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ABSTRACT

Large Language Model (LLM) agents, while proficient in the digital realm, face
a significant gap in physical-world deployment due to the challenge of forming
and maintaining a robust spatial mental model. We identify three core cognitive
challenges hindering this transition: spatial reasoning, long-horizon state track-
ing via mental simulation, and active exploration under partial observation. To
isolate and evaluate these faculties, we introduce CubeBench, a novel genera-
tive benchmark centered on the Rubik’s Cube. CubeBench uses a three-tiered
diagnostic framework that progressively assesses agent capabilities, from founda-
tional state tracking with full symbolic information to active exploration with only
partial visual data. Our experiments on leading LLMs reveal critical limitations,
including a uniform 0.00% pass rate on all long-horizon tasks, exposing a funda-
mental failure in long-term planning. We also propose a diagnostic framework to
isolate these cognitive bottlenecks by providing external solver tools. By analyz-
ing the failure modes, we provide key insights to guide the development of more
physically-grounded intelligent agents.

B B B… 
G G G… 
OOO…

…

Tier 1: Full Symbolic State

Tier 2: Full Visual State Tier 3: Partial Visual State

Figure 1: An overview of the performance of leading LLMs on the CubeBench benchmark, broken
down by its three diagnostic tiers. Tier 1 (Full Symbolic State) tests foundational state tracking
using complete symbolic information, where the best average pass rate is only 37.5%. Tier 2 (Full
Visual State) challenges visual and spatial reasoning by requiring agents to interpret a 2D unfolded
map, and Tier 3 (Partial Visual State) evaluates active exploration from partial views. Across
all tiers, GPT-5 emerges as the top-performing model, though the results highlight a significant
performance gap between symbolic and visual reasoning tasks.

1 INTRODUCTION

Agents powered by Large Language Models (LLMs) have demonstrated remarkable potential within
the digital realm (Gao et al., 2025; Fang et al., 2025). Their proficiency in using tools to navigate
websites or write code heralds the dawn of general-purpose AI assistants (Luo et al., 2025; Ma et al.,
2025). However, a far grander ambition is to deploy these agents into the physical world. This vision
confronts a significant gap: an agent’s success on one-dimensional, symbolic tasks does not readily
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translate to effective decision-making in three-dimensional, dynamic environments. The physical
world demands more than language comprehension; it requires the ability to form and maintain a
robust spatial mental model (Johnson-Laird, 1980; 1983).

Spatial Reasoning Exploration and Reasoning 
under Partial Observation

Long-Horizon State Tracking through Mental Simulation

Partial 
Observations Full Cube String

Actual Outcome

…

…

Little Error Accumulates
Thought
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Figure 2: Visualization of the three core
cognitive challenges required for spatial
reasoning.

This gap manifests as critical deficiencies in the core
cognitive abilities of current agents, which we show in
Fig. 2. We identify three such challenges. The first is
Spatial Reasoning: physical tasks are inherently three-
dimensional, requiring an agent to comprehend an ob-
ject’s geometry, the relative positions of its components,
and the precise consequences of actions in 3D space. The
second is Long-Horizon State Tracking through Mental
Simulation. Unlike digital tasks where state is often ex-
ternally visible, physical interaction requires an agent to
internally maintain and update its world model over long
action sequence planning, where even minor errors can
accumulate and lead to catastrophic failure. Finally, and
most crucially, is the ability for Exploration and Reason-
ing under Partial Observation. The real world rarely provides complete information, so an agent
must actively explore its environment to construct a complete mental model from limited views.

To rigorously measure and advance these core capabilities, isolated from the complexities of phys-
ical perception, we introduce CubeBench, a novel, generative benchmark centered on the Rubik’s
Cube. We posit that the cube serves as an ideal laboratory; its deterministic rules and vast state
space allow us to conduct controlled experiments that isolate the three core cognitive faculties. To
achieve this, CubeBench features a three-tiered diagnostic framework to progressively probe an
agent’s capabilities: Tier 1 tests foundational state tracking with complete symbolic information;
Tier 2 challenges visual and spatial reasoning by requiring the creation of a 3D model from a 2D
unfolded map; and Tier 3 evaluates active exploration using only partial visual information.

Our comprehensive evaluation on CubeBench reveals a staggering performance gap in current
LLMs. The results are stark: across all models, the pass rate on any long-horizon task is a
uniform 0.00, exposing a critical failure in long-term planning and state tracking. Even on short-
horizon symbolic tasks, the top-performing LLM, GPT-5 1 , achieves a success rate of just 0.75,
merely matching the performance of a traditional Policy Gradient agent and highlighting the diffi-
culty of even basic structured reasoning. Furthermore, our experiments with dense rewards show
that while external feedback can provide a local guide on simpler problems, it is insufficient to over-
come these core planning deficits. By equipping agents with solver tools, our diagnostic framework
successfully pinpoints these failures, isolating long-horizon planning as a primary bottleneck and
the inability to reason from partial observations as a more fundamental challenge.

In summary, the primary contributions of this paper are:

• We identify and formalize three core cognitive challenges that impede the deployment of
LLM agents into the physical world: spatial reasoning, long-horizon state tracking, and
exploration under partial observation.

• We propose CubeBench, a novel, generative benchmark for the controlled evaluation of
these cognitive challenges, decoupled from the complexities of visual perception.

• Through extensive experiments on leading LLMs, we reveal their current limitations in
forming and utilizing spatial mental models, offering key insights for future development.

• We demonstrate through intervention studies—specifically solver integration and learning
from experience—that the identified limitations of base LLMs can be significantly miti-
gated, pointing toward promising avenues for building more capable agents.

2 RELATED WORKS

Self-evolving Agents. The paradigm of AI is shifting from static, pre-trained models to dynamic,
self-evolving agents (Gao et al., 2025; Fang et al., 2025) capable of continual learning and adap-

1Accessed via OpenRouter (ID: openai/gpt-5) with unspecified reasoning effort.
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Table 1: A comparison of agentic benchmarks. Besides the three core cognitive challenges, we also
evaluate key task characteristics: Verifiable Outcome Reward, which assesses if the environment
operates on fixed, predictable principles rather than subjective or stochastic outcomes such as LLM-
as-a-judge; Non-static environment, which measures if the state of the environment changes with
different agent actions; and whether the task is Humanly Challenging, requiring deliberate explo-
ration for acquiring problem-solving skills beyond simple perception or motor control.

Core Cognitive Challenges Environmental & Task Properties
Benchmark Type 3D Reasoning Long-Hori. ST. Track Partial Obs. Verifiable Outcome Rwd. Non-static Env. Humanly Challenging
Search ✗ ✓ ✗ ✓ ✗ ✓
Code ✗ ✓ ✓ ✓ ✓ ✓
GUI ✗ ✓ ✗ ✓ ✓ ✗
Embodied Simulators ✓ ✓ ✓ ✓ ✓ ✗
Gyms ✗ ✓ ✓ ✓ ✓ ✓
ARC-AGI-3 ✗ ✓ ✗ ✓ ✓ ✓
MINDCUBE ✓ ✗ ✗ ✓ ✗ ✗
CubeBench (Ours) ✓ ✓ ✓ ✓ ✓ ✓
✓ for being explicitly designed to test the capability. ✓ for being partially tested in the benchmark. ✗ for benchmarks not primarily focusing on this capability.

tation from experience (Wang et al., 2024a;b; Luo et al., 2025; Zhang et al., 2025b; Hu et al.,
2024a; 2025; Liang et al., 2024a; Ma et al., 2025). Unlike foundational agents with fixed capa-
bilities, self-evolving agents can autonomously modify their own components—including memory
(Zhang et al., 2024a; Zhou et al., 2024; Liang et al., 2024b; Xu et al., 2025b; Zhao et al., 2024a;
Chhikara et al., 2025; Guan et al., 2024; Yu et al., 2025), tools (Qiu et al., 2025; Haque et al., 2025;
Zheng et al., 2025; Zhao et al., 2024b; Qu et al., 2025; Wang et al., 2025), and architecture (Zhuang
et al., 2025; Zhang et al., 2025c; Sapkota et al., 2025) — in response to environmental interaction.
As these agents evolve to tackle the physical world, a fundamental shift in their evaluation is re-
quired—moving beyond traditional static assessments to benchmarks that can rigorously measure
the acquisition and application of spatial intelligence.

Benchmarks for Self-evolving Agents. Existing benchmarks (Chan et al., 2024; Chen et al., 2024b;
Wei et al., 2025; Levy et al., 2024; Wu et al., 2025; Mialon et al., 2023; Liu et al., 2023; Chen et al.,
2025a; Zhu et al., 2025; Hu et al., 2024b), however, are not designed for these dynamics. As shown
in Table 1, different categories of benchmarks test these cognitive skills to varying degrees, but none
provides a focused, isolated evaluation. Digital environments for Search and GUI interaction (Xie
et al., 2024; Zhang et al., 2025a; Levy et al., 2024; Wu et al., 2025; Zhou et al., 2023; Deng et al.,
2023; Mialon et al., 2023; Wei et al., 2025; Phan et al., 2025), for instance, are primarily 2D and
feature explicit states, thus not addressing 3D spatial reasoning. While Code and Gym environments
(Hu et al., 2024b; Jimenez et al., 2023; Chan et al., 2024; Chen et al., 2025b; Aleithan et al., 2024;
Yang et al., 2024; Xu et al., 2024; Su et al., 2025; Tassa et al., 2018; Yu et al., 2020; Rajeswaran
et al., 2017) require long-horizon state tracking, they do not involve the complex 3D geometric
understanding that is crucial for physical-world tasks. Embodied simulators (Gao et al., 2024; Yang
et al., 2025b; Li et al., 2024; Savva et al., 2019b; Shridhar et al., 2021; Kolve et al., 2017) do engage
all three faculties but inherently couple them with complex visual perception, making it difficult to
isolate cognitive failures. While recent work like MindCube (Liu et al., 2024) evaluates reasoning
on static 3D scenes, our work introduces the challenge of updating a spatial model through long-
horizon, state-altering interaction.

In this work, we develop CubeBench, which is specifically designed to fill this gap by decoupling
perception from reasoning. Its deterministic, rule-based nature makes it an ideal suite for studying
an agent’s evolution; when an agent fails, the cause can be precisely attributed to a failure in its
internal spatial model or its long-horizon planning, as shown in Sec. 4.3. Furthermore, CubeBench’s
generative nature allows for the creation of a virtually infinite curriculum of tasks with fine-grained
difficulty, enabling the rigorous evaluation of an agent’s ability to learn and adapt over time—a
cornerstone of assessing true self-evolution (Gao et al., 2025).

3 THE CUBEBENCH BENCHMARK

3.1 TASK DEFINITION

We formalize the Rubik’s Cube challenge as a Partially Observable Markov Decision Process
(POMDP), providing a structured framework to analyze agent behavior. A POMDP is defined by
a tuple (S,A, T,R,Ω, O), where S is a set of states, A is a set of actions, T is the state transition
function, R is the reward function, Ω is a set of observations, and O is the observation function. In
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State
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Full Symbolic Full Visual

make_move(R) make_move(R) make_move(R)    (12 Actions)
   

Transformed 
State

OOWBBWBBW
GG Y GG Y RR Y
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RR B RR B RR B
YY O YY B YY B
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(12 Actions) (12 Actions)

Tier 1 Tier 2 Tier 3

apply_view_
Transformation
(up)               (4 Actions)

     (4 Actions)Figure 3: Illustration on the three-tiered task of CubeBench. Tier 1 (Full Symbolic State) pro-
vides the agent with complete state information in a string format, which makes the problem a fully
observable MDP. Tier 2 (Full Visual State) presents the full state as a 2D unfolded map, which chal-
lenges the agent’s visual thinking. Tier 3 (Partial Visual State) provides only a partial view of the
cube (Face view or Vertex view), which requires the agent to explore the environment to gather the
full state information.

this context, the agent’s goal is to learn a policy π(a|o) that selects an action a ∈ A given an obser-
vation o ∈ Ω to maximize the expected cumulative reward. We now define each of these components
within the CubeBench environment.

