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ABSTRACT

In the context of few-shot learning, it is currently believed that a fixed pre-trained
(PT) model, along with fine-tuning the final layer during evaluation, outperforms
standard meta-learning algorithms. We re-evaluate these claims under an in-depth
empirical examination of an extensive set of formally diverse datasets and compare
PT to Model Agnostic Meta-Learning (MAML). Unlike previous work, we em-
phasize a fair comparison by using: the same architecture, and all models trained
to convergence. Crucially, we use a more rigorous statistical tool — the effect size
(Cohen’s d) — to determine the practical significance of the difference between a
model trained with PT vs. a MAML. We then use a previously proposed metric
— the diversity coefficient — to compute the average formal diversity of a dataset.
Using this analysis, we demonstrate the following: 1. when the formal diversity of
a dataset is low, PT beats MAML on average and 2. when the formal diversity is
high, MAML beats PT on average 3. yet overall, the difference in the two methods
is zero on average using the effect size The caveat for the first two observations
is that the magnitude of the average difference between PT vs. MAML using
the effect size is low (according to classical statistical thresholds) — less than 0.2.
Nevertheless, this observation is contrary to the currently held belief that a pre-
trained model is always better than a meta-learning model and prove it by a counter
example. Our extensive experiments consider 21 few-shot learning benchmarks,
including the large-scale few-shot learning dataset Meta-Dataset and a NLP dataset.
In addition, for our analysis, we trained 196 models to convergence. In addition,
we provide a multimodal analysis and show the effect size difference is zero for
GPT-2 PT and MAML models trained on Openwebtext. We, therefore, conclude
that a pre-trained model does not always beat a meta-learned model and that the
formal diversity of a dataset is a driving factor and when considering all datasets
diversities there is no difference (as expected by the No Free Lunch Theorem).

1 INTRODUCTION

Rapid learning from a few examples is a hallmark of human intelligence. Inspired by the ambition to
equip artificial agents with this capability, research in Artificial Intelligence (AI) has been significantly
influenced by the domain of meta-learning, embodying the notion of ”learning to learn” or "’learning
to adapt” (Andrychowicz et al.l 2016)). In addition, the broad success of Deep Learning in computer
vision (Krizhevsky et al., 2012} |He et al., [2015), natural language processing (Devlin et al.,|2018;
Brown et al.||2020), game playing (Silver et al., 2016; Mnih et al., 2013 Ye et al.,[2021]), theorem
proving (Rabe et al.; [Polu & Sutskever}2020; Han et al.), code (Chen et al.) and more has lead Deep
Learning to be routinely applied to the field of few-shot learning. Few-shot learning challenges a
model’s ability to quickly learn a new task from few examples and therefore has been a prominent
research area for the application of meta-learning algorithms. However, recent findings (Tian
et al.}|2020) have demonstrated that a pre-trained model with a fixed embedding can surpass many
sophisticated meta-learning algorithms in performance on a variety of few-shot learning benchmarks
(Tian et al.| 2020} |Chen et al.,|2019; [2020; [Dhillon et al., [2019; [Huang & Tao, 2019). It has been
suggested that we need to “Re-think Few-Shot Image Classification; is a Good Embedding All
You Need?”. We challenge this view and re-evaluate meta-learning against pre-trained models —
using Model Agnostic Meta-Learning (MAML) as the canonical meta-learning algorithm. Our
novel re-evaluation uses three fundamental components: A. It employs a fair comparison amongst
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pre-trained models vs MAML trained models by; using the same architecture, and all models trained
to convergence. B. It uses a more rigorous statistical analysis technique — in particular, we use the
effect size (Cohen’s d) (Cohen| |1992) to characterize more carefully the difference in performance
between the two methods. C. It takes into account the formal diversity of a dataset when conducting
the statistical analysis.

All of this work is inspired by the key question: does explicitly training to “learn to learn” (i.e.,
meta-learn) improve the performance of a machine learning algorithm? We provide an answer in
few-shot learning: in the low data diversity regime, pre-training is better on average than MAML,
but in the high diversity regime, MAML is better. The caveat is that the magnitude of the effect
size (Cohen’s d) is less than 0.2 on average — which is considered small in statistics (Andrade} 2020
Lin et al., [2013}; |Cohen, [1992). However, when taken all dataset diversities into consideration, the
effect size is close to zero (-0.00475), favoring neither algorithm — as would be expected from the No
Free Lunch Theorem (NFLT) and previous work suggesting this (Miranda et al., 2022; Wolpert &
Macreadyl [1997).

Our key Contributions are summarized as follows:

1. We clarify previous claims that pre-training is better than MAML through a fair, in-depth,
and extensive study — using the effect size (Cohen’s d). Therefore, we go beyond statistical
significance to establish practical significance instead.

2. We do the analysis in a novel data-centric perspective by measuring the formal diversity of
the datasets. This reveals an additional rich structure to our findings and consistency with
the No Free Lunch Theorem (NFLT) (Wolpert & Macreadyl [1997).

3. We demonstrate:

(a) When the formal diversity of a dataset is low, a Pre-trained model beats MAML on
average (but with a small effect size)

(b) When the formal diversity of a dataset is high, a MAML model beats a Pre-trained
model on average (but with a small effect size).

(c) When all dataset diversities are considered, neither method is better than the other (as
expected by the NFLT).

2 BACKGROUND

Model-Agnostic Meta-Learning (MAML): The MAML algorithm (Finn et al.l 2017) is designed
to meta-learn an optimal initialization of neural network parameters, thereby priming it for rapid
gradient descent adaptations. This algorithm involves two core optimization loops: the outer loop,
which primes the parameters for swift adaptation, and the inner loop, which executes the fast
adaptation. During meta-testing/evaluation, the inner loop exclusively carries out the adaptation of
the representation acquired from the outer loop.

Pre-Training (PT) with a union of all the data: Prior research (Tian et al.| 2020) demonstrates
that an initialization pre-trained with a union of all the data can supersede numerous meta-learning
methods. Specifically, their methodology involves two phases: initially, they utilize a union of
all labels in the few-shot learning benchmark during meta-training and undertake training with
conventional pre-training (PT). Subsequently, during the meta-testing phase, they employ a standard
inference method prevalent in transfer learning: extraction of a fixed feature from the neural network
and a comprehensive fine-tuning of the final classification layer (the head) with LBGFS (Limited-
memory Broyden—Fletcher—Goldfarb—Shannon algorithm).

Effect Size (Cohen’s d): Cohen’s d (Cohenl [1992) is a robust statistical tool designed to quantify
the size or magnitude of an effect, irrespective of the sample size. This standardized measure of
effect size allows for the comparison of results across different studies and domains. It is calculated
by determining the difference between two means and dividing by the pooled standard deviation
(approximately unbiased estimate of the combined standard deviations), providing a measure of effect
size in terms of standard deviation units: d = (1 — pe)/pooled_std(o1, o). We explain the main
reason for using this metric and its corresponding decision rule in section 3]

Task2Vec Embeddings of tasks: We use the Task2Vec diversity coefficient proposed in Miranda
et al.[(2022) to compute the formal diversity of a dataset (or a few-shot learning benchmark). To
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understand the diversity coefficient, we explain how to compute Task2Vec (vectorial) embeddings of
a task and briefly explain why it is a good vectorial embedding of a task. Task2Vec (Achille et al.}
2019) embeds data (e.g., any batch) using the diagonal entries of the Fisher Information Matrix (FIM)
using a fixed neural network (also called a probe network) after (partially) fine-tuning the final layer
to solve the current task (or batch). Thus, the Task2Vec embedding of task 7 is:

fp..5. = Diag(Fp, 5,) M
where Diag extracts the diagonal of the FIM:

FD,,fw = ELwa 1ng(y | z, fw)va(y | z, fw)T

and f,, is the fixed probe network with architecture f with weights w, x is sampled from the
batch/data D, = {(z;,y;)}1, for task 7, y is sampled from the (empirical) posterior distribution
using the probe network i.e., p(y | z, fi,). This is a good embedding of tasks because the (diagonal)
of the FIM indicates the most informative weights for solving the current task and thus serves as
a unique fingerprint for task distribution. The Task2Vec authors (Achille et al,[2019) empirically
validate their embeddings, e.g., Task2Vec embeddings cluster in a way that matches human semantic
relations between different visual tasks (Achille et al., 2019) and Task2Vec yields (cosine) distance
that positively correlation with taxonomical distances (Achille et al., 2019).

Task2Vec Diversity coefficient: The Task2Vec diversity coefficient is a formal quantitative metric
proposed by Miranda et al.| (2022)) to approximate the effective number of tasks in a dataset. If
the tasks are probability distributions, then this metric approximates the average distance between
probability distributions. They validate it with synthetic experiments where the ground truth diversity
is known. We further validate it in the supplementary section[A.5] We show the intuitive notion that
when different types of datasets are unioned to create a new dataset, the Task2Vec diversity coefficient
increases. The Task2Vec diversity coefficient is defined as the expected (cosine) distance between
Task2Vec embeddings of different tasks (or data batches) for a fixed probe network from a few-shot
learning benchmark/dataset B:

(ZZ’U(B) = ET1,7'2ED1,D2d(f_'D1,fw7JFDQ;]%) (2)

where Fp, . is the Task2Vec embedding of the training data D, = {(x;, y;)}7_, for task p(x,y | 7)
that uses the fixed probe network f,, with architecture f and weights w. Note that 7, 75 are tasks
sampled from the (meta) distribution of tasks p(7 | B) for the current benchmark B, and d is the
cosine distance. It is worth restating that in this framework, a task is defined as an n-way, k-shot
few-shot learning task. Each task thereby includes n classes, each of which is sampled with &
examples. Usually, this is split into a support (train) set for fast adaptation and a query (test) set for
evaluation.

3  STATISTICAL METHODS

In this section, we explain the main statistical methodology we use to analyze our results using the
effect size (Cohen’s d) (Cohenl 1992; Andrade, 2020) and its rationale. We want to emphasize that
the main tool we used was the effect size (Cohenl [1992)) described in Section

3.1 DECISION RULE

Summary of decision rule: To determine if there was a significant difference between PT vs MAML
we computed the meta-test accuracy of the two methods and determined if the difference in terms
of the effect size was larger than what is common in machine learning (we use a 1 % standardized
threshold by dividing by the pooled standard deviation (Rodriguez et al.,[2020; |L1 et al., |2021))). If it
is larger, we determine there is a significant difference and report which method is better by looking
at the sign of the effect size. Otherwise, if the difference was small according to this threshold, we
reported there was no significant difference. All our tables include the raw effect size differences.

More precisely, first compute a list of (meta) test accuracies on a batch of few-shot learning tasks
for MAML and PT denoted as: accs,; and accs,,qamis, where 4 denotes the number of inner steps in
MAML during (meta) testing. Compute the effect size (ES) of the difference of these. Compute the
threshold 6, by dividing 1 % by the pooled standard deviation of the current test accuracies, i.e.
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HO (no diff.) if ES(accsp — accsmami;) € [—01%, 01%)
Decision(accspt, accSmami;) = { HI (pt) if ES(accspr — accsmami;) > 01%
HIl (maml)  if ES(accspr — accSmami;) < —01%

3)

divide 0.01 by std_pooled(accsy; — accSmamii)- Then the decision rule in equationto determine if
to reject the null hypothesis or not. Note, you can also look at the effect size sign to determine which
method performed best. If the sign is positive, then PT outperformed MAML, otherwise MAML
performed better. For most of our experiments, we noticed d;¢, ~ 0.06, therefore, an effect size
difference with magnitude less than 0.06 meant there wasn’t sufficient evidence to reject the null
hypothesis i.e. there wasn’t a significant difference between the methods.

3.2 JUSTIFICATION FOR EFFECT SIZE AND DECISION RULE

The principal rationale behind our choice for using effect size lies in the sizable sample/batch size
we employed, ranging from 300-500. When we used t-tests, we obtained p-values and confidence
intervals equal to zero. Therefore, we cannot meaningfully use these statistical methods and over-
reject the null hypothesis, a known issue in statistics (Lin et al.,|2013). In other words, in studies with
large sample sizes, even tiny, unimportant differences can be statistically significant. Reporting effect
size prevents this type of misleading conclusion (Lin et al.,[2013).

