined by positive coreset weights βM ≥ 0 and positive
definite matrix KMM .3

Complexities

Algorithm Time Space Parameter

SparseGP O
(
NM2

)
O
(
NM2

)
O (M)

SVGP O
(
M3

)
O
(
M2

)
O
(
M2
)

CVGP O
(
M3

)
O
(
M2

)
O (M)

Table 1: Computational analysis of CVGP and sparse vari-
ational GP alternatives: time and space complexities for
obtaining an unbiased estimate of their objectives. Desirable
complexities are highlighted in bold. CVGP enjoys same
time and space complexity as SVGP, at a reduced variational
parameter dimensionality.

3.3 A COMPARISON TO ALTERNATIVES

CVGP is, to the best of our knowledge, the first variational
GP inference method that leverages a coreset-based poste-
rior for efficiency and scalability. It diverges from alternative
sparse GP inference techniques in that its posterior is based
on a coreset triplet {XM ,yM ,βM}:

• CVGP is not restricted to a sparse selection of observed
inputs: XM is a vector of free parameters, within the data
domain, but not restricted to the empirical data.

• CVGP does not learn inducing variables m =
Eq(fM ) {fM}, i.e., posterior GP mean function values
evaluated at inducing points XM . Instead, it learns
pseudo-observations yM that encapsulate (i.e., capture
the characteristics of) the observed data (e.g., Figure 5).

• CVGP is the only existing GP method that reweights the
pseudo-observations with learnable parameters βM , for
flexibility and explainability of its coreset-based poste-
rior: i.e., it learns which pseudo-points are important for
accurate GP posterior approximation (Figures 4 and 5).

Comparison to non-variational sparse GPs. Selection
of GP inputs from within the training data involves a pro-
hibitive combinatorial optimization that may require greedy
optimization [Csató and Opper, 2002], based on posterior
maximization [Smola and Bartlett, 2000], maximum infor-
mation gain [Seeger et al., 2003], matching pursuit [Keerthi
and Chu, 2005], or other techniques [Quinonero-Candela
and Rasmussen, 2005]. On the contrary, CVGP leverages
stochastic optimization to find a weighted subset of pseudo-
points that efficiently approximate the GP posterior, sharing

3In theory, KMM is positive definite and invertible. However,
numerical issues can cause instability when inverted in practice.

resemblance with the pioneer work of Snelson and Ghahra-
mani [2005]. To circumvent overestimation of the marginal
likelihood and under-estimation of the noise variance as re-
ported by Titsias [2009], Bauer et al. [2016], CVGP resorts
to variational inference. Hence, CVGP shares the variational
formulation of Titsias [2009] and Hensman et al. [2013], yet
is distinct in several important aspects.

Comparison to variational sparse GPs. CVGP aligns
with the approach by Titsias [2009] in the use of a variational
lower-bound on the marginal log-likelihood that leverages
the GP prior’s conditional dependency, i.e., q(f , fM ) =
p(f | fM )q(fM ), and analytically marginalizes q(fM ). In
contrast, SVGP does not marginalize this distribution and
devises a different lower-bound for stochastic optimization.
As a result, SparseGP and CVGP posteriors directly incor-
porate the GP prior’s inductive biases and the likelihood
model. The main difference is in the choice of q(fM ):

• SparseGP derives the optimum distribution at inputs XM

over function values fM , given observed data y:

q⋆(fM ) = N
(
fM ;m∗

fM ,K∗
fM ,fM

)
, with (13){

m∗
fM

= KMM

(
σ2KMM +KMNKNM

)−1
KMNy

K∗
fM ,fM

= KMM

(
KMM + 1

σ2KMNKNM

)−1
KMM

• CVGP defines a learnable distribution q(XM ) with free
coreset parameter triplet {XM ,yM ,βM} :

q(fM ) = N
(
fM ;mfM |yM

,KfM |yM

)
, with (14){

mfM |yM
= KMM

(
KMM +ΣβM

)−1
yM

KfM |yM
= KMM

[
K−1

MM −
(
KMM +ΣβM

)−1
]
KMM

We note that the building blocks of CVGP’s coreset based
posterior are analogous to SparseGP’s optimal posterior:
CVGP’s learned pseudo-observations yM can be viewed
as a weighted combination of observed datapoints, i.e.,
the KMNy term in SparsedGP’s posterior mean. In addi-
tion, CVGP pseudo-observations yM are modulated by the(
KMM +ΣβM

)−1
term in its posterior mean; in SparseGP,

the
(
σ2KMM +KMNKNM

)−1
term similarly weights

the transformed observations KMNy. In both posterior dis-
tributions, these terms in red are responsible for balancing
the prior inductive biases with the information provided
by observed data: i.e., the posterior means interpolate be-
tween the prior and observations. A similar dependency
between the prior and the information provided by data is
observed in the posterior covariances: i.e., the blue terms
in both posteriors adapt the prior covariance to account for
the uncertainty reduction due to observations. In CVGP,
this balance is adjusted through the learnable matrix ΣβM

,
whereas in SparseGP, it is determined by the fixed depen-
dency set by the prior covariance and the likelihood noise,
i.e., 1

σ2KMNKNM .



Notably, as shown in Appendix Section A.3, when CVGP
matrix ΣβM

matches the appropriate weighting, the opti-
mum of SparseGP and CVGP’s loss-functions are identical.
Hence, the learned solutions match with yM = σ−2Σ∗

βM
y

and Σ∗
βM

= σ2KMM (KMNKNM )
−1

KMM , recovering
Titsias [2009]’s optimal solution. We empirically showcase
CVGP’s ability to quickly and efficiently close the gap to
ExactGP’s marginal log-likelihood in Section 4.3.

Contrary to SparseGP, CVGP’s loss in Equation (12) is
amenable to stochastic optimization, making sparse GP re-
gression scalable at reduced complexity. CVGP matches
SVGP’s scalability [Hensman et al., 2013], yet offers
two key advantages: linear parameter complexity of order
O (M), and a distinct optimization landscape. These arise
from different design choices over q(fM ): whereas SVGP’s
free-form q(fM ) = N (fM | m,S) requires O

(
M2
)

pa-
rameters and yields statistics (m,S) not directly tied to the
model or data likelihood; CVGP’s posterior in Equation (7)
leverages the model’s inductive biases, acting as a natural
interpolation between the GP prior and the data like-
lihood.4 These structural differences produce distinct loss
landscapes, with SVGP’s higher-dimensional optimization
often struggling to converge, as shown in Section 4.3.

3.4 CVGP AS BAYESIAN CORESET LEARNING

CVGP enables a complementary Bayesian coreset learning-
based perspective on sparse GP inference. Methodolog-
ically, CVGP maximizes the loss in Equation (12) for
GP posterior inference; i.e., it maximizes the variational
lower-bound LCV GP with respect to CVGP parameters
{XM ,yM ,βM}, encouraging approximations that min-
imize the gap to the true GP posterior. We note that,
LCV GP → L = log p(y) implies ∆CV GP =
KL [q(f , fM | XM ,yM ,βM )∥p(f , fM | y)] → 0. Hence,
CVGP learns coresets that minimize the distance between
its variational distribution and the true GP posterior.

To do so, it finds —indirectly, yet efficiently— a sparse
representation of the data (i.e., the coreset triplet) that cap-
tures as much information as the GP posterior of inter-
est, measured by the KL divergence between the true and
CVGP’s posterior. Initial estimates of the coreset triplet
{XM ,yM ,βM} can be selected randomly or using k-
means (we evaluate CVGP’s robustness to coreset initializa-
tion in Appendix C.3 and D) and recommend the latter.

Importantly, CVGP’s learning procedure enables an
automatic relevance determination of pseudo-points
{XM ,yM} via adaptation of their βM values: i.e., CVGP
has the inherent flexibility to up- or down-weight (“ignore”)
the pseudo-points that are deemed (or not) important to de-
scribe the observed data —see experiments in Section 4.4.

4We analyze CVGP’s prior to posterior noise adaptation as a
function of observation noise levels in Appendix C.4.

Namely, inspection of q(f | XM ,yM ,βM ) elucidates
which learned coreset tuples {XM ,yM} weighted by βM ,
help describe the GP posterior best —as illustrated in Fig-
ure 4. We note that CVGP’s coreset-based variational pos-
teriors, when derived from the function-space and weight-
space views of GPs —see Appendix Section A for both
derivations— provide complementary posterior insights.