3.1.1 STATE SPACE

The state space S encompasses all possible configurations of the 3x3x3 Rubik’s Cube. The internal
state of the cube, s ∈ S, is deterministically represented by a data structure that tracks the color
of the 54 individual facelets (stickers). This symbolic representation is unambiguous and allows
for perfect state tracking within the simulation. The Rubik’s Cube is a classic example of a system
governed by the principles of group theory. Each move corresponds to a permutation of the cube’s
facelets, and the set of all possible move sequences forms a mathematical group. This deterministic,
non-stochastic nature makes it an ideal environment for isolating an agent’s reasoning and planning
capabilities from the complexities of physical uncertainty. The state space is vast, containing over
43 quintillion (4.3× 1019) unique configurations, yet it is finite and structured. This combination of
immense scale and deterministic rules makes it a compelling microcosm for studying autonomous
problem-solving on tasks that are too large for naive search but are perfectly predictable.

3.1.2 OBSERVATION SPACE

The observation space Ω is defined by the observation function O(s), which maps the true internal
state s to an observation o that is presented to the agent. As shown in Fig. 3, CubeBench features a
three-tiered observation space, where each tier presents the state information in a different modality,
posing distinct perceptual challenges.

Tier 1: Full Symbolic State. The observation is a 54-character string that symbolically represents
the complete state of the cube. Each character corresponds to the color of a single facelet (e.g., ‘W’
for White, ‘R’ for Red, ‘B’ for Blue, ‘O’ for Orange, ‘G’ for Green, ‘Y’ for Yellow). In this
tier, the observation function provides the full state information as a 54-character structed string,
making the problem a fully observable MDP.

Tier 2: Full Visual State. The observation is a single image depicting the cube’s complete 2D
unfolded map, which visually presents all 54 facelets in a planar layout. This tier specifically chal-
lenges an agent’s visual reasoning capabilities, requiring it to mentally fold the 2D layout into a
coherent 3D spatial model to understand the adjacency of faces that are not contiguous in the planar
representation.

Tier 3: Partial Visual State. The observation is a single image of a partial view of the cube. This
can be either an image of a single face (face view) or an image from a corner’s perspective showing
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three adjacent faces (vertex view). In this tier, the observation function provides incomplete state
information, thus formulating the task as a true POMDP.

3.1.3 ACTION SPACE

The action space A consists of the set of discrete, deterministic commands an agent can execute to
interact with the environment.

State Transition Actions: The primary action for rotating the cube, which implements the environ-
ment’s transition function T (s, a). A make move command accepts one of 12 standard Singmaster
notation inputs corresponding to a 90-degree rotation of a face: F (Front), B (Back), L (Left), R
(Right), U (Up), D (Down), and their counter-clockwise prime versions (F’, B’, etc.).

Observation-Altering Actions: An action exclusive to Tier 3 that allows the agent to change its
observational viewpoint (i.e., up, down, left, right) without altering the cube’s underlying state s.
This is the primary mechanism for exploration in the partially observable setting.

3.1.4 REWARD FUNCTION

The agent’s objective is to reach the solved state. We define two types of reward signals within
CubeBench to facilitate and evaluate this process.

Sparse Terminal Reward: The primary success metric is a sparse, binary reward. The agent re-
ceives a reward of R = 1 upon entering the terminal solved state (i.e., all stickers on six faces
are matched), and R = 0 for all other state transitions. The agent’s goal is to find a policy that
maximizes the probability of achieving this terminal reward within the given constraints.

Dense Progressive Reward: To potentially guide the agent’s search process, we also implement an
optional dense reward mechanism. Unlike a state-value function, our dense rewards are calculated
as the change in a given metric before and after a state transition action. Specifically, the reward
Rt for taking state transition action at in state st to reach state st+1 is defined as the difference in a
metric function ϕ(s):

Rt = ϕ(st+1)− ϕ(st)

We implemented and tested three different metric functions (ϕ) to explore how the conceptual gran-
ularity of the feedback affects agent performance. (1) Sticker Metric (ϕsticker): This function
quantifies the total number of individual facelets (stickers) that are in their correct home positions.
The score ϕsticker(s) ranges from 9 for a highly scrambled cube to 54 for the solved state. This
provides a fine-grained, low-level signal of progress. (2) Face Metric (ϕface): This function counts
the number of fully solved faces, where all 9 stickers on a face are correct. It provides a high-level,
more conceptually grounded signal that is sparser than the sticker metric. (3) Heuristic Metric
(ϕheuristic): This function uses an algorithmic heuristic from a common solving method to estimate
the distance to the goal state. It is designed to provide a more informed, albeit abstract, numerical
signal, which we explain in detail in Sec. J. As a default setting, we also include a no reward
condition where Rt = 0 for all transitions.

3.2 TASK EVALUATION AND GENERATION

Observation

Thought

Code

Execution

CodeAct Loop

``` python
moves = ["D' ", "L'", "B'", "U", … , "D'"]
for move in moves:
    make_move(move)
state = get_observation()
print(state)
```

YBYWRYGWO
GBBGGBWGB
GYWOBYYRB
OORRYWRRG
YYWOOBRRR

OGBOWWOGW

I have analyzed the cube 
state and found a 
solution sequence using 
an online solver. The 
sequence is D' L' B' U 
… D’. I will now apply 
these moves to the cube.

D' L

B' U

D’

…

Figure 4: Illustration on the interaction
protocol.

Agent Interaction Protocol. The agent’s interaction
with the environment follows the ReAct paradigm (Yao
et al. (2022)), structured into a sequence of decision-
making steps. As shown in Fig. 4, we define a single step
as a complete Thought-Code-Observation block.
Within each step, the agent first generates its reasoning
(Thought), then writes and executes code to interact
with the environment (Code), and finally receives the
output of that code as feedback (Observation) for its
next cycle. Each experimental run is subject to a maxi-
mum of 20 steps and a timeout of 30 minutes to ensure
fair comparison. Note that in each step, the agent could
write code to make more than one move.
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Experiment 1:

Basic 
CubeAgent 

CubeAgent with
 Rewards

Basic 
Agent

Ideal-Solver 
Agent

Standard-Solver
Agent

Sticker

Face
No reward

Heuristic 

❖ Diagnose whether failures 
stem from planning, state 
reconstruction, or data 
transformation.

❖ Solve the task from first 
principles

❖ Rely entirely on internal 
faculties. 

❖ Clarify whether, and what 
kind of heuristic signals can 
aid in its search process.

Experiment Number

CubeAgent with
Tools

Experiment 2:

Experiment 3:

make_move()

get_observation()

apply_view_transformation()
(for Tier 3)

#

-

…

d goal

Figure 5: Visualization of our three-part diagnostic framework for systematically evaluating
LLM agents. To answer Q1, we test a basic agent with only fundamental interaction tools to
establish its baseline capabilities from first principles. For Q2, we augment the agent with various
dense reward signals to determine if external feedback can effectively guide its search process.
Finally, to address Q3, we deploy agents with different levels of tool support to diagnose whether
failures originate from high-level planning, state reconstruction, or procedural data transformation.

Evaluation Metrics. Our primary metrics are designed to measure both success and effort. The
Pass Rate is the fraction of test cases successfully solved within the execution constraints, serving
as the primary measure of an agent’s capability. To quantify search effort, we use the Number of
make move calls (#MM) as a proxy. We report this metric aggregated in three ways: the average
over all normally terminated runs, the average over only successful runs, and the maximum count
observed across all normally terminated runs.

Task Generation and Difficulty Scaling. We define task difficulty based on the optimal number
of moves required to solve a given cube configuration, a metric we refer to as the state’s depth.
A state’s depth serves as a robust proxy for its complexity; solving high-depth states is infeasible
through random exploration and necessitates a coherent strategy. To generate our test cases, we
employ a provably optimal solver (see Appendix K). For a target depth d, we generate scrambled
states and confirm their optimality by verifying that a solution of length d exists, but no solution of
length d − 1 can be found. This guarantees the true depth is precisely d. The detail of this process
is described in the appendix. To analyze agent performance across varying complexities, we group
these cases into two distinct categories: Short-Horizon tasks, comprising states with depths of 1, 2,
3, and 4, and Long-Horizon tasks, which include the more challenging depths of 8, 12, 16, and 20.
The configuration of the generated test split is described in detail in Sec.G.

4 DIAGNOSING LLM AGENT CAPABILITIES ON CUBEBENCH

In this section, we introduce our systematic framework for evaluating Large Language Model (LLM)
agents on the CubeBench benchmark. As shown in Fig. 5, the evaluation process is designed as a
three-part diagnostic, structured around three central research questions that aim to progressively
uncover the cognitive strengths and weaknesses of current agents:

Questions

• Q1: What are the baseline capabilities and limitations of current LLM agents when trying
to solve the typical cube problem in an unaided setting?

• Q2: Can the introduction of dense reward signals effectively guide an agent’s context-
based reasoning process and enhance its performance on these complex spatial tasks?

• Q3: How can we design a diagnostic evaluation to isolate the impact of each core cognitive
challenge, thereby identifying the primary bottlenecks for agent failure—is it high-level
planning, state reconstruction from partial perception, or spatial reasoning?

6
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Table 2: Baseline performance across modalities and horizons on CubeBench. Top row: metric
groups (Pass rate, #MM, where #MM is the average number of make move calls); second row:
observation modalities; third row: task horizons (Short = S, depths 1–4; Long = L, depths 8, 12,
16, 20). Tier 3 denotes the hardest split, evaluated under two projections: Face View and Vertex
View. Blue shading denotes open-source models , and pink denotes proprietary models . For each
metric column, we shade the top-3 entries (red = 1st, orange = 2nd, yellow = 3rd). We also train
an MLP with policy gradient on the Full Symbolic setting; details are in Sec. H. “−” : Model
does not support visual inputs.

Pass rate #MM

Full Symbolic Full Visual Face view Vertex view Full Symbolic Full Visual Face view Vertex view

Model S L S L S L S L S L S L S L S L

GPT-5 0.75 0.00 0.20 0.00 0.40 0.00 0.05 0.00 85869.16 438193.56 387.42 376.47 161.65 189.00 8773.00 5574.45
MLP (Policy Gradient) 0.75 0.00 – – – – – – 5.17 400.00 – – – – – –
gpt-oss-120b 0.20 0.00 – – – – – – 115585.30 197923.80 – – – – – –
Grok-4 0.20 0.00 0.05 0.00 0.00 0.00 0.00 0.00 3.75 9.45 3.35 60.00 3.45 3.25 42.00 9.75
Kimi K2 (2024-09-05) 0.15 0.00 – – – – – – 47446.30 1297.06 – – – – – –
Gemini 2.5 Pro 0.10 0.00 0.05 0.00 0.05 0.00 0.00 0.00 180.50 114.45 36.15 36.25 7.60 8.25 27.35 25.65
DeepSeek-R1 (2025-05-28) 0.05 0.00 – – – – – – 28143.85 37819.20 – – – – – –
Claude Sonnet 4 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 69.10 126.75 27.55 23.20 6.70 25.10 19.30 65.35
Qwen3-Max 0.05 0.00 – – – – – – 35.20 43.35 – – – – – –
DeepSeek-V3.1 0.05 0.00 – – – – – – 33.80 20.85 – – – – – –
doubao-seed-1-6-vision 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.70 11.25 12.75 12.35 12.75 10.65 14.65 13.85
InternVL-3 (78B) 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 56499.75 61.15 48.45 49.75 42.90 38.11 62.00 79.95
Qwen2.5-VL-72B-Instruct 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 47390.10 51351.79 45.25 36.10 13.30 15.55 80.75 30.05
kimi-vl-a3b-thinking 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5276.13 0.18 0.00 0.11 0.00 0.00 1.06 0.05
GPT-4o 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 83.90 104.10 106.70 104.50 50.40 59.00 118.45 115.35
GLM-4.5V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 36.85 55.55 30.75 39.70 51.70 58.21 35.50 101.70
Gemma-3-27B-IT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.60 18.25 30.30 26.10 19.95 20.30 23.60 16.10
Seed-OSS-36B-Instruct 0.00 0.00 – – – – – – 14.68 10.94 – – – – – –

4.1 EXPERIMENT 1: BASIC AGENT WITH NO AID

Experimental Setup. To answer our first research question, we establish the baseline capabilities
of unaided LLMs. For this experiment, we utilize the Basic Agent configuration. This agent is
provided with only the fundamental interaction tools: make move, get observation, and,
for Tier 3 tasks, apply view transformation. It must solve the task from first principles,
relying entirely on its internal faculties for planning and reasoning. We evaluated this agent across
all four observation modalities (Full Symbolic, Full Visual, Face view, and Partial
Visual) on both short- and long-horizon tasks. The results are presented in Table 5.