We also seek a data-centric perspective to our analysis. Therefore, it was paramount that our analysis
was robust across datasets. Using effect size allows for this comparison because it’s a standardized
measure, so it’s not influenced by sample size or the units of measurement.

Effect size provides information about the magnitude or strength of the difference or relationship
between variables, going beyond the mere existence of an effect. It offers more informative insights
than solely determining whether a difference is significant.

In the end, every statistical decision test will have an arbitrary value that needs to be chosen and
justified. For t-tests, it’s the p-value, commonly set to 0.05. For confidence intervals is the confidence
level, commonly set to 95%. For effect size, the standard used values are 0.2, 0.5, 0.8 (Andrade,
2020). In this setting, we choose the difference to be the standardized 1 %. We choose this value
because it is the common performance gained needed in machine learning conferences, these papers
are some evidence Rodriguez et al.| (2020); Li et al.|(2021). However, note is arbitrary, and therefore
it is important to report all absolute effect sizes and raw meta-test accuracies. We do this in our
work, and the meta-test accuracies are in the supplementary section[A.2] We finalize this section by
reminding the reader all statistical tests have assumptions and are imperfect.

4 EXPERIMENTS

We compare the performance of a pre-trained (PT) model against a MAML model using the effect
size and the decision procedure described in section [3] To provide further insights, we organize
our experiments results according to the formal diversity of the datasets. In particular, we divide
the results into datasets with formally low and high diversity. We set the division of low vs high at
0.146 Task2Vec diversity, because that was approximately the average diversity. In addition, this
division roughly divided the datasets in an intuitive way: most datasets that were a union of four or
more datasets had a diversity higher than 0.146, while the rest were below. The only exception was
Omniglot, which had a high diversity, but also contains a vast amount of visual concepts (over 1000).
We present our experiment details in Section 4.1} a summary of our results in Section[4.2} and refer
the reader to sections and[A 4] for detailed results and explanations of datasets.

4.1 HYPERPARAMETER DETAILS

Few-shot learning details: All experiment had a 5-way, 20 shot setting — i.e, 5 train shot and 15
eval shot, for training MAML. For more details refer to section A.11.
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Hyperparameter Details for Resnet12 on low diversity datasets for Pre-training and fo/ho-
MAML: We used the Resnet12 architecture provided by [Tian et al.| (2020). The Adam optimizer
(Kingma & Bal 2017) was utilized with a constant learning rate of 1e-3. No learning rate scheduler
was used. Training was performed for 600,000 iterations for pre-training and 160,000 first-order
MAML iterations, with a batch size of 256. The outer loop consisted of 130,000 MAML iterations.
We used an inner learning rate of 0.1 and 5 inner steps. No weight decay was applied. Training was
performed on a single NVIDIA PU with at most 48§GB memory select by a HPC automatically. All
experiments were trained to convergence (less than 0.01 loss) and took on average at most 1 week.
All implementations were done in PyTorch (Paszke et al., 2019).

Hyperparameter Details for SCNN on High Diversity Datasets: We utilized the SCNN architecture
proposed in T1an et al.| (2020) with varying filter sizes. The Adam optimizer |Kingma & Ba|(2017)
was used with a learning rate of 1e-3 without any learning rate decay. A batch size of 256 was used
for both pre-training and MAML training. No weight decay was applied. For pre-training, we trained
for 200,000 iterations. For first-order MAML, we trained for 100,000 iterations with an inner loop
of 5 steps and an inner learning rate of 0.1. We annealed the learning rate with a cosine scheduler
with scheduler freq 2000 with minimum learning rate le-5 (similar to MAML++). All models were
trained to convergence, which took approximately 1 week on a single NVIDIA GPU with at least
48GB of memory allocated by the HPC scheduler. All implementations were done in PyTorch Paszke
et al.[|(2019).

Hyperparameter Details for ResNet12 on High Diversity Benchmarks: We utilized the ResNet12
architecture from Tian et al.|(2020) for our experiments. The Adam optimizer (Kingma & Ba}[2017)
was used with a learning rate of le-3 without any learning rate decay. For pre-training, we trained for
1 million iterations with a batch size of 256. For first-order MAML (Finn et al., [2017), we trained for
300,000 iterations also with a batch size of 256. The MAML outer loop consisted of 5 inner update
steps with an inner learning rate of 0.1. No weight decay was applied. We annealed the learning
rate with a cosine scheduler with scheduler freq 2000 with minimum learning rate le-5 (similar to
MAML++). All models were trained to convergence on a single NVIDIA GPU with at least 48GB of
memory allocated by the cluster scheduler. Training took approximately 1-2 week to converge for
both pre-training and MAML. All implementations were done in PyTorch (Paszke et al.,[2019).

Hyperparameter Details for ResNet50 on High Diversity Meta-Dataset Benchmarks: We utilized
the ResNet50 architecture from|Tian et al.|(2020)) in our experiments on the high diversity meta-dataset
benchmarks. The Adafactor optimizer (Shazeer & Stern, [2018)) was used with default settings and no
learning rate decay. We used Adafactor from Seqfair because it had a setting with no hyperparameter
choices, the memory benefits that we needed given our compute and the evidence of previous work
showing the training was 2.5-fold faster (Miranda et al.l 2023). For pre-training, we trained for
300,000 iterations with a batch size of 256. For first-order MAML (Finn et al.l [2017)), we trained for
140,000 iterations also with a batch size of 256. The MAML outer loop consisted of 5 inner update
steps with Adafactor’s default inner learning rate. We used Adafactor default annealing scheduler in
Seqfair. Due to computational constraints, we limited the number of random seeds to 4 — especially
given that MDS combined 10 large scale vision datasets that includes ImageNet. Pre-training and
MAML training took approximately 1 month each to converge on NVIDIA GPUs with 48GB memory
allocated automatically by the cluster scheduler. All implementations were done in PyTorch (Paszke
et al.,[2019).

Hyperparameter Details for mini-Gpt2 on openwebtext: We derived our architecture from
nanoGPTﬂ We set a block size of 32 and create a model with 4 layers and 4 heads per layer with an
embedding size of 192 to have a smaller model that is easy for experimentation that we dub mini-gpt2.
The Adafactor optimizer and scheduler (Shazeer & Stern| [2018)) were used with default settings (that
is, no hyperparameters were specified) and no learning rate decay. In addition due to the memory
benefits that we needed given our compute and the evidence of previous work showing the training
was 2.5-fold faster (Miranda et al.| [2023)). Training was performed till visual convergence of loss
curves was reached for all experiments. For MAML training, we set inner loop learning rate as le-3
and performed 5 inner update steps. Training was performed in a distributed setting on 4 NVIDIA
PU with at most 48GB memory select by a HPC automatically. All implementations were done in
PyTorch (Paszke et al., [2019).

"https://github.com/karpathy/nanoGPT
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Figure 1: Trend of observed effect sizes with diversity. Here MAMLS5 and MAML10 represent
running 5 inner adaptation steps and 10 inner adaptation steps respectively.

4.2 SUMMARY OF COMPARISON OF PRE-TRAINING (PT) vs MAML

We summarize the overall effect size for the four settings we studied. In the low diversity setting PT
outperforms MAML but, in the high diversity setting MAML outperforms PT. In the low diversity
setting, PT has a larger effect size relative to the effect size of MAML in the high diversity regime
when analyzing the results in this way. In Figure [I|we show the trend of effect sizes observed for
low and high diversity datasets using MAML5 and MAML10. In Table 2] we summarize all results
and compare the low diversity vs the high diversity regime when there is a significant difference (i.e.
H1). In more detail, when averaging all the low diversity results with an H1 (PT or MAML) decision,
the overall effect size is 0.103, favoring PT. When averaging all the low diversity results, the overall
effect size is -0.107 favoring MAML. However, note that this is considered low effect in classical
statistics, as the regime for small, medium, high are roughly 0.2, 0.5, 0.8 (Andrade} [2020; |(Cohen),
1992).

Table 1: Summary of experimental results when comparing a MAML model against a Pre-
trained (PT) model using the average effect size (ES/Cohen’s d) for each statistical decision rule.
We report the average effect sizes obtained for each decision and regime over all our experiments.
Using the averages we can see that the difference in the low diversity regime is low but slightly
favoring a pre-trained model, while in the high diversity a MAML model is favored. Note fo maml
stands for first-order MAML and ho maml stands for higher order maml. Note NA stands for not
applicable, since no experiment resulted in the decision procedure to choose that hypothesis.

Setting Decision: HO | Decision: H1 (PT) | Decision: HI (MAML)
Low diversity (fo maml) 0.029 0.778 -0411
Low diversity (ho maml) NA 0.669 -0.717
High diversity (all) 0.0578 0.0638 -0.148
High diversity (SCNNs) 0.00922 0.0795 -0.192
GPT2 (Openwebtext) 0.00681 NA NA

5 RELATED WORK

We suggest a data centric-oriented framework for examining meta-learning algorithms in response to
the call to re-think meta-learning — especially in the context of few-shot learning (Tian et al., [2020).
Also, the main distinction between our work and theirs (Tian et al., 2020) lies in: that we bring
clarity and nuance to their surprising results by using more rigorous statistical analysis (through the
effect size (Lin et al.| |2013)), that we contextualize our finding by computing explicit data quality
properties — like the formal diversity of a dataset, and that we use a much wider set of diverse datasets.
In addition, unlike their work, ours focuses in ensuring a fair comparison by using a consistent neural
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Table 2: Summary of experimental results when comparing a MAML model against a Pre-
trained (PT) model using the average effect size (ES/Cohen’s d) for each statistical decision rule
using all results at once. The overall mean effect size for rejecting the null hypothesis (i.e. H1) was
0.103 for the low diversity setting and -0.109 for the high diversity setting. This shows: 1. in the
low diversity setting the H1 difference is low but marginally favoring a pre-trained model, while 2. in
the high diversity the H1 difference is also low but marginally favoring a MAML model. Note fo
maml stands for first-order MAML and ho maml stands for higher order MAML.

Setting Dec: HO | Dec: H1 (PT) | Dec: H1 (MAML)
Low diversity (fo & ho maml) 0.029 0.7292 -0.556
High diversity (all & SCNNs & mini-GPT2) | 0.0521 0.0717 -0.164

network architecture, optimizer, and all models trained to convergence. Another point of difference is
their attainment of further accuracy gains through distillation, a method we have not analyzed but
will consider for future work.

Some earlier work demonstrated that MAML operates chiefly through feature reuse (Raghu et al.}
2020) rather than rapid learning, signifying that a model trained with MAML undergoes minimal
alteration after the MAML adaptation. Our work diverges from theirs primarily in two ways: 1) we
contrast MAML meta-trained models against models that are pre-trained with a union of all the data
rather than solely comparing varying types of MAML models, and 2) we contextualize our analysis
by explicitly analyzing properties of datasets, like formal diversity.

Related work also includes the predictability of adversarial transferability and transfer learning
through extensive experimentation and a theoretical analysis (Liang et al.| 2021). The primary differ-
ence between their work and ours is their primary focus on transfer learning, while we concentrate
on meta-learning for few-shot learning. Additionally, we did not consider adversarial transferability,
which forms a central part of their analysis.

Now we proceed to comment on datasets/benchmarks related to our work. The meta-dataset bench-
mark aims to create a larger and more diverse dataset for few-shot learning (Triantafillou et al., 2019).
The key distinction between their work and ours is our use of a quantitative metric to measure the
intrinsic diversity of a dataset, ad therefore bring more nuanced considerations beyond dataset size
or even just class numbers. Another interesting work is the IBM Cross-Domain few-shot learning
benchmark (Guo et al.|[2019). They provide an interesting benchmark but we decided to leave it for
future work since their setting is different from ours because cross-domain learning is out of scope
for our work.

The work by Wang et al.| (2021)) proposes the concept of global labels, equivalent to what we call
pre-training with all the data in this paper. Their theoretical analysis, however, is dependent on a
fixed feature extractor, and fails to accommodate different feature extractors e.g. when comparing a
Pre-trained model vs a MAML model. We address this in our empirical study.