4 EXPERIMENTS

We demonstrate CVGP’s superior predictive performance in
real-datasets in Section 4.2, before delving into its inference
advantages in Section 4.3. We showcase the quality and
explainability of the learned CVGP posteriors in Section 4.4.

4.1 EXPERIMENTAL SETUP

We compare CVGP against benchmark GP alternatives de-
scribed in Section 2: ExactGP [Rasmussen et al., 2006],
SparseGP [Titsias, 2009], and SVGP Hensman et al. [2013].
We also incorporate Parametric Gaussian Process Regres-
sors (PPGPR) by Jankowiak et al. [2020] as a strong pre-
dictive baseline. We implement CVGP using Pytorch and
GPyTorch libraries, and use benchmark GPytorch imple-
mentations [Gardner et al., 2018] for the baselines.

We use a zero-mean GP prior with a Radial basis kernel
function (RBF) in all experiments, as the goal is to compare
—for the same GP model— which approximate GP tech-
nique provides better inference and predictive performance.
We evaluate different coreset (CVGP) and inducing point
sizes M for sparse GP baselines (SparseGP, SVGP and
PPGPR), all initialized with k-means [Hartigan and Wong,
1979]. We employ 5-fold cross-validation to compute and
report each technique’s predictive root-mean-squared er-
ror (RMSE) and posterior predictive log-likelihood (PPLL),
over held out test splits. We enforce best validation RMSE
performance as early stopping criteria. All details for the
reproducibility of the experiments are provided in Appendix
Section B.3.

CVGP predictive and inference experiments of Sections 4.2
and 4.3 are based on real-world regression datasets from
the UCI machine learning repository data [Asuncion and
Newman, 2007]. We use simulated datasets to showcase
learned predictive posteriors in Section 4.4, with all dataset
details described in Appendix Section B.1.

4.2 PREDICTIVE PERFORMANCE

We assess the predictive performance of all sparse GP meth-
ods for a variety of real-datasets, and illustrate the perfor-
mance of ExactGP —when computationally possible— as
the optimal benchmark, in Figure 1.



−0.7 −0.6

SVGP (50)

SVGP (100)

SVGP (200)

CVGP (50)

CVGP (100)

CVGP (200)
?

SparseGP (50)

SparseGP (100)

SparseGP (200)

ExactGP

P
P

L
L

(↓
)

wine (1599, 11)

−1.00 −0.99

SVGP (50)

SVGP (100)

SVGP (200)

CVGP (50)

CVGP (100)

CVGP (200)
?

SparseGP (50)

SparseGP (100)

SparseGP (200)

ExactGP

skillcraft (3338, 19)

−1.0 −0.5

SVGP (50)

SVGP (100)

SVGP (200)

CVGP (50)

CVGP (100)

CVGP (200)
?

SparseGP (50)

SparseGP (100)

SparseGP (200)

ExactGP

parkinsons (5875, 20)

−0.5 0.0

SVGP (50)

SVGP (100)

SVGP (200)

CVGP (50)

CVGP (100)

CVGP (200)
?

SparseGP (50)

SparseGP (100)

SparseGP (200)

ExactGP

bike (17379, 17)

−1.2 −1.1

SVGP (50)

SVGP (100)

SVGP (200)

CVGP (50)

CVGP (100)

CVGP (200)
?

SparseGP (50)

SparseGP (100)

SparseGP (200)

ExactGP

protein (45730, 9)

−0.5 0.0 0.5

SVGP (50)

SVGP (100)

SVGP (200)

CVGP (50)

CVGP (100)

CVGP (200)
?

SparseGP (50)

SparseGP (100)

SparseGP (200)

ExactGP

slice (53500, 385)

−1.3 −1.2

SVGP (50)

SVGP (100)

SVGP (200)

CVGP (50)

CVGP (100)

CVGP (200)
?

SparseGP (50)

SparseGP (100)

SparseGP (200)

ExactGP

song (515345, 90)

0.45 0.50

SVGP (50)

SVGP (100)

SVGP (200)

PPGPR (50)

PPGPR (100)

PPGPR (200)

CVGP (50)

CVGP (100)

CVGP (200)
?

SparseGP (50)

SparseGP (100)

SparseGP (200)

ExactGP

R
M

S
E

(↑
)

wine (1599, 11)

0.65 0.66

SVGP (50)

SVGP (100)

SVGP (200)

PPGPR (50)

PPGPR (100)

PPGPR (200)

CVGP (50)

CVGP (100)

CVGP (200)
?

SparseGP (50)

SparseGP (100)

SparseGP (200)

ExactGP

skillcraft (3338, 19)

0.50 0.75

SVGP (50)

SVGP (100)

SVGP (200)

PPGPR (50)

PPGPR (100)

PPGPR (200)

CVGP (50)

CVGP (100)

CVGP (200)
?

SparseGP (50)

SparseGP (100)

SparseGP (200)

ExactGP

parkinsons (5875, 20)

0.2 0.4

SVGP (50)

SVGP (100)

SVGP (200)

PPGPR (50)

PPGPR (100)

PPGPR (200)

CVGP (50)

CVGP (100)

CVGP (200)
?

SparseGP (50)

SparseGP (100)

SparseGP (200)

ExactGP

bike (17379, 17)

0.7 0.8

SVGP (50)

SVGP (100)

SVGP (200)

PPGPR (50)

PPGPR (100)

PPGPR (200)

CVGP (50)

CVGP (100)

CVGP (200)
?

SparseGP (50)

SparseGP (100)

SparseGP (200)

ExactGP

protein (45730, 9)

0.2 0.4

SVGP (50)

SVGP (100)

SVGP (200)

PPGPR (50)

PPGPR (100)

PPGPR (200)

CVGP (50)

CVGP (100)

CVGP (200)
?

SparseGP (50)

SparseGP (100)

SparseGP (200)

ExactGP

slice (53500, 385)

0.8 0.9

SVGP (50)

SVGP (100)

SVGP (200)

PPGPR (50)

PPGPR (100)

PPGPR (200)

CVGP (50)

CVGP (100)

CVGP (200)
?

SparseGP (50)

SparseGP (100)

SparseGP (200)

ExactGP

song (515345, 90)

Figure 1: Box-and-whisker diagrams of predictive metrics (RMSE and PPLL) on real datasets. The titles denote the dataset
and in parenthesis, its size and feature-dimensionality. Arrows indicate the desirable metric direction: higher PPLL (to the
right) and lower RMSE (to the left). CVGP outperforms SVGP and PPGPR, and is on-par with SparseGP, with as few as 50
coresets. The best performing stochastic gradient model mean statistic (▲) is emphasized⋆. SparseGP and ExactGP results
are omitted for the largest datasets due to computational complexities.

Figure 1 demonstrates how CVGP outperforms (higher
PPPL, lower RMSE) stochastic sparse GP alternatives
(SVGP and PPGPR) consistently, with performance on par
with SparseGP across all predictive metrics —we inspect the
learning and inference gaps between methods in Section 4.3
and Appendix C.2.

Although CVGP, SVGP and SparseGP share the same theo-
retical optimum, empirical predictive performance in Fig-
ure 1 showcases that SVGP rarely reaches the desirable
performance of SparseGP, while CVGP’s is consistently
similar to SparseGP —recall that SparseGP does not allow
for stochastic optimization, while CVGP does.

CVGP’s performance improves with increaset coreset size
and —with as little as 50 coresets— consistently outper-
forms alternative stochastic methods, even when these base-
lines use 4-times more inducing points, i.e., SVGP (200) and
PPGPR (200). CVGP’s predictive performance is also bet-
ter than PPGPR, an approximate GP algorithm specifically
designed for predictive performance.

