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ABSTRACT

We propose Heuristic Blending (HUBL), a simple performance-improving tech-
nique for a broad class of offline RL algorithms based on value bootstrapping.
HUBL modifies the Bellman operators used in these algorithms, partially replacing
the bootstrapped values with heuristic ones that are estimated with Monte-Carlo
returns. For trajectories with higher returns, HUBL relies more on the heuristic
values and less on bootstrapping; otherwise, it leans more heavily on bootstrapping.
HUBL is very easy to combine with many existing offline RL implementations
by relabeling the offline datasets with adjusted rewards and discount factors. We
derive a theory that explains HUBL’s effect on offline RL as reducing offline
RL’s complexity and thus increasing its finite-sample performance. Furthermore,
we empirically demonstrate that HUBL consistently improves the policy quality
of four state-of-the-art bootstrapping-based offline RL algorithms (ATAC, CQL,
TD3+BC, and IQL), by 9% on average over 27 datasets of the D4RL and Meta-
World benchmarks.

1 INTRODUCTION

Offline reinforcement learning (RL) aims to learn decision-making strategies from static logged
datasets (Lange et al., 2012; Fujimoto et al., 2019). It has attracted increased interest in recent years,
because the availability of large offline datasets are on the rise and online exploration required by
alternative approaches such as online RL (Sutton and Barto, 2018) remains expensive and risky in
many real-world applications, such as robotics and healthcare.

Base offline RL method
1: Input: dataD = {(s, a, s′, r, γ)}
2: for each iteration do
3: Sample (s, a, r, s′, γ) ∈ D
4: DP update using (s, a, r, s′, γ)

HUBL + offline RL
1: Input: dataD = {(s, a, s′, r, γ)}
2: D̃ ← Relabel D with modified

rewards r̃ & discounts γ̃ using
heuristics h

3: for each iteration do
4: Sample (s, a, r̃, s′, γ̃) ∈ D̃
5: DP update using (s, a, r̃, s′, γ̃)

Figure 1: HUBL and offline RL

Among offline RL algorithms, we focus on model-free
approaches using dynamic programming with value boot-
strapping. These algorithms, including the commonly used
CQL (Kumar et al., 2020), TD3+BC (Fujimoto and Gu,
2021), IQL (Kostrikov et al., 2022), and ATAC (Cheng
et al., 2022), have demonstrated strong performance in
offline RL benchmarks (Fu et al., 2020; Gulcehre et al.,
2020). They follow the actor-critic scheme and adopt
the principle of pessimism in the face of uncertainty to
optimize an agent via a performance lower bound that pe-
nalizes taking unfamiliar actions. Despite their strengths,
existing model-free offline RL methods also have a major
weakness: they do not perform consistently. An algorithm
that does well on one dataset may struggle on another,
sometimes even underperforming behavior cloning (see
Tarasov et al. (2022) and Appendix D.2). These perfor-
mance fluctuations stand in the way of applying even the
strongest offline RL approaches to practical problems.

In this work, we propose Heuristic Blending (HUBL), an
easy-to-implement technique to address offline RL’s per-
formance inconsistency. HUBL is an “aide” that operates
in combination with a bootstrapping-based offline RL algorithm by using heuristic state value esti-

1



Published as a conference paper at ICLR 2024

mates1 to modify the rewards and discounts in the dataset that the base offline RL algorithm consumes.
Effectively, this modification blends heuristic values into dynamic programming to partially replace
bootstrapping. Relying less on bootstrapping alleviates potential issues that bootstrapping causes and
helps achieve more stable performance.

Combining HUBL with an offline RL method is very simple, as summarized in Figure 1, and amounts
to running this method on a version of the original dataset with modified rewards r̃ and discounts γ̃:
r̃ = r + γλh and γ̃ = γ(1 − λ), where r is blended with a heuristic h, γ̃ is the reduced discount,
and λ ∈ [0, 1] is a blending factor representing the degree of trust towards the heuristic. We propose
to set h as the Monte-Carlo returns of the trajectories in the dataset for offline RL. Such heuristics
are efficient and stable to compute, unlike bootstrapped Q-value estimates. The blending factor λ in
HUBL can be trajectory-dependent. Intuitively, we want λ to be large (relying more on the heuristic)
at trajectories where the behavior policy that collected the dataset performs well, and small (relying
more on bootstrapped Q-values) otherwise. We provide three practical designs for λ; they use only
one hyperparameter, which, empirically, does not need active tuning.

We analyze HUBL’s performance both theoretically and empirically. Theoretically, we provide a
finite-sample performance bound for a tabular offline RL with HUBL by framing it as solving a
reshaped Markov decision process (MDP). To our knowledge, this is the first theoretical result for RL
with heuristics in the offline setting. Our analysis shows that HUBL performs a bias-regret trade-off.
On the one hand, solving the reshaped MDP with a smaller discount factor requires less bootstrapping
and is relatively “easier”, so the regret is smaller. On the other hand, HUBL induces bias due to
reshaping the original MDP. Nonetheless, we demonstrate that the bias can be controlled by setting
the λ factor based on the above intuition, allowing HUBL to improve the performance of the base
offline RL method.

Empirically, we run HUBL with the four aforementioned offline RL methods – CQL, TD3+BC,
IQL, and ATAC – and show that enhancing these SoTA algorithms with HUBL can improve their
performance by 9% on average across 27 datasets of D4RL (Fu et al., 2020) and Meta-World (Yu et al.,
2020). Notably, in some datasets where the base offline RL method shows inconsistent performance,
HUBL can achieve more than 50% relative performance improvement.

2 RELATED WORK

Bootstrapping-based offline RL A fundamental challenge of bootstrapping-based offline RL is the
deadly triad (Sutton and Barto, 2018): a negative interference between 1) off-policy learning from
data with limited support, 2) value bootstrapping, and 3) the function approximator. Modern offline
RL algorithms such as CQL (Kumar et al., 2020), TD3+BC (Fujimoto and Gu, 2021), IQL (Kostrikov
et al., 2022), ATAC (Cheng et al., 2022), PEVI (Jin et al., 2021), MOReL (Kidambi et al., 2020),
and VI-LCB (Rashidinejad et al., 2021) employ pessimism to discourage the agent from taking
actions unsupported by the data, which has proved to be an effective strategy to address the issue of
limited support. However, they still suffer from a combination of errors in bootstrapping and function
approximation. HUBL aims to address this with stable-to-compute Monte-Carlo return heuristics and
thus is a complementary technique to pessimism.

RL by blending multi-step returns The idea of blending multi-step Monte-Carlo returns into the
bootstrapping operator to reduce the degree of bootstrapping and thereby increase its performance has
a long history in RL. This technique has been widely used in temporal difference methods (Sutton and
Barto, 2018), where the blending is achieved by modifying gradient updates (Seijen and Sutton, 2014;
Sutton et al., 2016; Jiang et al., 2021) and reweighting observations (Imani et al., 2018). It has also
been applied to improve Q function estimation (Wright et al., 2013), online exploration (Ostrovski
et al., 2017; Bellemare et al., 2016) and the sensitivity to model misspecification (Zanette et al., 2021),
and is especially effective for sparse-reward problems Wilcox et al. (2022). In contrast to most of the
aforementioned works, which focus on blending Monte-Carlo returns as part of an RL algorithm’s
online operation, HUBL is designed for the offline setting and acts as a simple data relabeling step.
Recently, Wilcox et al. (2022) have also proposed the idea of data relabeling, but their design takes a
max of multi-step returns and bootstrapped values and as a result tends to overestimate Q-functions.
We observed this to be detrimental when data has a limited support.

1In this work, a heuristic is a mapping from states to R (Mausam and Kolobov, 2012). See Section 3.2.
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RL with heuristics More generally, HUBL relates to the framework of blending heuristics (which
might be estimating quantities other than a policy’s value) into bootstrapping (Cheng et al., 2021;
Hoeller et al., 2020; Bejjani et al., 2018; Zhong et al., 2013). However, the existing results focus only
on the online case and do not conclusively show whether blending heuristics is valid in the offline
case. For instance, the theoretical analysis in Cheng et al. (2021) breaks when applied to the offline
setting as we will demonstrate in Section 5. The major difference is that online approaches rely
heavily on collecting new data with the learned policy, which is impossible in the offline case. In this
paper, we employ a novel analysis technique to demonstrate that blending heuristics is effective even
in offline RL. To the best of our knowledge, ours is the first work to extend heuristic blending to the
offline setting with both rigorous theoretical analysis and empirical results demonstrating performance
improvement. One key insight, inspired by transition-dependent discount factor from White (2017),
is the adoption of a trajectory-dependent λ blending factor, which is both a performance-improving
design as well as a novel analysis technicality.

Discount regularization HUBL modifies the reward with a heuristic and reduces the discount.
Discount regularization, on the other hand, is a complexity reduction technique that reduces only the
discount. The idea of simplifying decision-making problems by reducing discount factors can be
traced back to Blackwell optimality in the known MDP setting (Blackwell, 1962). Most existing
results on discount regularization (Petrik and Scherrer, 2008; Jiang et al., 2015) study the MDP
setting or the online RL setting (Van Seijen et al., 2019). Recently, Hu et al. (2022) has shown that
discount regularization can also reduce the complexity of offline RL and serve as an extra source of
pessimism. However, as we will show, simply reducing the discount without the compensation of
blending heuristics in the offline setting can be excessively pessimistic and introduce large bias that
hurts performance. In Section 6.1, we rigorously analyze this bias and empirically demonstrate the
advantages of HUBL over discount regularization.

3 BACKGROUND

In this section, we define the problem setup of offline RL (Section 3.1), review dynamic programming
with value bootstrapping, and briefly survey methods using heuristics (Section 3.2).

3.1 OFFLINE RL AND NOTATION

We consider offline RL in a Markov decision process (MDP)M = (S,A,P, r, γ), where S denotes
the state space, A denotes the action space, P denotes the transition function, r : S × A → [0, 1]
denotes the reward function, and γ ∈ [0, 1) denotes the discount factor. A decision-making policy π
is a mapping from S to A, and its value function is defined as V π(s) = E[

∑∞
t=0 γ

tr(st, at)|s0 =
s, at ∼ π(·|st)]. In addition, we define Qπ(s, a) := r(s, a) + γEs′∼P|s,a[V

π(s′)] as its state-action
value function (i.e., Q function). We use V ∗ to denote the value function of the optimal policy π∗,
which is our performance target.

In addition, we introduce several definitions of distributions. First, we define the average state distri-
bution of a policy π starting from an initial state s0 as dπ(s, a; s0) := (1− γ)

∑∞
t=0 γ

tdπt (s, a; s0),
where dπt (s, a; s0) is the state-action distribution at time t generated by running policy π from an
initial state s0. We assume that the MDP starts with a fixed initial state distribution d0. With slight
abuse of notation, we define the average state distribution starting from d0 as dπ(s, a) := dπ(s, a; d0),
and dπ(s, a, s′) := dπ(s, a)P(s′|s, a).
The objective of offline RL is to learn a well-performing policy π̂ while using a pre-collected offline
datasetD. The agent has no knowledge of the MDPM except information contained inD, and it
cannot perform online interactions with environment to collect more data. We assume D := {τ}
contains multiple trajectories collected by a behavior policy, where each τ = {(st, at, rt)}Tτ

t=1
denotes a trajectory with length Tτ . Suppose these trajectories contain N transition tuples in total.
With abuse of notation, we also write D := {(s, a, s′, r, γ)}, where states s and action a follow a
distribution µ(s, a) induced by the behavior policy, s′ is the state after each transition, r is the reward
at s, a, and γ is the discount factor of the MDP. Note that the value of discount γ is the same in each
tuple. We use Ω to denote the support of µ(s, a). We do not make the full support assumption, in the
sense that the datasetD may not contain a tuple for every s, a, s′ transition in the MDP.
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3.2 DYNAMIC PROGRAMMING WITH BOOTSTRAPPING AND HEURISTICS

Bootstrapping Many offline RL methods leverage dynamic programming with value bootstrapping.
Given a policy π, we recall Qπ and V π satisfy the Bellman equation:

Qπ(s, a) = r(s, a) +

(bootstrapping)︷ ︸︸ ︷
γEs′∼P(·|s,a)[V

π(s′)] . (1)

These bootstrapping-based methods compute Qπ(s, a) using an approximated version of (1): given
sampled tuples (s, a, s′, γ, r), such methods minimize the difference between the two sides of (1)
with both Qπ and V π replaced with function approximators 2. With limited offline data, learning the
function approximator using bootstrapping can be challenging and yields inconsistent performance
across different datasets (Dulac-Arnold et al., 2021; Sutton and Barto, 2018; Kumar et al., 2019), as
we will also later see in the experiment section (Section 6).