6 DISCUSSION

Our paper presents an alternative explanation for claims that a Pre-trained model can often beat a
model trained with meta-learning (Tian et al., [2020; |Chen et al.,|2019; [2020; Dhillon et al., [2019;
Huang & Tao, [2019). In particular, we show that a more careful analysis — especially one that takes
the formal dataset diversity into account and more rigorous statistical tools — can provide a nuanced
truthful conclusion. Note, however, all statistical tools have assumptions and none are perfect — as
the following discussion will exemplify.

For example, section [4.2] shows that when the overall average effect size across all high diversity
datasets is used, we get a mean effect size of -0.105, favoring MAML. Similarly, across all low
diversity datasets the effect size is 0.103, favoring PT. In addition, we get the very satisfying result
that when all dataset diversities are considered, neither method is better — what would be expected
according to the No Free Lunch Theorem (NFLT) (Wolpert & Macready, |1997). However, this effect
size is considered low in classical statistics, since effect sizes of small, medium, high are roughly
0.2, 0.5, 0.8 (Cohenl [1992). However, to further nuance the analysis, if one uses the decision of the
hypothesis test alone as in table |1} one might conclude that in the low diversity datasets Pre-training
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is marginally better than MAML - since there was only one more time it outperformed MAML. A
final nuance we’d like to add to our results is the variance of the effect size. We note the effect sizes
ranges from 0.778 to -0.717. Meaning that when looking at individual experiments, the difference
might be high for each individual run.

In addition, we want to emphasize that unlike previous work, we truly emphasized a fair comparison
i.e. we used the same architecture, and all models trained to convergence. Previous results, especially
Tian et al.| (2020), compared different architectures and different meta-learning methods, thereby
making it impossible to know the true source of improved performance. We disambiguate this and
show that in datasets with low formal diversity, PT outperforms MAML, while MAML outperforms
PT in datasets with high formal diversity.

We’d like to note that our low diversity results are in conflict with previous results in (Miranda et al.}
2022). We conjecture the difference was mainly due to: 1. The batch size they used in conjunction
with their use of Confidence Intervals (CIs) as their statistical analysis. Their experiments had (meta)
batch size of 100, leading to overly large intersecting Cls that leads them to conclude pre-training and
MAML are equivalent. 2. The number of models they trained is less than half of ours. We trained 40
models in total for the low diversity setting, and they did 18 (less than half of ours).

We’d also like to note that although MAML and Pre-training (PT) are marginally different (or that
MAML is better than PT for high diversity datasets) — that MAML is still harder to train than PT. In
particular, MAML requires an additional memory for the gradient in the forward pass and makes it
harder to train for large models. Even though (Bronskill et al., 2021)) memory efficient meta-learning
might solve the memory issue, it is still less simple than pre-training.

In contrast to Tian et al.|(2020), our work deliberately opts for a broad suite of datasets with varying
formal diversities at the expense of exploring fewer meta-learning methods, which might be viewed
as a potential limitation. This choice arises from Tian et al.|(2020)’s implication that pre-training
may outperform virtually all meta-learning algorithms (they considered). Our research, however,
challenges this view (Tian et al) [2020), and demonstrates that even the simplest meta-learning
algorithm, MAML, can outperform pre-training when the comparison employs fair and rigorous
statistical analysis that considers the characteristics of the dataset like the formal diversity. In other
words, we only need a single example (i.e., a single meta-learning algorithm) to provide a proof
by counter example. In addition, by not considering as wide (and arguably unmotivated) of set
of meta-learning algorithms we are able to conduct a more motivated investigation across a
notably diverse array of datasets. Our approach underscores the importance of dataset properties on
algorithm performance, thereby contributing a nuanced perspective to the ongoing discourse in the
meta-learning domain.

The work by Kumar et al.[(2022) provides an exploration of the effects of diversity in meta-learning.
However, they focus mostly on sampling strategies, while we focused on the intrinsic diversity in the
datasets/benchmarks themselves.

REFERENCES

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Stefano
Soatto, and Pietro Perona. Task2Vec: Task Embedding for Meta-Learning. Technical report, 2019.

Chittaranjan Andrade. Mean difference, standardized mean difference (smd), and their use in meta-
analysis: As simple as it gets. The Journal of Clinical Psychiatry, 81(5):11349, 2020. doi:
10.4088/JCP.20f13681. URL https://doi.org/10.4088/JCP.20f13681.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando de Freitas. Learning to learn by gradient descent by gradient
descent, 2016.

Luca Bertinetto, Jodo F. Henriques, Philip H. S. Torr, and Andrea Vedaldi. Meta-learning with
differentiable closed-form solvers, 2019.

J. Bronskill, D. Massiceti, M. Patacchiola, K. Hofmann, S. Nowozin, and R. E. Turner. Memory
efficient meta-learning with large images. arXiv preprint arXiv:2107.01105, 2021. doi: 10.48550/
arXiv.2107.01105. URL https://doi.org/10.48550/arXiv.2107.01105.


https://doi.org/10.4088/JCP.20f13681
https://doi.org/10.48550/arXiv.2107.01105

Under review as a conference paper at ICLR 2024

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mccandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. Technical report, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
Large Language Models Trained on Code. URL https://www.github.com/openai/
human-eval.

Qi Chen, Changjian Shui, and Mario Marchand. Generalization Bounds For Meta-Learning: An
Information-Theoretic Analysis. sep 2021. doi: 10.48550/arxiv.2109.14595. URL https:
//arxiv.org/abs/2109.14595v2.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A Closer
Look at Few-shot Classification. 7th International Conference on Learning Representations, ICLR
2019,2019. URL http://arxiv.org/abs/1904.04232,

Yinbo Chen, Xiaolong Wang, Zhuang Liu, Huijuan Xu, and Trevor Darrell. A New Meta-Baseline
for Few-Shot Learning. Technical report, 2020. URL https://github.com/|

Francois Chollet. On the Measure of Intelligence. 2019. URL http://arxiv.org/abs/1911.
01547.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild, 2013.

Jacob Cohen. A power primer. Psychological Bulletin, Jul 1992. doi: 10.1037/0033-2909.112.1.155.

Giulia Denevi, Massimiliano Pontil, and Carlo Ciliberto. The Advantage of Conditional Meta-
Learning for Biased Regularization and Fine-Tuning. Advances in Neural Information Processing
Systems, 2020-December, aug 2020. ISSN 10495258. doi: 10.48550/arxiv.2008.10857. URL
https://arxiv.org/abs/2008.10857v1.

Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. NAACL HLT 2019 - 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies - Proceedings of the Conference, 1:4171-4186, oct 2018. URL https://arxivl
org/abs/1810.04805v2]

Guneet S. Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A Baseline for
Few-Shot Image Classification. 2019. URL http://arxiv.org/abs/1909.02729.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast Adaptation
of Deep Networks. 2017. URL http://arxiv.org/abs/1703.03400.

Katelyn Gao and Ozan Sener. Modeling and Optimization Trade-off in Meta-learning. Advances
in Neural Information Processing Systems, 2020-December, oct 2020. ISSN 10495258. doi:
10.48550/arxiv.2010.12916. URL https://arxiv.org/abs/2010.12916v2,

Micah Goldblum, Steven Reich, Liam Fowl, Renkun Ni, Valeriia Cherepanova, and Tom Goldstein.
Unraveling Meta-Learning: Understanding Feature Representations for Few-Shot Tasks. 37th
International Conference on Machine Learning, ICML 2020, PartF168147-5:3565-3574, feb 2020.
doi: 10.48550/arxiv.2002.06753. URL https://arxiv.org/abs/2002.06753v3.


https://www.github.com/openai/human-eval.
https://www.github.com/openai/human-eval.
https://arxiv.org/abs/2109.14595v2
https://arxiv.org/abs/2109.14595v2
http://arxiv.org/abs/1904.04232
https://github.com/
http://arxiv.org/abs/1911.01547
http://arxiv.org/abs/1911.01547
https://arxiv.org/abs/2008.10857v1
https://arxiv.org/abs/1810.04805v2
https://arxiv.org/abs/1810.04805v2
http://arxiv.org/abs/1909.02729
http://arxiv.org/abs/1703.03400
https://arxiv.org/abs/2010.12916v2
https://arxiv.org/abs/2002.06753v3

Under review as a conference paper at ICLR 2024

Camille Gontier, Jakob Jordan, and Mihai A. Petrovici. Delaunay: A dataset of abstract art for
psychophysical and machine learning research. arXiv, 2022. doi: 10.48550/arXiv.2201.12123.
URLhttps://doi.org/10.48550/arXiv.2201.12123!

Yunhui Guo, Noel C. Codella, Leonid Karlinsky, James V. Codella, John R. Smith, Kate Saenko,
Tajana Rosing, and Rogerio Feris. A Broader Study of Cross-Domain Few-Shot Learning. dec
2019. URL http://arxiv.org/abs/1912.07200.

Jessica Hamrick and Shakir Mohamed. LEVELS OF ANALYSIS FOR MACHINE LEARNING.
2020.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W Ayers, and Stanislas Polu. Proof artifact
co-training for theorem proving with language models.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2016-December:770-778, dec 2015. ISSN 10636919. doi: 10.1109/CVPR.
2016.90. URL https://arxiv.org/abs/1512.03385v1.

Shaoli Huang and Dacheng Tao. All you need is a good representation: A multi-level and classifier-
centric representation for few-shot learning. 2019. URL http://arxiv.org/abs/1911.
12476.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly,
and Neil Houlsby. Big transfer (bit): General visual representation learning. arXiv, 2020. doi:
10.48550/arXiv.1912.11370. URL |https://doi.orqg/10.48550/arXiv.1912.11370.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep Convo-
lutional Neural Networks. 2012. URL http://code.google.com/p/cuda—convnet/.

Ramnath Kumar, Tristan Deleu, and Yoshua Bengio. The Effect of Diversity in Meta-Learning. jan
2022. doi: 10.48550/arxiv.2201.11775. URL https://arxiv.org/abs/2201.11775v1.

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332—-1338, 2015. doi: 10.1126/
science.aab3050. URL https://www.science.org/doi/abs/10.1126/science.
aab3050.

Wei-Hong Li, Xialei Liu, and Hakan Bilen. Universal representation learning from multiple domains
for few-shot classification, 2021.

Kaizhao Liang, Jacky Y Zhang, Boxin Wang, Zhuolin Yang, Oluwasanmi Koyejo, and Bo Li.
Uncovering the Connections Between Adversarial Transferability and Knowledge Transferability.
2021.

Mingfeng Lin, Henry Lucas, and Galit Shmueli. Too big to fail: Large samples and the p-value
problem. Information Systems Research, 24:906-917, 12 2013. doi: 10.1287/isre.2013.0480.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft, 2013.

David Marr. Vision: A Computational Investigation into the Human Representation and Pro-
cessing of Visual Information. Phenomenology and the Cognitive Sciences, 8(4):397, 1982.
ISSN 15687759. URL http://mitpress.mit.edu/catalog/item/default.asp?
ttype=2&tid=12242&ref=nf.

B. Miranda, A. Shinnar, V. Pestun, and B. Trager. Transformer models for type inference in
the simply typed lambda calculus: A case study in deep learning for code. arXiv, 2023. doi:
10.48550/arXiv.2304.10500. URL https://doi.org/10.48550/arXiv.2304.10500.

Brando Miranda. An empirical study of the properties of meta-learning - presentation. Illinois
Digital Environment for Access to Learning and Scholarship (IDEALS), dec 2020a. URL https
//www.ideals.illinois.edu/handle/2142/109112.

10


https://doi.org/10.48550/arXiv.2201.12123
http://arxiv.org/abs/1912.07200
https://arxiv.org/abs/1512.03385v1
http://arxiv.org/abs/1911.12476
http://arxiv.org/abs/1911.12476
https://doi.org/10.48550/arXiv.1912.11370
http://code.google.com/p/cuda-convnet/
https://arxiv.org/abs/2201.11775v1
https://www.science.org/doi/abs/10.1126/science.aab3050
https://www.science.org/doi/abs/10.1126/science.aab3050
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=12242&ref=nf
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=12242&ref=nf
https://doi.org/10.48550/arXiv.2304.10500
https://www.ideals.illinois.edu/handle/2142/109112
https://www.ideals.illinois.edu/handle/2142/109112

Under review as a conference paper at ICLR 2024

Brando Miranda. An empirical study of the properties of meta-learning - presentation. Illinois
Digital Environment for Access to Learning and Scholarship (IDEALS), 2020b. URL https:
//www.ideals.illinois.edu/handle/2142/109112.