We showcase in Figure 2 and Appendix C.1 the evolution
of RMSE and PPLL across training, where training of mod-
els does not stop until there are no RMSE improvements.
Notice that, while CVGP metrics improve consistently over
training, the RMSE for PPGPR improves, while its PPLL
deteriorates over training epochs. 5

We demonstrate CVGP’s predictive performance robustness
to initialization in Figure 8 in Appendix Section C.3. We no-

5Due to the large negative PPLL values of PPGPR, we have
not reported them in Figure 1, see Appendix C.1.
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Figure 2: Evolution of RMSE and PPLL across train-
ing epochs. CVGP and SVGP’s RMSE and PPLL consis-
tently decrease with training epochs. Even though PPGPR’s
RMSE improves over epochs, its PPLL deteriorates —
indicating some form of overfitting.

tice k-means and randomly initialized CVGPs’ performance
to be similar across metrics and datasets, which is likely
due to the coreset-based posteriors’ flexibility to up- and
down-weight pseudo-input/output pairs via βM , a property
other methods do not pose.

4.3 INFERENCE PERFORMANCE

We investigate why CVGP approximates the GP poste-
rior predictive distributions more accurately, by studying
the relationship between the variational lower-bounds (L)
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Figure 3: Learning and inference gaps for sparse GP methods over training, as measured by (top-row) the difference
between the log-marginal of ExactGP and the variational bound for SVGP and CVGP; and (bottom-row) the Jensen-Shannon
divergence between the exact posterior predictive and each method’s approximate posterior predictive. CVGP provides
a better approximation to the exact GP posterior, consistently optimizing a tighter lower-bound. A more detailed figure
including PPGPR is available in Appendix C.2.

of sparse GP alternatives and the true GP marginal log-
likelihood in Equation (1).

To that end, we depict in Figure 3 the difference be-
tween the log-marginal of ExactGP and the variational
loss optimized by SVGP and CVGP. We also show
the inference gap of these methods while in training,
over held-out datasets, using the Jensen-Shannon diver-
gence between the exact posterior predictive distribu-
tion p(f⋆ | x⋆,y) =

∫
p(f⋆ | x⋆, f)p(f | y) df in Equa-

tion (2), and each method’s approximate posterior predic-
tive q(f⋆ | x⋆) =

∫
p(f⋆ | x⋆, fM )q(fM ) dfM . We employ

fixed, equal GP prior hyperparameters for all models.

Results in Figure 3 demonstrate how CVGP better closes
the learning gap with ExactGP. In contrast, SVGP offers a
looser bound even if, in theory, both loss functions have the
same optimum. Moreover, smaller divergence from CVGP’s
posterior to that of ExactGP suggests that CVGP better
approximates the GP posterior of interest, at only O (M)
parameter, O

(
M3
)

time and O
(
M2
)

space complexities.

This notable inference improvement is attained with as little
as 50 coresets, performance not reached by SVGP even
with 200 inducing points. We argue that this performance
gap is the result of the distinct optimization landscapes of
the former compared to the latter, induced by the lower-
dimensionality of CVGP’s optimization problem and the
explicit inductive biases present in CVGP’s posterior: (i) its
ability to interpolate easily between prior and posterior (see
Appendix C.4 for more experiments), and (ii) its ability to
learn informative pseudo-points —further investigated in
what follows and in Appendix D.

4.4 CVGP AS BAYESIAN CORESET LEARNING

We illustrate posterior predictive distributions learned
by stochastic sparse GP methods in Figure 4, for a 1-
dimensional synthetic dataset.

We observe CVGP’s approximate posterior to be closest
to the exact predictive posterior, both in predicted mean
and uncertainty quantification. On the contrary, SVGP and
PPGPR encounter difficulties in accurately modeling the
function of interest and their uncertainty in the x ∈ (0, 2)
range: SVGP computes a low-uncertainty, smooth poste-
rior predictive mean, while PPGPR captures the mean but
overestimates uncertainty for x ∈ (1, 2). CVGP, regardless
of initialization, better handles this noisy region, matching
ExactGP’s mean and uncertainty by learning coreset triplets
{XM ,yM ,βM} with up-weighted yM that mitigate poste-
rior GP uncertainty overestimation.

The input locations XM learned by all sparse GP methods
spread across the range of observed data X in Figure 4.
While inducing-points methods SVGP and PPGPR learn
{XM ,mM = Eq {fM}} pairs, CVGP learns pseudo-points
{XM ,yM} with pseudo-observations yM in the observa-
tion space Y . Hence, CVGP can learn pseudo-observations
yM that are correlated with observed data y. Notice how,
in Figure 5, CVGP’s posterior is based on pseudo-outputs
yM that are far from the GP latent values f in the x ∈ (1, 2)
range, which are up-weighted (i.e., green colored dots),
where the observations are subject to heteroskedasticity.

Figure 5 also shows CVGP’s learned histograms of βM ,
where we compare CVGP with k-means and random initial-
izations (RandomCVGP).
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Figure 5: Learned coresets (top) and histograms of their
weights (bottom) for CVGP with random (RandomCVGP)
and k-means initialization, with legend as in Figure 4. CVGP
down-weights uninformative data, yielding many βM ≈
0 for RandomCVGP (removing unhelpful points from its
posterior). Unlike other inducing-point methods —which
must learn good locations— CVGP can eliminate (down-
weight) points that do not converge to plausible values.

Figure 5 illustrates CVGP’s ability to up- and down-weight
pseudo-input/output pairs, for both initializations. Random-
CVGP drives many βm to 0 for uninformative data re-
gions, effectively ignoring those pseudo-points, while up-
weighting more informative ones, improving posterior ef-
ficiency —recall that, in coreset-based posteriors, βm ≥ 0
corresponds to drawing βm samples for each pseudo-point
{Xm,ym}.

We argue that it is CVGP’s coreset-based distribution that
enables efficient and accurate approximation of GP posteri-
ors at a lower parameter complexity: i.e., better predictive
posterior, based on fewer pseudo-points M . Additional ben-
efits of CVGP coreset-based posteriors, namely posterior
explainability and compact, informative representations of

datasets are illustrated in Appendix Section D.2.

5 CONCLUSION

We introduced CVGP, the first GP inference method that
leverages a coreset-based, variational posterior for accu-
rate and scalable GP inference. CVGP enables stochas-
tic optimization of its variational lower-bound to the GP’s
marginal log-likelihood, after marginalization of latent GP
variables, at reduced O (M) parameter complexity, with
O
(
M3
)

time- and O
(
M2
)

space-requirements.

Experimental results demonstrate that CVGP provides im-
proved inference and predictive capabilities, outperforming
stochastic variational inference-based alternatives. CVGP
provides a high-quality GP posterior approximation that ef-
fectively interpolates between the GP prior and the data like-
lihood, learned via an efficient lower-dimensional stochas-
tic optimization problem that results in CVGP achieving
a tighter lower-bound than stochastic variational alterna-
tives. Overall, CVGP’s coreset-based posterior accurately
approximates the true GP posterior, providing a sparse and
explainable representation of the GP posterior, with added
flexibility to adjust (and discard) pseudo-input/output pairs.

Building upon CVGP’s formulation for GP regression, we
embark on follow-up work with other data-likelihoods (e.g.,
for GP-based classification), and envision methods that
leverage the data-compression benefits of CVGP’s coreset-
based posterior.
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A CVGP DERIVATION DETAILS

We derive CVGP’s coreset-based posterior and the log-marginal likelihood’s variational lower-bound, first from the function-
space view of GPs in Section A.1, and then from the complementary weight-space view in Section A.2. Independently
of the route taken, the attained variational lower-bounds are identical, yet the weight- and function-space coreset-based
variational posteriors enable complementary understanding of CVGP’s inference procedure and posterior distribution.

A.1 FUNCTION-SPACE DERIVATION OF CVGP

We derive below, under the assumption of standard Gaussian, uncorrelated observation noise, i.e., y = f + ϵ , ϵ ∼
N
(
ϵ | 0, σ2IN

)
, the coreset-based tempered posterior over GP coreset function values q(fM ). The derivations are equivalent

for non-zero mean and/or correlated noise functions.