Heuristics A heuristic is a value function h : S → R calculated using domain knowledge, Monte-
Carlo averages, or pre-training. Heuristics are widely used in online RL, planning, and control to
improve the performance of decision-making (Kolobov et al., 2010; Zhong et al., 2013; Bejjani
et al., 2018; Hoeller et al., 2020; Cheng et al., 2021). In this paper, we focus on the offline setting,
and consider heuristics h that approximate the value function of the behavior policy. They can be
estimated fromD via Monte-Carlo methods.

4 HEURISTIC BLENDING (HUBL)

In this section we describe our main contribution — Heuristic Blending (HUBL), an algorithm that
works in combination with bootstrapping-based offline RL methods and improves their performance.

4.1 MOTIVATION

Algorithm 1 HUBL + Offline RL

1: Input: DatasetD = {(s, a, s′, r, γ)}
2: Compute ht for each trajectory inD
3: Compute λt for each trajectory inD
4: Relabel r & γ by ht and λt as r̃ and γ̃

and create D̃ = {(s, a, s′, r̃, γ̃)}
5: π̂ ← Offline RL on D̃

HUBL uses a heuristic computed as the Monte-Carlo
return of the behavior policy in the training dataset
D to improve offline RL. It reduces an offline RL
algorithm’s bootstrapping at trajectories where the
behavior policy performs well, i.e., where the value
of the behavior policy (i.e. the heuristic value) is
high. With less amount of bootstrapping, it mitigates
bootstrapping-induced issues on convergence stabil-
ity and performance. In addition, since the extent of
blending between the heuristic and bootstrapping is trajectory-dependent, HUBL introduces only
limited performance bias to the base algorithm, and therefore can improve its performance overall.

4.2 ALGORITHM

As summarized in Algorithm 1, HUBL is easy to implement: first, relabel a base offline RL algorithm’s
training datasetD = {(s, a, s′, r, γ)} with modified rewards r̃ and discount factors γ̃, creating a new
dataset D̃ := {(s, a, s′, r̃, γ̃)}; next, run the base algorithm on D̃.

The data relabeling is done in three steps:

Step 0: As a preparation step, we convert the data tuples in D back to trajectories like τ =
{(st, at, rt)}Tτ

t=1. For the next two steps, we work on data trajectories instead of data tuples to
compute heuristics and blending factors.

Step 1: Computing heuristic ht We compute heuristics by Monte-Carlo returns. For each
τ = {(st, at, rt)}Tτ

t=1 ∈ D, we calculate the heuristics as3 ht =
∑Tτ

k=t γ
k−trk and update the data

trajectory as τ ← {(st, at, rt, ht)}Tτ

t=1.
2Q-learning-based offline RL in Kostrikov et al. (2022) uses a dynamic programming equation similar to (1)

but with V π(s) = argmaxa∈A Qπ(s, a).
3In our implementation, we also train a value function approximator to bootstrap at the end of a trajectory if

the trajectory ends due to timeout as opposed to reaching the end of the problem horizon or a terminal state.
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Step 2: Computing blending factor λt We append a scalar λt = λ(τ) ∈ [0, 1] at each time point
t of each trajectory as the blending factor, leading to τ ← {(st, at, rt, ht, λt)}Tτ

t=1. λt indicates the
confidence in the heuristics on the trajectory. Intuitively, λt decides the contribution of heuristics over
bootstrapped values in dynamic programming to update the Q-function. We desire λt to be closer
to 1 when the heuristic value ht is higher (i.e., at states where the heuristic is closer to the optimal
Q-value) to make offline RL rely more on the heuristic, and λt closer to zero when heuristic is lower
to make offline RL to use more bootstrapping. We experiment with three different designs of λ(τ):

• Constant: As a baseline, we consider λ(τ) = α ∈ [0, 1] for all s. We show that, despite forcing the
same heuristic weight for every state, this formulation already provides performance improvements.

• Sigmoid: As an alternative, we use the sigmoid function to construct a trajectory-dependent
blending function λ(τ) = ασ(

∑Tτ

t=1 h(st)/Tτ ), where α ∈ [0, 1] is a tunable constant and σ is the
sigmoid function. Thus, λ(τ) varies with the performance of the behavior policy over data.

• Rank: Similar to the Sigmoid labeling function, we provide a rank labeling function λ(τ) =
α
∑

τ ′∈D 1h̄(τ ′)≤h̄(τ)/n where n is the number of trajectories inD, and h̄(τ) = 1
T

∑
ht∈τ ht.

Step 3: Relabeling r and γ Finally, we relabel the reward as r̃ and the discount factor as γ̃ in each
tuple ofD. To this end, we first convert the updated data trajectories {{(st, at, rt, ht, λt)}Tτ

t=1} back
into data tuples {(s, a, s′, r, γ, h′, λ′)}, where h′ and λ′ denote the next-step heuristic and blending
factor. Then, for each data tuple, we compute

r̃ = r + γλ′h′ and γ̃ = γ(1− λ′), (2)

to form a new dataset D̃ := {(s, a, s′, r̃, γ̃)}. Intuitively, one can interpret r̃ as injecting a heuristic-
dependent quantity γλ′h′ into the original reward, and γ̃ as reducing bootstrapping by shrinking the
original discount factor by a factor of 1− λ′. We formally justify the design of r̃ and γ̃ in Section 5.

5 UNDERSTANDING HUBL

In this section, we take a deeper look into how HUBL works. At a high level, our theoretical analysis
explains that the modification made by HUBL introduces a trade-off between bias and regret (which
is similar to the variance of policy learning) into the base offline RL algorithm. While an important
part of our analysis is for tabular settings (Section 5.3), we believe it still provides valuable intuitions
as to why reshaping of rewards and discounts per (2) gives a performance boost to state-of-the-art
offline RL algorithms in the continuous-state-space benchmarks in Section 6.

5.1 HUBL AS MDP RESHAPING

We analyze HUBL by viewing it as solving a reshaped MDP M̃ := (S,A,P, r̃, γ̃) constructed by
blending heuristics into the original MDP. To this end, we make a simplification by assuming that
both the heuristic and blending factor are functions of states. Specifically, let Ω denote the support of
the data distribution; we suppose that some functions h(·) : Ω→ R and λ(·) : Ω→ [0, 1] are given
to HUBL. For analysis, we extend them to out-of-Ω states as below:

h(s) =

{
h(s) for s ∈ Ω

0 otherwise
and λ(s, s′) =

{
λ(s′) for s, s′ ∈ Ω

0 otherwise
(3)

We note that this extension is only for the purpose of analysis, since HUBL never uses the values h(·)
and λ(·) outside Ω; the given h on out-of-Ω can have any value and the following theorems still hold.

We define the reshaped MDP M̃ with redefined reward function and discount factor as r̃(s, a) :=
r(s, a) + γEs′∼P(·|s,a)

[
λ(s, s′)h(s′)

]
, and γ̃(s, s′) := γ(1 − λ(s, s′)) respectively. Note that we

blend the original reward function with the expected heuristic and blending factor while adjusting
the original discount factor correspondingly. The extent of blending is determined by the function
λ(·). Notice that this reshaped MDP has a transition-dependent4 discount factor γ̃(s, s′) which
is compatible with generic unifying task specification of (White, 2017). This novel definition of

4A special case of trajectory-dependent discounts.
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transition-dependent discount factor is a key analysis technique to show that blending heuristics is
effective in the offline setting.

Reshaped Dynamic Programming When solving this reshaped MDP by dynamic programming,
the Bellman equation changes from (1) accordingly into

Q̃π(s, a) = r̃(s, a) + Es′∼P(·|s,a)[γ̃(s, s
′)Ṽ π(s′)]

= r(s, a) + γ

bootstrapping︷ ︸︸ ︷
Es′∼P(·|s,a)[(1− λ(s, s′))Ṽ π(s′)] +γ

heuristic︷ ︸︸ ︷
Es′∼P(·|s,a)[λ(s, s

′)h(s′)] .

(4)

Here Q̃π denotes the Q-function of policy π in M̃, and Ṽ π denotes π’s value function. Compared to
the original Bellman equation (1), it can be seen that λ(·) blends the heuristic with bootstrapping:
the bigger λ’s values, the more bootstrapping is replaced by the heuristic. The effect of solving
HUBL’s reshaped MDP M̃ is twofold. On the one hand, M̃ is different from the original MDPM:
the optimal policy for M̃ may not be optimal forM, so solving for M̃ could potentially lead to
performance bias. One the other hand, M̃ has a smaller discount factor and thus is easier to solve
thanM, as the agent needs to plan for a smaller horizon. Therefore, we can think of applying HUBL
to offline RL problems as performing a bias-variance trade-off, which reduces the learning variance
due to bootstrapping at the cost of the bias due to using a suboptimal heuristic. We will explain this
more concretely next.

5.2 BIAS-REGRET DECOMPOSITION

The insight that HUBL reshapes the Bellman equation that the offline RL algorithm uses allows us to
characterize HUBL’s effects on policy learning. Namely, we use the modified Bellman equation from
(4) to decompose the performance of the learned policy into bias and regret terms.
Theorem 1. For any h : Ω→ R, λ : Ω→ [0, 1], and policy π, with V ∗ as the value function of the
optimal policy, it holds that V ∗(d0)− V π(d0) = Bias(π, h, λ) + Regret(π, h, λ), where

Bias(π, h, λ) :=
γ

1− γ
E(s,a,s′)∼dπ∗ [λ(s′)(Ṽ π∗

(s′)− h(s′))|s, s′ ∈ Ω]

Regret(π, h, λ) := Ṽ π∗
(d0)− Ṽ π(d0) +

γ

1− γ
E(s,a,s′)∼dπ [λ(s′)(h(s′)− Ṽ π(s′))|s, s′ ∈ Ω].

The performance of π depends on both bias and regret. The bias term describes the discrepancy
caused by solving the reshaped MDP with λ(·). When λ(s′) = 0, the bias becomes zero. The regret
term describes the performance of the learned policy in the reshaped MDP. Intuitively, at states whose
successors have bigger λ(s′) values, the reshaped MDP has a smaller discount factor and thus is
easier to solve, which leads to smaller regret (i.e., smaller values for Ṽ π∗

(d0)− Ṽ π̂(d0)). Therefore,
solving a HUBL-reshaped MDP induces a bias term but may generate a smaller regret.

Remark The critical difference – and novelty – of Theorem 1 compared to existing theoretical
results for RL with heuristics in the offline setting is that both the bias and regret in Theorem 1 depend
only on states in the data distribution support Ω. This is crucial, because in the offline setting we have
no access to observations beyond Ω. In contrast, if in the preceding analysis we replace Theorem 1
by, for example, Lemma A.1 from Cheng et al. (2021) with a constant λ, we will get a performance
decomposition V ∗(d0)− V π(d0) = (V ∗(d0)− Ṽ ∗(d0)) +

γλ
1−γEs,a∼dπEs′|s,a[h(s

′)− Ṽ ∗(s′)]

+ (1 − λ)(Ṽ ∗(d0) − Ṽ π(d0)) +
λ

1−γ (Ṽ
∗(dπ) − Ṽ π(dπ)). The decomposition, however, suggests

that the out-of-Ω values of λ(s) or h(s) are important to the performance of HUBL.

5.3 FINITE-SAMPLE ANALYSIS FOR BIAS AND REGRET

The finite-sample analysis of policy learning that we provide next illustrates more concretely how
HUBL trades off bias and regret. Our analysis uses offline value iteration with lower confidence
bound (VI-LCB) (Rashidinejad et al., 2021) as the base offline RL method. Following its original
convention, we make some technical simplifications to make the presentation cleaner. Specifically,
we consider a tabular setting with λ(s) = α ∈ [0, 1] for s ∈ Ω as a constant value, which can be
interpreted as the quality of the behavior policy averaged across states. Note that although λ(s) = α
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ATAC
 Average Relative Improvement: 9%
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CQL
 Average Relative Improvement: 9%
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Figure 2: Relative improvement of HUBL with rank blending on 9 D4RL datasets.

is a constant on Ω, the reshaped MDP is still defined by λ(s, s′) in (3) (i.e., λ(s, s′) = α if s, s′ ∈ Ω
and zero otherwise). The details of VI-LCB with HUBL are in Appendix C due to space limits.