Key Observations. (1) All models exhibit a 0.00 pass rate on long-horizon tasks across all input
modalities. (2) For short-horizon tasks, non-zero pass rates are achieved almost exclusively with the
symbolic string input; performance on all visual inputs is near or at zero for most models. (3) A clear
performance hierarchy is evident, with GPT-5’s 0.75 pass rate on the symbolic task significantly ex-
ceeding all other models. A Policy Gradient agent matches GPT-5’s performance, outperforming
most LLMs in this setting. (4) On the Full Symbolic task, a subset of models engage in com-
putationally intensive search, indicated by average #MM counts several orders of magnitude higher
than other models.

Insights. (1) The universal failure on long-horizon tasks is direct evidence of a fundamental deficit
in Long-Horizon State Tracking through Mental Simulation. A related case study is presented in
Sec. L.2. (2) The sharp performance decline from symbolic to visual inputs indicates that Visual
Thinking is a primary limiting factor for these agents. (3) While symbolic inputs enable search-
based strategies, they are often computationally expensive. A notable phenomenon emerges in these
tasks: agents exhibit a diversity of problem-solving strategies. Lower #MM values typically corre-
spond to directly reasoning through the sequence of moves logically, whereas higher #MM values are
indicative of search-based strategies. The choice of searching algorithm substantially impacts pass
rates. More capable agents, such as GPT-5, tend to systematically search using algorithms like beam
search and iterative deepening depth-first search (IDDFS) with skills like backtracking, as shown in
Sec. L.1 and L.2. In contrast, less capable agents often devolve into largely unguided enumeration
(shown in L.3). However, even models such as GPT-5 struggle to perform effective pruning; their
capabilities remain insufficient to curb the rapid growth in computational complexity, leading to
failures on long-horizon tasks (shown in L.4).

4.2 EXPERIMENT 2: CUBEAGENT WITH REWARDS

Experimental Setup. Our second experiment was designed to measure the impact of different
dense reward mechanisms on agent performance. We used the Basic Agent agent configuration
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Table 3: Pass rates of different agent types across modalities and horizons on CubeBench. Met-
rics include Pass rate (higher is better). Modalities: Full Symbolic, Full Visual, Face
View, Vertex View. Tier 3 denotes the hardest split and is evaluated under two projections:
Face View and Vertex View. Horizons: Short (S) and Long (L).

Full Symbolic Full Visual Face view Vertex view

Model Reward Type S L S L S L S L

GPT-5

no reward 0.75 0.00 0.20 0.00 0.40 0.00 0.05 0.00
face 0.85 0.00 0.55 0.00 0.50 0.00 0.40 0.00
sticker 0.65 0.00 0.55 0.00 0.55 0.00 0.50 0.00
heuristic 0.50 0.00 0.45 0.00 0.65 0.00 0.30 0.00

Gemini 2.5 Pro

no reward 0.10 0.00 0.05 0.00 0.05 0.00 0.00 0.00
face 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sticker 0.10 0.00 0.00 0.00 0.05 0.00 0.00 0.00
heuristic 0.05 0.00 0.00 0.00 0.10 0.00 0.00 0.00

Claude Sonnet 4

no reward 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
face 0.10 0.00 0.10 0.00 0.05 0.00 0.00 0.00
sticker 0.25 0.00 0.15 0.00 0.00 0.00 0.05 0.00
heuristic 0.20 0.00 0.05 0.00 0.05 0.00 0.10 0.00

as the testbed. Its performance was evaluated under four distinct conditions: a baseline with no
progressive feedback (no reward), and three conditions providing different dense reward signals
(face, sticker, and heuristic), which are introduced in Sec. 3.1.4 and used as the return
value for the make move function. This direct comparison aims to clarify whether, and what kind
of dense rewardss can aid the agent. The results are presented in Table 3.

Key Observations. (1) On short-horizon tasks, dense rewards generally lead to an increase in pass
rates. (2) The pass rate on all long-horizon tasks remains at 0.00, regardless of the presence or type
of dense reward. (3) The impact of rewards is inconsistent; in some cases, such as for GPT-5 on the
Full Symbolic task with heuristic or sticker rewards, performance is lower than the
no-reward baseline. (4) The ability to leverage rewards varies notably across models.

Insights. (1) Dense rewards can guide an agent’s search on short-horizon tasks by providing a local
heuristic guide. (2) The failure of rewards on long-horizon tasks indicates that local feedback cannot
compensate for a fundamental deficit in long-horizon state tracking. (3) On visual inputs, agents may
leverage reward signals through symbolic reasoning, bypassing genuine visual reasoning, as shown
in Sec. L.5. (4) For more capable agents like GPT-5, an external reward can potentially conflict with
their emergent internal strategies, leading to suboptimal performance. For less capable agents that
may lack a strong internal strategy, any form of guidance from a dense reward is often helpful, as
seen with Claude Sonnet 4. The case studies are presented in Sec. L.6 and L.7 respectively.

4.3 EXPERIMENT 3: CUBEAGENT WITH SOLVER TOOLS

Experimental Setup. To precisely identify the primary bottlenecks in agent performance, our fi-
nal experiment removes the burden of long-horizon planning by equipping agents with an opti-
mal solver. We introduce two distinct configurations to isolate different cognitive challenges: the
Standard-Solver Agent and the Ideal-Solver Agent. The Standard-Solver Agent is given a solver
that requires a specific, strict symbolic input format. To succeed, this agent must first accurately per-
ceive the cube’s state, then perform the crucial step of translating that perception into the required
format. This translation process is non-trivial, as it requires spatial understanding to reconcile
potential differences between the environment’s state representation (e.g., one type of 2D unfolded
map) and the solver’s expected input (e.g., a different face order or vertex numbering scheme). Fi-
nally, the agent must execute the solver’s plan. This setup tests the agent’s ability to handle state
reconstruction, spatial transformation, and procedural tool use.

In contrast, the Ideal-Solver Agent is provided with a more advanced tool that automates the trans-
lation step. This agent can directly pass its perceived state to the solver, thus bypassing the data
formatting challenge. By comparing the performance of these two agents, we can isolate whether
failures stem from reconstructing a state from perception or from the challenge of spatial under-
standing during translation. The results are presented in Table 4.

The Diagnosing Framework. Our evaluation is structured as a progressive, three-step diagnostic
process designed to systematically isolate and assess the core cognitive faculties of an agent. (1)
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Table 4: Comparison of pass rates for Basic, Standard-Solver, and Ideal-Solver agent configura-
tions. Modalities: Full Symbolic, Full Visual, Face View, Vertex View. Tier 3
denotes the hardest split and is evaluated under two projections: Face View and Vertex View.
Horizons: Short (S) and Long (L).

Full Symbolic Full Visual Face view Vertex view

Model Agent Type S L S L S L S L

GPT-5
Basic 0.75 0.00 0.20 0.00 0.40 0.00 0.05 0.00
Standard-Solver 0.95 0.95 0.65 0.70 1.00 0.95 0.00 0.00
Ideal-Solver 1.00 1.00 0.95 0.80 0.85 1.00 0.00 0.00

Gemini 2.5 Pro
Basic 0.10 0.00 0.05 0.00 0.05 0.00 0.00 0.00
Standard-Solver 0.70 0.65 0.25 0.00 0.20 0.00 0.00 0.00
Ideal-Solver 1.00 1.00 0.25 0.00 0.00 0.00 0.00 0.00

Claude Sonnet 4
Basic 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Standard-Solver 0.35 0.85 0.00 0.00 0.00 0.00 0.00 0.00
Ideal-Solver 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Diagnosing Long-Horizon State Tracking and Planning. We first diagnose long-horizon tracking
by comparing the Basic Agent with the Standard-Solver Agent on long-horizon symbolic tasks. The
Basic Agent relies on internal reasoning, while the Standard-Solver outsources the planning chal-
lenge to an optimal tool. Their performance gap reveals the agent’s intrinsic planning capability. (2)
Diagnosing Spatial Reasoning and Procedural Tool Use. Next, we diagnose the spatial reason-
ing required for tool use by comparing the Standard-Solver Agent to the Ideal-Solver Agent. Since
both agents offload planning, the performance gap isolates the challenge of spatial thinking, which
translates perceptual input into a usable format for the tool. (3) Diagnosing Active Exploration
under Partial Observation. Finally, to isolate exploration, we evaluate the Ideal-Solver Agent in a
partial observation setting. The ideal tool removes both planning and translation challenges, leaving
only the task of reconstructing a complete world model from fragmented information. Success here
depends entirely on the agent’s ability to actively explore its environment.

Key Observations. (1) The addition of the tools generally leads to marked performance gains
compared to the basic agent. (2) There is still a performance gap between the Standard-Solver and
Ideal-Solver agents. (3) On Full Visual and Face view tasks, only GPT-5 maintains strong
performance, while all models fail universally on the Vertex view task.

Insights. (1) High-level, multi-step planning, or Long-Horizon State Tracking, is a primary deficit
that can be successfully offloaded to external solvers. (2) The procedural challenge of using tools
is non-trivial, rendering Spatial Reasoning an important challenge to resolve for further develop-
ment. (3) An unanticipated but noteworthy finding is the emergence of tool-learning strategies in
the Standard-Solver Agent. In some instances, we observed a remarkable capability for autonomous
tool-learning, where agents learn to master the tool through trial-and-error experimentation for this
spatial conversation, as shown in Sec. L.8. (4) A significant performance gap exists between the
Face view and Vertex view tasks. The reason is that the orderly, grid-like structure of the
Face view allows agents to succeed by recasting the task as an algorithmic parsing problem.
This indicates that models will attempt to bypass direct spatial reasoning in favor of a parsing-based
approach whenever possible, and their performance suffers when the input’s complexity, as in the
Vertex view, makes this bypass strategy infeasible. The corresponding case study is presented
in Sec. L.9.

5 CONCLUSION

In this work, we introduced CubeBench, a diagnostic benchmark designed to probe the cognitive
faculties required for spatial reasoning. Our comprehensive experiments demonstrate a critical fail-
ure in current leading models, which uniformly achieve a zero pass rate on all long-horizon tasks
and struggle to bridge the gap from visual perception to symbolic understanding. Our diagnostic
framework successfully isolated these bottlenecks, confirming fundamental deficits in Spatial Rea-
soning, Long-Horizon State Tracking through Mental Simulation, and Exploration and Reasoning
under Partial Observation. Our findings underscore the need for future research to focus on develop-
ing more robust spatial mental models and grounding agents in the principles of three-dimensional
interaction to unlock their potential in the physical world.
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REPRODUCIBILITY STATEMENT

We provide necessary tool suite to reproduce our results at https://anonymous.4open.
science/r/CubeBench-ICLR26-34B7/.
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Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

Renjie Pi, Jianshu Zhang, Jipeng Zhang, Rui Pan, Zhekai Chen, and Tong Zhang. Image textual-
ization: An automatic framework for creating accurate and detailed image descriptions. arXiv
preprint arXiv:2406.07502, 2024.

Xavi Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Ruslan Partsey, Jimmy Yang,
Ruta Desai, Alexander William Clegg, Michal Hlavac, Tiffany Min, Theo Gervet, Vladimir Von-
drus, Vincent-Pierre Berges, John Turner, Oleksandr Maksymets, Zsolt Kira, Mrinal Kalakr-
ishnan, Jitendra Malik, Devendra Singh Chaplot, Unnat Jain, Dhruv Batra, Akshara Rai, and
Roozbeh Mottaghi. Habitat 3.0: A co-habitat for humans, avatars and robots, 2023.

Jianing Qi, Jiawei Liu, Hao Tang, and Zhigang Zhu. Beyond semantics: Rediscovering spatial
awareness in vision-language models. arXiv preprint arXiv:2503.17349, 2025.