A.1.1 CVGP’s Coreset-based Posterior

To be able to accurately approximate the full GP posterior with a coreset {XM ,yM}, we propose to weight with βc ≥ 0 1

the likelihood of each psuedo-point when computing their corresponding coreset GP value fM , i.e.,

q(fM | XM ,yM ,βM ) =
q(yM | fM ,βM )p(fM | XM )

q(yM | XM ,βM )
=

(∏M
m=1 p(ym | fm)

βm

)
p(fM | XM )

q(yM | XM ,βM )
. (15)

We start by deriving a closed form expression for the βM -weighted likelihood function q(yM |fM ,βM ), by considering
each coreset pair {xm, ym}, for m = 1, · · · ,M, independently:

1In practice, we ensure positive βm using the softplus(.) function.
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q(ym | fm, βm) = p(ym | fm)
βm = N

(
ym | fm, σ2

)βm (16)

=

(
1√
2πσ2

e−
1
2 (ym−fm)σ−2(ym−fm)

)βm

(17)

=

(
1√
2πσ2

)βm

e−
1
2 (ym−fm)(β−1

m σ2)−1(ym−fm) (18)

=

(
1√
2πσ2

)βm
(√

2πβ−1
m σ2√

2πβ−1
m σ2

)
exp

{
−1

2
(ym − fm)(β−1

m σ2)−1(ym − fm)

}
(19)

=

√
2πβ−1

m σ2(√
2πσ2

)βm

(
1√

2πβ−1
m σ2

)
exp

{
−1

2
(ym − fm)(β−1

m σ2)−1(ym − fm)

}
(20)

=

√
2πβ−1

m σ2(√
2πσ2

)βm
· N

(
ym|fm, β−1

m σ2
)

(21)

= Qc · N
(
ym|fm, β−1

m σ2
)
, with Qc =

√
2πβ−1

m σ2(√
2πσ2

)βm
. (22)

We write the joint over the full coreset pseudo-observations as a product over each likelihood term:

q(yM |fM ,βM ) =

M∏
m=1

p(ym|fm)βm (23)

=

M∏
m=1

(
1√
2πσ2

)βm
(√

2πβ−1
m σ2√

2πβ−1
m σ2

)
exp

{
−1

2
(ym − fm)(β−1

m σ2)−1(ym − fm)

}
(24)

=

M∏
m=1

Qm · N
(
ym|fm, β−1

m σ2
)

(25)

= QM · N
(
yM | fM ,ΣβM

)
, with

QM =
∏M

m=1

√
2πβ−1

m σ2

(
√
2πσ2)

βm

ΣβM
= σ2 · diag

{
β−1
M

}
.

(26)

We derive the marginalized pseudo-observation coreset distribution

q(yM |XM ,βM ) =

∫
fM

q(yM , fM |XM ,βM ) dfM =

∫
fM

q(yM |fM ,βM )p(fM |XM ) dfM (27)

=

∫
fM

QM · N
(
yM | fM ,ΣβM

)
· N (fM | 0,KMM ) dfM (28)

= QM

∫
fM

N
(
yM | fM ,ΣβM

)
· N (fM | 0,KMM ) dfM (29)

= QM · N
(
yM | 0,KMM +ΣβM

)
. (30)



We leverage the above distributions to derive the coreset-based, tempered GP posterior

q(fM |XM ,yM ,βM ) =
q(yM |fM ,βM )q(fM |XM )

q(yM |XM ,βM )
(31)

=
QM · N

(
yM | fM ,ΣβM

)
N (fM | 0,KMM )

QM · N
(
yM | 0,KMM +ΣβM

) (32)

=
N
(
yM | fM ,ΣβM

)
N (fM | 0,KMM )

N
(
yM | 0,KMM +ΣβM

) (33)

= N
(
fM | mfM |yM

,KfM |yM

)
, with

mfM |yM
= KfM |yM

(
Σ−1

βM
yM

)
KfM |yM

=
(
K−1

MM +Σ−1
βM

)−1

.
(34)

The sufficient statistics of the coreset-based, tempered distibution above can be rewritten as

q(fM ) = q(fM |XM ,yM ,βM ) = N
(
fM | mfM |yM

,KfM |yM

)
, (35)

with


mfM |yM

= KMM

(
KMM +ΣβM

)−1
yM

KfM |yM
= KMM −KMM

(
KMM +ΣβM

)−1
KMM

by Woodbury matrix identity .

(36)

The coreset-based posterior over GP function values. We now compute the posterior over GP values for any given data
point X, by marginalizing the GP’s prior-conditional over the coreset-based distribution, i.e.,

q(f |XM ,yM ) =

∫
fM

p(f |fM )q(fM |XM ,yM ,βM ) dfM . (37)

The above is analytically solvable due to all the distributions being Gaussian:

q(fM |XM ,yM ,βM ) = N
(
fM | mfM |yM

,KfM |yM

)
, (38)

with

{
mfM |yM

= KfM |yM

(
Σ−1

βM
yM

)
KfM |yM

= KMM −KMM

(
KMM +ΣβM

)−1
KMM ,

(39)

p(f |fM ) = N
(
f | mf |fM ,Kf |fM

)
, (40)

with

{
mf |fM = KNMK−1

MM fM

Kf |fM = KNN −KNMK−1
MMKMN ,

(41)

q(f) = q(f |XM ,yM ,βM ) = N
(
f | mf |yM

,Kf |yM

)
, (42)

with

{
mf |yM

= KNMK−1
MMmfM |yM

Kf |yM
= Kf |fM +KNMK−1

MMKfM |yM
K−1

MMKMN .
(43)

We elaborate on the sufficient statistics of q(f |XM ,yM ,βM ).

First, we rewrite the expected value as

mf |yM
= KNMK−1

MMmfM |yM
(44)

= KNMK−1
MMKfM |yM

Σ−1
βM

yM (45)

= KNMK−1
MM

(
K−1

MM +Σ−1
βM

)−1

Σ−1
βM

yM (46)

by using equivalence in Equation (48)

= KNM

(
KMM +ΣβM

)−1
yM , (47)
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where we have made use of the following equivalences,

K−1
MM

(
K−1

MM +Σ−1
βM

)−1

Σ−1
βM

= K−1
MM

(
ΣβM

K−1
MM + IM

)−1
=
(
ΣβM

+KMM

)−1
, (48)

Σ−1
βM

(
K−1

MM +Σ−1
βM

)−1

K−1
MM = Σ−1

βM

(
IM +KMMΣ−1

βM

)−1

=
(
ΣβM

+KMM

)−1
. (49)

Second, for the covariance matrix, we write

Kf |yM
= Kf |fM +KNMK−1

MMKfM |yM
K−1

MMKMN (50)

= KNN −KNMK−1
MMKMN +KNMK−1

MM

(
K−1

MM +Σ−1
βM

)−1

K−1
MMKMN (51)

by using the Woodbury matrix identity for
(
K−1

MM +Σ−1
βM

)−1

= KNN −KNMK−1
MMKMN +KNMK−1

MM

(
KMM −KMM

(
KMM +ΣβM

)−1
KMM

)
K−1

MMKMN (52)

= KNN −KNMK−1
MMKMN +KNM

(
IM −

(
KMM +ΣβM

)−1
KMM

)
K−1

MMKMN (53)

= KNN −KNMK−1
MMKMN +KNMK−1

MMKMN −KNM

(
KMM +ΣβM

)−1
KMMK−1

MMKMN (54)

= KNN −KNM

(
KMM +ΣβM

)−1
KMN . (55)
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A.1.2 CVGP’s Variational Lower-bound

We derive the variational lower-bound by writing everything in terms of sufficient statistics of q(fM ):

LCV GP = Eq(f) {log p(y|f)} −KL [q(fM )∥p(fM )] (56)

= logN
(
y|mf |yM

, σ2IN
)
− 1

2σ2
tr
{
Kf |yM

}
− 1

2

(
tr
{
K−1

MMKfM |yM

}
−M +m⊤

fM |yM
K−1

MMmfM |yM
+ log

|KMM |∣∣KfM |yM

∣∣
)

(57)

= logN
(
y|KNMK−1

MMmfM |yM
, σ2IN

)
− 1

2σ2
tr
{
KNN −KNMK−1

MMKMN +KNMK−1
MMKfM |yM

K−1
MMKMN

}
− 1

2

(
tr
{
K−1

MMKfM |yM

}
−M +m⊤

fM |yM
K−1

MMmfM |yM
+ log

|KMM |∣∣KfM |yM

∣∣
)

(58)

=

(
−N

2
log(2π)− 1

2
log
∣∣σ2IN

∣∣− 1

2
(y −KNMK−1

MMmfM |yM
)⊤σ−2IN (y −KNMK−1

MMmfM |yM
)