Theorem 2 summarizes our finite-sample results. The proof of Theorem 2 can be found in Appendix B.
Theorem 2. Under the setup described above, assume that the heuristic h(·) satisfies h(s) = V µ(s)
for any s ∈ Ω. Then the bias and the regret in Theorem 1 are bounded by

Bias(π̂, λ) ≤ γλ

1− γ
E(s,a,s′)∼dπ

∗ [V ∗(s′)− V µ(s′)|s, s′ ∈ Ω],

ED[Regret(π̂, λ)] ≲ min

(
Vmax,

√
V 2
max(1− γ)|S|

N(1− γ(1− λ))4

(√
max
s,a

dπ∗(s, a)

µ(s, a)
+

γλ

1− γ

√
max

(s,a)∈Ω

1

µ(s, a)

))
,

where Vmax denotes a constant upper bound for the value function.

For the bias bound, the assumption h(s) = V µ(s) for any s ∈ Ω is made for the ease of presentation.
If it does not hold, an additive error term can be introduced in the bias bound to capture that. For

the regret bound, maxs,a
dπ∗

(s,a;d0)
µ(s,a) can be infinite, whereby the best regret bound is just Vmax. But

when it is bounded as assumed by existing works (Rashidinejad et al., 2021), our results demonstrate
how N , γ and λ affect the regret bound.

The implications of Theorem 2 are threefold. First of all, it provides a finite-sample performance
guarantee for HUBL with VI-LCB under the tabular setting. Compared with the performance bound of

the original VI-LCB, min

(
Vmax,

√
V 2
max|S|

(1−γ)3N maxs,a
dπ∗ (s,a)
µ(s,a)

)
, HUBL shrinks the discount factor

by 1− λ and thus potentially improves the performance while inducing bias. Second, Theorem 2
hints at the source of HUBL’s bias and regret of HUBL. The bias is related to the the performance
of the behavior (data-collection) policy, characterized by V ∗(s) − V µ(s). In the extreme case of
data being collected by an expert policy, the bias induced by HUBL is 0. The regret is affected

by dπ∗
(s,a)

µ(s,a) , which describes the deviation of the optimal policy from the data distribution. Finally,
Theorem 2 also provides guidance on how to construct a blending factor function λ(·). To reduce
bias, λ(s) should be small at states where V ∗(s) − V µ(s) is small. To reduce regret, λ(·) should
be generally large but small at states where the learned policy is likely to deviate from the behavior
policy. Therefore, an ideal λ(·) should be large when the behavior policy is close to optimal but small
when it deviates from the optimal policy. This is consistent with our design principle in Section 4.2.

Extension to Model-based Offline RL Conceptually, we can implement HUBL with model-based
offline RL methods by directly relabeling the data, learning the heuristic-modified reward model,
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Figure 3: Relative improvement of HUBL with rank labeling on MW datasets.

and then doing model-based planning with a smaller discount, following (2). Theorem 1 still applies
to model-based algorithms. For Theorem 2, we expect that a similar analysis can be applied to
model-based algorithms like MOReL. We defer this direction to future work and focus on improving
the stability of a wide range of model-free offline RL methods.

6 EXPERIMENTS

We study 27 benchmark datasets in D4RL and Meta-World. We show that HUBL improves the
performance of existing offline RL methods by 9% with easy modifications and simple hyperparameter
tuning. Remarkably, in some datasets where the base offline RL performs inconsistently or poorly,
HUBL can achieve more than 50% performance improvement. When the dataset is simple and the
base offline RL is already near-optimal, HUBL does not significantly harm the performance.

HUBL variants and base offline RL methods We implement HUBL with four state-of-the-art
offline RL algorithms as base methods: CQL (Kumar et al., 2020), TD3+BC (Fujimoto and Gu,
2021), IQL (Kostrikov et al., 2022), and ATAC (Cheng et al., 2022). For each base method, we
compare the performance of its original version to its performance with HUBL running three different
blending strategies discussed in Section 4.2: constant, sigmoid and rank. Thus, we experiment with
16 different methods in total. The implementation details of the base methods are in Appendix D.1.

Metrics We use relative normalized score improvement, abbreviated as relative improvement, as a
measure of HUBL’s performance improvement. Specifically, for a given task and base method, we
first compute the normalized score rbase achieved by the base method, and then the normalized score
rHUBL of HUBL. The relative normalized score improvement is defined as rHUBL−rbase

|rbase| . We report
the relative improvement of HUBL averaged over three seeds {0, 1, 10} in this section, with standard
deviations, base method performance, behavior cloning performance and absolute normalized scores
provided in Appendix D.2, D.5, and D.7.

Hyperparameter Tuning For each dataset, the hyperparameters of the base methods are tuned over
six different configurations suggested by the original papers. HUBL has one extra hyperparameter, α,
which is fixed for all the datasets but different for each base method. Specifically, α is selected from
{0.001, 0.01, 0.1} according to the relative improvement averaged over all the datasets. In practice,
we notice that a single choice of α around 0.1 is sufficient for good performance across most base
offline RL methods and datasets as demonstrated by the sensitivity analysis in Appendix D.3.
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6.1 PERFORMANCE IMPROVEMENT OF HUBL

We study 9 benchmark datasets in D4RL and 18 datasets for tasks in Meta-World, collected fol-
lowing the procedure detailed in Appendix D.4. The relative improvement of HUBL with the rank
labeling method is reported in Figure 2 and Figure 3. First, despite being simple and needing little
hyperparameter tuning, HUBL improves the performance of base methods in most settings and only
slightly hurts in some expert datasets where base offline RL methods are already performing very
well with little space for improvement. Second, there are cases where HUBL achieve very significant
relative improvement—more than 50%. Such big improvement happens in the datasets where the
base method shows inconsistent performance and underperforms other offline RL algorithms. HUBL
solves this inconsistent performance issue by simply relabeling the data. Further, HUBL improves
performance even on data with few expert trajectories like hopper-med-rep-v2, walker2d-med-rep-v2,
and hopper-med-v2, because HUBL conducts more bootstrapping and relies less on the heuristic on
suboptimal trajectories (see Section 4.2).

6.2 ABLATION STUDIES Sigmoid Rank Constant
Wins 30 46 32

Table 1: Blending strategy comparison

ATAC Sigmoid Rank Constant
Ablations
without r̃ -0.01 -0.02 -0.02

HUBL 0.01 0.02 0.01
CQL Sigmoid Rank Constant

Ablations
without r̃ 0.04 0.04 0.04

HUBL 0.11 0.16 0.13
IQL Sigmoid Rank Constant

Ablations
without r̃ -0.04 -0.04 -0.07

HUBL 0.09 0.09 0.06
TD3+BC Sigmoid Rank Constant
Ablations
without r̃ -0.01 -0.03 -0.04

HUBL 0.06 0.09 0.1

Table 2: Average relative improvement
of ablations without r̃.

Discount Relabeling HUBL relabels both the reward and
the discount factor, per (2). In contrast, existing methods
like Hu et al. (2022) suggest that a lower discount factor
alone, without blending heuristics into rewards, can in
general improve offline RL. To assess the need for mod-
ifying both the discount factor and rewards like (2), we
consider ablation methods which shrink only the discount
factor as γ̃ without r̃. The achieved average relative im-
provement of these ablations is reported and compared
with that of HUBL in Table 2. HUBL consistently outper-
forms these ablations, which justifies HUBL’s coordinated
modifications in both the reward and the discount factor.
The advantage of HUBL is also consistent with what our
theoretical analysis predicts. The considered ablations do
not modify the rewards and thus are equivalent to solving
Q̃π(s, a) = r(s, a) + γEs′∼P(·|s,a)[(1 − λ(s′))Ṽ π(s′)].
Comparing it with (1), the solution will be consistently
smaller than the true Q-function, inducing a pessimistic
bias. Crucially, this bias is much more challenging to
tackle than the bias induced by HUBL, because the former
is inevitable even when the data is from an expert policy.

Comparison of Blending Strategies We present results for HUBL with rank blending, while the
results of other blending strategies (sigmoid and constant) are provided in Appendix D.2 and D.5.
We notice that the rank blending outperforms the other two. With 27 datasets and 4 base methods, we
have 108 cases. In Table 1 we report the number of cases where a given blending strategy provides
the best performance among the three. We can see that rank is favored on average.

We also experiment HUBL in other different settings, including on datasets collected by expert
policies (Appendix D.6.1), with online RL methods (Appendix D.6.2), and in stochastic environments
(Appendix D.6.3). HUBL shows consistent performance improvements in these settings.

7 CONCLUSION

In this work, we propose HUBL, a method for improving the performance of offline RL methods by
blending heuristics with bootstrapping. HUBL is easy to implement and is generally applicable to
various of offline RL methods. Empirically, we demonstrate the performance improvement of HUBL
on 27 datasets in D4RL and Meta-World. We also provide a theoretic finite-sample performance
bound for HUBL, which sheds lights on HUBL’s bias-regret trade-off and blending factor designs.
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A EXTENDED RESULTS OF THEOREM 1

Below we prove the statement which is a restatement of theorem 1.
Theorem 3. For any λ : Ω→ [0, 1] and any h : Ω→ R, it holds

V ∗(s0)− V π̂(s0) =
(
Ṽ π∗

(s0)− Ṽ π̂(s0)
)

(5)

+
γ

1− γ
E(s,a,s′)∼dπ∗ [λ(s′)(Ṽ π∗

(s′)− h(s′))|s, s′ ∈ Ω]

+
γ

1− γ
E(s,a,s′)∼dπ [λ(s′)(h(s′)− Ṽ π̂(s′))|s, s′ ∈ Ω].

Specifically, the performance of π depends on both bias and regret. The bias term describes the dis-
crepancy caused by solving the reshaped MDP with λ(·). The regret term describes the performance
of the learned policy in the reshaped MDP.

To prove Theorem 3, we first conduct a regret decomposition as

V ∗(s0)− V π̂(s0) =
(
V ∗(s0)− Ṽ π∗

(s0)
)
+

(
Ṽ π∗

(s0)− Ṽ π̂(s0)
)
+

(
Ṽ π̂(s0)− V π̂(s0)

)
.

Then, we rewrite both V ∗(s0)− Ṽ π∗
(s0) and Ṽ π̂(s0)− V π̂(s0) using the heuristics h(s).

A.1 TECHNICAL LEMMAS

Before proceeding to the proof details of Theorem 3, we first prove a lemma on V π(s0)− Ṽ π(s0).
For a policy π under the original MDPM and the reshaped MDP M̃, we aim to quantify the value
difference using the heuristics h(s).
Lemma 4. For any policy π,

V π(s0)− Ṽ π(s0) =
γ

1− γ
E(s,a,s′)∼dπ [λ(s′)(Ṽ π(s′)− h(s′))|s, s′ ∈ Ω].

Proof. By the definition of λ(s, s′):

V π(s0)− Ṽ π(s0)

=
1

1− γ
E(s,a,s′)∼dπ [r(s, a) + γṼ π(s′)− Ṽ π(s)]

=
1

1− γ
E(s,a,s′)∼dπ [r(s, a) + γṼ π(s′)− r(s, a)− γλ(s, s′)h(s′) + γ(1− λ(s, s′))Ṽ π(s′)]

=
γ

1− γ
E(s,a,s′)∼dπ [λ(s, s′)(Ṽ π(s′)− h(s′))]

=
γ

1− γ
E(s,a,s′)∼dπ [λ(s, s′)(Ṽ π(s′)− h(s′))|s, s′ ∈ Ω]

=
γ

1− γ
E(s,a,s′)∼dπ [λ(s′)(Ṽ π(s′)− h(s′))|s, s′ ∈ Ω]

A.2 PROOF OF THEOREM 3

To prove the theorem, we decompose the regret into the following terms:

V ∗(s0)− V π̂(s0) =
(
V ∗(s0)− Ṽ π∗

(s0)
)
+

(
Ṽ π∗

(s0)− Ṽ π̂(s0)
)
+

(
Ṽ π̂(s0)− V π̂(s0)

)
We apply Lemma 4 to rewrite the first and the last terms as

V ∗(s0)− Ṽ π∗
(s0) =

γ

1− γ
E(s,a,s′)∼dπ∗ [λ(s′)(Ṽ π∗

(s′)− h(s′))|s, s′ ∈ Ω]

Ṽ π̂(s0)− V π̂(s0) =
γ

1− γ
E(s,a,s′)∼dπ [λ(s′)(h(s′)− Ṽ π̂(s′))|s, s′ ∈ Ω].

Combining the two completes the proof.
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B EXTENDED RESULTS FOR THEOREM 2

To prove Theorem 2, we separately bound the bias term

Bias(π̂, λ) :=
γ

1− γ
E(s,a,s′)∼dπ∗ [λ(s′)(Ṽ π∗

(s′)− h(s′))|s, s′ ∈ Ω],

and the regret term

Regret(π, h, λ) := Ṽ π∗
(d0)− Ṽ π(d0) +

γ

1− γ
E(s,a,s′)∼dπ [λ(s′)(h(s′)− Ṽ π(s′))|s, s′ ∈ Ω].