12

https://arxiv.org/abs/2503.21460
https://arxiv.org/abs/2503.21460


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang, Zixin
Yao, Qihan Ren, Xun Jiang, Xing Zhou, Dongrui Liu, Ling Yang, Yue Wu, Kaixuan Huang,
Shilong Liu, Hongru Wang, and Mengdi Wang. Alita: Generalist agent enabling scalable agentic
reasoning with minimal predefinition and maximal self-evolution. CoRR, abs/2505.20286, 2025.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and
Ji-Rong Wen. From exploration to mastery: Enabling llms to master tools via self-driven interac-
tions. In ICLR. OpenReview.net, 2025.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge. God’s Number is 20.
https://www.cube20.org/, 2010.

Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge. The diameter of the
rubik’s cube group is twenty. SIAM Review, 56(4):645–670, 2014. doi: 10.1137/140973499.

Ravi Sapkota, Konstantinos I Roumeliotis, Shiva Pokhrel, and Manoj Karkee. From self-learning to
self-evolving architectures in large language models: A short survey. Authorea Preprints, 2025.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A
Platform for Embodied AI Research. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2019a.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied
ai research. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
9339–9347, 2019b.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
for everyday tasks, 2020. URL https://arxiv.org/abs/1912.01734.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
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A LLM USAGE STATEMENT

Model. The LLMs employed in our study are GPT-5 and Gemini 2.5 Pro.

Scope. We used large language models (LLMs) only as general-purpose assistants for language pol-
ishing, typo checking, and minor code boilerplate generation. LLMs did not contribute to research
ideation or produce novel scientific claims, proofs, or results.

Human oversight and verification. All text and code produced with LLM assistance were reviewed,
corrected, and verified by the authors. Experimental results were reproduced independently of any
LLM outputs.

Data governance. We did not share proprietary or sensitive data with third-party services beyond
materials already included in the anonymous submission artifacts.

Attribution. LLMs are not authors and bear no responsibility for the content; full responsibility lies
with the paper’s authors.

B WHAT EXACTLY DOES CUBEBENCH MEASURE?

CubeBench is not intended to be a broad coverage benchmark that competes with large embodied
suites or classical Rubik’s Cube solvers. Instead, it serves as a minimal, verifiable, factorized diag-
nostic environment. By stripping away perception noise, multi-object dynamics, affordances, and
actuation, it allows us to focus on three core cognitive abilities that repeatedly emerge as bottle-
necks for LLM/MLLM agents in more complex settings: (i) 3D spatial reasoning, (ii) long-horizon
non-commutative planning, and (iii) belief-state construction under partial observability.

Our three-tier design decouples these abilities by progressively increasing the burden placed on
the agent’s internal world model. Tier 1 (Full Symbolic) exposes a complete 54-character state, so
all perception and grounding are provided by the environment; this setting primarily stresses non-
commutative long-horizon planning and state tracking. Tier 2 (Full Visual) replaces the symbolic
string with a 2D unfolded image, forcing the agent to construct its own symbolic representation
from pixels: segmenting the cube, clustering colors, assigning stickers to faces, and mapping the
2D layout to a consistent 3D frame before any planning can begin. Tier 3 (Partial Visual) further
restricts each observation to a single face or corner view, plus view-change actions, so the agent
must actively explore, aggregate partial views over time, and maintain a coherent latent world state
while its own actions continuously perturb the cube.

On top of these observation tiers, the different solver configurations act as controls that selectively
remove specific difficulties. A Basic Agent must handle perception, internal state tracking, planning,
and formatting. In the Standard-Solver setting, we outsource optimal planning to a Kociemba-
based solver, so performance is driven mainly by visual → symbolic translation and correct schema
formatting. The Ideal-Solver setting goes one step further by also hiding the solver’s input schema,
leaving only the requirement to output a correct symbolic cube state; any gap between Standard-
and Ideal-Solver performance therefore isolates visual grounding and spatial mapping errors rather
than planning or string-format issues.

This factorized design explains “what” CubeBench measures in contrast to existing planning and
embodied benchmarks. Classical planning suites such as PlanBench (Valmeekam et al., 2023),
SPIN-Bench (Yao et al., 2025), and ARC/ARC-AGI (Foundation, 2025) probe rich algorithmic and
combinatorial structures, but they do not directly target the specific triad of 3D spatial reasoning,
non-commutative dynamics, and partial-observation belief-state tracking in a single, fully verifi-
able physical system. Conversely, embodied 3D suites such as ALFRED (Shridhar et al., 2020),
Habitat(Savva et al., 2019a; Szot et al., 2021; Puig et al., 2023), BEHAVIOR-100 (Srivastava et al.,
2021), LogiCity (Li et al., 2025), EmbodiedBench (Yang et al., 2025b), and EAI (Li et al., 2024)
place agents in visually rich, multi-object worlds with realistic physics and affordances, but neces-
sarily entangle perception, control, and high-level reasoning. As several of these works themselves
emphasize, final success rates in such environments make it difficult to pinpoint which cognitive
ability has failed.

CubeBench occupies an orthogonal niche in this landscape. It uses a single rigid object with de-
terministic kinematics to provide a low-noise, automatically verifiable testbed where failures can
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be crisply attributed: incorrect 3D world modeling, short effective planning horizons, or unstable
belief-state tracking under partial observation. The negative results we obtain—universal collapse
at depth 8, severe degradation from symbols to images, and near-zero success under partial views—
mirror the failure modes reported in broader embodied benchmarks, but in a setting where they can
be disentangled and systematically ablated. In this sense, CubeBench is best viewed as a first diag-
nostic stop before running expensive embodied evaluations: if an agent already fails to maintain a
consistent 3D mental model and long-horizon plan in this simplified domain, it is unlikely to succeed
in more complex physical worlds.

C REVISED BASELINE PERFORMANCE USING MOVE RATIOS

To account for the variation in task difficulty, we introduce the Number of Move Ratio (#MR) as a
normalized measure of search efficiency. Optimal path lengths increase non-linearly with scramble
depth, therefore we define #MR as the ratio of the agent’s move count to the optimal solution length:

#MR (number of move ratio) =
#MM (number of make moves)
depth (number of optimal moves)

Table 5: Baseline performance across modalities and horizons on CubeBench. Top row: metric
groups (Pass rate, #MR, where #MR is the average number of move ratios; second row: obser-
vation modalities; third row: task horizons (Short = S, depths 1–4; Long = L, depths 8, 12, 16,
20). Tier 3 denotes the hardest split, evaluated under two projections: Face View and Vertex View.
Blue shading denotes open-source models , and pink denotes proprietary models . For each metric
column, we shade the top-3 entries (red = 1st, orange = 2nd, yellow = 3rd). We also train an
MLP with policy gradient on the Full Symbolic setting; details are in Sec. H. “−” : Model
does not support visual inputs.

Pass rate #MR

Full Symbolic Full Visual Face view Vertex view Full Symbolic Full Visual Face view Vertex view

Model S L S L S L S L S L S L S L S L

GPT-5 0.75 0.00 0.20 0.00 0.40 0.00 0.05 0.00 27124.66 33982.78 149.29 29.22 51.25 17.69 8378.55 672.57
MLP (Policy Gradient) 0.75 0.00 – – – – – – 5.17 400.00 – – – – – –
gpt-oss-120b 0.20 0.00 – – – – – – 47173.21 14219.57 – – – – – –
Grok-4 0.20 0.00 0.05 0.00 0.00 0.00 0.00 0.00 1.84 0.97 1.76 5.28 1.81 0.25 18.36 0.84
Kimi K2 (2024-09-05) 0.15 0.00 – – – – – – 23705.38 118.25 – – – – – –
Gemini 2.5 Pro 0.10 0.00 0.05 0.00 0.05 0.00 0.00 0.00 59.01 12.55 19.30 3.13 4.05 0.55 13.28 1.85
DeepSeek-R1 (2025-05-28) 0.05 0.00 – – – – – – 14074.89 4724.51 – – – – – –
Claude Sonnet 4 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 28.59 9.05 14.81 1.93 2.67 2.43 9.40 5.75
Qwen3-Max 0.05 0.00 – – – – – – 15.92 3.48 – – – – – –
DeepSeek-V3.1 0.05 0.00 – – – – – – 21.89 1.66 – – – – – –
doubao-seed-1-6-vision 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.77 0.94 6.79 1.00 6.26 0.84 7.47 1.10
InternVL-3 (78B) 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 56466.74 4.85 23.27 3.95 18.16 2.61 29.14 6.84
Qwen2.5-VL-72B-Instruct 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 43712.71 2575.65 18.26 2.54 5.97 1.26 27.28 2.44
kimi-vl-a3b-thinking 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2623.57 0.01 0.00 0.01 0.00 0.00 0.36 0.00
GPT-4o 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 48.10 8.01 52.67 8.48 24.85 4.55 55.41 9.41
GLM-4.5V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.61 5.44 15.48 3.35 28.49 5.17 21.08 8.33
Gemma-3-27B-IT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.29 1.56 15.49 2.09 9.38 1.64 11.49 1.21
Seed-OSS-36B-Instruct 0.00 0.00 – – – – – – 9.22 0.93 – – – – – –

D THE NO-CODE EXPERIMENT

Experimental Setup. In our primary evaluation (the Code setting, which corresponds to the Basic
Agent configuration in Experiment 1), agents are permitted to write and execute Python code. While
writing code to perform search algorithms is a valid problem-solving strategy in the agentic era, we
acknowledge that distinguishing intrinsic spatial reasoning from programmatic search is crucial.
To isolate the model’s internal state tracking and planning capabilities from code-based search, we
introduce a No-Code evaluation mode. In this mode, the agent must output a pre-planned sequence
(e.g., "moves":[‘D’’, ‘B’, ‘B’]) without the ability to manage control flows during tool
use. This mode is more consistent with common tool-use interfaces such as the OpenAI API. We
conducted an ablation study comparing the No-Code and Code settings on the Short-Horizon Full
Symbolic tasks. The results are presented in Table 6.

Key Observations & Insights. (1) Models employing intensive search strategies (High #MR) suf-
fered catastrophic declines. Both GPT-5 (0.75 to 0.25) and gpt-oss-120b (0.20 to 0.00) saw their
performance evaporate as their search volume collapsed (e.g., GPT-5 #MR: ∼27k to ∼72; gpt-oss-
120b #MR: ∼47k to ∼14). This confirms that for these agents, the code-based search compensates
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for limited internal planning. (2) Models with initially low search volume (Low #MR) displayed
mixed outcomes rather than a uniform drop. Grok-4 improved (0.20 to 0.30) in the No-Code setting,
while many remained poor.

Table 6: Comparison of agent performance in No-Code vs. Code settings on Short-Horizon Full
Symbolic tasks. #MR is averaged over testcases.

No Code Code
Model Pass Rate #MR Pass Rate #MR
GPT-5 0.25 72.79 0.75 27124.66
gpt-oss-120b 0.00 14.20 0.20 47173.21
Grok-4 0.30 2.02 0.20 1.84
Kimi-K2-0905 0.00 55.15 0.15 23705.38
Gemini 2.5 Pro 0.15 18.68 0.10 59.01
Claude Sonnet 4 0.00 68.03 0.05 28.59
DeepSeek-V3.1 0.00 17.11 0.05 21.89
DeepSeek-R1-0528 0.00 12.28 0.05 14074.89
Qwen3-Max 0.00 18.11 0.05 15.92
GPT-4o 0.05 61.53 0.00 48.10
GLM-4.5v 0.00 4.31 0.00 16.61

Figure 6: Pass rates and average number of move ratios (#MR) across varying depths. Top row:
Pass Rates for Tier 1 (Left) and Tier 2/3 (Right). Bottom row: Corresponding #MR analysis.

E DEPTH-WISE METRICS

Experimental Setting. We adopt the experimental protocol from Experiment 1, extending the eval-
uation to three independent trials per test case to ensure robustness. For this analysis, we mainly
focus exclusively on the top-performing models in Experiment 1. The comparative results are pre-
sented in Figure 6.

Key Observations & Insights.
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(1) Depth-vs-Performance. In the Tier 1 setting, top-tier models capable of systematic search (e.g.,
GPT-5) maintain high accuracy across Depths 1–4, , with pass rates decaying gracefully. Conversely,
less capable models (e.g., Grok-4) succeed at Depth 1 via direct policy but degrade immediately at
Depth 2. In Tier 2/3 settings, the performance cliff arrives earlier. While agents can manage Depth
1 tasks, we observe a drop starting at just Depth 2. A universal limit appears between Depth 4 and
8. Pass rates drop to 0.00 at Depth 8 across all settings, confirming that current planning capabilities
fail to track state over extended horizons.