)
− 1

2σ2
tr
{
KNN −KNMK−1

MMKMN

}
− 1

2σ2
tr
{
KNMK−1

MMKfM |yM
K−1

MMKMN

}
− 1

2

(
tr
{
K−1

MMKfM |yM

}
−M +m⊤

fM |yM
K−1

MMmfM |yM
+ log

|KMM |∣∣KfM |yM

∣∣
)

(59)

= −N

2
log(2π) +

M

2
− 1

2
log
∣∣σ2IN

∣∣− 1

2
log |KMM |

− 1

2
y⊤σ−2y + σ−2m⊤

fM |yM
K−1

MMKMNy (60)

− 1

2
σ−2m⊤

fM |yM
K−1

MMKMNKNMK−1
MMmfM |yM

− 1

2
m⊤

fM |yM
K−1

MMmfM |yM

− 1

2σ2
tr
{
KNN −KNMK−1

MMKMN

}
− 1

2σ2
tr
{
K−1

MMKMNKNMK−1
MMKfM |yM

}
− 1

2
tr
{
K−1

MMKfM |yM

}
+

1

2
log
∣∣KfM |yM

∣∣ (61)

= −N

2
log(2π) +

M

2
− 1

2
log
∣∣σ2IN

∣∣− 1

2
logKMM − 1

2
y⊤σ−2y

+ σ−2m⊤
fM |yM

K−1
MMKMNy − 1

2
m⊤

fM |yM

(
K−1

MM + σ−2K−1
MMKMNKNMK−1

MM

)
mfM |yM

− 1

2σ2
tr
{
KNN −KNMK−1

MMKMN

}
− 1

2
tr
{(

K−1
MM + σ−2K−1

MMKMNKNMK−1
MM

)
KfM |yM

}
+

1

2
log
∣∣KfM |yM

∣∣ (62)

= −N

2
log(2π) +

M

2
− 1

2
log
∣∣σ2IN

∣∣− 1

2
logKMM − 1

2
y⊤σ−2y

+ σ−2m⊤
fM |yM

K−1
MMKMNy − 1

2
m⊤

fM |yM
K−1

MM

(
K−1

MM −
(
KMM − ΣβM

)−1
)−1

K−1
MMmfM |yM

− 1

2σ2
tr
{
KNN −KNMK−1

MMKMN

}
− 1

2
tr

{
K−1

MM

(
K−1

MM −
(
KMM − ΣβM

)−1
)−1

K−1
MMKfM |yM

}
+

1

2
log
∣∣KfM |yM

∣∣ (63)

= logN
(
y|mf |yM

, σ2IN
)
− 1

2σ2
tr
{
Kf |yM

}
− 1

2

[
−tr {AKMM}+ y⊤

MAKMMAyM − ln |A| − ln
∣∣ΣβM

∣∣] , (64)

where A =
(
KMM +ΣβM

)−1
.



A.2 WEIGHT-SPACE DERIVATION OF CVGP

For completeness and a complementary perspective, we derive CVGP inference from the weight-space view of GPs, again
under the assumption of standard Gaussian, uncorrelated observation noise, i.e., y = f + ϵ , ϵ ∼ N

(
ϵ | 0, σ2IN

)
.

Recall the weight-space definition of GPs, [Rasmussen et al., 2006]:

yi | w,xi ∼ N
(
y | Φ(xi)

⊤w, σ2IN
)

with w ∼ N (w | 0, ID) , (65)

where Φ (·) : X → H is a feature map with associated kernel k(·, ·) : X ×X → IR and Hilbert space H. Namely, a GP
can be viewed as a Bayesian linear regression where the covariates X are embedded into a potentially infinite dimensional
Hilbert space H. An advantage of the weight-space view is that it allows for conditional independence between different
data points x given w; the key property we leverage in the following derivations.

A.2.1 CVGP’s coreset-based tempered-posterior

We aim for a small subset of psuedo-points {XM ,yM} that, if drawn βm ≥ 0 times, approximate the true weight posterior:

p(w)
∏M

m=1 p(yc | w,xm)
βm

Zq︸ ︷︷ ︸
q(w|yM ,XM ,βM )

≈ p(w)
∏N

i=1 p(yi | w,xi)

Zp︸ ︷︷ ︸
p(w|y,X)

. (66)

Typically, the objective of the coreset problem is to learn vector β⋆ = argminβ Dist (q(w), p(w)), where Dist (.) is a
distance metric such as the KL divergence [Campbell and Beronov, 2019].

We derive the coreset-based tempered posterior over GP weights q(w | XM ,yM ,βM ), by noting it is proportional to

exp

{
−1

2
w⊤w

} M∏
m=1

exp

{
−1

2
σ−2βm

(
yc − Φ (xm)

⊤
w
)2}

(67)

∝ exp


−1

2

−2σ−2w⊤
M∑

m=1

ycβmΦ (xm) +w⊤

(
σ−2

M∑
m=1

Φ (xm)βmΦ (xm)
⊤
+ ID

)
︸ ︷︷ ︸

S−1
w|yM

w




, (68)

which is a Gaussian distribution with covariance matrix:

Sw|yM
=

(
σ−2

M∑
m=1

Φ (xm)βmΦ (xm)
⊤
+ ID

)−1

=
(
Φ (XM )

⊤
Σ−1

βM
Φ (XM ) + ID

)−1

, (69)

with ΣβM
= σ2 · diag

{
β−1
M

}
. Let us define Σ−1

βM
= C1/2C1/2, with Φ (XM )

⊤
C1/2 = Φ(XM )

′⊤ and C1/2Φ (XM ) =

Φ (XM )
′. Then we can write the covariance matrix as

Sw|yM
=
(
Φ (XM )

′⊤
Φ (XM )

′
+ ID

)−1

(70)

= ID − Φ (XM )
′⊤
(
ID +Φ(XM )

′
Φ (XM )

′⊤
)−1

Φ (XM )
′ (71)

= ID − Φ (XM )
⊤ (

ΣβM
+KMM

)−1
Φ (XM ) . (72)



We revisit Equation (68) to identify the mean of the Gaussian distribution as follows, where we use yM
′ = C1/2yM :

mw|yM
= Sw|yM

(
σ−2

M∑
m=1

ycβmΦ (xm)

)
(73)

= Sw|yM

(
Φ (XM )

⊤
Σ−1

βM
yM

)
(74)

= Sw|yM

(
Φ (XM )

⊤
C1/2C1/2yM

)
(75)

= Sw|yM

(
Φ (XM )

′⊤
yM

′
)

(76)

=

(
ID − Φ (XM )

′⊤
(
ID +Φ(XM )

′
Φ (XM )

′⊤
)−1

Φ (XM )
′
)(

Φ (XM )
′⊤
yM

′
)

(77)

=

(
Φ (XM )

′⊤ − Φ (XM )
′⊤
(
ID +Φ(XM )

′
Φ (XM )

′⊤
)−1

Φ (XM )
′
Φ (XM )

′⊤
)
yM

′ (78)

=

(
Φ (XM )

′⊤ − Φ (XM )
′⊤
((

Φ (XM )
′
Φ (XM )

′⊤
)−1

+ ID

)−1
)
yM

′ (79)

= Φ(XM )
′⊤
(
ID −

((
Φ (XM )

′
Φ (XM )

′⊤
)−1

+ ID

)−1
)
yM

′ (80)

= Φ(XM )
′⊤

ID − Φ (XM )
′
Φ (XM )

′⊤

ID +Φ(XM )
′
Φ (XM )

′⊤︸ ︷︷ ︸
D

−1
yM

′ (81)

= Φ(XM )
′⊤
(
DD−1 − Φ (XM )

′
Φ (XM )

′⊤
D−1

)
yM

′ (82)

= Φ(XM )
′⊤
(
ZZD −

hhhhhhhhhΦ (XM )
′
Φ (XM )

′⊤
)
D−1yM

′ (83)

= Φ(XM )
′⊤
D−1yM

′ (84)

= Φ(XM )
⊤
C1/2

(
ID + C1/2Φ (XM ) Φ (XM )

⊤
C1/2

)−1

C1/2yM (85)

= Φ(XM )
⊤ (

ΣβM
+KMM

)−1
yM . (86)

All in all, we have

q(w|XM ,yM ,βM ) = N
(
w|mw|yM

,Sw|yM

)
, with

{
mw|yM

= Φ(XM )
⊤ (

ΣβM
+KMM

)−1
yM

Sw|yM
= ID − Φ (XM )

⊤ (
ΣβM

+KMM

)−1
Φ (XM ) .