Specifically the bias is bounded by Lemma 6 and the regret is bounded by Lemma 9.

B.1 TECHNICAL LEMMAS

Now, we provide some technical lemmas for the proof of Theorem 2.

B.1.1 BIAS COMPONENT

We first prove the upper bound for the bias component.

Lemma 5. Assume h(s) ≤ V ∗(s), ∀s ∈ S. It holds that Ṽ π∗
(s) ≤ V ∗(s) for all s ∈ S.

Proof.

Ṽ π∗
(s) = r(s, a) + γEs′|s,a[λ(s, s

′)h(s′) + (1− λ(s, s′))Ṽ π∗
(s′)]

= V ∗(s) + γEs′|s,a[λ(s, s
′)h(s′) + (1− λ(s, s′))Ṽ π∗

(s′)− V ∗(s′)]

= V ∗(s) + γEs′|s,a[λ(s, s
′)(h(s′)− V ∗(s′)) + (1− λ(s, s′))(Ṽ π∗

(s′)− V ∗(s′))]

≤ V ∗(s) + γEs′|s,a[(1− λ(s, s′))(Ṽ π∗
(s′)− V ∗(s′))]

where in the inequality we used h(s) ≤ V π∗
(s). Then by a contraction argument, we can show

Ṽ π∗
(s)− V π∗

(s) ≤ 0

Lemma 6 (Bias Upperbound). Under the assumptions of Theorem 2, the bias component can be
bounded by:

Bias(π̂, λ) ≤ λγ

1− γ
E(s,a,s′)∼dπ∗ [V ∗(s′)− V µ(s′)|s, s′ ∈ Ω].

Proof. Review the bias component

Bias(π̂, λ) :=
γ

1− γ
E(s,a,s′)∼dπ∗ [λ(s′)(Ṽ π∗

(s′)− h(s′))|s, s′ ∈ Ω].

Under the assumptions of Theorem 2, we derive

Bias(π̂, λ) =
λγ

1− γ
E(s,a,s′)∼dπ∗ [Ṽ π∗

(s′)− V ∗(s′) + V ∗(s′)− V µ(s′)|s, s′ ∈ Ω].

Next by Lemma 5 we have λγ
1−γE(s,a,s′)∼dπ∗ [Ṽ π∗

(s′)− V ∗(s′)|s, s′ ∈ Ω] ≤ 0, and thus

Bias(π̂, λ) ≤ λγ

1− γ
E(s,a,s′)∼dπ∗ [V ∗(s′)− V µ(s′)|s, s′ ∈ Ω].
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B.1.2 REGRET COMPONENT

Next, we focus on the regret component.

Lemma 7. Under the setup of Theorem 2, Ṽ µ(s) = V µ(s).

Proof. Since Ω is the support of µ, this can be shown by the following: for s ∈ Ω,

Ṽ µ(s)− V µ(s)

= Ea∼µ|sEs′|s,a[r(s, a) + γλ(s, s′)h(s′) + γ(1− λ(s, s′))Ṽ µ(s′)− r(s, a)− γV µ(s′)]

= Ea∼µ|sEs′|s,a[r(s, a) + γλ(s, s′)h(s′) + γ(1− λ(s, s′))Ṽ µ(s′)− r(s, a)− γV µ(s′)|s′ ∈ Ω]

= Ea∼µ|sEs′|s,a[r(s, a) + γλ(s, s′)V µ(s′) + γ(1− λ(s, s′))Ṽ µ(s′)− r(s, a)− γV µ(s′)|s′ ∈ Ω]

= γEa∼µ|sEs′|s,a[(1− λ(s, s′))(Ṽ µ(s′)− V µ(s′))|s′ ∈ Ω].

Since γ < 1, then by an argument of contraction, we have Ṽ µ(s)− V µ(s) = 0 for s ∈ Ω.

Lemma 8. The difference between V ∗(s) and Ṽ π∗
(s) can be derived as

V ∗(s)− Ṽ π∗
(s) = Eρπ∗ (s)[

∞∑
t=1

[λ(1− λ)t−1γt(V ∗(st)− h(st))]].

Proof. By the dynamic programming equation in both the original and shaped MDP.

V ∗(s)− Ṽ π∗
(s) =γ(1− λ)Ea∼π∗(·;s)[Es′|s,a[V

∗(s′)− Ṽ π∗
(s′)]]

+ γλEa∼π∗(·;s)[Es′|s,a[V
∗(s′)− h(s′)]].

(6)

Then, we use (6) recursively:

V ∗(s)− Ṽ π∗
(s) = λEρπ∗ (s)[

∞∑
t=1

[(1− λ)t−1γt(V ∗(st)− h(st))]].

Lemma 9 (Regret Upperbound). The expected regret is bounded by

ED[Regret(π̂, λ(·))] ≲min

(
Vmax, Vmax

√√√√ (1− γ)|S|maxs,a
dπ∗ (s,a;d0)

µ(s,a)

N(1− γ(1− λ))4

)

+
γλ

1− γ
min

(
Vmax, Vmax

√
(1− γ)|S| 1

min(s,a)∈Ω µ(s,a)

N(1− γ(1− λ))4

)
.

Proof. Under the setups in Theorem 2, we have

Regret(π̂, λ(·)) = Ṽ π∗
(d0)− Ṽ π̂(d0) +

γλ

1− γ
E(s,a,s′)∼dπ̂ [V µ(s′)− Ṽ π̂(s′)|s, s′ ∈ Ω].

Further by Lemma 7, we can replace V µ by Ṽ µ:

Regret(π̂, λ(·)) = Ṽ π∗
(d0)− Ṽ π̂(d0) +

γλ

1− γ
E(s,a,s′)∼dπ̂ [Ṽ µ(s′)− Ṽ π̂(s′)|s, s′ ∈ Ω]. (7)

Then, by Lemma 10,

ED[Ṽ π∗
(d0)− Ṽ π̂(d0)] ≲ min

(
Vmax, Vmax

√√√√ (1− γ)|S|maxs,a
dπ∗ (s,a;d0)

µ(s,a)

N(1− γ(1− λ))4

)
, (8)
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and

ED[Ṽ µ(dπ̂)− Ṽ π̂(dπ̂)] ≲ min

(
Vmax, Vmax

√√√√ (1− γ)|S|maxs,a
dµ(s,a;dπ̂)

µ(s,a)

N(1− γ(1− λ))4

)
.

Note that, by Lemma 11, dπ̂ stays in Ω. Therefore, we get maxs,a
dµ(s,a;dπ̂)

µ(s,a) =

maxs,a∈Ω
dµ(s,a;dπ̂)

µ(s,a) ≤ 1
min(s,a)∈Ω µ(s,a) , which leads to

ED[Ṽ µ(dπ̂)− Ṽ π̂(dπ̂)] ≲ min

(
Vmax, Vmax

√
(1− γ)|S| 1

min(s,a)∈Ω µ(s,a)

N(1− γ(1− λ))4

)
. (9)

Take (8) and (9) into (7), we derive

ED[Regret(π̂, λ(·))] ≲min

(
Vmax, Vmax

√√√√ (1− γ)|S|maxs,a
dπ∗ (s,a;d0)

µ(s,a)

N(1− γ(1− λ))4

)

+
γλ

1− γ
min

(
Vmax, Vmax

√
(1− γ)|S| 1

min(s,a)∈Ω µ(s,a)

N(1− γ(1− λ))4

)
.

B.2 PROOF OF THEOREM 2

The proof follows by combining Lemma 6 and 9.

C VI-LCB WITH HUBL

We use the offline value iteration with lower confidence bound (VI-LCB) (Rashidinejad et al., 2021)
as the base algorithm to analyze concretely the effects of HUBL with finite samples for the tabular
case.

C.1 ALGORITHM

We detail the procedure of HUBL when implemented with VI-LCB for the tabular setting. To start
with, we introduce several definitions which will be used in the following algorithm and theoretical
analysis. Without loss of generality, we assume that the sates take values in {1, 2, · · · , |S|} and that
the actions take values in {1, 2, · · · , |A|}. Then, let h be a |S| × 1 vector which denotes the heuristic
function. We assume each component satisfies hs = V µ(s) for s ∈ Ω. Let Λ be a |S| × |S| matrix
with Λs,s′ = λ if s, s′ ∈ Ω and Λs,s′ = 0 if s or s′ ∈ Ω. We use ⊙ to denote the component-wise
multiplication, and Λs,: to denote a row of Λ as a |S| × 1 vector. With slight abuse of notation, we
use t to denote the index of iteration in this section, with T as the total number of iterations.

To conduct VI-LCB with HUBL, we follow Algorithm 3 in Rashidinejad et al. (2021) but with a
modified updating rule. The procedure is summarized Algorithm 2. Compared with the original
VI-LCB, we highlight the key modification in Line 14 with blue color. Specifically, at the tth iteration,
based on (2), we modify updating rule of Algorithm 3 in Rashidinejad et al. (2021) into

Qt(s, a)← rt(s, a)− bt(s, a) + γP t
s,a ⊙ (I − Λs,:) · Vt−1 + γP t

s,a ⊙ Λs,: · h.

Note that we introduce heuristics by γP t
s,a ⊙ Λs,: · h, while reducing the bootstrapping by γP t

s,a ⊙
(I − Λs,:) · Vt−1.

C.2 REGRET ANALYSIS

In this section, we study the regret under the reshaped MDP constructed by HUBL. Specifically, we
bound the regret of Algorithm 2 in Lemma 10.
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Algorithm 2 HUBL with VI-LCB

1: Input: Batch datasetD and discount factor γ.
2: Set T := logN

1−γ .
3: Randomly split D into T + 1 sets Dt = {(si, ai, ri, s′i)} for t ∈ {0, 1, · · · , T}, where D0

consists of N
2 observations and other datasets have N

2T observations.
4: Set m0(s, a) :=

∑m
i=1 1{(si, ai) = (s, a)} based on datasetD0.

5: For all a ∈ A and s ∈ S , initialize Q0(s, a) = 0, V0(s) = 0 and set π0(s) = argmaxa m0(s, a).

6: for t = 1, · · · , T do
7: Initialize rt(s, a) = 0 and set P t

s,a to be a random probability vector.
8: Set mt(s, a) :=

∑m
i=1 1 {(si, ai) = (s, a)} based on datasetDt.

9: Compute penalty bt(s, a) for L = 2000 log(2(T + 1)|S||A|N)

bt(s, a) := Vmax

√
L

mt(s, a) ∨ 1
.

10: for (s, a) ∈ (S,A) do
11: if mt(s, a) ≥ 1 then
12: Set P t

s,a to be empirical transitions and rt(s, a) be empirical average of rewards.
13: Set Qt(s, a)← rt(s, a)− bt(s, a) + γP t

s,a ⊙ (I − Λs,:) · Vt−1 + γP t
s,a ⊙ Λs,: · h.

14: Compute V mid
t (s)← maxa Qt(s, a) and πmid

t (s) ∈ argmaxa Qt(s, a).
15: for s ∈ S do
16: if V mid

t (s) ≤ Vt−1(s) then
17: Vt(s)← Vt−1(s) and πt(s)← πt−1(s).
18: else
19: Vt(s)← V mid

t (s) and πt(s)← πmid
t (s).

20: Return π̂ := πT .

Lemma 10 (Regret of VI-LCB with HUBL). Let the assumptions in Section C.3 be satisfied. Then,
for any initial distribution dinit in Ω, the regret of Algorithm 2 is bounded by

ED[Ṽ π∗
(dinit)− Ṽ π̂(dinit)] ≲ min

(
Vmax, Vmax

√√√√ (1− γ)|S|maxs,a
dπ∗ (s,a;dinit)

µ(s,a)

N(1− γ(1− λ))4

)
.

C.3 NOTATIONS

We first provide some matrix notations for MDPs. We use Pπ ∈ R|S||A|×|S||A| to denote the
transition matrix induced by policy π whose (s, a)× (s, a′) element is equal to P (s′|s, a)π(a′|s′),
and dπ ∈ R|S||A| to denote a state-action distribution induced by policy π whose (s, a) element is
equal to d(s)π(a|s). Similarly, we use ΛQ ∈ R|S||A|×|S||A| to denote a extended matrix version of
Λ.

Further, we focus on the policies which stay in the data distribution support Ω. Such polices are
formally defined as {π|dπ(s, a; s0) = 0 for any (s, a) /∈ Ω and s0 ∈ Ω}. We also define a clean
event:

EMDP :=
{
∀s, a, t,

∣∣r(s, a)− rt(s, a) + γ(Ps,a − P t
s,a)⊙ (I − Λ) · Vt−1

∣∣ ≤ bt(s, a)
}
.