Brando Miranda, Yu-Xiong Wang, and Sanmi Koyejo. Does MAML Only Work via Feature Re-use?
A Data Centric Perspective. dec 2021. URL https://arxiv.org/abs/2112.13137v1.

Brando Miranda, Patrick Yu, Yu-Xiong Wang, and Sanmi Koyejo. The Curse of Low Task Diversity:
On the Failure of Transfer Learning to Outperform MAML and Their Empirical Equivalence. arXiv,
2022. doi: 10.48550/arXiv.2208.01545. URL https://arxiv.org/abs/2208.01545.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning. 2013.

M.-E. Nilsback and A. Zisserman. A visual vocabulary for flower classification. In 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), volume 2,
pp. 1447-1454, 2006. doi: 10.1109/CVPR.2006.42.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024-8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning—-library.
pdf.

Stanislas Polu and Ilya Sutskever. Generative Language Modeling for Automated Theorem Proving.
sep 2020. URL http://arxiv.org/abs/2009.03393|

Markus N Rabe, Google Research, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Mathematical
Reasoning via Self-supervised Skip-tree Training. Technical report.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Aniruddh Raghu, Maithra Raghu, and Samy Bengio. Rapid Learning or Feature Reuse? Towards
Understanding the Effectiveness of MAML. Technical report, 2020. URL |https://arxiv,
org/abs/1909.09157.

Pau Rodriguez, Issam Laradji, Alexandre Drouin, and Alexandre Lacoste. Embedding propagation:
Smoother manifold for few-shot classification, 2020.

Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. An Online Learning Approach to Interpo-
lation and Extrapolation in Domain Generalization. feb 2021. doi: 10.48550/arxiv.2102.13128.
URLhttps://arxiv.org/abs/2102.13128v2.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage?, 2023.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost,
2018.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go
with deep neural networks and tree search. Nature 2016 529:7587, 529(7587):484—-489, jan
2016. ISSN 1476-4687. doi: 10.1038/nature16961. URL https://www.nature.com/
articles/naturel6961.

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B. Tenenbaum, and Phillip Isola. Rethinking
Few-Shot Image Classification: a Good Embedding Is All You Need?, 2020.

11


https://www.ideals.illinois.edu/handle/2142/109112
https://www.ideals.illinois.edu/handle/2142/109112
https://arxiv.org/abs/2112.13137v1
https://arxiv.org/abs/2208.01545
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/2009.03393
https://arxiv.org/abs/1909.09157
https://arxiv.org/abs/1909.09157
https://arxiv.org/abs/2102.13128v2
https://www.nature.com/articles/nature16961
https://www.nature.com/articles/nature16961

Under review as a conference paper at ICLR 2024

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle. Meta-
Dataset: A Dataset of Datasets for Learning to Learn from Few Examples. 2019. URL http:
//arxiv.org/abs/1903.03096.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning, 2017.

Ruohan Wang, Massimiliano Pontil, and Carlo Ciliberto. The Role of Global Labels in Few-
Shot Classification and How to Infer Them. aug 2021. doi: 10.48550/arxiv.2108.04055. URL
https://arxiv.org/abs/2108.04055v2.

David H Wolpert and William G Macready. No Free Lunch Theorems for Optimization. /[EEE
TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 1(1):67, 1997.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering Atari Games
with Limited Data. oct 2021. URL https://arxiv.org/abs/2111.00210v1.

12


http://arxiv.org/abs/1903.03096
http://arxiv.org/abs/1903.03096
https://arxiv.org/abs/2108.04055v2
https://arxiv.org/abs/2111.00210v1

Under review as a conference paper at ICLR 2024

A  SUPPLEMENTARY MATERIAL

A.1 RELATED WORK (CONT.)

The ARC benchmark (Chollet, [2019) was designed with AGI in mind — potentially the ultimate
meta-learner. However, ARC’s focus is primarily on visual reasoning utilizing program synthesis
techniques. We believe it’s a promising path, but our work inspires extensions that transcend program
synthesis approaches.

The study by |Chen et al.| (2021)) offers, to our knowledge, the first non-vacuous generalization bounds
for the (supervised) meta-learning setting. However, their results do not aim to differentiate classes
of meta-learning, as our work attempts to do empirically.

The work by Wang et al.| (2021)) proposes the concept of global labels, equivalent to what we call
USL in our paper. Their theoretical analysis, however, is dependent on a fixed feature extractor, and
fails to accommodate different feature extractors that might be trained, such as comparing USL vs
MAML directly in an end-to-end fashion. This was partially addressed theoretically and empirically
in|Miranda et al.| (2022).

The study by|Denevi et al.|(2020) presents a theoretical treatment of meta-learning using meta-learners
with closed-form equations derived from ridged regularization using fixed features. However, their
results are highly theoretical, whereas ours focus on empirical results, and they do not explore their
findings in the context of modern few-shot learning benchmarks like Minilmagenet, Cifar-fs, FC100,
TieredImagenet, Meta-Dataset, etc. like we do.

The work by |Goldblum et al.|(2020) provides strong evidence that adaptation at test time is best done
when the meta-trained model matches the adaptation it was meta-trained with. However, their results
cannot beat Tian et al.[|(2020) and thus do not help separate the role of meta-training and pre-training
(PT) with a union of all the data.

The study by|Gao & Sener|(2020) provides theoretical bounds of when the expected risk of MAML
and DRS (Domain Randomized Search) by bounding the gradient norm. However, they do not provide
in depth empirical analysis with respect to any real few-shot learning benchmarks like Minilmagenet
or Cifar-fs.

The work by Rosenfeld et al.| (2021) provides a theoretical analysis on the difference between
interpolation and extrapolation in transfer learning. We believe this type of theory may be helpful as
an inspiration to explore why in the high diversity regime there seems to be a difference between the
performance of meta-learning and transfer learning or pre-trained methods.

Finally, the work by [Miranda) (2020bza) first demonstrated that there exist synthetic datasets capable
of exhibiting higher degrees of adaptation compared to the original work by Raghu et al.[(2020). Their
main focus was on comparing adapted MAML models vs. unadapted MAML models, a difference
from our approach in this paper.

Previous work demonstrated that in datasets with low diversity, the difference MAML and pre-training
is small (Miranda et al., [2022). While we substantiate these results to a degree, we introduce a nuance
that, when evaluated through the statistical lens of effect size, pre-training can outperform MAML.
This subtle detail underscores the critical role of the selected statistical measure in the comparative
analysis of these algorithms. Finally, we provide the final piece of evidence to complete their story
(Miranda et al., 2022), for high diversity datasets. Crucially, we include the large scale meta-dataset
(mds) and demonstrate that merging/unioning datasets is an effective mechanism for increasing the
formal diversity of a dataset.

BiT (Kolesnikov et al.| 2020) is a study that demonstrates good performance on a wide set of datasets
(20) using transfer learning by pre-training on a large (JFT-300M) scale vision dataset. They fine-tune
the entire network (with SGD and momentum) during adaptation and provide heuristics for choosing
the hyperparameters with the HyperRule heuristic. The main contrast with our work is that they do
not do a direct fair comparison with meta-learning (like MAML) as we did. Contrary to this previous
work that leaves the comparative merits of pre-training and meta-learning algorithms indeterminate,
our work directly addresses this comparison as its primary focus. We think the authors Kolesnikov
et al.| (2020) should have compared their test time adaptation method that fine-tunes the entire paper
to the one proposed by [Tian et al.| (2020) that uses optimal convergence at the final layer with
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gradient-based BFGS fine-tuning. We note they use a large dataset for pre-training, and it’s important
to use such a dataset for the training of MAML to be able to do a fair comparison between MAML
and pre-training. Our experiments on meta-dataset suggest that on large-scale formally diverse dataset
MAML might be marginally better than pre-training.

Memory efficient meta-learning with large images (Bronskill et al.| 2021)) demonstrates that if one
subsamples the support set (using their method called LIME) to meta-train many meta-learning
algorithms, then one can match the performance of a pre-training network that has been fine-tuned
with 50 steps. The main contrast between their work and ours is: 1. They use confidence intervals to
separate pre-training methods vs meta-learning methods, while we use effect size 2. We add another
level of structure to the analysis by separating the results in datasets that have a formal low diversity
vs a formal high diversity. This analysis shows that MAML in fact can outperform pre-training,
although being small when using the effect size as the measuring metric. We posit that our work, in
conjunction with Bronskill et al.|(2021)), provides a complete perspective on meta-learning — where
we conjecture that meta-learning methods in general marginally outperform pre-training methods.
Their work (Bronskill et al.;,[2021)) supports our counter-narrative that pre-training methods are always
better.

The Vendi Score is a recently proposed formal diversity score different from the diversity coefficient
proposed in Miranda et al.| (2022). The Vendi score is mainly a more sophisticated aggregation
method than an expectation given pair-wise comparisons. Their aggregation score is interesting, but
it is unclear what the advantages of it are compared to a simpler expectation. For a sample of n
already embedded tasks (or data points), the Vendi score takes O(n?) (due to the use of eigenvalue
computation), while ours uses the faster to compute expectation, which takes O(n? — n/2) = O(n?).
We hope to explore the Vendi score in future work and compare it with the expectation aggregation
score. However, the main weakness of the Vendi score that previous work address (Miranda et al.}
2022) is the use of Task2Vec (Achille et al., 2019) to compute embeddings of tasks. The Vendi score
assumes one already has such a comparison by assuming a Kernel/Grahm Matrix and unfortunately
circumvents arguably the hardest part of the problem — computing effective embeddings a task. Their
formulation also implies their analysis is mostly focused on individual data point diversity, while the
diversity coefficient also works embedding tasks, batches, and even entire datasets.

The ranges of 0.2, 0.5, and 0.8 as small, medium and large effect sizes were proposed in|Andrade
(2020).
A.2 ALL META-TEST ACCURACY OF A PRE-TRAINED (PT) MODEL VvS. MAML

In this section, we report the raw meta-test accuracy of used (to compute the effect size) when
comparing PT vs MAML models in the main body of the text section 4}

A.2.1 META-TEST ACCURACY OF A PRE-TRAINED (PT) MODEL VS. A FIRST-ORDER (FO)
MAML MODEL ON LOW DIVERSITY DATASETS

Meta-test accuracy (with 95% confidence intervals) of a Pre-trained (PT) model vs. a first-order (fo)
MAML model on low diversity datasets are in table 3]

A.2.2 META-TEST ACCURACY OF A PRE-TRAINED (PT) MODEL VS. A HIGHER-ORDER (HO)
MAML MODEL ON LOW DIVERSITY DATASETS

Meta-test accuracy (with 95% confidence intervals) of a Pre-trained (PT) model vs. a higher-order
(ho) MAML model on low diversity datasets are in table

A.2.3 META-TEST ACCURACY OF A PRE-TRAINED (PT) MODEL VS. A MAML MODEL ON
HIGH DIVERSITY DATASETS

Meta-test accuracy (with 95% confidence intervals) of a pre-trained (PT) model vs. MAML model
on high diversity datasets are in table 3]
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Table 3: Meta-Test accuracy of a Pre-trained (PT) model vs. a first-order (fo) MAML model
with 95% confidence intervals on low diversity few-shot learning vision datasets. We used a
meta-batch size of 300 few-shot learning tasks. The datasets’ diversity is low, as shown in table [T T]

Resnet12 has 1,427,525 parameters.