(87)

A.2.2 CVGP’s Weight-space Variational Lower-bound

We write the variational lower-bound of the log-marginal likelihood as:

log p(y | X) =

∫
q(w) log

{
p(y,w | X)q(w)

p(w | X,y)q(w)

}
dw (88)

= Eq(w) {log p(y | w,X)} −KL [q(w)∥p(w)] + KL [q(w)∥p(w | X,y)] (89)
≥ Eq(w) {log p(y | w,X)} −KL [q(w)∥p(w)]︸ ︷︷ ︸

LCV GP

, (90)



which is the lower-bound of the weight-space view of CVGP, where we set q(w) = p(w | XM ,yM ,βM ) and derive

LCV GP = Ep(w|XM ,yM ,βM ) {log p(y | w,X)} −KL [p(w | XM ,yM ,βM )∥p(w)] (91)

= Ep(w|XM ,yM ,βM )

{
N∑
i=1

log p(yi | w,xi)

}
−KL [p(w | XM ,yM ,βM )∥p(w)] (92)

=

N∑
i=1

Ep(w|XM ,yM ,βM ) {log p(yi | w,xi)}︸ ︷︷ ︸
ℓi

−KL [p(w | XM ,yM ,βM )∥p(w)] . (93)

We compute below the analytical expressions for ℓi and KL [p(y | w,X)∥p(w)].

We start with ℓi:

ℓi =

∫
p(w | XM ,yM ,βM ) log

1√
2πσ2

exp

{
− 1

2σ2

(
yi − Φ (xi)

⊤
w
)2}

dw (94)

= −1

2

(
log 2πσ2 + σ−2

∫
p(w | XM ,yM ,βM )

(
y2i − 2yiΦ (xi)

⊤
w +Φ(xi)

⊤
ww⊤Φ (xi)

)
dw

)
(95)

We need to compute
∫
wp(w | XM ,yM ,βM ) dw and

∫
ww⊤p(w | XM ,yM ,βM ) dw. Note that the former is mw|yM

and the latter is Sw|yM
+mw|yM

m⊤
w|yM

. Hence,

ℓi = −1

2

(
log 2πσ2 + σ−2

(
y2i − 2yiΦ (xi)

⊤
mw|yM

+Φ(xi)
⊤
(Sw|yM

+mw|yM
m⊤

w|yM
)Φ (xi)

))
. (96)

Let us now define

mfi|yM
= Φ(xi)

⊤
mw|yM

(97)

= Φ(xi)
⊤
Φ (XM )

⊤ (
ΣβM

+KMM

)−1
yM (98)

= kiM

(
ΣβM

+KMM

)−1
yM , (99)

and

kfi|yM
= Φ(xi)

⊤
Sw|yM

Φ (xi) (100)

= kii − kiM

(
ΣβM

+KMM

)−1
kXM ,xi , (101)

where the above relate to the GP function values via transformation of the weights by the feature vectors, i.e., fi = f(xi) =

Φ (xi)
⊤
w. Notice how the above expressions match those in Equation (47) and (55). We can therefore write

ℓi = −1

2

(
log 2πσ2 + σ−2

(
y2i − 2yimfi|yM

+ kfi|yM
+mfi|yM

2
))

(102)

= logN
(
yi | mfi|yM

, σ2
)
exp

{
−1

2
σ−2kfi|yM

}
. (103)

We continue with the KL divergence term, recalling p(w) = N (w | 0, ID), and write

KL [p(w | XM ,yM ,βM )∥p(w)] =
1

2

(
m⊤

w|yM
I−1
D mw|yM

+ tr
{
I−1
D Sw|yM

}
+ log | ID | − log | Sw|yM

| −tr {ID}
)

(104)

=
1

2

(
m⊤

w|yM
mw|yM

+ tr
{
Sw|yM

}
− log | Sw|yM

| −tr {ID}
)

. (105)

We first compute



m⊤
w|yM

mw|yM
=
(
Φ (XM )

⊤ (
ΣβM

+KMM

)−1
yM

)⊤ (
Φ (XM )

⊤ (
ΣβM

+KMM

)−1
yM

)
(106)

= y⊤
M

(
ΣβM

+KMM

)−1
Φ (XM ) Φ (XM )

⊤ (
ΣβM

+KMM

)−1
yM (107)

= y⊤
M

(
ΣβM

+KMM

)−1
KMM

(
ΣβM

+KMM

)−1
yM , (108)

then,

tr
{
Sw|yM

}
= tr

{
ID − Φ (XM )

⊤ (
ΣβM

+KMM

)−1
Φ (XM )

}
(109)

= tr {ID} − tr
{
Φ (XM )

⊤ (
ΣβM

+KMM

)−1
Φ (XM )

}
(110)

= tr {ID} − tr
{(

ΣβM
+KMM

)−1
Φ (XM ) Φ (XM )

⊤
}

(111)

= tr {ID} − tr
{(

ΣβM
+KMM

)−1
KMM

}
, (112)

and finally,

log | Sw|yM
| = log

∣∣∣∣(Φ (XM )
′⊤
Φ (XM )

′
+ ID

)−1
∣∣∣∣ (113)

= − log
∣∣∣(Φ (XM )

′⊤
Φ (XM )

′
+ ID

)∣∣∣ (114)

= − log
∣∣∣(Φ (XM )

⊤
CΦ (XM ) + ID

)∣∣∣ (115)

= − log
∣∣∣ΣβM

+Φ(XM ) Φ (XM )
⊤
∣∣∣ ∣∣∣Σ−1

βM

∣∣∣HH|ID| (116)

using metrix determinant lemma (117)

= − log
∣∣ΣβM

+KMM

∣∣− log
∣∣∣Σ−1

βM

∣∣∣ . (118)

We put it all together for the analytical, weight-space variational lower-bound of CVGP,

LCV GP =

N∑
i=1

(
logN

(
yi | mfi|yM

, σ2
)
exp

{
−1

2
σ−2kfi|yM

})
− 1

2

(
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+KMM

)−1
KMM
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βM

∣∣∣−XXXXtr {ID}
)

(119)

=

N∑
i=1

(
logN

(
yi | mfi|yM

, σ2
)
− 1

2
σ−2kfi|yM

)
− 1
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(
−tr

{(
KMM +ΣβM
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KMM
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ΣβM

+KMM

)−1
KMM

(
ΣβM

+KMM

)−1
yM

+ log
∣∣KMM +ΣβM

∣∣− log
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∣∣) (120)

= logN
(
y|mf |yM

, σ2ID
)
− 1

2σ2
tr
{
Kf |yM

}
− 1

2

[
−tr {AKMM}+ y⊤

MAKMMAyM − ln |A| − ln
∣∣ΣβM

∣∣] , (121)

https://en.wikipedia.org/wiki/Matrix_determinant_lemma


where A =
(
ΣβM

+KMM

)−1
and we have combined (a) the sum over N scalar likelihoods into a single, multivariate

Gaussian with mean mf |yM
(composed of mfi|yM

,∀i) and diagonal unit covariance; and (b) all kfi|yM
terms into a diagonal

matrix Kf |yM ii
= kfi|yM

.



A.3 CVGP’S LOWER-BOUND AND ITS OPTIMUM

Before expanding CVGP’s lower-bound in Equation (64), we defining some auxiliary quantities

A =
(
KMM +ΣβM

)−1
= K−1

MM −Σ−1
fM ,fM

(122)

where Σ−1
fM ,fM

= K−1
MM −

(
KMM +ΣβM

)−1
(123)

to write it explicitly in terms of its parameters:

LCV GP = −N

2
log(2π) +

M

2
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2
log
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∣∣− 1

2
log |KMM | − 1
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∣∣∣ (124)

= −N

2
log(2π) +

M
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− 1
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+
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(
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2
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KMM
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We now compute the derivatives with respect to its free parameters

∂LCV GP

∂yM
= σ−2

(
KMM +ΣβM

)−1
KMNy −

(
KMM +ΣβM

)−1
ΣfM ,fM

(
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yM , (132)

∂LCV GP
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We can readily resolve that

y∗
M = σ−2

(
KMM +ΣβM

)
Σ−1

fM ,fM
KMNy (134)

= σ−2A−1Σ−1
fM ,fM

KMNy (135)

(136)

and replace it in the covariance expression
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0 = σ−2σ−2y⊤KNMΣ−1
fM ,fM

A−1KMNy

− σ−2σ−2y⊤KNMΣ−1
fM ,fM

A−1KMNy

+
1

2
tr
{
K−1

MMΣfM ,fMKMM

}
− 1

2
tr

{(
KMM −KMM

(
KMM +ΣβM

)−1
KMM

)−1

KMMKMM

}
(138)
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Equating the matrices inside the traces, we have
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We now elaborate on the optimal values for CVGP’s pseudo-coresets, rewriting CVGP’s optimal pseudo-observations as
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With this optimal values, we can now rewrite the lower-bound at its maxima
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which, for M = Z, and XM = XZ
2, corresponds with the same lower-bound as demonstrated by Titsias [2009] for

SparseGP. LCV GP ≤ LSparseGP and the bound is tight with equality when KMM (KMNKNM )
−1

KMM is diagonal.