C.4 TECHNICAL LEMMAS

With the aforementioned definitions and assumptions, we provide the following lemmas.
Lemma 11. Let π be a policy learned by Algorithm 2. Under the event Ecover := {Ω ⊆ D0} π stays
in Ω for any initial state in Ω. The probability of Ecover is greater than

1− |S|(1−min
s∈Ω

µ(s))
N
2 .
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Proof. Under the event Ecover, we first fix s ∈ Ω and show that given s, the learned policy π does
not take any action a′ /∈ Ω. By Algorithm 2, for any (s, a′) /∈ Ω and t = 1, 2, · · · , T , we can derive

Qt(s, a
′) ≤ −Vmax

√
2000 log(2T + 1)|S||A|N + γVmax.

Since N and T are larger than 1, we can conclude that

Qt(s, a
′) ≤ 0 for any a′ such that (s, a′) /∈ Ω.

Next we consider two cases:

Case I: If there exists a such that (s, a) ∈ Ω and that there exists t = 1, 2, · · · , T such that

Qt(s, a) > 0,

we can conclude that QT (s, a) ≥ Qt(s, a) > Q(s, a′), which suggests that the learned policy π
never conducts action a′ /∈ Ω given state s.

Case II: If for any a such that (s, a) ∈ Ω and any t = 1, 2, · · · , T , we have

Qt(s, a) = 0,

according to Algorithm 2, π(s) = argmaxa m0(s, a). By the definition of Ecover, the policy π stays
in Ω.

Next, we consider the probability of Ecover. Given a state s ∈ Ω, we define the event Es :=
{m0(s, a) = 0 for all a such that (s, a) ∈ Ω}. The probability of Es can be derive as

P(Es) ≤ (1− µ(s))
N
2 .

By union bound, we can derive that

P(¬Ecover) ≤ |S|(1−min
s∈Ω

µ(s))
N
2 .

As a result, π stays in Ω with the probability greater than

1− |S|(1−min
s∈Ω

µ(s))
N
2 .

Lemma 12. Let π be a policy that stays in Ω. Then, with dinit as any initial distribution in Ω, we
can derive

dinit(s)

µ(s, π(s))
≤

d̃π(s,π(s);dinit)
µ(s,π(s))

1− γ(1− λ)
.

Proof. By definition, we have

d̃π(s, π(s); dinit(s)) :=
1

1− γ(1− λ)

∞∑
t=0

γt(1− λ)tPt(St = s, π; dinit)

Therefore, dinit(s) ≤ 1
1−γ(1−λ) d̃

π(s, π(s); dinit), which finishes the proof.

Lemma 13. Let vπk = dπinit(γP
π⊙ (I−ΛQ))

k. For a policy π that stays in Ω, the following equality
holds: vπk = dπinit(γ(1− λ)Pπ)k.

Proof. Since π stays in Ω, Pπ only accesses the entries in I − ΛQ whose values equal to (1− λ).
This observation finishes the proof.

Lemma 14. Let π be a policy that stays in Ω. Under the event EMDP , for all t = 1, 2, · · · , T ,

Ṽ (π)− Ṽ (πt) ≤ Vmaxγ
t(1− λ)t + 2

t∑
i=1

Evπ
t−i

[bi(s, a)].
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Proof. The proof follows the Lemma 2 of Rashidinejad et al. (2021) combined with Lemma 13.

Lemma 15. For any policy π that stays in Ω, the following inequality is true:

d̃π(s, a; dinit) ≤
1− γ

1− γ(1− λ)
dπ(s, a; dinit),

for any (s, a) ∈ Ω.

Proof. By definition, we have

d̃π(s, a; dinit) :=
1

1− γ(1− λ)

∞∑
t=0

γt(1− λ)tPt(St = s,At = a, ;π, dinit)

dπ(s, a; dinit) :=
1

1− γ

∞∑
t=0

γtPt(St = s,At = a;π, dinit).

Therefore,

d̃π(s, a; dinit) ≤
1

1− γ(1− λ)

∞∑
t=0

γtPt(St = s,At = a;π, dinit) =
1− γ

1− γ(1− λ)
dπ(s, a; dinit)

C.5 PROOF OF LEMMA 10

By the event Ecover, we can decompose the regret into

ED[Ṽ π∗
(dinit)− Ṽ π̂(dinit)]

≤ ED[Ṽ π∗
(dinit)− Ṽ π̂(dinit)1 {Ecover}] + ED[Ṽ π∗

(dinit)− Ṽ π̂(dinit)1 {Eccover}]

≤ ED[Ṽ π∗
(dinit)− Ṽ π̂(dinit)1 {Ecover}] + Vmax|S|

(
|S| − 1

|S|

)N
2

,

(10)

where the second inequality is by Lemma 11. Next, we focus on ED[Ṽ π∗
(dinit) −

Ṽ π̂(dinit)1 {Ecover}]. Following the analysis in C.5 of Rashidinejad et al. (2021), we can derive

ED[(Ṽ π∗
(dinit)− Ṽ π̂(dinit))1 {Ecover}]

≤ED[(Ṽ π∗
(dinit)− Ṽ π̂(d0))1 {Ecover}]

≤ED[Es∼dinit
[(Ṽ π∗

(dinit)− Ṽ π̂(dinit))1 {∃t ≤ T,mt(s, π
∗(s)) = 0}1 {Ecover}]] := T1

+ ED[Es∼dinit
[(Ṽ π∗

(dinit)− Ṽ π̂(dinit))

1 {∀t ≤ T,mt(s, π
∗(s)) ≥ 1}1 {EMDP }1 {Ecover}]] := T2

+ ED[Es∼dinit
[(Ṽ π∗

(dinit)− Ṽ π̂(dinit))

1 {∀t ≤ T,mt(s, π
∗(s)) ≥ 1}1 {EcMDP }1 {Ecover}]] := T3.

By Lemma 11, under the event Ecover, π̂ stays in Ω. In other words, Lemma 12, 13 and 14 are all
applicable to π̂.

Next, for the following analysis, we consider the case that π∗ stays in Ω. We will discuss the case
that Ω does not cover π∗ at the end of the proof.

By Lemma 12 and C.5.1 of Rashidinejad et al. (2021),

T1 ≤
8Vmax|S|T 2 maxs,a

d̃π∗
(s,a;dinit)
µ(s,a)

9(1− (1− λ)γ)N
.

By Lemma 14 and C.5.2 of Rashidinejad et al. (2021),

T2 ≤ Vmaxγ
T (1− λ)T + 32

Vmax

1− γ(1− λ)

√
2L|S|T maxs,a

d̃π∗ (s,a;dinit)
µ(s,a)

N
.
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By C.5.2 of Rashidinejad et al. (2021),

T3 ≤
Vmax

N
.

Combining T1, T2 T3, and (10), with T = logN/(1− γ(1− λ)),

ED[Ṽ π∗
(dinit)− Ṽ π̂(dinit)] ≲ min

(
Vmax, Vmax

√√√√ |S|maxs,a
d̃π∗ (s,a;dinit)

µ(s,a)

N(1− γ(1− λ))3

)
.

Finally, by Lemma 15, we finish the proof:

ED[Ṽ π∗
(dinit)− Ṽ π̂(dinit)] ≲ min

(
Vmax, Vmax

√√√√ (1− γ)|S|maxs,a
dπ∗ (s,a;dinit)

µ(s,a)

N(1− γ(1− λ))4

)
. (11)

Note that (11) is derived under the assumption that π∗ stays in Ω. However, it also holds when π∗ is

not covered by Ω. In that case, maxs,a
dπ∗

(s,a;dinit)
µ(s,a) =∞ and ED[Ṽ π∗

(dinit)− Ṽ π̂(dinit)] ≤ Vmax.

D EXTENDED RESULTS FOR EXPERIMENTS

We conduct HUBL with four offline RL base methods on 27 datasets in D4RL and Meta-World.
By blending heuristics with bootstrapping, HUBL reduces the complexity of decision-making and
provides smaller regret while generating limited bias. We demonstrate that HUBL is able to improve
the performance of offline RL methods.

D.1 IMPLEMENTATION DETAILS

We implement base offline RL methods with code sources provided in Table 3.

Table 3: Code source for base methods.

Base Methods Code Source
ATAC https://github.com/chinganc/lightATAC
CQL https://github.com/young-geng/CQL/tree/master/SimpleSAC
IQL https://github.com/gwthomas/IQL-PyTorch/blob/main/README.md

TD3+BC https://github.com/sfujim/TD3_BC

Experiments with ATAC, IQL, and TD3+BC are ran on Standard F4S V2 nodes of Azure, and exper-
iments with CQL are ran on NC6S V2 nodes of Azure. As suggested by the original implementation
of the considered base offline RL methods, we use 3-layer fully connected neural networks for policy
critics and value networks, where each hidden layer has 256 neurons and ReLU activation and the
output layer is linear. The first-order optimization is implemented by ADAM (Kingma and Ba, 2014)
with a minibatch size as 256. The learning rates are selected following the original implementation
and are reported in Table 4.

Table 4: Learning rates

Base Methods Policy Network Q Network
ATAC 5× 10−7 5× 10−4

CQL 3× 10−4 3× 10−4

IQL 3× 10−4 3× 10−4

TD3 BC 3× 10−4 3× 10−4

For each dataset, the hyperparameters of base methods are tuned from six different configurations
suggested by the original papers. Such configurations are summarized in Table 5.
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Table 5: Learning rates

Base Methods Hyperparameter Values
ATAC degree of pessimism β {1.0, 4.0, 16.0, 0.25, 0.625, 10}
CQL min Q weight {5, 20, 80, 1.25, 0.3125, 10.0}
IQL inverse temperature β {6.5, 3.0, 10.0}

expectile parameter τ {0.7, 0.9}
TD3+BC strength of the regularizer λ {2.5, 0.625, 10.0, 40.0, 0.15625, 1}

Meanwhile, HUBL has one extra hyperparameter, α, which is fixed for all the datasets but different
for each base method. Specifically, α is selected from {0.001, 0.01, 0.1} according to the relative
improvement averaged over all the datasets in one task. Later in the robustness analysis, we show
that the performance of HUBL is insensitive to the selection of α. For each configuration and each
base method, we repeat experiments three times with seeds in {0, 1, 10}.

D.2 BASE PERFORMANCE AND STANDARD DEVIATIONS FOR D4RL DATASETS

We provide the performance of base offline RL methods and standarde deviations in Table 6.
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Table 6: Relative normalized score improvement for HUBL and normalized scores of base methods
on D4RL datasets.

Sigmoid Rank Constant ATAC
halfcheetah-medium-expert-v2 0.02± 0.0 0.02± 0.01 0.02± 0.0 92.5± 0.73
halfcheetah-medium-replay-v2 0.01± 0.01 0.02± 0.01 0.02± 0.02 46.89± 0.25

halfcheetah-medium-v2 −0.0± 0.01 0.0± 0.0 0.02± 0.01 52.54± 0.63
hopper-medium-expert-v2 0.0± 0.0 0.0± 0.0 0.0± 0.0 111.04± 0.13
hopper-medium-replay-v2 0.0± 0.0 0.0± 0.01 0.0± 0.0 101.23± 0.59

hopper-medium-v2 0.01± 0.04 0.02± 0.07 −0.03± 0.15 85.59± 4.76
walker2d-medium-expert-v2 0.0± 0.0 0.02± 0.0 0.0± 0.01 111.99± 0.8
walker2d-medium-replay-v2 0.03± 0.03 0.08± 0.0 0.05± 0.08 84.22± 2.7

walker2d-medium-v2 0.01± 0.01 −0.02± 0.05 0.02± 0.0 87.2± 0.67
Average Relative Improvement 0.01 0.02 0.01 -

Sigmoid Rank Constant CQL
halfcheetah-medium-expert-v2 0.02± 0.02 0.03± 0.06 −0.02± 0.17 81.96± 9.93
halfcheetah-medium-replay-v2 0.1± 0.01 0.18± 0.02 0.13± 0.01 40.98± 0.81

halfcheetah-medium-v2 −0.1± 0.01 −0.02± 0.01 −0.03± 0.01 51.05± 0.83
hopper-medium-expert-v2 0.42± 0.01 0.39± 0.07 0.38± 0.05 78.39± 14.51
hopper-medium-replay-v2 0.03± 0.01 0.01± 0.01 0.02± 0.01 97.21± 3.15

hopper-medium-v2 0.18± 0.14 0.15± 0.17 0.17± 0.06 70.27± 8.77
walker2d-medium-expert-v2 0.21± 0.0 0.22± 0.01 0.22± 0.0 89.38± 17.54
walker2d-medium-replay-v2 0.08± 0.27 0.38± 0.06 0.37± 0.04 63.35± 6.22

walker2d-medium-v2 0.05± 0.05 0.05± 0.03 −0.03± 0.15 79.41± 1.82
Average Relative Improvement 0.11 0.16 0.13 -