Model (Dataset) PT (test acc.) MAMLS (test acc.) | MAMLI1O0 (test acc.)
Resnet12 (cifar-fs) 0.755 + 0.0102 0.779 4+ 0.00975 0.786 4 0.00996
Resnet12 (fc100) 0.438 +0.00949 | 0.458 £+ 0.00931 0.459 4+ 0.00988
Resnet12 (mini-imagenet) | 0.719 % 0.00893 0.685 £ 0.00947 0.706 £+ 0.0104
Resnet12 (tiered-imagenet) | 0.788 4 0.00945 0.769 £+ 0.0107 0.786 £ 0.0107
Resnet12 (aircraft) 0.592 + 0.010 0.659 4+ 0.013 0.685 + 0.011
Resnet12 (flower) 0.928 + 0.005 0.856 4+ 0.008 0.870 4+ 0.007
Resnet12 (dtd) 0.610 £ 0.011 0.511 £0.012 0.528 + 0.011
Resnet12 (delaunay) 0.735 + 0.010 0.614 4+ 0.012 0.632 + 0.010
Resnet12 (cubirds) 0.787 + 0.008 0.829 4+ 0.008 0.821 4+ 0.009
ResNet12 (vggair) 0.727 £+ 0.027 0.745 4+ 0.019 0.760 £+ 0.019
ResNet12 (vggdtd) 0.737 + 0.019 0.701 4+ 0.022 0.701 4+ 0.021

Table 4: Meta-Test accuracy of a Pre-trained (PT) model vs. a higher-order (ho) MAML model
with 95% confidence intervals on low diversity few-shot learning vision datasets. We used a
meta-batch size of 300 few-shot learning tasks. The datasets’ diversity is low, as shown in table [ T]

Resnet12 has 1,427,525 parameters.

Model (Dataset) PT (test acc.) MAMLS (test acc.) | MAMLIO (test acc.)
Resnet12 (cifar-fs) 0.753 £ 0.00941 0.804 4 0.00982 0.809 + 0.0107
Resnet12 (fc100) 0.432 £ 0.0102 0.503 £+ 0.0100 0.489 + 0.00988
Resnet12 (mini-imagenet) | 0.721 4 0.00889 0.704 + 0.0100 0.732 4+ 0.00952
Resnet12 (tiered-imagenet) | 0.791 4 0.00922 0.771 +£ 0.0103 0.695 + 0.0178
Resnet12 (aircraft) 0.576 + 0.0116 0.647 + 0.0127 0.667 + 0.0112
Resnet12 (flower) 0.921 4+ 0.00534 | 0.902 £ 0.00597 0.899 4+ 0.00581
Resnet12 (dtd) 0.600 = 0.0156 0.501 + 0.0162 0.519 + 0.0159
Resnet12 (delaunay) 0.734 4+ 0.00984 | 0.655 + 0.00981 0.665 + 0.00986
Resnet12 (cubirds) 0.785 4+ 0.00839 | 0.857 £ 0.00721 0.857 4+ 0.00726

A.2.4 META-TEST ACCURACY OF A PRE-TRAINED (PT) MODEL VS. A MAML MODEL ON A

VARYING SIZE OF SCNN ON THE MICOD HIGH DIVERSITY DATASET

Meta-test accuracy (with 95% confidence intervals) of a Pre-trained (PT) model vs. MAML model

on varying size of 5CNNs on the MICOD high diversity dataset are in table [6]
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Table 5: Meta-Test accuracy of a Pre-trained (PT) model vs. a MAML model with 95%
confidence intervals on high diversity few-shot learning vision datasets. Their diversity is high, as
shown in table Resnet12 has 1,427,525 parameters, while Resnet50 has 50,685,637 parameters.

Model (Seeds) (Dataset)

PT (test acc.)

MAMLS (test acc.)

MAMLI10 (test acc.)

Resnet12 (fo maml) (omniglot)
Resnet12 (ho maml) (omniglot)
ResNet12 (fo maml) (mio)
ResNet12 (micod)
ResNet12 (hdb6-afdo)
ResNet12 (hdb7-afto)
ResNet12 (hdb8-cado)
ResNet12 (hdb9-cavdo)
ResNet12 (hdb10-micova)
Resnet50 (seedl vs seedl) (mds)
Resnet50 (seedl vs seed2) (mds)
Resnet50 (seed2 vs seedl) (mds)
Resnet50 (seed2 vs seedl) (mds)

0.993 £ 0.00148
0.994 £ 0.00110
0.845 + 0.0121
0.778 £0.0124
0.786 £ 0.0205
0.756 + 0.0227
0.711 £ 0.0218
0.772 £ 0.0210
0.713 £ 0.0244
0.775 £ 0.0133
0.752 £ 0.0138
0.750 + 0.0141
0.765 £ 0.0135

0.993 £ 0.00139
0.985 £ 0.00219
0.849 + 0.0136
0.781 £0.0124
0.802 £ 0.0190
0.745 £ 0.0226
0.744 £ 0.0227
0.771 £ 0.0207
0.764 £ 0.0177
0.762 £ 0.0133
0.758 £ 0.0150
0.759 £ 0.0151
0.762 £ 0.0147

0.992 £0.00164
0.988 £ 0.00180
0.848 + 0.0133
0.786 £0.0119
0.782 £ 0.0178
0.779 £ 0.0216
0.733 £ 0.0208
0.762 £ 0.0211
0.766 £ 0.0167
0.768 £ 0.0144
0.768 £ 0.0144
0.772 £ 0.0152
0.776 £ 0.0143

Table 6: Meta-Test accuracy of a Pre-trained (PT) model vs. a MAML model with 95%
confidence intervals on the high diversity MICOD few-shot learning vision dataset using
varying size of SCNNs. We used a meta-batch size of 500 few-shot learning tasks. The Diversity
Coefficient for the MICOD dataset is 0.174; details can be found in table

Filter Size (Dataset) PT (test acc.) MAMLS (test acc.) | MAMLIO (test acc.)
2 (micod) 0.481 £ 0.0205 0.493 £+ 0.0197 0.467 = 0.0184
6 (micod) 0.588 +0.0169 0.626 + 0.0189 0.608 + 0.0178
8 (micod) 0.606 £+ 0.0161 0.591 4+ 0.0178 0.607 + 0.0184
16 (micod) 0.655 4+ 0.0149 0.678 4+ 0.0154 0.681 + 0.0157
32 (micod) 0.689 £+ 0.0151 0.682 £+ 0.0150 0.701 £ 0.0154
64 (micod) 0.694 4+ 0.0135 0.704 4+ 0.0155 0.718 + 0.0152
256 (micod) 0.711 £ 0.0139 0.702 £ 0.0163 0.695 + 0.0156
512 (micod) 0.653 + 0.0175 0.718 + 0.0158 0.724 + 0.0154

A.3 ALL EFFECT SIZE RESULTS

We present the values of effect sizes obtained using different datasets and models under different
regimes in the following sections. We note that we denote first order MAML as fo-maml and higher
order MAML as ho-maml in the tables for brevity. We additionally denote using 5 internal adaptation
steps with MAML by MAMLS and using 10 internal adaptation steps with MAML by MAML10.

A.3.1 COMPARISON OF A PRE-TRAINED (PT) MODEL VS A FIRST-ORDER (FO) MAML MODEL

ON LOW DIVERSITY DATASETS

Table 7] shows our experimental results for the low diversity setting when comparing a pre-trained
(PT) model vs a first-order (fo) MAML model.

Overall, the effect size for HO (no diff.) is 0.029, for H1 (PT) is 0.778, and for HI (MAML) is
-0.411. However, when averaging all low diversity results (as done in section#.2) where there was a
difference (H1 pt or maml), the overall effect size is 0.103, favoring PT.

A.3.2 COMPARISON OF A PRE-TRAINED MODEL VS. A HIGHER-ORDER (HO) MAML MODEL
ON LOW DIVERSITY DATASETS

Table [8| shows our experimental results for the low diversity setting when comparing a pre-trained
(PT) model vs a higher-order (ho) MAML model.

Overall, the effect size for HO (no diff.) is N/A (for PT vs ho-MAML HO was never decided), for H1
(PT) is 0.669, and for HI (MAML) is -0.717. However, when averaging all low diversity results (as
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Table 7: Meta-Test accuracy difference between a Pre-trained (PT) model vs. first-order (fo)
MAML model using Effect Size (ES/Cohen’s d) on low diversity few-shot learning vision
datasets. The diversity for them is low, as shown in table@ Resnet12 has 1,427,525 parameters.
We used a meta-batch size of 300 few-shot learning tasks.

Model (Dataset) PT-MAMLYS (Decision) | PT-MAML10 (Decision)
Resnet12 (cifar-fs) -0.266 (H1 maml5) -0.342 (H1 maml10)
Resnet12 (fc100) -0.251 (H1 maml5) -0.248 (H1 maml10)

Resnet12 (mini-imagenet)
Resnet12 (tiered-imagenet)
Resnet12 (aircraft)
Resnet12 (flower)
Resnet12 (dtd)
Resnet12 (delaunay)
Resnet12 (cubirds)
ResNet12 (vggair)
ResNet12 (vggdtd)

0.413 (H1 pt)
0.218 (H1 pt)
-0.671 (H1 maml5)
1.224 (H1 pt)
1.332 (H1 pt)
1.290 (H1 pt)
-0.572 (H1 maml5)
-0.105 (H1 maml5)
0.200 (H1 pt)

0.149 (H1 pt)
0.0290 (HO no diff.)
-1.014 (H1 maml10)

1.125 (H1 pt)

1.147 (H1 pt)

1.262 (H1 pt)
-0.452 (H1 maml10)
-0.195 (H1 maml10)

0.203 (H1 pt)

done in section@]) where there was a difference (H1 pt or maml), the overall effect size is 0.103,
favoring PT.

Table 8: Meta-Test accuracy difference between a Pre-trained (PT) model vs higher-order
(ho) MAML model using Effect Size (ES/Cohen’s d) on low diversity few-shot learning vision
datasets. The diversity for them is low, as shown in table@ Resnetl2 has 1,427,525 parameters.
We used a meta-batch size of 300 few-shot learning tasks.

Model (Dataset)
Resnet12 (cifar-fs)
Resnet12 (fc100)
Resnet12 (mini-imagenet)
Resnet12 (tiered-imagenet)
Resnet12 (aircraft)
Resnet12 (flower)

PT-MAMLS (Decision)
-0.602 (H1 maml5)
-0.800 (H1 maml5)

0.205 (H1 pt)
0.236 (H1 pt)
-0.667 (H1 maml5)
0.382 (H1 pt)

PT-MAMLI10 (Decision)
-0.628 (H1 maml10)
-0.643 (H1 maml10)
-0.126 (H1 maml10)

0.768 (H1 pt)
-0.908 (H1 maml10)
0.465 (H1 pt)

Resnet12 (dtd) 1.240 (H1 pt) 1.020 (H1 pt)
Resnet12 (delaunay) 0.912 (H1 pt) 0.793 (H1 pt)
Resnet12 (cubirds) -1.043 (H1 maml5) -1.044 (H1 maml10)

A.3.3 COMPARISON OF A PRE-TRAINED MODEL VS. A MAML MODEL ON HIGH DIVERSITY
DATASETS

Table [9] shows our experimental results for the high diversity setting when comparing a pre-trained
(PT) model vs a higher-order MAML model. For several rows we report averaged effect sizes over
multiple seeds. When running pt for p seeds and maml for m seeds we report averages over all
possible p x m comparisons.

Overall, the effect size for HO (no diff.) is 0.0721, for H1 (PT) is 0.0638, and for HI (MAML) is
-0.155. However, when averaging all high diversity results (as done in section |4.2)) where there was a
difference (H1 pt or maml), the overall effect size is -0.107, favoring MAML.

A.3.4 COMPARISON OF A PRE-TRAINED (PT) MODEL VS A MAML MODEL ON A VARYING
SIZE OF SCNN ON HIGH DIVERSITY DATASET

Table[T0|shows our experimental results for the high diversity setting when comparing a pre-trained
(PT) model vs a MAML model using a varying size SCNN.

Overall, the effect size for HO (no diff.) is 0.00922, for H1 (PT) is 0.0795, and for HI (MAML) is
-0.192. However, when averaging all high diversity results (as done in section[4.2)) where there was a
difference (H1 pt or maml), the overall effect size is -0.107, favoring MAML.

17



Under review as a conference paper at ICLR 2024

Table 9:

Meta-Test accuracy difference between a Pre-trained (PT) model vs MAML model

using Effect Size (ES/Cohen’s d) on high diversity few-shot learning vision datasets as well
as webtext using mini-Gpt2. The diversity for them is high, as shown in table Resnet12
has 1,427,525 parameters, while Resnet50 has 50,685,637 parameters. Note, mds stands for Meta-

DataSet.