(2) Depth-vs-#MR. We interpret the #MR metric not as a measure of “effort” scaling linearly with
difficulty, but as an indicator of cognitive mode. A low move count typically signals reliance on
direct intuition or trivial heuristics, while a high move count signals the activation of explicit search.
The switch is often a discrete jump rather than a gradual increase. A close examination of execution
traces reveals how agents dynamically adapt within a single trial. Typically, search-based agents
begin with low-cost heuristics, switching to high-volume search when those initial attempts fail. In
rare instances (e.g., Appendix L.2), we observe a further strategic shift: abandoning search entirely
to implement structured human algorithms, such as the Beginner’s Method (see Appendix J), as a
fallback.

F RELATED WORKS (CONT.)

Spatial Cognition. The ability to reason about three-dimensional space (Li et al., 2023; Pi et al.,
2024; Alayrac et al., 2022), a cornerstone of intelligence, relies on an internal spatial mental model
(Johnson-Laird, 1980; 1983) to infer unseen properties and predict the consequences of actions.
(Yang et al., 2025a; Zhang et al., 2024c) This concept is rooted in cognitive science and has been
a long-standing goal, with specialized systems like SLAM in robotics (Aulinas et al., 2008) and
NeRFs (Mildenhall et al., 2021) in computer vision designed to construct explicit 3D representa-
tions. However, the intrinsic ability of Large Language Models (LLMs) (Bai et al., 2025; Hurst
et al., 2024; Chen et al., 2024a), which excel at sequential data, to form and manipulate such spatial
models remains a critical open question. Recent works have begun to probe this (Xu et al., 2025a;
Zhang et al., 2024b; Chen et al., 2025c; Qi et al., 2025); for instance, MindCube (Liu et al., 2024)
evaluates an agent’s ability to reason about a static 3D scene by reasoning about its complete layout
from a few partial viewpoints. While also leveraging partial observations, CubeBench introduces
the distinct challenge of long-horizon interaction with a dynamic cube. Our work therefore shifts
the focus from reasoning about static perspectives to the more complex challenge of updating a
mental model through direct, state-altering interaction with the environment, emphasizing mental
simulation and long-horizon state tracking.

G CONFIGURATION OF TEST SPLIT

Our evaluation set is constructed across eight distinct levels of task difficulty. These levels are
determined by the state’s ”depth”, which is the optimal number of moves required to solve a given
cube configuration. For each of the eight difficulty levels, we sample five unique initial states.
Each state is then tested across four different environment settings derived from the three-tiered
framework: Full Symbolic (Tier 1), Full Visual (Tier 2), and the two Partial Visual modalities (Face
View and Vertex View) from Tier 3. This methodology yields a total of 160 unique evaluation
configurations (8 difficulties × 5 states × 4 settings) for each Large Language Model (LLM) agent.
To provide an estimate of the resources required, a single, complete evaluation run of these 160
configurations on GPT-5 consumes a total of 59.3 million tokens (50.2 million input tokens and 9.1
million output tokens), resulting in a total cost of approximately $153, based on the pricing of $1.25
per million input tokens and $10 per million output tokens.

H INTRODUCTION TO THE POLICY GRADIENT BASELINE

As a baseline for comparison in the Full Symbolic setting, we implement a classic reinforce-
ment learning agent based on the Policy Gradient (PG) method. Policy Gradient algorithms directly
optimize the parameters of a policy by estimating the gradient of the expected return. The core idea
is to adjust the policy’s parameters to increase the probability of taking actions that lead to higher
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cumulative rewards. Our implementation uses the REINFORCE algorithm, a foundational Monte
Carlo policy gradient method.

The objective of the REINFORCE algorithm is to maximize the expected total discounted reward,
J(θ), by updating the policy parameters θ in the direction of the gradient ∇θJ(θ). The policy
gradient theorem provides an estimate for this gradient:

∇θJ(θ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(at|st)Gt

]

where πθ(at|st) is the policy (the probability of taking action at in state st), and Gt =
∑T

k=t γ
k−trk

is the total discounted return from time step t onward.

Our specific implementation utilizes a Multi-Layer Perceptron (MLP) to represent the policy net-
work. The training is conducted using a curriculum learning strategy, where the agent is progres-
sively trained on more difficult tasks by increasing the scramble length of the cube. The detailed
configuration is as follows:

• Algorithm: REINFORCE
• Policy Network: A five-layer MLP with 256 neurons per layer and ReLU activation func-

tions.
• Optimizer: Adam with a learning rate of 5× 10−4.
• Discount Factor (γ): 0.99.
• Training Environment: We use 64 parallel vectorized environments for efficient data col-

lection.
• Update Rule: The policy is updated after collecting a rollout of 512 steps from each par-

allel environment, using a batch size of 512 episodes for the gradient update.
• Curriculum: Training uses the curriculum learning for better convergence. We train two

separate models, one for short-horizon tasks and one for long-horizon. For short-horizon
tasks, the model is trained sequentially on scramble depths of 1, 2, 3, and 4, with the number
of training timesteps scaled quadratically for each level (e.g., from 40,000 for depth 1 up
to 320,000 for depth 4). For long-horizon tasks, a separate model is initialized from the
converged short-horizon agent and then continues training on the more challenging depths
from 5 to 20 with 320K steps each level.

• Max Number of Make-moves During Evaluation: For short-horizon tasks, the maximum
number of making moves is set to 16. For long-horizon ones, they are set to 400.

I TOOLS FOR AGENTS

I.1 FUNDAMENTAL INTERACTION TOOLS

make move: This tool executes a single face rotation. It accepts one of 12 possible inputs corre-
sponding to standard Singmaster notation: F (Front), B (Back), L (Left), R (Right), U (Up), and D
(Down) for clockwise turns. A prime symbol (’) denotes a counter-clockwise rotation (e.g., F’).
Each call to this tool deterministically alters the cube’s internal state. Since the agent can generate
custom scripts in the Code block, this function can be called multiple times (e.g., in a loop) within
a single step to execute a sequence of moves.

get observation: This tool retrieves the current observation of the cube. The format of the
returned data is contingent upon the experimental tier:

• In Tier 1 (Full Symbolic State), it returns a 54-character string that symbolically repre-
sents the complete state of the cube.

• In Tier 2 (Full Visual State) and Tier 3 (Partial Visual State), it returns an image. De-
pending on the specific task configuration, this can be a complete 2D unfolded map of the
cube, an image of a single face (face view), or an image from a corner’s perspective (vertex
view).
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apply view transformation: Exclusive to the Tier 3 (Partial Visual State) setting, this
tool allows the agent to alter its viewpoint (e.g., up, down, left, right). This capability is essential for
actively exploring the cube to reconstruct its full state from a series of limited views.

I.2 AUXILIARY SOLVER TOOLS

StandardSolverTool and IdealSolverTool: These tools provide the agent with access to
a solver based on Kociemba’s two-phase algorithm (see Appendix K). They differ in a crucial aspect
related to data formatting. The underlying solver requires a specific input format that is distinct from
the state representation provided by the get observation tool.

• The StandardSolverTool requires the agent to perform the necessary format conver-
sion itself, thus testing its ability to transform data into a usable representation.

• The IdealSolverTool features a built-in converter. It allows the agent to input the
state in the environment’s native format and receive a solution directly, thereby bypassing
the format conversion challenge.

J HEURISTIC ALGORITHM FOR SOLVING THE RUBIK’S CUBE:
LAYER-BY-LAYER APPROACH

This subsection formalizes the heuristic algorithm for solving the 3×3 Rubik’s Cube using the layer-
by-layer (LBL) method.We drew on the method from solvethecube website 2 and adopted its illustra-
tions. The cube-solving process is divided into seven major steps, each focusing on solving specific
parts of the cube. Each step involves operations or algorithms that manipulate specific pieces, pro-
gressively solving the puzzle. As introduced in our discussion on reward functions (Sec. 3.1.4),
this LBL structure forms the basis of our Heuristic Metric (ϕheuristic). To calculate a score for any
given cube state s, we evaluate it against the seven steps of the LBL method. The state’s score,
ϕheuristic(s), is defined as the highest step number (from 0 for a scrambled cube to 7 for a solved
one) that the configuration has successfully completed.

Overall Strategy The solving process begins with the initial scrambled state S0 and progresses
through seven steps until the solved state S∗ is achieved. Each transformation corresponds to a
specific phase of the solution:

S0
f1−→ S1

f2−→ S2
f3−→ · · · f7−→ S∗

where:

f1: Forming the bottom cross.

f2: Positioning the bottom corners.

f3: Solving the second layer edges.

f4: Creating the top cross.

f5: Permuting the top edges.

f6: Positioning the top corners.

f7: Orienting the top corners.

Each step is represented by an algorithm or set of moves that solves a specific portion of the cube
without disrupting previously solved sections. See Fig. 7 for an intuitive schematic.

Step 1: Forming the Bottom Cross The first task is to form a cross on the bottom layer by
positioning the four edge pieces such that their colors match both the bottom face center and the
adjacent side centers. This step can be formalized as:

2URL:https://solvethecube.com/
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Figure 7: The diagram from solvethecube website illustrates a heuristic method for solving a Rubik’s
Cube: (a) Forming the bottom cross, (b) Positioning the bottom corners, (c) Solving the second layer
edges, (d) Creating the top cross, (e) Permuting the top edges, (f) Positioning the top corners, and
(g) Orienting the top corners.

fcross : Cbottom → C∗
bottom

where Cbottom = {E1, E2, E3, E4} represents the four edge pieces to be positioned, and C∗
bottom

represents the state where the bottom cross is correctly formed. The process involves identifying the
edge pieces and applying algorithms to move them into place.

Step 2: Positioning the Bottom Corners After the bottom cross is formed, the next objective is
to position the bottom corner pieces. Let Cbottom-corner = {C1, C2, C3, C4} represent the four corner
pieces to be positioned in the bottom layer. This step is formalized as:

fcorners : Cbottom-corner → C∗
bottom-corner

where C∗
bottom-corner represents the correctly positioned bottom corners. The operation involves ap-

plying specific algorithms to move each corner piece into its correct location without disturbing the
already solved bottom cross.

Step 3: Solving the Second Layer Edges The next step is to solve the edges of the second layer.
Let Csecond-layer-edge = {E5, E6, E7, E8} represent the four edge pieces that need to be positioned in
the middle layer. The operation can be formalized as:

fsecond-layer : Csecond-layer-edge → C∗
second-layer-edge

where C∗
second-layer-edge represents the state where the second layer edges are correctly positioned. The

goal is to move the edge pieces from the top layer to the second layer, maintaining the solved bottom
layer.

Step 4: Creating the Top Cross After solving the second layer, the next objective is to create a
cross on the top layer. Let Ctop-edge = {E9, E10, E11, E12} represent the four edge pieces that need
to be positioned on the top layer. This step can be formalized as:

ftop-cross : Ctop-edge → C∗
top-edge
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where C∗
top-edge represents the state where the top layer edges are correctly aligned. The transforma-

tion for each edge piece is represented by:

Ei

∆Ei−−−→ E∗
i for i ∈ {9, 10, 11, 12}

The goal is to position the edge pieces correctly on the top layer without disturbing the solved
portions of the bottom and second layers.

Step 5: Permuting the Top Edges Once the top cross is formed, the next objective is to permute
the top layer edge pieces into their correct positions. This operation can be formalized as:

fpermute-edges : C
∗
top-edge → C∗∗

top-edge

where C∗∗
top-edge represents the state where the top layer edges are correctly permuted. The goal is to

apply specific algorithms that permute the top edges into their correct positions.

Step 6: Positioning the Top Corners After the top edges are permuted, the next step is to position
the top layer corners. Let Ctop-corner = {C13, C14, C15, C16} represent the four top corner pieces.
This operation can be formalized as:

fposition-corners : Ctop-corner → C∗
top-corner

where C∗
top-corner represents the state where the top corners are positioned correctly. The goal is to

apply specific algorithms to move the top layer corner pieces into their correct positions.