Sigmoid Rank Constant IQL
halfcheetah-medium-expert-v2 0.0± 0.01 0.0± 0.0 −0.05± 0.03 92.92± 0.5
halfcheetah-medium-replay-v2 −0.03± 0.02 0.0± 0.02 −0.04± 0.03 44.35± 0.21

halfcheetah-medium-v2 −0.01± 0.0 0.0± 0.0 −0.01± 0.01 49.61± 0.16
hopper-medium-expert-v2 −0.04± 0.03 −0.03± 0.02 −0.09± 0.12 108.13± 2.69
hopper-medium-replay-v2 0.72± 0.09 0.58± 0.25 0.62± 0.27 53.98± 4.18

hopper-medium-v2 0.03± 0.03 0.02± 0.03 −0.01± 0.15 61.03± 3.27
walker2d-medium-expert-v2 0.01± 0.0 0.01± 0.01 0.01± 0.0 109.59± 0.2
walker2d-medium-replay-v2 0.15± 0.12 0.21± 0.02 0.13± 0.04 73.57± 2.64

walker2d-medium-v2 0.03± 0.02 0.03± 0.01 0.04± 0.01 81.68± 2.48
Average Relative Improvement 0.09 0.09 0.06 -

Sigmoid Rank Constant TD3+BC
halfcheetah-medium-expert-v2 −0.02± 0.03 −0.02± 0.03 −0.02± 0.02 94.82± 0.33
halfcheetah-medium-replay-v2 −0.1± 0.03 −0.08± 0.16 −0.0± 0.02 54.38± 1.24

halfcheetah-medium-v2 −0.07± 0.02 −0.04± 0.01 −0.01± 0.01 64.63± 2.15
hopper-medium-expert-v2 −0.06± 0.13 −0.16± 0.2 0.03± 0.05 98.79± 12.57
hopper-medium-replay-v2 0.16± 0.08 0.21± 0.03 0.24± 0.03 81.43± 27.77

hopper-medium-v2 0.51± 0.17 0.7± 0.02 0.6± 0.19 59.12± 3.39
walker2d-medium-expert-v2 0.0± 0.01 0.01± 0.01 0.0± 0.0 111.87± 0.17
walker2d-medium-replay-v2 0.12± 0.04 0.09± 0.07 0.05± 0.02 84.95± 1.85

walker2d-medium-v2 −0.01± 0.03 0.08± 0.01 0.0± 0.07 84.09± 1.94
Average Relative Improvement 0.06 0.09 0.1 -

Next, we study how the performance of HUBL vary over different epochs. Specifically, we provide a
plot of the achieved normalized average returns over different epochs for HUBL with TD3+BC on
hopper-medium-v2 in Figure 4.
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(a) HUBL with constant labeling
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(b) HUBL with Sigmoid labeling
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(c) HUBL with Rank labeling

Figure 4: Average normalized return of HUBL with TD3+BC on hopper-medium-v2

D.3 ROBUSTNESS OF HUBL TO α

In this section, we demonstrate the robustness of HUBL to α. Specifically, we provide the average
relative improvements of HUBL on D4RL datasets in Table 7. Notice that most average relative
improvements are positive, which shows that HUBL can improve the performance with different
values.

Table 7: Average relative improvements of HUBL under different α’s

Sigmoid Rank Constant
α = 0.001 0.01 0.01 0
α = 0.01 0.01 0.01 0.01
α = 0.1 0 0.02 0.01

(a) ATAC

Sigmoid Rank Constant
α = 0.001 0.05 0.05 0.03
α = 0.01 0.08 0.05 0.10
α = 0.1 0.11 0.16 0.13

(b) CQL

Sigmoid Rank Constant
α = 0.001 0.02 0 -0.04
α = 0.01 0 -0.01 -0.02
α = 0.1 0.09 0.09 0.06

(c) IQL

Sigmoid Rank Constant
α = 0.001 0.01 0.01 0
α = 0.01 0.01 0.01 0.01
α = 0.1 0.06 0.09 0.06

(d) TD3 BC

The selected α’s are reported in Table 8:

Table 8: Selected α’s

Sigmoid Rank Constant
ATAC 0.01 0.01 0.1
CQL 0.1 0.1 0.1
IQL 0.1 0.1 0.1

TD3 BC 0.01 0.1 0.1
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D.4 DATA COLLECTION FOR META-WORLD

We collect data for Meta-World tasks using normalized rewards with goal-oriented stopping. Specifi-
cally, given that the original rewards of Meta-World are in [0, 10], we shift them by −10 and divide
by 10, so that the normalized rewards take values in [−1, 0]. Then, we use the hand scripted policy
given in Meta-World with different Gaussian noise levels in {0.1, 0.5, 1} to collect 100 trajectory for
each task. In this process, a trajectory ends if (i) it reaches the max length of a trajectory (150); (ii) it
finishes the goal. Note that we follow the same rule when testing the performance of a learned policy.

D.5 BASE PERFORMANCE AND STANDARD DEVIATIONS FOR META-WORLD DATASETS

We provide the performance of base offline RL methods and standard deviations in Table 9 and
10. We also consider behavior cloning (BC) as as a baseline, and also a representative for imitation
learning and inverse reinforcement learning methods (Geng et al., 2020; 2023; Fu et al., 2017). Since
the behavior policy is the scripted policy with Gaussian noise, BC can effective recover the scripted
policy and thus is especially competitive.

Table 9: Relative normalized score improvement for HUBL and normalized scores of base methods
on MW datasets (part I)

Sigmoid Rank Constant ATAC BC
button-press-v2–noise0.1 −0.0± 0.03 0.01± 0.01 0.01± 0.01 −58.12± 0.45 -58.79
button-press-v2–noise0.5 −0.0± 0.03 −0.03± 0.05 0.01± 0.04 −64.16± 0.93 -59.58
button-press-v2–noise1 −0.05± 0.07 −0.0± 0.04 −0.01± 0.04 −62.72± 3.84 -61.24
push-back-v2–noise0.1 0.1± 0.03 0.04± 0.07 0.15± 0.06 −87.12± 13.89 -104.85
push-back-v2–noise0.5 0.11± 0.07 0.19± 0.05 0.17± 0.02 −133.28± 14.24 -134.63
push-back-v2–noise1 0.04± 0.05 0.02± 0.09 0.06± 0.07 −141.29± 13.87 -143.63

reach-v2–noise0.1 −0.0± 0.06 −0.0± 0.05 0.0± 0.07 −17.19± 0.76 -18.31
reach-v2–noise0.5 0.37± 0.07 0.46± 0.06 0.43± 0.08 −33.91± 5.62 -24.57
reach-v2–noise1 0.39± 0.05 0.35± 0.24 0.5± 0.05 −46.58± 3.98 -43.79

Average Relative Improvement 0.11 0.11 0.14 - -
Sigmoid Rank Constant CQL BC

button-press-v2–noise0.1 0.0± 0.03 0.02± 0.05 0.03± 0.03 −59.67± 1.69 -58.79
button-press-v2–noise0.5 −0.04± 0.05 −0.02± 0.01 −0.02± 0.0 −58.48± 0.85 -59.58
button-press-v2–noise1 −0.08± 0.12 0.08± 0.02 0.04± 0.11 −67.18± 14.25 -61.24
push-back-v2–noise0.1 −0.07± 0.07 0.02± 0.05 0.02± 0.02 −81.78± 2.88 -104.85
push-back-v2–noise0.5 0.25± 0.12 0.22± 0.1 0.19± 0.12 −124.64± 2.45 -134.63
push-back-v2–noise1 0.06± 0.13 0.11± 0.14 0.1± 0.05 −133.66± 8.17 -143.63

reach-v2–noise0.1 −0.04± 0.17 −0.01± 0.05 −0.04± 0.02 −18.5± 2.52 -18.31
reach-v2–noise0.5 0.51± 0.05 0.18± 0.53 0.4± 0.27 −41.02± 18.79 -24.57
reach-v2–noise1 0.8± 0.02 0.35± 0.15 0.81± 0.03 −107.14± 32.75 -43.79

Average Relative Improvement 0.16 0.1 0.17 - -
Sigmoid Rank Constant IQL BC

button-press-v2–noise0.1 0.02± 0.02 0.03± 0.01 0.03± 0.01 −59.87± 1.32 -58.79
button-press-v2–noise0.5 −0.01± 0.05 −0.01± 0.02 −0.14± 0.13 −60.68± 0.29 -59.58
button-press-v2–noise1 −0.09± 0.15 0.07± 0.01 0.04± 0.03 −73.96± 5.09 -61.24
push-back-v2–noise0.1 0.01± 0.04 0.04± 0.02 0.03± 0.01 −83.79± 5.45 -104.85
push-back-v2–noise0.5 0.02± 0.06 0.04± 0.05 −0.03± 0.05 −124.86± 7.45 -134.63
push-back-v2–noise1 0.0± 0.01 0.03± 0.04 −0.0± 0.02 −143.26± 6.31 -143.63

reach-v2–noise0.1 −0.03± 0.03 −0.06± 0.03 −0.04± 0.07 −17.37± 0.87 -18.31
reach-v2–noise0.5 0.05± 0.13 −0.02± 0.03 −0.02± 0.24 −31.51± 9.39 -24.57
reach-v2–noise1 −0.12± 0.42 0.05± 0.09 0.01± 0.37 −42.23± 7.4 -43.79

Average Relative Improvement −0.02 0.02 −0.01 - -
Sigmoid Rank Constant TD3+BC BC

button-press-v2–noise0.1 0.25± 0.0 0.23± 0.0 0.23± 0.02 −77.68± 22.14 -58.79
button-press-v2–noise0.5 −0.04± 0.05 −0.04± 0.06 −0.09± 0.07 −59.54± 1.68 -59.58
button-press-v2–noise1 0.02± 0.07 0.12± 0.23 0.1± 0.12 −81.03± 5.79 -61.24
push-back-v2–noise0.1 0.08± 0.01 −0.01± 0.02 0.05± 0.04 −85.44± 5.05 -104.85
push-back-v2–noise0.5 0.07± 0.07 0.05± 0.14 0.05± 0.1 −127.95± 9.82 -134.63
push-back-v2–noise1 0.01± 0.04 0.01± 0.06 −0.04± 0.02 −139.72± 15.6 -143.63

reach-v2–noise0.1 −0.06± 0.04 −0.02± 0.02 −0.0± 0.02 −17.11± 1.28 -18.31
reach-v2–noise0.5 0.12± 0.19 0.25± 0.14 0.15± 0.18 −40.69± 9.66 -24.57
reach-v2–noise1 0.13± 0.18 0.04± 0.12 0.1± 0.11 −65.48± 2.85 -43.79

Average Relative Improvement 0.07 0.07 0.06 - -
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Table 10: Relative normalized score improvement for HUBL and normalized scores of base methods
on MW datasets (part II)

Sigmoid Rank Constant ATAC BC
assembly-v2–noise0.1 −0.01± 0.03 0.01± 0.04 −0.0± 0.08 −70.22± 4.61 -71.76
assembly-v2–noise0.5 0.01± 0.02 0.03± 0.02 0.08± 0.0 −135.77± 1.58 -129.53
assembly-v2–noise1 −0.01± 0.01 0.02± 0.01 0.04± 0.01 −140.12± 2.45 -138.63

handle-press-side-v2–noise0.1 −0.03± 0.01 −0.02± 0.02 −0.03± 0.03 −32.38± 0.64 -36.28
handle-press-side-v2–noise0.5 0.0± 0.03 0.02± 0.03 −0.01± 0.03 −33.04± 0.96 -34.3
handle-press-side-v2–noise1 0.04± 0.12 −0.02± 0.1 −0.09± 0.06 −35.33± 3.7 -35.72

plate-slide-back-side-v2–noise0.1 −0.0± 0.04 −0.03± 0.02 0.02± 0.05 −37.07± 0.87 -37.75
plate-slide-back-side-v2–noise0.5 0.07± 0.41 0.17± 0.29 0.15± 0.02 −68.9± 10.92 -65.47
plate-slide-back-side-v2–noise1 0.17± 0.3 0.43± 0.02 0.44± 0.11 −97.9± 25.46 -128.28
Average Relative Improvement 0.03 0.07 0.07 - -