Model (Seeds) (Dataset)

PT-MAMLS5 (Decision)

PT-MAML10 (Decision)

Resnet12 (fo-maml) (omniglot)
Resnet12 (ho-maml) (omniglot)
ResNet12 (fo-maml) (mio)
ResNet12 (seed1) (hdb4-micod)
ResNet12 (seedl) (hdb6-afdo)
ResNet12 (seedl) (hdb7-afto)
ResNet12 (seed1) (hdb8-cado)
ResNet12 (seedl) (hdb9-cavdo)
ResNet12 (seedl) (hdb10-micova)
Mini-Gpt2 (30 seeds) (webtext)
ResNet12 (9 seeds) (hdb12)
ResNet12 (9 seeds) (hdb13)
ResNet12 (9 seeds) (hdb14)

Resnet50 (4 seeds) (mds)

0.00702 (HO no diff.)
0.577 (HO no diff.)
-0.0197 (HO no dift.)
-0.0166 (HO no diff.)
-0.0919 (H1 maml5)
0.0528 (H1 pt)
-0.167 (H1 maml5)
0.00798 (HO no diff.)
-0.287 (H1 maml5)
0.00681 (HO no diff.)
-0.145 (H1 maml)
-0.02955 (HO no diff.)
0.0371 (HO no diff.)

0.0679 (HO no diff.)
0.468 (HO no diff.)
-0.0161 (HO no diff.)
-0.0559 (HO no diff.)
0.0242 (HO no diff.)
-0.121 (H1 maml10)
-0.116 (H1 maml10)
0.0552 (H1 pt)
-0.308 (H1 maml10)
-0.0114 (HO no diff.)
-0.190 (H1 maml)
-0.0345 (HO no diff.)
-0.05745 (HO no diff.)

0.001375 (HO no diff.)

-0.064275 (H1 maml10)

Table 10: Meta-Test accuracy difference between a Pre-trained (PT) model vs MAML model
using Effect Size (ES/Cohen’s d) on the high diversity MICOD few-shot learning vision dataset.
The Diversity Coefficient for the MICOD dataset was high with Task2Vec diversity coefficient of

0.174 as reported on table

Filter Size (Dataset) | PT-MAMLS (Decision) | PI-MAML10 (Decision)
2 (micod) -0.0533 (H1 maml) 0.0624 (H1 pt)
6 (micod) -0.184 (H1 maml) -0.100 (H1 maml)
8 (micod) 0.0794 (H1 pt) -0.00121 (HO no diff)
16 (micod) -0.131 (H1 maml) -0.149 (H1 maml)
32 (micod) 0.0401 (HO no diff) -0.0689 (H1 maml)
64 (micod) -0.0588 (HO no diff) -0.145 (H1 maml)
256 (micod) 0.0568 (HO no diff) 0.0969 (H1 pt)
512 (micod) -0.341 (H1 maml) -0.376 (H1 maml)

A.4 DATASET COMPOSITION DETAILS

Here we detail how we made our high diversity datasets. The method we used was taking the union
as in (Tian et al.| [2020) of different datasets. Fe used global labels (Wang et al.,2021) during training.

Here we outline what the acronyms mean in tables[12]and [T}

HDBI stands for High-Diversity Benchmark number 3.

MIO stands for combining Minilmagenet (Vinyals et al.,|2017) and Omniglot (Lake et al.,
2015)).

MICOD stands for combining Minilmagenet (Vinyals et al.l | 2017), Cifar-fs (Bertinetto et al.
2019), Omniglot (Lake et al.,2015)), and Delaunay (Gontier et al.| 2022).

AFDO stands for combining fgvcAircraft (Maj1 et al.l [2013), vggFlower (Nilsback &
Zisserman, 2006)), Delaunay (Gontier et al.,|2022), and Omniglot (Lake et al., 2015)).

AFTO stands for combining fgvcAircraft (Maji et al., [2013), vggFlower (Nilsback &
Zissermanl, [2006), describableTextures (Cimpoi et al., |2013), and Omniglot (Lake et al.,
2015)).

CADO stands for combining Cifar-fs (Bertinetto et al.,|2019), FGVCAircraft (Maji et al.|
2013), Delaunay (Gontier et al.,[2022), and Omniglot (Lake et al.| 2015)).
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* CAVDO stands for combining Cifar-fs (Bertinetto et al.,2019), FGVCAircraft (Maji et al.|
2013)), VGGFlower (Nilsback & Zisserman, 2006)), DescribableTextures (Cimpoi et al.,
2013), Omniglot (Lake et al., 2015).

* MICOVA stands for combining Minilmagenet (Vinyals et al., 2017), Cifar-fs (Bertinetto
et al., |2019), Omniglot (Lake et al.| [2015), VGGFlower (Nilsback & Zisserman, 2006)),
FGVCAircraft (Maji et al.|[2013).

e MDS stands for Meta-Dataset (Triantafillou et al.l 2019).
dtd stands for Describable Textures Dataset (Cimpoi et al., 2013)).
* VGGFlower is the alternative name for fgvcFlower (Nilsback & Zisserman), 2006).

vggair stands for combining VGGflower (Nilsback & Zisserman, |2006) and fgvcAircraft
(Maji et al., [2013).

vggdtd stands for combining VGGflower (Nilsback & Zisserman), 2006)) and DTD (Cimpoti
et al.,[2013).

A.4.1 FORMAL DIVERSITIES OF DATASETS

In this section, we present the formal diversities computed on the datasets we studied. We used
the Task2Vec diversity coefficient described in section [2|and [Miranda et al.| (2022). We divide the
results into datasets with formally low and high diversity. We do the division of low vs high at 0.146
Task2Vec diversity (using a pre-trained (pt) Resnet18 (Renset18 pt)), because that was approximately
the average diversity. We describe the dataset composition in the supplementary section

Table 11: Shows the low diversities of datasets used for analysis using the Task2Vec diversity
coefficient — using the train split with 95% confidence intervals. We use a Resnet18 and Resnet34
pre-trained (pt) on ImageNet as the backbone to calculate the Fisher Information Matrix (FIM) needed
for the Task2Vec task embeddings for the Diversity Coefficient.

mini-imagenet
tiered-imagenet

0.119 £ 0.00213
0.124 £ 0.00219

Dataset Diversity (Resnet18 pt) | Diversity (Resnet34 pt)
cifar-fs 0.106 £ 0.00166 0.0890 £+ 0.00199
fc100 0.107 £ 0.00149 0.0903 £+ 0.00389

0.102 £ 0.00163
0.105 £ 0.00161

aircraft 0.110 £ 0.00127 0.0932 £ 0.00109
flower 0.138 £ 0.00288 0.117 £ 0.00234
dtd 0.129 £ 0.00227 0.111 £ 0.00228
delaunay 0.128 £ 0.00268 0.1078 £ 0.00196
cubirds 0.120 £ 0.00161 0.104 £ 0.00149
vggair 0.141 £ 0.00131 0.120 £ 0.00129
vggdtd 0.135 £ 0.00105 0.119 + 0.00107

A.5 FURTHER TESTING OF THE DIVERSITY COEFFICIENT

VALIDATING THE TASK2VEC TASK EMBEDDINGS USED IN THE DIVERSITY
COEFFICIENT

AS.1

In this section, we further test if the Task2Vec task embeddings distances cluster in a semantically
meaningful way in our dataset MIO. This test is important because if the Task2Vec embeddings
used to compute the diversity coefficient have the structure we’d expect, then it makes the diversity
coefficient itself more trustworthy. The MIO dataset was created by combining the Minilmagenet
Omniglot. Therefore, if Task2Vec is a valid embedding for tasks, we would expect three modes
for our histogram: 1. One mode for the distances between tasks generated from Minilmagenet and
Minilmagnet 2. Another mode for distances between tasks generated from Omniglot and Omniglot 3.
And the last mode for distances between tasks generated from Minilmagenet and Omniglot That is
indeed what is seen as shown in figure 2]

One interesting observation is that the average distance between Task2Vec embeddings (i.e. the
diversity coefficient) is larger for smaller networks.
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Table 12: Shows the high diversities of datasets used for analysis using the Task2Vec diversity
coefficient — using the train split with 95% confidence intervals. We use a Resnet18 and Resnet34
pre-trained (pt) on ImageNet as the backbone to calculate the Fisher Information Matrix (FIM) needed
for the Task2Vec task embeddings for the Diversity Coefficient. MDS stands for Meta-DataSet.

Dataset Diversity (resnet18pt) | Diversity (resnet34pt)
omniglot 0.167 £ 0.00579 0.139 + 0.00387
mio 0.188 £ 0.00416 0.161 £ 0.00351
hdb4-micod 0.174 £ 0.00420 0.154 £ 0.00381
hdb6-afdo 0.179 +£ 0.00255 0.155 £ 0.00218
hdb7-afto 0.186 £ 0.00276 0.146 £ 0.00233
hdb8§-cado 0.173 £ 0.00278 0.153 £ 0.00236
hdb9-cavdo 0.177 £ 0.00256 0.139 £ 0.00199
hdb10-micova 0.170 £ 0.00262 0.137 £ 0.00214
hdb12-fvfo 0.181 £ 0.00261 0.150 +£ 0.00223
hdb13-mcfo 0.166 £ 0.00276 0.159 + 0.00249
hdb14-dcmo 0.179 +£ 0.00295 0.150 £ 0.00244
mds 0.173 £ 0.00282 0.149 £ 0.00252
Distribution of Task2Vec Distances Distribution of Task2Vec Distances

7000 6000 -

6000 5000 4

2000 4000

Frequency
=
S
o
S
Frequency

30004
3000
2000+
2000

1000 1000

o 0-
0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.100 0.125 0.150 0.175 0.200 0.225 0.250
Cosine Distance between Task Pairs Cosine Distance between Task Pairs

Figure 2: The Task2Vec distances the histogram cluster in a way that reflect the semantic
information of the union of the Minilmagenet and Omniglot (MIO) training datasets. Left plot
show the histogram of the cosine distance between Task2Vec embeddings made using a Resnet18
backbone pre-trained on Imagenet. Right show the same, but when using Resnet34. The meta-batch
size was 500 meaning we used 500 tasks to compute these histograms. The diversity coefficients are
0.188 4+ 0.00416, 0.161 £ 0.00351 for the LHS and RHS plots.

A.6 DISCUSSION (CONT.)

We’d also like to remark the trade-offs between pre-training and meta-learning (MetaL) that Bronskil]|
articulates clearly — especially given the evidence we present countering the prevailing
narrative that advocates for pre-training (PT) and transfer learning methods. The selection between
PT vs MetaL strategies should be guided by: the available data, computational resources, and the
application’s specific requirements. For singular task types with ample data and no computational
or temporal constraints, fine-tuning within transfer learning may suffice. Conversely, meta-learning
would be more appropriate in scenarios requiring the acquisition of diverse tasks with sparse data on
resource-limited devices, or in continual or online learning environments. In addition, we provide
a novel perspective where we show formally diverse datasets are a scenario when meta-learning
methods are marginally better than pre-training methods.

A potential drawback of our work could be our focus on mainly comparing pre-training (PT) against
MAML, instead of considering a wider set of meta-learning algorithms. Our justification is as follows:
The current narrative (Tian et all,[2020; [Chen et al.| [2019; 2020} [Dhillon et al.| 2019; [Huang & Taol,
[2019) implies that PT can beat any meta-learning algorithm. We’d like to emphasize the word any,
because it implicates a “for all” quantifier. Therefore, to counter the current narrative, we only need
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to provide evidence against it (and thus show it is likely false) by considering a single meta-learning
algorithm. Therefore, if PT cannot even beat MAML — the simplest of meta-learning algorithms
—it’s good evidence against the current narrative. Therefore, we only need a single meta-learning
algorithm to support our conclusions. In addition, memory efficient meta-learning (Bronskill et al.,
2021) demonstrated that other meta-learning algorithms can match pre-trained models. However, as
we explained in the related work section, our contributions are novel, complementary and different
from Bronskill et al.| (2021)) does because: 1. We contextualize our claims in a data-centric framework
using formal diversities over an extensive set of formally diverse datasets, 2. Our analysis goes
beyond using confidence intervals and reports the effect size, a method we justify in section 3] and, 3.
Our novel analysis demonstrates that meta-learning (via MAML) and pre-training can be (marginally)
separated in performance when considering the formal diversity of the dataset. In addition, it is
reasonable to expect, given the memory efficient results (Bronskill et al., [2021), that when using their
memory efficient methods that a similar trend with other meta-learning algorithms would be observed
— especially given we already showed an initial separation between PT and MAML. Furthermore, our
experiments were are extensive over a large set of formally diverse datasets.