Step 7: Orienting the Top Corners The final step is to orient the top corners, ensuring that the
top face becomes uniform in color. This operation can be formalized as:

forient-corners : C
∗
top-corner → S∗

where S∗ represents the solved state of the Rubik’s Cube. The transformation for each corner piece
is represented by:

Ci

∆Ci−−−→ C∗
i for i ∈ {13, 14, 15, 16}

The goal is to apply specific algorithms to orient the top corners without disturbing the already
solved portions of the cube.

Mathematical Summary of the Layer-by-Layer Approach The Rubik’s Cube solution can be
mathematically summarized as a series of state transformations:

S0
fcross−−→ S1

fcorners−−−→ S2
fsecond-layer−−−−−→ S3

ftop-cross−−−−→ S4
fpermute-edges−−−−−−→ S5

fposition-corners−−−−−−→ S6
forient-corners−−−−−−→ S∗

Each transformation fcross, fcorners, . . . , forient-corners corresponds to a specific set of moves that trans-
form the cube toward the solved state. By applying these transformations in sequence, the cube is
solved layer by layer.

K CUBE SOLVERS (TWO-PHASE AND OPTIMAL)

This appendix introduces the two solvers used in our benchmark: the Two-Phase Solver and the Op-
timal Solver. The two-phase solver is used as the basic component for StandardSolverTool
and IdealSolverTool, while the optimal solver is used for generating the testcases. In the fol-
lowing , we first outline the mathematical background for the two-phase method, and then describe
the I/O formats and the roles each solver plays in our experiments.
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K.1 INPUT AND OUTPUT FORMATS FOR CUBE STATE

To interact with solvers, the cube state must be expressed in a precise facelet string representation:
a fixed ordering of all 54 stickers. Figure 8 illustrates the two indexing conventions used in our
system: (1) the Initial Format used by our environment, and (2) the Solver Format required by the
Kociemba two-phase solver.

Initial Format. The environment internally stores the cube as a 2D unfolded cross (see left of
Fig. 8). Each sticker is labeled by its face and index, e.g. U1–U9 for the Up face, R1–R9 for the
Right face, etc. Within each face, indices increase row by row from top-left to bottom-right:

U1, U2, U3, U4, U5, U6, U7, U8, U9,

and similarly for R,F,D,L,B.

The environment’s concatenation order follows the visual “cross net” layout: first the Up face, then
Left–Front–Right in a row, followed by Down, and finally the Back face. Explicitly, the 54-character
string is constructed as

(F1, . . . , F9, B1, . . . , B9, L1, . . . , L9, R1, . . . , R9, U1, . . . , U9, D1, . . . , D9).

Solver Format. The two-phase solver requires the cube state as a 54-character string, concatenated
in the strict order

(U1, . . . , U9, R1, . . . , R9, F1, . . . , F9, D1, . . . , D9, L1, . . . , L9, B1, . . . , B9).

Each character encodes the color on the corresponding facelet. For example, the string UBL...
means: - position U1 has the U-color, - position U2 has the B-color, - position U3 has the L-color,
and so on. This flattened sequence is the standard facelet string convention used in Kociemba’s
solver.

Conversion. Figure 8 shows how the Initial Format is mapped into the Solver Format. This con-
version step is crucial: any misalignment (e.g., rotated faces or incorrect indexing) produces invalid
solver inputs and prevents the plan from being executed correctly. The Standard-Solver Agent must
handle the format conversion by itself, whereas the Ideal-Solver Agent has the conversion built in
IdealSolverTool and requires no further effort.

Initial Format

U1 U2 U3

U4 U5 U6

U7 U8 U9

F1 F2 F3

F4 F5 F6

F7 F8 F9

L1 L2 L3

L4 L5 L6

L7 L8 L9

R1 R2 R3

R4 R5 R6

R7 R8 R9

D1 D2 D3

D4 D5 D6

D7 D8 D9

B1 B2 B3

B4 B5 B6

B7 B8 B9

U1 U2 U3

U4 U5 U6

U7 U8 U9

F1 F2 F3

F4 F5 F6

F7 F8 F9

L1 L2 L3

L4 L5 L6

L7 L8 L9

R1 R2 R3

R4 R5 R6

R7 R8 R9

D1 D2 D3

D4 D5 D6

D7 D8 D9

B1 B2 B3

B4 B5 B6

B7 B8 B9

Solver Format

Figure 8: Input/Output formats of cube state. Left: Initial Format used in our environment. Right:
Solver Format required by the two-phase solver. Both correspond to the same cube state but differ
in indexing layout and concatenation order.

K.2 TWO-PHASE SOLVER

Mathematical Background. Let G0 denote the full Rubik’s Cube group generated by face turns
in the half-turn metric (HTM). Using standard Singmaster letters, a convenient presentation is
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G0 = ⟨U,D,R,L, F,B⟩
= ⟨U,U ′, U2, D,D′, D2, R,R′, R2, L, L′, L2, F, F ′, F 2, B,B′, B2⟩.

That is, quarter turns, their inverses, and half turns generate the same group.

The Two-Phase method (Kociemba; wik) reduces an arbitrary state to a structured subgroup and
then completes the solve inside that subgroup. Let H (often also written as G1) be the Phase-1
target subgroup,

H =
{
g ∈ G0

∣∣all edges oriented, all corners oriented,

and the four UD-slice edges lie in the UD slice
}
.

Equivalently, H is exactly the set of states reachable using the restricted Phase-2 move set

⟨U,U ′, U2, D,D′, D2, R2, L2, F 2, B2 ⟩,
since these moves preserve the above invariants. Finally,

{e} = G2 ⊂ H ⊂ G0,

where e is the identity (the solved cube). The overall decomposition is

Phase 1: G0 → H (reduce to H) Phase 2: H → {e} (solve within H).

In practice, both phases use depth-iterative search guided by large pruning (distance) tables; Phase 1
explores cosets of H in G0, and Phase 2 searches within H down to e.

Algorithmic sketch. Phase 1 finds a short maneuver (typically ≤ 12 HTM moves) that sends the
current state into H . Phase 2 continues from H using only U±1, U2, D±1, D2, R2, L2, F 2, B2 to
reach the identity. Due to strong heuristics and symmetry reductions, solutions are obtained quickly
and are usually ≤ 20 moves, though not formally guaranteed to be optimal (Kociemba).

Typical properties. The method is fast, yields short, clean plans, and is well-suited as a callable
planning tool for agents.

K.3 OPTIMAL SOLVER (IDA* WITH COMPLETE PRUNING)

Algorithmic sketch. The Optimal Solver performs Iterative Deepening A* (IDA*) search (Korf,
1985; 1997), guided by admissible heuristics derived from large pattern/pruning databases. IDA*
combines the space-efficiency of depth-first search with the optimality guarantees of A*. The search
depth limit is increased incrementally; once a solution is found at depth d, minimality is certified
since all shorter paths have been exhausted.

Algorithm 1 IDA* with Pattern Database Heuristics
1: function IDA*(s0)
2: bound← h(s0)
3: while true do
4: t← SEARCH(s0, 0, bound)
5: if t =∞ then return failure
6: else if t = solution then return solution path
7: else
8: bound← t
9: function SEARCH(s, g, bound)

10: f ← g + h(s)
11: if f > bound then return f

12: if s is goal then return solution
13: min←∞
14: for each successor s′ of s do
15: t← SEARCH(s′, g + 1, bound)
16: if t = solution then return solution
17: if t < min then
18: min← t

return min
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Heuristic. The pruning tables (pattern databases) precompute exact solution lengths for subprob-
lems such as subsets of edges or corners. During search, these values serve as admissible heuristics,
drastically reducing the number of expanded states.

Typical properties. Under HTM, the 3 × 3 × 3 cube can always be solved within 20 moves,
with some positions requiring the exact 20 moves. (Rokicki et al., 2014; 2010). While run time
can be seconds on easy instances, hard positions near the 20-move depth may require minutes to
hours. However, the returned solution is provably optimal, making the solver suitable for dataset
construction and difficulty certification.

Table 7: Two-Phase vs. Optimal Solvers.

Solver Optimality Role
Two-Phase Near-optimal Agent tool
Optimal Provably optimal Testcase construction

L CASE STUDIES

• Sec. L.1: An agent solves the cube by applying a heuristic beam search.

• Sec. L.2: An agent tries first with IDDFS and then with the Beginner’s Method.

• Sec. L.3: A less capable agent attempts a random walk (brute-force) and fails to make progress.

• Sec. L.4: An agent implements a meet-in-the-middle search, but its pruning strategies are insuffi-
cient to overcome the exponential state space.

• Sec. L.5: An agent bypasses visual reasoning, relying exclusively on a heuristic reward to guide
its symbolic search.

• Sec. L.6: A capable agent is misled by a simplistic reward and only succeeds after abandoning it
in favor of its own subgoal-based reasoning.

• Sec. L.7: A simple external reward successfully guides an agent’s search, leading to incremental
progress.

• Sec. L.8: An agent learns to use an external planner by systematically experimenting with input
formats.

• Sec. L.9: An agent succeeds on a structured visual task by using a symbolic shortcut but fails on
a distorted view that requires genuine spatial reasoning.

L.1 BASIC AGENT – BEAM SEARCH

Model Agent Type Input Reward Depth

GPT-5 Basic Full Symbolic No reward 8

In this case, GPT-5 applies a heuristic beam search strategy to solve the Rubik’s Cube. Initially, the
agent deduces the exact permutations of the six basic moves (F, B, U, D, R, L) using randomized
scrambles and signature matching. With these move permutations, the agent can simulate cube state
transitions internally, allowing it to conduct search without repeated environment queries.

The search itself is implemented as a beam-style search with heuristic pruning:

Heuristic function: The agent uses a simple facelet mismatch count to evaluate each state relative
to the solved configuration.

Beam width: At each depth, candidate states are sorted by heuristic value, and only the top 1,500
candidates are retained (frontier = candidates[:beam width]), limiting the branching
factor.
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Pruning rules: Immediate inverse moves are skipped (if last and inverse[last] ==
mv: continue), and already visited states are not revisited (if new state in visited:
continue).

During search, the frontier grows progressively with depth (e.g., 12 → 114 → 1,068 candidates
in the first three layers), demonstrating layered expansion with controlled breadth. Eventually, the
agent identifies a four-move solution, applies it, and verifies that the cube reaches the solved state.

Step 3

Thought.

Thought: The previous attempt failed because the assumed face rotation orientations for U, D, R, L did
not match the environment. I will now robustly deduce the exact permutation for each basic move (F, B,
U, D, R, L) by signature matching: I’ll run multiple randomized scrambles, snapshot the state before
and after applying the move, and then reconstruct the index permutation by matching the K-length color
signature for each index. This is independent of face orientations. With all six move permutations
learned, I’ll perform a heuristic beam search offline to find a solution, then apply the move sequence
with make_move and verify. If the cube becomes solved, I’ll call final_answer("").