Sigmoid Rank Constant CQL BC
assembly-v2–noise0.1 0.03± 0.06 0.06± 0.17 0.06± 0.07 −76.29± 9.41 -71.76
assembly-v2–noise0.5 −0.0± 0.02 0.01± 0.04 −0.01± 0.02 −131.35± 2.62 -129.53
assembly-v2–noise1 −0.0± 0.03 −0.0± 0.01 0.0± 0.02 −138.94± 0.97 -138.63

handle-press-side-v2–noise0.1 0.11± 0.07 −0.02± 0.07 0.02± 0.19 −34.47± 4.54 -36.28
handle-press-side-v2–noise0.5 0.32± 0.11 0.38± 0.11 0.46± 0.01 −70.96± 29.39 -34.3
handle-press-side-v2–noise1 0.15± 0.12 0.13± 0.2 0.4± 0.05 −55.3± 33.42 -35.72

plate-slide-back-side-v2–noise0.1 0.05± 0.03 −0.0± 0.11 0.03± 0.11 −36.31± 2.33 -37.75
plate-slide-back-side-v2–noise0.5 0.03± 0.09 −0.09± 0.47 −0.13± 0.5 −36.72± 2.56 -65.47
plate-slide-back-side-v2–noise1 0.36± 0.31 0.37± 0.12 0.34± 0.18 −67.63± 20.56 -128.28
Average Relative Improvement 0.12 0.09 0.13 - -

Sigmoid Rank Constant IQL BC
assembly-v2–noise0.1 0.02± 0.07 −0.01± 0.04 −0.0± 0.04 −72.06± 2.34 -71.76
assembly-v2–noise0.5 −0.01± 0.01 −0.01± 0.02 0.01± 0.04 −122.97± 6.12 -129.53

ssembly-v2–noise1 −0.01± 0.0 −0.01± 0.03 0.0± 0.03 −129.01± 1.62 -138.63
handle-press-side-v2–noise0.1 −0.05± 0.01 −0.05± 0.01 −0.05± 0.02 −34.1± 1.55 -36.28
handle-press-side-v2–noise0.5 0.06± 0.06 0.05± 0.07 0.07± 0.04 −37.28± 0.25 -34.3
handle-press-side-v2–noise1 −0.0± 0.11 0.03± 0.03 0.02± 0.07 −46.31± 3.11 -35.72

plate-slide-back-side-v2–noise0.1 0.01± 0.02 −0.01± 0.01 0.01± 0.03 −34.4± 1.23 -37.75
plate-slide-back-side-v2–noise0.5 0.07± 0.1 0.04± 0.08 0.03± 0.08 −34.03± 1.83 -65.47
plate-slide-back-side-v2–noise1 0.05± 0.18 0.01± 0.29 −0.04± 0.35 −43.95± 10.29 -128.28
Average Relative Improvement 0.01 0.01 0.01 - -

Sigmoid Rank Constant TD3+BC BC
assembly-v2–noise0.1 0.01± 0.02 0.02± 0.03 −0.01± 0.03 −72.44± 6.03 -71.76
assembly-v2–noise0.5 0.0± 0.02 0.02± 0.02 0.02± 0.04 −131.62± 5.25 -129.53
assembly-v2–noise1 0.0± 0.0 0.01± 0.01 0.0± 0.01 −138.0± 1.0 -138.63

handle-press-side-v2–noise0.1 −0.07± 0.02 −0.05± 0.02 −0.05± 0.02 −35.0± 2.14 -36.28
handle-press-side-v2–noise0.5 0.08± 0.04 0.08± 0.03 0.07± 0.05 −40.24± 1.06 -34.3
handle-press-side-v2–noise1 0.08± 0.08 0.06± 0.08 0.13± 0.17 −52.22± 5.29 -35.72

plate-slide-back-side-v2–noise0.1 0.16± 0.06 0.09± 0.05 0.03± 0.05 −39.31± 1.52 -37.75
plate-slide-back-side-v2–noise0.5 0.17± 0.24 −0.1± 0.33 −0.07± 0.32 −40.17± 1.64 -65.47
plate-slide-back-side-v2–noise1 0.19± 0.35 0.35± 0.28 0.07± 0.24 −91.74± 31.24 -128.28
Average Relative Improvement 0.07 0.05 0.02 - -

D.6 EXTENDED EXPERIMENTS

In this section, we study the performance of HUBL in various of scenarios.

D.6.1 HUBL ON EXPERT DATA

We study the performance of HUBL on expert collected data. Specifically, we conduct experiments
of HUBL with TD3+BC on expert datasets in D4RL. The results are reported in Table 11. Note
that HUBL is able to provide performance improvements in most of the cases. But the room for
improvement on such datasets is small – for any offline learning technique. Therefore, due to finite
sample error, HUBL may occasionally hurt performance empirically
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Constant Rank Sigmoid Base Performance
halfcheetah-expert-v2 1% 0% 1% 97.09

hopper-expert-v2 3% 3% 3% 108.46
walker2d-expert-v2 0% 1% 0% 110.14

Table 11: Relative improvement of HUBL for TD3+BC on expert data

D.6.2 HUBL WITH ONLINE RL METHODS

We provide experiments where we combine HUBL with DDPG on D4RL datasets, without any
additional designs for the offline RL setting. The results are provided in Table 12.

Performance of DDPG 13.43
Relative improvement of HUBL with sigmoid 53%
Relative improvement of HUBL with constant 74%
Relative improvement of HUBL with portion 90%

Table 12: Relative improvement of HUBL for DDPG on D4RL datasets

Note that HUBL is able to significantly improve DDPG’s performance in relative terms. However,
the absolute performance of DDPG+HuBL is much worse than other methods we considered in the
main paper. This is expected, as HUBL is designed to augment offline RL algorithms, as opposed to
making a general online RL algorithm (like DDPG) work also offline.

To see this more clearly, we consider a toy example with three actions a1, a2, a3 at state s0. Suppose
that and a1 and a2 are all out-of-support. As a result, without additional designs (such as pessimism)
for offline RL, the policy may take a1 and a2 regardless how we set the heuristic, since the heuristic
here would only affect the value for in-support actions and not the value for out-of-support actions.
Thus, HUBL cannot turn an online RL algorithm to an offline RL algorithm; it can only enhance an
algorithm that is designed for offline RL already.

D.6.3 HUBL IN STOCHASTIC ENVIRONMENTS

To test the performance of HUBL in stochastic environments, we construct a random version of
walker2d-v2 by adding βϵ to the action passed to the environment, where ϵ is a uniform random
variable taking values in [−1, 1], and β is a scalar controlling the amount of randomness. Note that
we keep the scale of noise in [−1, 1], and the action variable itself is normalized to [−1, 1] in D4RL.
With the new environment, we regenerate the data using the original walker2d-meidum-v2 policy and
apply TD3+BC with HUBL. The results are presented in Table 13.

Sigmoid Rank Constant Base Performance
β = 0.0001 6% 6% 4% 66.99
β = 0.001 6% 8% 7% 66.73
β = 0.01 4% 4% 6% 64.23
β = 1 4% -4% 5% 28.09

Table 13: Relative improvement of HUBL for TD3+BC on stochastic walker2d-meidum-v2

The base performance decreases as the noise increases, as expected. However, HUBL is still able
to provide some performance improvement under this stochastic setting. We also notice that the
constant labeling function is more robust to the noise. This makes sense as the constant function is
not sensitive to the heuristic estimation. But if there is more noise, the performance of HUBL will
further degenerate, which is a limitation of HUBL.
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D.7 EXTENDED RESULTS FOR ABSOLUTE IMPROVEMENT

We report the experiment results in absolute improvement of normalized score for D4RL and Meta-
World.

Table 14: Normalized score improvement for HUBL and normalized scores of base methods on
D4RL datasets.

Sigmoid Rank Constant ATAC BC
halfcheetah-medium-expert-v2 2.13± 0.35 1.55± 0.96 1.76± 0.14 92.5± 0.73 45.83
halfcheetah-medium-replay-v2 0.43± 0.38 0.96± 0.27 1.04± 1.01 46.89± 0.25 37.73

halfcheetah-medium-v2 −0.05± 0.71 0.16± 0.25 0.85± 0.35 52.54± 0.63 42.92
hopper-medium-expert-v2 0.36± 0.03 0.44± 0.26 0.27± 0.1 111.04± 0.13 57.51
hopper-medium-replay-v2 0.01± 0.48 0.21± 0.77 0.26± 0.32 101.23± 0.59 32.22

hopper-medium-v2 0.44± 3.28 1.57± 6.09 −2.35± 12.85 85.59± 4.76 53.81
walker2d-medium-expert-v2 0.08± 0.4 1.72± 0.5 0.26± 0.6 111.99± 0.8 105.3
walker2d-medium-replay-v2 2.76± 2.23 7.15± 0.31 4.38± 6.53 84.22± 2.7 22.78

walker2d-medium-v2 0.6± 0.5 −1.95± 4.62 1.35± 0.17 87.2± 0.67 64.18
Average Improvement 0.75 1.31 0.87 - -

Sigmoid Rank Constant CQL BC
halfcheetah-medium-expert-v2 1.55± 1.75 2.66± 4.77 −1.49± 13.59 81.96± 9.93 45.83
halfcheetah-medium-replay-v2 4.14± 0.22 7.19± 0.73 5.26± 0.4 40.98± 0.81 37.73

halfcheetah-medium-v2 −5.12± 0.43 −0.86± 0.72 −1.35± 0.68 51.05± 0.83 42.92
hopper-medium-expert-v2 32.62± 1.08 30.72± 5.21 29.5± 3.76 78.39± 14.51 57.51
hopper-medium-replay-v2 3.29± 0.79 0.69± 1.31 2.09± 0.75 97.21± 3.15 32.22

hopper-medium-v2 12.81± 10.16 10.87± 11.68 12.01± 4.51 70.27± 8.77 53.81
walker2d-medium-expert-v2 19.14± 0.42 19.74± 0.82 19.36± 0.14 89.38± 17.54 105.3
walker2d-medium-replay-v2 4.84± 17.24 24.07± 3.58 23.4± 2.24 63.35± 6.22 22.78

walker2d-medium-v2 3.62± 3.86 4.14± 2.23 −2.01± 11.8 79.41± 1.82 64.18
Average Improvement 8.54 11.02 9.64 - -

Sigmoid Rank Constant IQL BC
halfcheetah-medium-expert-v2 0.2± 0.9 −0.28± 0.19 −4.59± 2.6 92.92± 0.5 45.83
halfcheetah-medium-replay-v2 −1.51± 0.67 −0.08± 0.83 −1.86± 1.21 44.35± 0.21 37.73

halfcheetah-medium-v2 −0.28± 0.13 −0.06± 0.23 −0.68± 0.36 49.61± 0.16 42.92
hopper-medium-expert-v2 −4.52± 3.29 −2.88± 2.08 −10.22± 12.89 108.13± 2.69 57.51
hopper-medium-replay-v2 38.66± 4.79 31.57± 13.41 33.41± 14.48 53.98± 4.18 32.22

hopper-medium-v2 1.78± 2.05 1.27± 1.69 −0.68± 8.99 61.03± 3.27 53.81
walker2d-medium-expert-v2 1.53± 0.31 1.06± 1.01 0.99± 0.28 109.59± 0.2 105.3
walker2d-medium-replay-v2 10.78± 9.11 15.49± 1.61 9.2± 3.04 73.57± 2.64 22.78

walker2d-medium-v2 2.17± 1.46 2.54± 0.9 3.0± 0.71 81.68± 2.48 64.18
Average Improvement 5.42 5.4 3.17 - -

Sigmoid Rank Constant TD3+BC BC
halfcheetah-medium-expert-v2 −1.52± 2.92 −2.01± 2.51 −1.74± 2.29 94.82± 0.33 45.83
halfcheetah-medium-replay-v2 −5.48± 1.47 −4.41± 8.83 −0.24± 0.82 54.38± 1.24 37.73

halfcheetah-medium-v2 −4.28± 1.5 −2.85± 0.84 −0.76± 0.94 64.63± 2.15 42.92
hopper-medium-expert-v2 −5.8± 13.25 −15.45± 19.55 2.61± 4.79 98.79± 12.57 57.51
hopper-medium-replay-v2 13.36± 6.4 17.23± 2.15 19.7± 2.13 81.43± 27.77 32.22

hopper-medium-v2 30.06± 10.23 41.58± 1.11 35.2± 11.11 59.12± 3.39 53.81
walker2d-medium-expert-v2 0.36± 0.84 0.92± 0.95 0.53± 0.35 111.87± 0.17 105.3
walker2d-medium-replay-v2 9.85± 3.1 7.83± 5.66 3.86± 1.91 84.95± 1.85 22.78

walker2d-medium-v2 −0.75± 2.86 6.81± 1.13 0.37± 5.76 84.09± 1.94 64.18
Average Improvement 4.23 5.76 6.86 - -
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Table 15: Normalized score improvement for HUBL and normalized scores of base methods on MW
datasets (part I)