Another potential drawback of our work could be the use of the arbitrary 1% thresholds for our
decision rule in Section [3| In machine learning, it is not uncommon to accept papers due to 1%
differences. We cite this ICCV 2021 paper (Li et al., |2021)) which gives the performance variance of
common models on meta-dataset in table 1, which commonly ranges from 0.5 to 1.0. We also cite
this ECCV 2020 paper (Rodriguez et al., | 2020) that provides the variance for MinilmageNet, where
the standard deviations range around ~ 0.8. However, we’d like to underscore that we do not rely
solely on this 1% cutoff to interpret our experiments. We also report the raw effect size (and test
accuracy) and use the classically accepted ranges for what is considered small effect size (Andrade}
2020). However, there is no silver bullet for statistical analysis. All of them have assumptions (e.g.
CIs, effect size are best for normally distributed data), and some notion of arbitrary values (e.g.
p-values, 95%-confidence intervals, effect size ranges, our 1% threshold, etc.) are always chosen to
give meaning to the results. However, one can avoid confirmation bias by choosing the statistical
method before the analysis of the experiments is done — which we do. In addition, our main rationale
to chose effect size is that one can’t manipulate (deliberately or accidentally) the sample size to have
the decision rule match our preconceived assumptions — unlike the p-value in t-tests or confidence
intervals where it has been an issue noted here (Lin et al., |2013) in the large sample size regime.
Therefore, we attempted to protected our interpretations from confirmation bias.

Another criticism of our work could be the lack of theoretical analysis. One reason we choose not to
do theoretical analysis is that it is often difficult to give non-vacuous bounds in theory. Though some
progress has been done here (Chen et al.|(2021) but does not aim to separate pre-training methods vs
meta-learning methods. However, our experiments have good theoretical motivation inspired from
‘Wang et al.|(2021) and align with conjectures we explain in detail in section

The challenges in vectorization of MAML and meta-learning algorithms in general stems from
the arises because of the task are different across a meta-batch, so the support set has different
arbitrary labels across tasks. Therefore, vectorization is not straightforward without custom CUDA
implementations. However, instead of vectorizing, one could use the memory-efficient meta-learning
strategy (Bronskill et al.,|2021) to speed up MAML. This is an argument in favor of meta-learning
given this new possible memory optimization. We leave this promising direction for future work but
conjecture this will make MAML competitive against pre-training given our results and their results
(Bronskill et al.| [2021)).

Most of our experiments are on small models but hypothesize they are all generalize. There is a
debate about emergence in large language models, however, we hypothesize our results generalize to
all size models. We hypothesize this because the observation of emergence is highly dependent on
the metric and the sharp unpredictable jumps go away when using smooth metrics (Schaeffer et al.|
2023).

An additional benefit of using the effect size is that it also protects the researchers from confirmation
bias. For example, the researcher cannot deliberately choose a sample/batch size to fit pre-conceived
assumptions.
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A.6.1 WHY AND WHEN DOES DIVERSITY MATTER?

We conjecture two main reasons why diversity matters and explain our rationale:

1. Conjecture 1: Diversity matters because it enables learning-to-learn (proxy for General
Intelligence). This is the main conjecture we provide evidence in this paper. The main
argument is that if there is high diversity, it means there are many tasks in the dataset.
Therefore, for the model to do well, it has to do well on all tasks. One way to do it is
by learning-to-learn and therefore transfer when challenged with solving a new task. An
alternative would be memorizing all the tasks.

2. Conjecture 2: Diversity matters because it increases changes that training set covers
test set. Diversity is a formalization of coverage — it aims to be the effective (average)
number of tasks in a dataset. Therefore, the higher the diversity, the more tasks a dataset has.
This (might) increase the probability that the training set covers the test set and improves
performance. This exploration of this conjecture is left for future work.

A.7 MOTIVATION

This work is inspired by three ideas/questions: 1. Does explicitly train to “learn to learn” (i.e.,
meta-learn) improve the performance of a machine learning algorithm? 2. What is a data-centric
inductive bias that might explain when explicit meta-learning methods are needed? 3. Previous
theoretical results hint that pre-training with all the data upper-bounds the meta-learning episodic
loss, therefore, might this be the reason pre-training be slightly worse with imperfect settings? (e.g.
imperfect optimization and limited data). We proceed to explain the latter two in more detail in this
section.

A.7.1 WHAT IS THE RIGHT INDUCTIVE BIAS FOR THE APPLICATION OF META-LEARNING?

Our work is motivated by the conjecture that the appropriate inductive bias for meta-learning is when
the intrinsic diversity of a dataset is high. In other words, the distance between tasks sampled from a
dataset is often high, i.e. a large variation of tasks is present. This is what the diversity coefficient is
designed to measure (Miranda et al., |2022). The reasoning, behind this conjecture, is the following:
1. By definition of the problem — solving tasks from a high diversity dataset — we have tasks sampled
from the dataset have large changes/distances 2. Therefore, a model that learns to adapt/learn/change
might experience an advantage, because it has autonomously learns to change to these changing
tasks. Consequently, if the tasks exhibit high variability/diversity, a meta-learning model may be the
preferred choice.

The conjecture that meta-learning surpasses pre-training methods finds support in our empirical results
because the effect size is in favor of MAML on average across a wide variety of formally diverse
datasets. However, intriguingly, pre-training methods outperform on low diversity datasets. This
observation may clarify the prevailing narrative favoring pre-training methods. Pre-training methods
might be better for lower diversity datasets. We hypothesize MAML may be “meta-overfitting”
(Miranda et al.| 2021) on such datasets, unlike pre-training methods with a fixed embedding that
might have a lower (meta) variance.

Our problem/data-centric approach to meta-learning is inspired by applying Marr’s level of analysis
(Hamrick & Mohamed, [2020; [Marr, [1982) to few-shot learning. Marr emphasized the importance
of understanding the computational problem being solved and not only analyzing the algorithms or
hardware that attempts to solve them. An example Marr gives is marveling at the rich structure of
bird feathers without also understanding the problem they solve: flight. Similarly, there has been an
analysis of MAML models and transfer learning without putting the problem such models should
solve into perspective (Raghu et al., 2020; [Tian et al.| 2020). Therefore, in this work, we hope to
clarify some of these results by partially placing the current state of affairs in meta-learning from a
problem-centric view. We do this by computing the formal diversity of a dataset using the diversity
coefficient.
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A.7.2 THEORETICAL MOTIVATION

Our work is also inspired by the theory from |Wang et al.[|(2021)), which theoretically shows the loss
of pre-training on all the data upper bounds the episodic meta-learning loss.

More formally, for a fixed feature embedding model ¢y (x) with weights 6:
Exy)eq Lee(WIY], ($6(X), V)] < E(yen(@) llee(Wiho(2), y)] Q)

where Q = {(x;,:)};.2, is a standard few-shot learning query set, L., is the empirical risk of the
learner over few-shot tasks using the cross-entropy loss (i.e. on the support or a query set), X is a
dataset of raw input values x e.g. raw images, Y is a dataset of target labels e.g. labels for the images,
Yo(X) = {(¢Yo(x) | z € X} the embedded few-shot task/dataset, and D((Q)) denotes the union of all
query tasks from the source dataset e.g. union of all few-shot learning of Minilmagenet.

Equation 4] therefore implies that using a fixed embedding method, that a pre-trained model using
all the tasks upper bounds the true meta-learning loss we wish to minimize for a model to “learn to
learn”. The main caveat is that this only applies for a fixed embedding model, so if the left-hand side
uses a MAML model and the right-hand side uses a pre-trained model, then the above inequality
doesn’t apply. However, it provides good heuristics for our approach: 1. Get an extremely large
dataset, 2. Train both models to convergence, ideally zero train-loss, 3. then compare them. The
above suggests the difference should be small, which is, which is in line with our main contribution.
In addition, the effect size is negative which suggests MAML is better, as one might conjecture using
equation[4] In addition, as the meta-train set encompasses all possible tasks, we conjecture there is
no difference between meta-leanring algorithms and pre-training trained on a union of all the data.

A.8 MAML EXPERIMENTS ON GPT-2

Extending MAML for language modelling is a challenging task. Large language models (LLMs)
including GPT-2 are typically trained in a supervised learning setting where the model is trained to
predict the token coming after each token in a sentence(Radford et al.,2019). This does not naturally
translate to a k-shot learning task which MAML was intended for. In particular, we note that the
vocabulary size for each token is in the order of tens of thousands (50257 for GPT-2) which is a lot
bigger than the few thousand (1623 for Omniglot(Lake et al., 2015)) classes MAML is typically used
for. Additionally, each token does not have an equal number of instances in the language. Finally
and most importantly, training a model to chose between a few classes given example occurrences of
those classes, and comparing it against a model trained to predict one class out of 50257 is an apples
to oranges comparison.

‘We however note the primary motivation of the paper to establish the performance of ’learning a
task” against “learning to learn the same task”. Hence instead of using examples of specific target
classes as the support set as is usually done for MAML, we use example sequences as the support
set and example sequences as the query set. An initial idea is for each batch size of size b, we can
train the model to learn from the first b/2 examples and predict the next b/2 correctly. However,
since the batches are independent, we don’t give the model a chance to learn from context and this
implementation of MAML reduces to a harder to optimize version of the usual supervised learning
setting.

We solve this issue by separating the support and query sets within examples in a batch instead of
within batches. That is, if the token size of the model is ¢, we split each example of ¢ tokens into
support and query sets. We make the first ¢/2 tokens of each example as the support set and the next
t/2 tokens as the query set. Hence given a token size ¢, we train the model to learn to predict the
last t/2 tokens based on the first ¢/2 tokens. Formally, for each example in the batch, we perform an
inner loop optimization on the cross-entropy loss of next-token predictions for the first ¢/2 tokens.
We then perform the outer loop optimization on the cross-entropy loss of next-token predictions using
the obtained model on the last ¢/2 tokens.

Evaluation comparison between the two training techniques is done by following a similar approach
of inner loop optimization using the first half tokens and reporting accuracy values on the second half
post inner loop optimization.
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A.9 FAIR COMPARISON

Unlike previous, we ensure fair comparison between pre-training vs MAML by using a consistent
neural network architecture, optimizer, and all models trained to convergence.

Architecture: We only compared pre-training vs MAML when they both had the same architecture.
When we used a ResNet we used the one described in Tian et al.|(2020).

Optimization: We only compared pre-training vs MAML when they both had the same optimization
and scheduling rate. We used the Adam optimizer for all experiments except for GPT2 and Resnet50
on Meta-DataSet (MDS) where we used Adafactor with default hyperparameters. We did this because
Adafactor has a setting in the Fairseq that requires no hyperparameter search and since Meta-DataSet
is a large we scale dataset. It took us about 1 month to train on MDS with Resnet50. In addition,
previous work demonstrated Adafactor can be fast 1 order of magnitude faster (speedup of 2 hours
to 39 hours) than Adam with hyperparameter search when training transformer models (Miranda
et al., [2023)).

Training to Convergence: We show how our models were trained by providing some sample learning
curves for pre-training and MAML in the following figures |7} [8] 5} [6] 3] ] -
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Figure 3: Plot showing convergence of Resnet12 on a high-diversity benchmark (MICOD). The
left-most plot depicts the training loss curve for the pre-training algorithm, and the rightmost plot
depicts the training loss curve for MAML.
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Figure 4: Plot showing convergence of Resnet50 on a high-diversity benchmark Meta-DataSet (MDS)

(Triantafillou et al., 2019). The left-most plot depicts the training loss curve for the pre-training
algorithm, and the rightmost plot depicts the training loss curve for MAML.