2Matching notations.



A.4 COMPLEXITIES OF CVGP

CVGP maintains the time and space complexity of SVGP with less parameters. This is because CVGP does not need to
learn a free-form covariance matrix S, but only the coreset values XM ,yM and their weights βM , which is more efficient
—note that these three are M -dimensional vectors in the scalar case. We describe the complexities of benchmarks and their
parameters in Table 2 below.

Complexities

Inference technique Time Space # Parameter Parameters

SparseGP [Titsias, 2009] O
(
NM2

)
O
(
NM2

)
O (M) XM

SVGP [Hensman et al., 2013] O
(
M3
)

O
(
M2
)

O
(
M2
)

XM ,m,S
CVGP O

(
M3
)

O
(
M2
)

O (M) XM ,yM ,βM

Table 2: Computational analysis of CVGP and sparse GP alternatives: time and space complexities for obtaining an unbiased
estimate of the log-marginal likelihood. CVGP enjoys same time and space complexity as SVGP, yet with a reduced
variational parameter dimensionality. Contrary to SVGP, CVGP does not learn a free-form covariance parameter S, but only
tempering-parameters βM of same size as XM ,yM .



B EXPERIMENTS: SET-UP AND ADDITIONAL DETAILS

B.1 DATASETS

In this section, we describe the simulated and real-world datasets used in our experiments. We use UCI machine learning
repository for real-world datasets [Janosi et al.], as described in Section B.1.1. The generative processes of simulated data
are explained below in Section B.1.2. For all datasets, X are normalized (0 centered and unit variance) before training.

B.1.1 Real-world Datasets

Physicochemical properties of protein tertiary structure dataset (protein). A physicochemical data collection contain-
ing the properties of protein tertiary structure, specifically sourced from CASP 5-9. The dataset includes 45730 data points
and 9 features [Rana, 2013].

Bike sharing dataset (bike). A bike sharing dataset comprised of 17 features and 17379 data points [Fanaee-T and Gama,
2013].

Parkinsons telemonitoring dataset (parkinsons). A biomedical voice measurements dataset obtained from 42 individuals
in the early stages of Parkinson’s disease. These individuals were enrolled in a six-month trial for remote symptom
progression monitoring, using a telemonitoring device [Little et al., 2007]. There are 20 features and 5875 datapoints.

SkillCraft1 master table dataset (skillcraft). A video gaming telemetry data collection consisting of 12 features and
3338 data points [Thompson et al., 2013].

Wine quality dataset (wine). A collection of red wine samples with 11 features that are used to predict the wine’s quality.
In total, there are 1600 data points available for analysis [Cortez et al., 2009].

Year Prediction MSD (song). A collection of audio features. The goal is to predict the year a song is released [Bertin-
Mahieux, 2011].

Relative location of CT slices on axial axis (slice). 53500 CT images from 74 different patients. The goal is to predict
the relative location of the CT slice [Graf et al., 2011].

B.1.2 Simulated Datasets

We generate 1000 examples for each of the following synthetic datasets.

Synthetic 1. A 1-dimensional dataset following the below generative process:

f =
2

5

(
sin 3x cos 2x+ sin

x

2
+ cos 2x+ exp

{
−x2

}
+ |x|

)
, x ∼ U(−4, 4) , (175)

y = f + ϵ sin 2πf , ϵ ∼ N
(
ϵ | 0, 3× 10−1

)
. (176)

Synthetic 2. A 1-dimensional dataset following the below generative process:

f = sinx2 + cosx2 + sin 3x+ cos 5x+

√
|x|
2

, x ∼ U(−4, 4) , (177)

y = f + ϵ sin 2πf , ϵ ∼ N
(
ϵ | 0, 3× 10−1

)
. (178)

Synthetic 3. A 1-dimensional dataset following the below generative process:

f = cos 2πx , x ∼ U(0, 2) , (179)

y = f + ϵx3 , ϵ ∼ N (ϵ | 0, 1) . (180)



Synthetic 4. A 2-dimensional dataset following the below generative process:

x ∼ MakeBlobs(centers = 3, std = 0.4) , (181)
f1 = 4 sinx1 + 2 sin 2x1 , (182)
f2 = 3 cos 3x2 + 4 sin 5x2 , (183)

f12 = exp
{
−(x1 + x2)

2
}

, (184)

y = f1 + f2 + f12 + ϵ , ϵ ∼ N
(
ϵ | 0, 2× 10−1

)
. (185)

where the function MakeBlobs is implemented as in Pedregosa et al. [2011].

Synthetic 5. A 2-dimensional dataset following the below generative process:

x ∼ MakeMoons(noise = 0.05) (186)

f1 =
x1

2
+ sin 2x1 (187)

f2 =
x2

2
+ cos 5x2 (188)

f12 =
exp

{
−(x1 + x2)

2
}

2
(189)

y = f1 + f2 + f12 + ϵ , ϵ ∼ N
(
ϵ | 0, 2× 10−1

)
(190)

where the function MakeMoons is implemented by Pedregosa et al. [2011].



B.2 BASELINES

We use the GPytorch [Gardner et al., 2018] implementation of SparseGP, SGVP, and PPGPR. For ExactGP, we simply use
the derivation of Rasmussen et al. [2006] implemented using the MultivariateNormal method of Pytorch [Paszke
et al., 2019].

SparseGP. Introduced by [Titsias, 2009], SparseGP offers a variational solution to inducing point methods. In particular,
SparseGP minimizes the KL divergence between an approximate and true posterior distribution. The loss function is derived
by finding and plugging the optimal posterior variational distribution, which can be derived in terms of the GP kernel
parameters.

SVGP. SVGP minimizes the KL divergence between an approximate and true posterior distribution where the posterior
distribution is explicitly defined [Hensman et al., 2013]. The parameters of the posterior and model are learned jointly.
SVGP is an stochastic approximation to SparseGP, which allows computationally efficient learning.

PPGPR. PPGPR is a variational predictive method for GPs that, instead of lower-bounding the prior-predictive distribution
as the methods above, proposed to optimize a lower-bound over the posterior predictive [Jankowiak et al., 2020]. This
method provides predictive uncertainty estimates that model the variance of the observed data more accurately. PPGPR
results in Jankowiak et al. [2020] were based on 400 epochs, which we found insufficient for convergence to optimal
RMSE in our experiments. Although longer training helps with better predictive RMSE performance, it also causes severe
overfitting on noise —a behavior not observed in other GP algorithms.

ExactGP. The exact learning of Gaussian processes as described by Rasmussen et al. [2006]. We compute the marginal
log-likelihood (prior predictive) by integrating the likelihood over the latent function-space (with respect to prior distribution)
to learn model hyperparameters, at a computational complexity of O

(
N3
)
.

B.3 EXPERIMENT DETAILS FOR REPRODUCIBILITY

We employ 5-fold cross-validation to compute and report each variational technique’s (lower-bound) objective L in inference,
as well as their predictive root-mean-squared error (RMSE) and posterior predictive log-likelihood (PPLL) over held out test
splits.

We do not scale the KL-divergence terms in each model’s objective, for them to be valid lower-bounds. We use a fixed
random seed over all datasets to ensure that the folds (with 70%-30% train and validations splits) for different models are
the same.