Code.

import random
import time

# Utilities
def inverse_move(mv):

return mv[:-1] if mv.endswith("'") else mv + "'"

def apply_seq(seq):
for m in seq:

make_move(m)

def invert_seq(seq):
return [inverse_move(m) for m in reversed(seq)]

def deduce_move_by_signature(move, trials=7, scramble_len=12):
# Ensure we start from a known base and return to it after each trial and at the end.
base0 = get_observation()
pre_list = []
post_list = []

# Allowed moves for scrambling
moves = ['F','B','U','D','R','L']
all_moves = moves + [m+"'" for m in moves]

for t in range(trials):
# Make a scramble that avoids immediate inverses
scramble = []
last = None
for k in range(scramble_len):

while True:
m = random.choice(all_moves)
if last and inverse_move(last) == m:

continue
scramble.append(m)
last = m
break

# Apply scramble
apply_seq(scramble)
s_pre = get_observation()
# Apply the move to learn
make_move(move)
s_post = get_observation()
# Undo the move
make_move(inverse_move(move))
# Undo scramble
apply_seq(invert_seq(scramble))
# Verify we returned to base0
if get_observation() != base0:

print("Warning: state mismatch after undoing scramble during deduction of", move)
pre_list.append(s_pre)
post_list.append(s_post)
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# Build signature vectors for each index
pre_sigs = ["".join(pre[i] for pre in pre_list) for i in range(54)]
post_sigs = ["".join(post[i] for post in post_list) for i in range(54)]

# Map post index j to pre index i such that signatures match
perm = [None]*54
# Build dict from signature to indices for pre
sig_to_indices = {}
for i, sig in enumerate(pre_sigs):

sig_to_indices.setdefault(sig, []).append(i)

ambiguous = []
missing = []
for j, sig in enumerate(post_sigs):

candidates = sig_to_indices.get(sig, [])
if len(candidates) == 1:

perm[j] = candidates[0]
elif len(candidates) == 0:

missing.append(j)
else:

ambiguous.append((j, candidates))

if missing or ambiguous:
# Try additional trials to disambiguate
extra = 0
max_extra = 6
while (missing or ambiguous) and extra < max_extra:

extra += 1
# Do one extra trial
scramble = []
last = None
for k in range(scramble_len):

while True:
m = random.choice(all_moves)
if last and inverse_move(last) == m:

continue
scramble.append(m)
last = m
break

apply_seq(scramble)
s_pre = get_observation()
make_move(move)
s_post = get_observation()
make_move(inverse_move(move))
apply_seq(invert_seq(scramble))
pre_list.append(s_pre)
post_list.append(s_post)
# Recompute signatures
pre_sigs = ["".join(pre[i] for pre in pre_list) for i in range(54)]
post_sigs = ["".join(post[i] for post in post_list) for i in range(54)]
sig_to_indices = {}
for i, sig in enumerate(pre_sigs):

sig_to_indices.setdefault(sig, []).append(i)
perm = [None]*54
missing = []
ambiguous = []
for j, sig in enumerate(post_sigs):

candidates = sig_to_indices.get(sig, [])
if len(candidates) == 1:

perm[j] = candidates[0]
elif len(candidates) == 0:

missing.append(j)
else:

ambiguous.append((j, candidates))

if missing or ambiguous:
print(f"Could not uniquely deduce mapping for {move}. Missing={len(missing)},
ambiguous={len(ambiguous)}")
return None

# Validate by applying to a fresh snapshot
base = get_observation()
make_move(move)
s1 = get_observation()
make_move(inverse_move(move))
# Build simulated application
sim = "".join(base[perm[i]] for i in range(54))
if sim != s1:

print(f"Validation failed for move {move}.")
return None

return perm

# Learn all base move permutations
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moves = ['F','B','U','D','R','L']
perm_map = {}
for mv in moves:

print("Learning permutation for", mv)
p = deduce_move_by_signature(mv, trials=7, scramble_len=10)
if p is None:

print("Failed to learn move:", mv)
# Try a second attempt with more trials if failed
p = deduce_move_by_signature(mv, trials=10, scramble_len=12)

if p is None:
print("Giving up on move:", mv)
break

perm_map[mv] = p

if len(perm_map) != 6:
print("Failed to learn all permutations. Learned:", list(perm_map.keys()))

else:
# Build prime move perms
def invert_perm(perm):

inv = [0]*54
for i, src in enumerate(perm):

inv[src] = i
return inv

for mv in moves:
perm_map[mv+"'"] = invert_perm(perm_map[mv])

def sim_apply_state(state, move):
perm = perm_map[move]
return "".join(state[perm[i]] for i in range(54))

# Solved target
solved = "R"*9 + "G"*9 + "B"*9 + "Y"*9 + "O"*9 + "W"*9

def heuristic(state):
# Simple facelet mismatch
return sum(1 for i,ch in enumerate(state) if ch != solved[i])

# Beam search
all_moves = moves + [m+"'" for m in moves]
inverse = {m: m+"'" for m in moves}
inverse.update({m+"'": m for m in moves})

start = get_observation()
if start == solved:

final_answer("")
else:

beam_width = 1500
max_depth = 20

frontier = [(start, [])]
visited = set([start])
best_h = heuristic(start)
print("Initial heuristic:", best_h)

solved_path = None

for depth in range(1, max_depth+1):
candidates = []
for state, path in frontier:

last = path[-1] if path else None
for mv in all_moves:

if last and inverse[last] == mv:
continue

new_state = sim_apply_state(state, mv)
if new_state in visited:

continue
visited.add(new_state)
new_path = path + [mv]
if new_state == solved:

solved_path = new_path
break

h = heuristic(new_state)
candidates.append((h, new_state, new_path))

if solved_path is not None:
break

if solved_path is not None:
print("Found solution of length", len(solved_path))
break

candidates.sort(key=lambda x: (x[0], len(x[2])))
frontier = [(st, p) for (h, st, p) in candidates[:beam_width]]
print(f"Depth {depth}: frontier={len(frontier)}, best_h_so_far={min([h for (h,_,_) in
candidates], default=best_h)}")
if not frontier:
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break

if solved_path is None:
print("Beam search did not find a solution.")

else:
print("Applying solution:", " ".join(solved_path))
apply_seq(solved_path)
final_state = get_observation()
print("Final state:", final_state)
if final_state == solved:

final_answer("")
else:

print("Solution application did not reach solved state. Mismatches:",
heuristic(final_state))

Observation.

Learning permutation for F
Learning permutation for B
Learning permutation for U
Learning permutation for D
Learning permutation for R
Learning permutation for L
Initial heuristic: 36
Depth 1: frontier=12, best_h_so_far=31
Depth 2: frontier=114, best_h_so_far=22
Depth 3: frontier=1068, best_h_so_far=12
Found solution of length 4
Applying solution: B R' F U
Final state: RRRRRRRRRGGGGGGGGGBBBBBBBBBYYYYYYYYYOOOOOOOOOWWWWWWWWW

Solved.

L.2 BASIC AGENT – IDDFS AND BEGINNER’S METHOD

Model Agent Type Input Reward Depth

gpt-oss-120b Basic Full Symbolic No reward 8

In this case, the agent first performs a depth-limited iterative deepening search
dfs(depth, max_depth, last_face) systematically explores move sequences, applying each candi-

date move with apply(m) and backtracking via undo(m) . Pruning strategies are directly reflected
in the code: if last_face is not None and face_of(m) == last_face: continue prevents consecutive moves
on the same face, and is_inverse(a, b) is used to avoid immediate inverse moves. Early goal
checks ( if is_solved_state(get_observation()) ) terminate branches once a solution is found. Iterative
deepening is implemented by looping over depth limits ( for d in range(limit_depth+1) ).

Unfortunately, several searches failed. After a few failures, it attempted a different strategy.

In its thoughts (Steps 8-10), the agent correctly outlines the sub-goals of the beginner’s method,
from building the white cross to solving the final layer with OLL (Orientation of the Last Layer) and
PLL (Permutation of the Last Layer) algorithms.

However, the agent’s execution is undermined by a subtle but critical flaw in its internal world
model—an incorrect mapping of the cube’s indices to its symbolic representation. The agent itself
explicitly identifies this error in a moment of self-correction in Step 13, noting that ”earlier mappings
had mistakes.” Despite this high-level awareness, the cognitive load of implementing the entire long-
horizon plan within a single, complex code block introduces new, unperceived errors. The final
outcome is a failure, where the cube’s state is no closer to being solved.

Step 4

Thought.
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Thought: The previous searches were too deep or inefficient. I will attempt a carefully pruned
iterative deepening search up to depth 5 using a reduced move set that includes quarter and half turns,
with early goal checks at every node and strict pruning (no repeating the same face, and no immediate
inverses). This should keep the number of operations manageable. If a solution exists within 5 moves,
it will be found and applied directly on the real cube; then I will call final_answer("").

Code.

# Depth-limited IDDFS with pruning and early goal checks.
# Uses moves including half turns (implemented as two quarter turns).

from time import time

def is_solved_state(s):
return (all(c == 'R' for c in s[0:9]) and

all(c == 'G' for c in s[9:18]) and
all(c == 'B' for c in s[18:27]) and
all(c == 'Y' for c in s[27:36]) and
all(c == 'O' for c in s[36:45]) and
all(c == 'W' for c in s[45:54]))

start = get_observation()
if is_solved_state(start):

final_answer("")
else:

# Define move variants with half-turns
basic_faces = ['F','B','L','R','U','D']
moves = []
for f in basic_faces:

moves.append(f)
moves.append(f+"'")
moves.append(f+"2")

# Helper to apply and undo moves in the environment
def apply(m):

if m.endswith("2"):
face = m[0]
make_move(face)
make_move(face)

else:
make_move(m)

def undo(m):
if m.endswith("2"):

face = m[0]
make_move(face)
make_move(face)

else:
# inverse of X is X', inverse of X' is X
if m.endswith("'"):

make_move(m[0])
else:

make_move(m+"'")
def face_of(m):

return m[0]
def is_inverse(a, b):

# Treat 2-turn as self-inverse
if a[0] != b[0]:

return False
if a.endswith("2") and b.endswith("2"):

return True
if a.endswith("'") and (b == a[0]):

return True
if (a == a[0]) and b.endswith("'") and (b[0] == a[0]):

return True
return False

max_nodes = 300000 # safeguard against excessive search
node_count = 0
found = False
solution_path = []

def dfs(depth, max_depth, last_face):
nonlocal node_count, found, solution_path
if found:

return True
node_count += 1
if node_count > max_nodes:

return False
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# Early goal check at every node
if is_solved_state(get_observation()):

found = True
return True

if depth == max_depth:
return False

for m in moves:
# pruning: avoid repeating the same face consecutively
if last_face is not None and face_of(m) == last_face:

continue
# pruning: avoid immediate inverse with previous move in path if exists
prev = solution_path[-1] if solution_path else None # note: we append on success; here
prev is not applicable
# Apply move
apply(m)
if dfs(depth+1, max_depth, face_of(m)):

solution_path.append(m)
return True

# Backtrack
undo(m)

return False

# Iterative deepening up to depth 5
start_time = time()
limit_depth = 5
for d in range(limit_depth+1):

if dfs(0, d, None):
break

# If found, the moves leading to solution were applied in-place during recursion.
if found and is_solved_state(get_observation()):

final_answer("")
else:

print(f"Search exhausted (nodes={node_count}). Could not solve within depth {limit_depth}.")

Observation.

<Killed by the Python interpreter>
Maybe there is an infinite loop somewhere in the code, or you're just asking too many calculations.

Step 5, 6 still failed. Changed strategy at Step 7.

Thought.

Thought: Our previous brute-force search approaches hit interpreter limits. I will now implement a
deterministic, step-by-step white-cross builder (beginner’s method) that:
- Analyzes the current state string (observation-type is state_string).
- Locates each white edge (W with its partner color).
- Applies targeted moves to:

- Lift the white edge to the U layer with white facing up using single face turns.
- Rotate U (and D when needed) to align the edge above its correct face.
- Insert with a double face turn (X2) to place it correctly in the D (white) cross while keeping
previously placed edges intact.

I will implement robust mapping for edges and use only simple, safe moves (F/F'/F2, R/R'/R2, B/B'/B2,
L/L'/L2, U/U', D/D'). I will repeat for the four target white edges: WR (to FD), WY (to RD), WG (to
BD), WB (to LD). After building the white cross, I will check if the cube is already solved; if it is,
I will call final_answer(""). If not, we can proceed further in subsequent steps (but for now, try to
get the cross in place). Let's execute this first stage.

Code.