A.10 SUMMARY OF CI DECISION RESULTS

When comparing PT (pre-training) and MAML using confidence intervals, our experiments indicate
that MAML and PT tend to perform equivalently under high-diversity benchmarks, while MAML and
PT perform differently (either MAML outperforming or underperforming PT) under lower-diversity
benchmarks.

Figure[TT|shows how average MAML(5,10) performs better than PT. This supports our main hypothe-
sis because 1. MAML is better than PT in the high diversity regime but 2. The difference is marginal,
as shown by the confidence intervals being close.
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Figure 5: Plot showing convergence of Resnet12 on a low-diversity benchmark (fc100). The left-most
plot depicts the training loss curve for the pre-training algorithm, the center plot depicts the training

loss curve for first-order MAML, and the rightmost plot depicts the training loss curve for higher-order
MAML.
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Figure 6: Plot showing convergence of Resnet12 on a low-diversity benchmark (aircraft). The
left-most plot depicts the training loss curve for the pre-training algorithm, the center plot depicts the

training loss curve for first-order MAML, and the rightmost plot depicts the training loss curve for
higher-order MAML.
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Figure 7: Plot showing convergence of Resnet12 on a high-diversity benchmark (hdb8-cado).The

left plot depicts the training loss curve for the pre-training algorithm and the right plot depicts the
training loss curve for MAML.
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Figure 8: Plot showing convergence of Resnet12 on a high-diversity benchmark (hdb9-cavdo). The

left plot depicts the training loss curve for the pre-training algorithm and the right plot depicts the
training loss curve for MAML.
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Table 13: Results of performance comparison between pre-training and MAML using confi-
dence intervals for high-diversity benchmarks. These performance comparison experiments were
conducted using a batch size of 300. The summary for the decision counts is as follows: we failed to
reject the null hypothesis HO (no difference) 8 times and we rejected the null hypothesis in favor of
the MAML alternative 2 times (once for MAMLS5 and once for MAML10). The diversity for them is
high, as shown in table[T2}

Dataset pt vs maml5 CI decision | pt vs maml10 CI decision
hdb6-afdo HO no diff HO no diff
hdb7-afto HO no diff HO no diff
hdb8-cado HO no diff HO no diff

hdb9-cavdo HO no diff HO no diff
hdb10-micova HI1 maml5 HI maml10

Table 14: Results of performance comparison between pre-training and MAML using confidence
intervals for high-diversity benchmarks with a 1% overlap threshold. These performance
comparison experiments were conducted using a batch size of 300. The summary for the decision
counts is as follows: we failed to reject the null hypothesis HO (no difference) 8 times and we
rejected the null hypothesis in favor of the MAML alternative 2 times (once for MAMLYS5 and once

for MAML10). The diversity for them is high, as shown in table @

Dataset pt vs maml5 CI decision (1% overlap) | pt vs maml10 CI decision (1% overlap)
hdb6-afdo HO no diff HO no diff
hdb7-afto HO no diff HO no diff
hdb8-cado HO no diff HO no diff
hdb9-cavdo HO no diff HO no diff
hdb10-micova HI1 maml5 HI maml10

A.11 L2 MODEL NORMS AND VALIDATION LOSS CURVES SUGGEST THAT MAML HAS LESS
META-OVERFITTING THAN PT

We demonstrate evidence that may suggest that MAML has less overfitting than PT, both via MAML
and PT validation loss curves (see Figures[9]and[I0), as well as the L2 model norms of trained MAML
and PT models (see Tables 22} 23] [24).
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Figure 9: On a high-diversity dataset, the validation loss of MAML stays relatively unchanged
over time, while the validation loss of PT increases over time, suggesting that MAML has less
meta-overfitting than PT. The left plot depicts the validation loss curve for the MAML algorithm
and the right plot depicts the validation loss curve for the PT algorithm, both on the high-diversity
hdb8-cado dataset.
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Table 15: Results of performance comparison between pre-training and (fo) MAML using
confidence intervals for low-diversity benchmarks. These performance comparison experiments
were conducted using a batch size of 300. The summary for the decision counts is as follows: we
failed to reject the null hypothesis HO (no difference) 11 times, we rejected the null hypothesis in
favor of the PT alternative 7 times, and rejected the null hypothesis in favor of the MAML alternative
6 times (MAMLS accounted for 3 of these rejections while MAML10 accounted for 3). The diversity
for them is low, as shown in table

Dataset pt vs maml5 CI decision | pt vs maml10 CI decision

aircraft HI no diff HI no diff

flower HI1 pt HI1 pt

ded HI pt HI pt

delaunay HI1 pt H1 pt
cubirds H1 maml5 HI maml10
cifar-fs H1 maml5 HI1 maml10
fc100 H1 maml5 HI maml10
mini-imagenet HI pt HO no diff
omniglot HO no diff HO no diff
tiered-imagenet HO no diff HO no diff
vggair HO no diff HO no diff
vgedtd HO no diff HO no diff

Table 16: Results of performance comparison between pre-training and (fo) MAML using confi-
dence intervals for low-diversity benchmarks with a 1% overlap threshold. These performance
comparison experiments were conducted using a batch size of 300. The summary for the decision
counts is as follows: we failed to reject the null hypothesis HO (no difference) 14 times, we rejected
the null hypothesis in favor of the PT alternative 7 times, and rejected the null hypothesis in favor
of the MAML alternative 3 times (MAMLYS5 accounted for 1 of these rejections while MAML10

accounted for 2). The diversity for them is low, as shown in table

Dataset pt vs maml5 decision (1% overlap) | pt vs maml10 decision (1% overlap)

aircraft HO no diff HO no diff

flower HI pt HI pt

dtd HI pt HI1 pt

delaunay HI pt HI1 pt
cubirds H1 maml5 H1 maml10
cifar-fs HO no diff H1 maml10
fc100 HO no diff HO no diff
mini-imagenet HI pt HO no diff
omniglot HO no diff HO no diff
tiered-imagenet HO no diff HO no diff
vggair HO no diff HO no diff
vggdtd HO no diff HO no diff
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Figure 10: On a low-diversity dataset, the validation loss of MAML stays relatively unchanged
over time, while the validation loss of PT increases over time, suggesting that MAML has less
meta-overfitting than PT. The left plot depicts the validation loss curve for the MAML algorithm
and the right plot depicts the validation loss curve for the PT algorithm, both on the low-diversity
DTD dataset.
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Table 17: Results of performance comparison between pre-training and (ho) MAML using
confidence intervals for low-diversity benchmarks. These performance comparison experiments
were conducted using a batch size of 300. The summary for the decision counts is as follows: we
failed to reject the null hypothesis HO (no difference) 2 times, we rejected the null hypothesis in favor
of the PT alternative 10 times, and rejected the null hypothesis in favor of the MAML alternative 8
times (MAMLS accounted for 4 of these rejections while MAML10 accounted for 4). The diversity
for them is low, as shown in table@

Dataset pt vs maml5 CI decision | pt vs maml10 CI decision
aircraft HI maml5 HI maml10
flower HI pt HI pt
dtd HI1 pt H1 pt
delaunay HI1 pt HI1 pt
cubirds H1 maml5 H1 maml10
cifar-fs H1 maml5 HI maml10
fc100 HI1 maml5 HI maml10
mini-imagenet HO no diff HO no diff
omniglot HI1 pt HI1 pt
tiered-imagenet HI1 pt HI1 pt

Table 18: Results of performance comparison between pre-training and (ho) MAML using con-
fidence intervals for low-diversity benchmarks with a 1% overlap threshold. These performance
comparison experiments were conducted using a batch size of 300. The summary for the decision
counts is as follows: we failed to reject the null hypothesis HO (no difference) 6 times, we rejected the
null hypothesis in favor of the PT alternative 6 times, and rejected the null hypothesis in favor of the
MAML alternative 8 times (MAMLS accounted for 4 of these rejections while MAML10 accounted
for 4). The diversity for them is low, as shown in table

Dataset pt vs maml5 CI decision (1% overlap) | pt vs maml10 CI decision (1% overlap)
aircraft H1 maml5 HI maml10
flower HO no diff HI1 pt
dtd HI pt HI pt
delaunay HI1 pt HI1 pt
cubirds H1 maml5 H1 maml10
cifar-fs H1 maml5 HI1 maml10
fc100 H1 maml5 HI maml10
mini-imagenet HO no diff HO no diff
omniglot HO no diff HO no diff
tiered-imagenet HO no diff HI pt

Table 19: 1% effect sizes for performance comparison between pre-training and (fo) MAML for
low-diversity benchmarks.

Dataset pt vs maml5 1% ES | pt vs maml10 1% ES
aircraft 0.100 0.109
flower 0.171 0.195
dtd 0.122 0.125
delaunay 0.106 0.122
cubirds 0.135 0.133
cifar-fs 0.114 0.113
fc100 0.121 0.117
mini-imagenet 0.123 0.117
omniglot 0.789 0.727
tiered-imagenet 0.112 0.113
vggair 0.059 0.059
vggdtd 0.056 0.056
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Table 20: 1% effect sizes for performance comparison between pre-training and (ho) MAML for
low-diversity benchmarks.

Dataset pt vs maml5 1% ES | pt vs maml10 1% ES
aircraft 0.094 0.100
flower 0.201 0.204
dtd 0.125 0.126
delaunay 0.116 0.115
cubirds 0.145 0.145
fc100 0.113 0.113
cifar-fs 0.118 0.113
mini-imagenet 0.120 0.123
omniglot 0.655 0.762
tiered-imagenet 0.116 0.080

Table 21: 1% effect sizes for performance comparison between pre-training and (fo) MAML for
high-diversity benchmarks.

Dataset pt vs maml5 1% ES | pt vs maml10 1% ES
hdb6-afdo 0.057 0.059
hdb7-afto 0.050 0.051
hdb8-cado 0.051 0.053

hdb9-cavdo 0.054 0.054
hdb10-micova 0.056 0.057

Table 22: The L2 norm of a trained first-order MAML model is less than the L2 norm of a
trained PT model for each low-diversity benchmark, suggesting that MAML has less meta-
overfitting than PT.

Dataset L2 model norm (MAML) | L2 model norm (PT)
cifar-fs 851.012 9813.269
fc100 919.964 8302.170
omniglot 663.715 4676.182
mini-imagenet 930.304 5776.625
tiered-imagenet 926.896 11097.097

Table 23: The L2 norm of a trained higher-order MAML model is less than the L2 norm
of a trained PT model for each low-diversity benchmark, suggesting that MAML has less
meta-overfitting than PT.

Dataset L2 model norm (MAML) | L2 model norm (PT)
dtd 2949.312 5548.194
tiered-imagenet 731.893 11097.097
omniglot 594.381 4676.182
fc100 758.372 8302.170
delaunay 2810.343 4856.295
aircraft 1517.484 6144.078
cifar-fs 725.017 9813.269
mini-imagenet 752.201 5776.625
cubirds 3127.715 5252.014
flower 2333.556 7307.350
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Table 24: The L2 norm of a trained higher-order MAML model is less than the L2 norm
of a trained PT model for each high-diversity benchmark, suggesting that MAML has less
meta-overfitting than PT.
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Dataset L2 model norm (MAML) | L2 model norm (PT)
hdbé6-afdo 2426.827 7699.514
hdb7-afto 2598.023 3573.5355
hdb8-afdo 3441.040 8072.174
hdb9-cavdo 3997.130 7919.635
hdb10-micova 3810.151 7757.541
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Figure 11: Shows how meta-test accuracy between PT and MAML(5,10) intersects in the high
diversity dataset MICOD. However, on average MAML(5,10) performs better than PT. This
supports our main hypothesis because: 1. MAML is better than PT in the high diversity regime but 2.
The difference is marginal, as shown by the confidence intervals being close.
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Comparison of Meta Test Accuracy of PT vs MAML
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Figure 12: MAML(5,10) outperforms PT in the high diversity dataset MICOD. Same as Figure
but without confidence intervals. This supports our main hypothesis as it demonstrates that MAML

is marginally better than PT in the high diversity regime.
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