We use Adam optimizer with a learning rate of 10−3 for all methods and single precision floating point [Kingma and Ba,
2014]. For the techniques amenable to stochastic optimization (SVGP, PPGPR, and CVGP), we use a batch size of 512.
Each model is run on a single NVIDIA® GeForce® RTX 20 series graphics card.

To leverage full model capacity and achieve full optimization performance, we train for 105 epochs maximum, and stop
training only if there are no RMSE improvements for 3× 103 consecutive epochs over the validation set. We early stop with
respect to the best held-out validation set RMSE metric attained.



C ADDITIONAL EXPERIMENTS

We showcase here additional and different performance findings. For box plots below, unless otherwise stated, the best
performing stochastic model —in comparison to other stochastic sub-sampling methods— is showcased in bold.

C.1 EVOLUTION OF PERFORMANCE METRICS BY TRAINING EPOCHS
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Figure 6: Evolution of RMSE and PPLL across training epochs. For CVGP and SVGP, validation RMSE and PPLL
consistently decrease —showing no critical indication of overfitting. In contrast, PPGPR’s RMSE improves, but PPLL
worsens, indicating overfitting of noise and cross-correlation, leading to suboptimal PPLL. Training stops only when RMSE
no longer improves. Large negative PPLL values prevent reporting PPGPR’s PPLL in Figure 1.



C.2 MODEL LEARNING AND INFERENCE GAPS
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Figure 7: Divergence from the true posterior p(f⋆ | x⋆,X,y) and lower-bound tightness relative to the exact solution (i.e.,
the difference in log-marginal and ELBO, always positive). PPGPR does not lower-bound ExactGP and diverges, as shown
in the figure. By directly fitting noisy observations, PPGPR overfits early, while SVGP and CVGP filter noise.



C.3 ROBUSTNESS TO INITIALIZATION

Below, we demonstrate CVGP’s robustness to random initialization. We observe that RandomCVGP (CVGP initialized
with white Gaussian noise) performs on par with CVGP in almost all cases and metrics. For very big datasets with many
input-features (e.g., Song), a random initialization over high-dimensional input-output spaces is a clear disadvantage. Hence,
we recommend, in general, to initialize CVGP with k-means.
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Figure 8: Predictive performance comparison for CVGP when initialized with random points (RandomCVGP) or k-means
over the observed (real) datasets. CVGP is robust to random initializations. The best performing initiation mean statistic (▲)
is emphasized⋆.



C.4 POSTERIOR-PRIOR INTERPOLATION: NOISY REAL-WORLD DATA

We discuss all sparse GP method’s ability for their posterior to interpolate between the model prior and the information
provided by observations.

For CVGP, as the observation noise increases (σ2 → ∞), its posterior mean mfM |yM
converges to 0 (the GP prior mean),

and its posterior covariance KfM |yM
converges to the prior covariance KMM ; i.e., the observations are noninformative and

CVGP’s posterior reverts to the GP prior. Conversely, for noiseless data (σ2 → 0), CVGP’s posterior mean approaches yM ,
and its posterior covariance diminishes to 0 (see Equation 14). On the contrary, SVGP’s posterior statistics (m,S) have no
explicit model dependencies, and therefore, are adjusted based purely on variational parameter optimization.

We run an empirical experiment below, where we take a real-world dataset and progressively add noise to the true regression
values, before training SVGP, PPGPR, and CVGP on these extra-noisy versions of the datasets. As in any Bayesian model,
we expect that for low noise regimes, the posterior should diverge from the prior to capture the information provided by
observations; while for high noise regimes (uninformative data), the posterior should remain similar to the prior. Below, we
notice that CVGP effectively resorts to the prior under uninformative data, a behavior exhibited by ExactGP, while PPGPR
does not recover the prior —fitting the noisy data.
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Figure 9: Study of the difference between sparse GP approximate posteriors and model prior for the Bike dataset, as
measured by the KL-divergence between prior and approximate variational posterior (KL [q(fM )∥p(fM )]) across different
observation noise regimes. Left: CVGP, PPGPR, and SVGP, right: CVGP and SVGP. We see that PPGPR diverges from
prior vastly while SVGP and CVGP retains the Gaussian prior-likelihood conjugacy (i.e., as noise increase they do not
diverge from the prior vastly).



D QUALITATIVE STUDY

D.1 QUALITATIVE EVALUATION OF POSTERIOR PREDICTIVE

Below, we showcase the predictive distributions of each trained GP model, for the synthetic 1D datasets, i.e., synthetic 1 in
Figure 10, synthetic 2 in Figure 11, and synthetic 3 in Figure 12.

Note that RandomCVGP is initialized with Gaussian white noise and faces a significantly more challenging task in fitting
the data compared to SVGP, PPGPR, and CVGP. In fact, some of its learned inducing points/coresets fall off-the-grid and
appear unrelated to the data. In these cases, the corresponding coreset weights are low (indicated in purple).

Conversely, points that effectively capture the y|x relationship are shown in yellow-green, while those that do not are
depicted in purple —and are consequently disregarded during posterior inference.

On the contrary, SVGP and PPGPR do not have this behavior. Hence, we use a single color for their coresets. This coreset-
based posterior design endows CVGP with significant flexibility: if an inducing point proves unhelpful for predictions,
its influence can be driven to 0 (with the help of its corresponding βm). In contrast, both PPGPR and SVGP must select
inducing points that consistently capture the data structure.
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Figure 10: Posterior predictive distribution for the synthetic 1 dataset across different 5 folds, with 100 inducing points.
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Figure 11: Posterior predictive distribution for the synthetic 2 dataset across different 5 folds, with 100 inducing points.
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Figure 12: Posterior predictive distribution for the synthetic 3 dataset across different 5 folds, with 100 inducing points. We
observe that PPGPR captures heteroscholastic uncertainty. Although this seems like a plausible property, the noise in y can
sometimes be pure noise, and could lead PPGPR to overfit as we discussed and demonstrated in Figures 2 and 6.



D.2 STUDY OF INDUCING POINTS (XM )

We showcase the density of XM s learned by CVGP (weighted by βM ), and the XM points learned by other sparse GP
methods on the 2-dimensional synthetic Blobs (Figure 14) and TwoMoons (Figure 15) datasets, across different folds of
the training data. Notice how CVGP consistently learns meaningful data representations over all folds.
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(a) Synthetic 4 dataset where y = f(x) + ϵ, and x ∼ MakeBlobs(.)
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(b) Synthetic 5 dataset where y = f(x) + ϵ, and x ∼ MakeMoons(.)

Figure 13: Kernel density estimation (KDE) plots for XM learned by CVGP and XM for sparse baselines, on (a) synthetic 4
and (b) synthetic 5 datasets. For CVGP we use βM -weighted KDE plots, not possible for alternatives. All methods capture
the clustered Blobs empirical distribution in Figure 13a, yet CVGP models the bi-modal nature of data more clearly. CVGP,
RandomCVGP, and SparseGP adeptly capture the distinctive TwoMoons shape exhibited by the empirical data distribution
in Figure 13b, in contrast to other stochastic sparse inference alternatives.
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Figure 14: Learned representations for synthetic 4 dataset over 5 different folds with 100 inducing points. CVGP learns
meaningful representations over different folds. RandomCVGP is more noisy than CVGP as it is initialized with Gaussian
white noise.
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Figure 15: Learned representations for synthetic 5 dataset over 5 different folds. CVGP learns meaningful representations
over the different folds while other models, except for SparseGP, struggle to capture the empirical distribution. RandomCVGP
is more noisy than CVGP as it is initialized with Gaussian white noise.



D.3 LEARNED CORESET WEIGHT DISTRIBUTION FOR K-MEANS AND RANDOM INITIALIZATIONS

We show below the histogram of CVGP’s learned coreset’s weights across all synthetic datasets. Note that, all learned
coresets have nonzero weights βm > 0, ∀m, with very different histograms depending on the dataset: for some datasets,
some pseudo input-output points {XM ,yM} are considerably up-weighted. We observe that RandomCVGP consistently
drives the weight of unplausible inducing points to 0.
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Figure 16: Histogram of learned CVGP coreset weights βM . Top CVGP, bottom RandomCVGP (i.e., initialization with
white noise). We see that some of weights of RandomCVGP go to 0 while almost all weight values of CVGP are non-zero
(i.e., no coreset tuple {XM ,yM} is discarded (βm > 0, ∀m)).
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