Sigmoid Rank Constant ATAC BC
button-press-v2–noise0.1 −0.09± 1.76 0.43± 0.62 0.41± 0.82 −58.12± 0.45 -58.79
button-press-v2–noise0.5 −0.21± 1.8 −2.22± 3.5 0.86± 2.75 −64.16± 0.93 -59.58
button-press-v2–noise1 −3.42± 4.41 −0.23± 2.71 −0.92± 2.28 −62.72± 3.84 -61.24
push-back-v2–noise0.1 8.81± 2.64 3.59± 6.53 12.75± 5.12 −87.12± 13.89 -104.85
push-back-v2–noise0.5 14.47± 8.88 25.88± 6.55 22.0± 3.23 −133.28± 14.24 -134.63
push-back-v2–noise1 5.38± 7.51 3.28± 12.83 7.94± 9.56 −141.29± 13.87 -143.63

reach-v2–noise0.1 −0.03± 1.08 −0.04± 0.9 0.0± 1.14 −17.19± 0.76 -18.31
reach-v2–noise0.5 12.53± 2.27 15.6± 1.9 14.49± 2.68 −33.91± 5.62 -24.57
reach-v2–noise1 18.22± 2.13 16.14± 11.32 23.09± 2.54 −46.58± 3.98 -43.79

Average Improvement 6.18 6.94 8.96 - -
Sigmoid Rank Constant CQL BC

button-press-v2–noise0.1 0.23± 1.96 1.32± 2.71 1.51± 1.87 −59.67± 1.69 -58.79
button-press-v2–noise0.5 −2.29± 2.67 −1.18± 0.55 −1.37± 0.19 −58.48± 0.85 -59.58
button-press-v2–noise1 −5.37± 7.82 5.46± 1.68 2.71± 7.2 −67.18± 14.25 -61.24
push-back-v2–noise0.1 −5.54± 5.79 1.54± 3.86 1.33± 1.89 −81.78± 2.88 -104.85
push-back-v2–noise0.5 30.82± 14.6 27.34± 12.97 23.15± 14.97 −124.64± 2.45 -134.63
push-back-v2–noise1 7.69± 16.81 14.41± 19.38 13.58± 7.12 −133.66± 8.17 -143.63

reach-v2–noise0.1 −0.77± 3.1 −0.22± 0.98 −0.67± 0.41 −18.5± 2.52 -18.31
reach-v2–noise0.5 21.05± 1.89 7.28± 21.76 16.49± 11.16 −41.02± 18.79 -24.57
reach-v2–noise1 86.19± 2.49 37.15± 15.77 86.65± 3.53 −107.14± 32.75 -43.79

Average Improvement 14.67 10.34 15.93 - -
Sigmoid Rank Constant IQL bc

button-press-v2–noise0.1 0.53± 0.6 1.87± 0.75 1.83± 0.58 −59.87± 1.32 -58.79
button-press-v2–noise0.5 −1.09± 1.25 −0.63± 1.16 −8.45± 7.68 −60.68± 0.29 -59.58
button-press-v2–noise1 −1.61± 8.16 5.17± 0.72 3.19± 2.58 −73.96± 5.09 -61.24
push-back-v2–noise0.1 2.93± 3.28 3.11± 1.89 2.47± 0.59 −83.79± 5.45 -104.85
push-back-v2–noise0.5 0.39± 11.3 4.62± 6.24 −4.16± 6.09 −124.86± 7.45 -134.63
push-back-v2–noise1 1.82± 5.35 3.71± 5.69 −0.35± 3.1 −143.26± 6.31 -143.63

reach-v2–noise0.1 −0.55± 0.2 −1.0± 0.45 −0.68± 1.23 −17.37± 0.87 -18.31
reach-v2–noise0.5 −2.48± 4.95 −0.58± 0.95 −0.58± 7.66 −31.51± 9.39 -24.57
reach-v2–noise1 −3.69± 5.46 2.12± 4.0 0.33± 15.48 −42.23± 7.4 -43.79

Average Relative Improvement −0.41 2.04 −0.71 - -
Sigmoid Rank Constant TD3+BC BC

button-press-v2–noise0.1 19.12± 0.22 18.19± 0.17 18.01± 1.73 −77.68± 22.14 -58.79
button-press-v2–noise0.5 −2.47± 2.73 −2.11± 3.75 −5.36± 4.18 −59.54± 1.68 -59.58
button-press-v2–noise1 1.71± 5.97 9.71± 18.76 8.4± 9.47 −81.03± 5.79 -61.24
push-back-v2–noise0.1 7.18± 0.66 −1.06± 1.65 4.11± 3.08 −85.44± 5.05 -104.85
push-back-v2–noise0.5 9.43± 8.7 6.1± 17.6 6.43± 12.98 −127.95± 9.82 -134.63
push-back-v2–noise1 1.26± 6.0 1.4± 8.05 −5.31± 2.35 −139.72± 15.6 -143.63

reach-v2–noise0.1 −0.99± 0.66 −0.28± 0.31 −0.07± 0.38 −17.11± 1.28 -18.31
reach-v2–noise0.5 5.04± 7.92 10.2± 5.67 6.07± 7.23 −40.69± 9.66 -24.57
reach-v2–noise1 8.4± 12.06 2.34± 7.98 6.74± 7.36 −65.48± 2.85 -43.79

Average Improvement 5.41 4.94 4.34 - -
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Table 16: Normalized score improvement for HUBL and normalized scores of base methods on MW
datasets (part II)

Sigmoid Rank Constant ATAC BC
assembly-v2–noise0.1 −0.99± 2.28 1.0± 2.73 −0.23± 5.65 −70.22± 4.61 -71.76
assembly-v2–noise0.5 1.05± 2.43 3.59± 3.02 11.13± 6.31 −135.77± 1.58 -129.53
assembly-v2–noise1 −1.29± 1.99 2.47± 1.95 5.75± 1.07 −140.12± 2.45 -138.63

handle-press-side-v2–noise0.1 −0.93± 0.41 −0.49± 0.64 −0.88± 1.06 −32.38± 0.64 -36.28
handle-press-side-v2–noise0.5 0.08± 0.86 0.74± 0.94 −0.35± 1.06 −33.04± 0.96 -34.3
handle-press-side-v2–noise1 1.25± 4.2 −0.73± 3.55 −3.07± 2.05 −35.33± 3.7 -35.72

plate-slide-back-side-v2–noise0.1 −0.07± 1.44 −0.98± 0.82 0.77± 1.96 −37.07± 0.87 -37.75
plate-slide-back-side-v2–noise0.5 5.15± 28.23 11.72± 20.14 10.47± 1.41 −68.9± 10.92 -65.47
plate-slide-back-side-v2–noise1 16.4± 29.75 42.45± 2.22 43.25± 10.94 −97.9± 25.46 -128.28
Average Relative Improvement 2.29 6.64 7.43 - -

Sigmoid Rank Constant CQL BC
assembly-v2–noise0.1 2.37± 4.62 4.2± 12.62 4.36± 5.55 −76.29± 9.41 -71.76
assembly-v2–noise0.5 −0.57± 2.09 1.44± 5.55 −1.21± 2.87 −131.35± 2.62 -129.53
assembly-v2–noise1 −0.01± 3.97 −0.35± 2.07 0.56± 2.56 −138.94± 0.97 -138.63

handle-press-side-v2–noise0.1 3.79± 2.52 −0.53± 2.53 0.73± 6.56 −34.47± 4.54 -36.28
handle-press-side-v2–noise0.5 23.05± 7.99 26.8± 8.13 32.31± 0.94 −70.96± 29.39 -34.3
handle-press-side-v2–noise1 8.33± 6.37 6.94± 10.92 22.01± 2.89 −55.3± 33.42 -35.72

plate-slide-back-side-v2–noise0.1 1.83± 1.21 −0.02± 3.82 0.95± 3.95 −36.31± 2.33 -37.75
plate-slide-back-side-v2–noise0.5 0.96± 3.25 −3.16± 17.37 −4.94± 18.35 −36.72± 2.56 -65.47
plate-slide-back-side-v2–noise1 24.46± 21.13 24.72± 8.42 23.04± 12.37 −67.63± 20.56 -128.28
Average Relative Improvement 7.14 6.67 8.65 - -

Sigmoid Rank Constant IQL BC
assembly-v2–noise0.1 1.18± 4.78 −0.49± 3.07 −0.02± 3.2 −72.06± 2.34 -71.76
assembly-v2–noise0.5 −1.49± 1.27 −0.9± 1.89 1.13± 4.46 −122.97± 6.12 -129.53
assembly-v2–noise1 −1.31± 0.33 −0.76± 3.55 0.39± 3.85 −129.01± 1.62 -138.63

handle-press-side-v2–noise0.1 −1.56± 0.5 −1.67± 0.39 −1.66± 0.53 −34.1± 1.55 -36.28
handle-press-side-v2–noise0.5 2.16± 2.07 2.04± 2.46 2.56± 1.54 −37.28± 0.25 -34.3
handle-press-side-v2–noise1 −0.2± 5.06 1.33± 1.52 1.12± 3.27 −46.31± 3.11 -35.72

plate-slide-back-side-v2–noise0.1 0.24± 0.76 −0.18± 0.48 0.42± 1.12 −34.4± 1.23 -37.75
plate-slide-back-side-v2–noise0.5 2.3± 3.47 1.3± 2.69 0.92± 2.7 −34.03± 1.83 -65.47
plate-slide-back-side-v2–noise1 2.33± 7.7 0.63± 12.54 −1.8± 15.22 −43.95± 10.29 -128.28
Average Relative Improvement 0.41 0.14 0.34 - -

Sigmoid Rank Constant TD3+BC BC
assembly-v2–noise0.1 1.08± 1.69 1.16± 2.35 −0.71± 1.95 −72.44± 6.03 -71.76
assembly-v2–noise0.5 0.56± 3.01 2.16± 3.05 2.6± 5.8 −131.62± 5.25 -129.53
assembly-v2–noise1 0.48± 0.6 0.71± 1.39 0.03± 1.92 −138.0± 1.0 -138.63

handle-press-side-v2–noise0.1 −2.34± 0.77 −1.91± 0.87 −1.67± 0.69 −35.0± 2.14 -36.28
handle-press-side-v2–noise0.5 3.25± 1.66 3.17± 1.04 2.97± 1.82 −40.24± 1.06 -34.3
handle-press-side-v2–noise1 4.31± 4.29 3.39± 3.97 6.93± 8.89 −52.22± 5.29 -35.72

plate-slide-back-side-v2–noise0.1 6.11± 2.3 3.67± 1.77 1.09± 2.11 −39.31± 1.52 -37.75
plate-slide-back-side-v2–noise0.5 6.77± 9.5 −4.01± 13.35 −2.91± 13.02 −40.17± 1.64 -65.47
plate-slide-back-side-v2–noise1 17.06± 32.1 31.78± 25.94 6.48± 22.36 −91.74± 31.24 -128.28
Average Relative Improvement 4.14 4.46 1.65 - -

E LIMITATIONS AND FUTURE WORK

In our current framework, HUBL calculates heuristic values as Monte-Carlo returns. This is feasible
in practical scenarios where data comes in the form of trajectories, but much of offline RL literature
experiments with batch datasets that consist of disconnected transition tuples. For such datasets,
HUBL requires other heuristic calculation strategies.

Empirically, we have showed HUBL’s utility on benchmarks where observations are full-information
low-dimensional state vectors and state transitions are deterministic. While these benchmarks are
standard in offline RL, evaluation in more stochastic domains where observations are partial and
high-dimensional, such as robotics, will give a more complete picture of HUBL’s utility. So would
evaluating HUBL with model-based offline RL such as MOReL (Kidambi et al., 2020). Also, HUBL
is not applicable to bootstrapping-free offline RL methods (Schaefer et al., 2007; Deisenroth and
Rasmussen, 2011; Depeweg et al., 2016; Swazinna et al., 2021; 2022).

On the theory side, our analysis focuses on state-dependent heuristics. In practice, though, heuristic
estimates commonly depend on full trajectories, and our theory needs adjustments to account for this.
Same goes for applying our theory to model-based offline RL such as MOReL.
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For future direction, we aim to develop better heuristics and blending strategies for batch datasets and
sparse-reward problems. We also plan to apply HUBL to other tasks in healthcare and finance (Alaluf
et al., 2022; Geng et al., 2018; 2019a;b) where collecting data is especially expensive.
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