# Build the white cross step-by-step using targeted moves.
# Faces and centers per the problem:
# F (front) = Red (R)
# B (back) = Green (G)
# L (left) = Blue (B)
# R (right) = Yellow (Y)
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# U (up) = Orange (O)
# D (down) = White (W)

# Helper: Apply a move, double move, inverse move
def do(m):

make_move(m)

def do2(face):
make_move(face); make_move(face)

def inv(m):
return m[:-1] if m.endswith("'") else (m + "'")

def is_solved_state(s):
return (all(c == 'R' for c in s[0:9]) and

all(c == 'G' for c in s[9:18]) and
all(c == 'B' for c in s[18:27]) and
all(c == 'Y' for c in s[27:36]) and
all(c == 'O' for c in s[36:45]) and
all(c == 'W' for c in s[45:54]))

# Centers indices
def centers_of(state):

return {
'F': state[4], # should be 'R'
'B': state[13], # should be 'G'
'L': state[22], # should be 'B'
'R': state[31], # should be 'Y'
'U': state[40], # should be 'O'
'D': state[49], # should be 'W'

}

# Edge map: name -> ((face1, idx1), (face2, idx2))
edge_defs = {

'UF': (('U', 42), ('F', 1)),
'UR': (('U', 41), ('R', 28)),
'UB': (('U', 37), ('B', 10)),
'UL': (('U', 39), ('L', 19)),
'FR': (('F', 5), ('R', 30)),
'FL': (('F', 3), ('L', 23)),
'FD': (('F', 7), ('D', 46)),
'RB': (('R', 32), ('B', 12)),
'RD': (('R', 34), ('D', 50)),
'LB': (('L', 21), ('B', 14)),
'LD': (('L', 25), ('D', 48)),
'BD': (('B', 16), ('D', 52)),

}

# For each face's "UX" and "XD" reference
UX_of = {'F': 'UF', 'R': 'UR', 'B': 'UB', 'L': 'UL'}
XD_of = {'F': 'FD', 'R': 'RD', 'B': 'BD', 'L': 'LD'}

# Rotations of U that cycle UF->UR->UB->UL->UF and likewise the edge names
U_cycle = ['UF', 'UR', 'UB', 'UL']
# Rotations of D that cycle FD->LD->BD->RD->FD under D' (counterclockwise) or FD->RD->BD->LD->FD under
D
D_cycle_clockwise = ['FD', 'RD', 'BD', 'LD']

# Helper to read current state char at a given absolute index
def read(state, idx):

return state[idx]

def get_edge_colors(state, edge_name):
(f1, i1), (f2, i2) = edge_defs[edge_name]
return (state[i1], state[i2])

def locate_white_edge_partner(state, partner_color):
# Returns (edge_name, where_white) where where_white in {0,1} indexes which of the two stickers is
white
for name, ((f1, i1), (f2, i2)) in edge_defs.items():

c1, c2 = state[i1], state[i2]
if (c1 == 'W' and c2 == partner_color):

return name, 0
if (c2 == 'W' and c1 == partner_color):

return name, 1
return None, None

# Rotate U k times (k in {0..3})
def U_times(k):

for _ in range(k % 4):
do('U')

# Rotate D k times clockwise
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def D_times(k):
for _ in range(k % 4):

do('D')

# Align a U-layer edge to be at a specific UX position by rotating U
def align_U_edge_to(state, edge_name_current, target_UX):

# edge_name_current must be one of U-layer edges: 'UF','UR','UB','UL'
# compute offset
cur_idx = U_cycle.index(edge_name_current)
tgt_idx = U_cycle.index(target_UX)
k = (tgt_idx - cur_idx) % 4
U_times(k)

# Align a D-layer edge to be at a specific XD position by rotating D
def align_D_edge_to(state, edge_name_current, target_XD):

cur_idx = D_cycle_clockwise.index(edge_name_current)
tgt_idx = D_cycle_clockwise.index(target_XD)
k = (tgt_idx - cur_idx) % 4
D_times(k)

# Given an edge in the middle layer, lift it to U with white sticker on U using a single move.
def lift_middle_white_to_U(state, edge_name, white_on_face):

# white_on_face is 'F','R','B','L' representing which face holds the white sticker for this edge.
# For each middle edge we choose the face turn that moves it to the U layer with white on U.
if edge_name == 'FR':

if white_on_face == 'F':
do("F'")

elif white_on_face == 'R':
do("R")

elif edge_name == 'FL':
if white_on_face == 'F':

do("F")
elif white_on_face == 'L':

do("L'")
elif edge_name == 'RB':

if white_on_face == 'R':
do("R'")

elif white_on_face == 'B':
do("B")

elif edge_name == 'LB':
if white_on_face == 'L':

do("L")
elif white_on_face == 'B':

do("B'")
else:

# Not a middle edge
pass

# If in U-layer but white on side, drop it to D with white on D using a single face turn.
def drop_U_side_white_to_D(state, edge_name, white_on_face):

# edge_name one of UF,UR,UB,UL; white_on_face in {'F','R','B','L'}
if edge_name == 'UF' and white_on_face == 'F':

do("F")
elif edge_name == 'UR' and white_on_face == 'R':

do("R")
elif edge_name == 'UB' and white_on_face == 'B':

do("B")
elif edge_name == 'UL' and white_on_face == 'L':

do("L")

# Eject from D when white on side: bring under that face then do that face' to bring to middle/U
def eject_D_side_white(state, edge_name, white_on_face):

# edge_name in {'FD','RD','BD','LD'}, white_on_face in {'F','R','B','L'}
# First rotate D to bring it under the face that has the white sticker
target = white_on_face + 'D'
align_D_edge_to(state, edge_name, target)
# Now do the inverse face to move the edge up into the middle layer where we can lift it in next
steps
do(white_on_face + "'")

# After white edge is on U face with white up at some U*, align above its target face and insert with
X2
def insert_from_U_white_up(state, target_face):

# target_face in {'F','R','B','L'}
# Bring the white edge to UX position by U-turns, then do target_face2
# To know current UX position, find WR edge in U layer:
# But we call this only after aligning with previous helpers; safe to rotate U until the partner
color aligns with target center
# We'll explicitly rotate U until the edge is at UX.
# Determine which UX currently holds the (W, partner) edge
desired_edge_name = UX_of[target_face]
# Find the current U-edge location of the piece with colors {W, centers[target_face]}
state2 = get_observation()
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centers = centers_of(state2)
partner = centers[target_face]
# Find among U-edges where this WR is
u_positions = ['UF','UR','UB','UL']
current_u = None
where_white = None
for en in u_positions:

(f1, i1), (f2, i2) = edge_defs[en]
c1, c2 = state2[i1], state2[i2]
if (c1 == 'W' and c2 == partner):

current_u, where_white = en, f1 # white on f1
break

if (c2 == 'W' and c1 == partner):
current_u, where_white = en, f2
break

if current_u is None:
return

# Rotate U to bring it to UX_of[target_face]
align_U_edge_to(state2, current_u, desired_edge_name)
# Perform the double turn to insert
do2(target_face)

# Main white cross builder
def build_white_cross():

# Process targets in order: F (R), R (Y), B (G), L (B)
order = ['F','R','B','L']
max_outer_iters = 80
for face in order:

iters = 0
while iters < 40:

iters += 1
st = get_observation()
ctr = centers_of(st)
partner = ctr[face] # desired partner color for this edge
# Check if it's already solved at XD with correct orientation
xd = XD_of[face]
(f1, i1), (f2, i2) = edge_defs[xd]
c1, c2 = st[i1], st[i2]
# Determine orientation at XD: white on D position?
if (c1 == partner and c2 == 'W') or (c2 == partner and c1 == 'W'):

# Additionally ensure white is on D (i.e., the index corresponding to D in this XD)
# For XD edge, the pair is (face, idx_face), (D, idx_down). The D index may be either
i1 or i2.
# Identify which is D:
down_idx = i1 if f1 == 'D' else (i2 if f2 == 'D' else None)
if down_idx is not None and st[down_idx] == 'W':

# Solved for this edge
break

# Otherwise, locate this white-partner edge
edge_name, pos = locate_white_edge_partner(st, partner)
if edge_name is None:

# Should not happen
break

# Determine which faces the two stickers are on and their colors
(ef1, ei1), (ef2, ei2) = edge_defs[edge_name]
col1, col2 = st[ei1], st[ei2]

# Case handling
if edge_name in ['UF','UR','UB','UL']:

# U layer
# Identify where white is: on U or on side
white_on = None
if st[ei1] == 'W':

white_on = ef1
elif st[ei2] == 'W':

white_on = ef2
if white_on == 'U':

# Rotate U to UX and insert with face2
insert_from_U_white_up(st, face)

else:
# White on side face in U layer: drop to D with single move on that face
drop_U_side_white_to_D(st, edge_name, white_on)

elif edge_name in ['FR','FL','RB','LB']:
# Middle layer: lift to U with white on U
white_on = None
if st[ei1] == 'W':

white_on = ef1
elif st[ei2] == 'W':

white_on = ef2
lift_middle_white_to_U(st, edge_name, white_on)

elif edge_name in ['FD','RD','BD','LD']:

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

# D layer
# Determine if white is on D or on side
white_on = None
if st[ei1] == 'W':

white_on = ef1
elif st[ei2] == 'W':

white_on = ef2
if white_on == 'D':

# Rotate D to bring under target face, insert with face2
current_xd = edge_name
align_D_edge_to(st, current_xd, XD_of[face])
do2(face)

else:
# White on side at D layer: eject up to middle/U
eject_D_side_white(st, edge_name, white_on)

else:
# Should not happen
pass

# Next target
# End for faces

# First, if solved already, finish
st0 = get_observation()
if is_solved_state(st0):

final_answer("")
else:

# Build white cross
build_white_cross()
# Check if solved by chance, else continue later
st1 = get_observation()
if is_solved_state(st1):

final_answer("")
else:

# Print progress: show current state to proceed next steps in subsequent iteration
print(get_observation())

Observation.

OGGYRRRBBORWRGBWGGYWBYBGYOBWOYOYGOYGROOBOYGWBWRRBWWRWY

Step 8

Thought.

I will continue solving using the beginner’s method. I already built some progress toward the white
cross. Next, I will insert the four white corners into the D (white) layer without disturbing the
cross, using standard triggers:
- For DFR (from UFR): R U R' U'
- For DRB (from URB): B U B' U'
- For DBL (from UBL): L' U' L U
- For DLF (from ULF): F' U' F U

I will:
- Define corner indices.
- Detect each target white corner by its color set {W, center(face1), center(face2)}.
- If found in D but unsolved: rotate D to bring it to the correct slot and eject with the corresponding
trigger until it pops to U.
- If found in U: rotate U to place above its target slot, then apply the corresponding trigger
repeatedly until solved.
- Repeat for all four corners, then print the current state. If solved, I will call final_answer("").

Step 9

Thought.

I will proceed with the next stage of the beginner’s method: solve the middle layer edges (second
layer) without disturbing the completed white layer. I will:

- Identify middle layer target edges (FR, FL, RB, LB).

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

- Insert correct U-layer edges that do not contain U or D colors (i.e., not containing O or W).
- If no such U edges exist, eject an incorrectly placed middle edge to the U layer, then insert it
correctly.
I will then print the updated cube state (or call final_answer("") if by chance the cube becomes
solved).

Step 10

Thought.

The cube now has the first two layers solved. I will complete the last layer using beginner’s method:
- OLL: orient U (Orange) edges to a cross using the FRUR'U'F' sequence with correct U rotations; then
orient corners using Sune/anti-Sune until all U stickers are Orange.
- PLL: first permute last-layer corners using U R U' L' U R' U' L; then permute last-layer edges using
Ua/Ub permutations. I will implement helper checks and safe application with inverses so I can revert
if a guess doesn’t solve. I’ll check for solved after each stage and finish with final_answer("") if
solved.

Step 13

Thought.

I will correct the cube indexing for edges and corners (earlier mappings had mistakes), then run a full
beginner-method pipeline: build the white cross, insert white corners, solve middle-layer edges, and
finish with OLL and PLL. I will expand any \2" turns into two quarter turns so the environment accepts
them. I will check for solved after each phase, and if solved at any point, I will immediately call
final_answer("").

Code.

# Corrected, end-to-end beginner method solver with accurate index mappings and safe "2" expansion.

# ========== Helpers and Mappings ==========

def do(m):
# Expand "2" moves into two quarter turns
if m.endswith("2"):

f = m[0]
make_move(f)
make_move(f)

else:
make_move(m)

def do2(face):
make_move(face)
make_move(face)

def is_solved_state(s):
return (all(c == 'R' for c in s[0:9]) and

all(c == 'G' for c in s[9:18]) and
all(c == 'B' for c in s[18:27]) and
all(c == 'Y' for c in s[27:36]) and
all(c == 'O' for c in s[36:45]) and
all(c == 'W' for c in s[45:54]))

def centers_of(state):
return {

'F': state[4], # R
'B': state[13], # G
'L': state[22], # B
'R': state[31], # Y
'U': state[40], # O
'D': state[49], # W

}

# Correct edge indices based on the provided net
edge_defs = {
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'UF': (('U', 43), ('F', 1)),
'UR': (('U', 41), ('R', 28)),
'UB': (('U', 37), ('B', 10)),
'UL': (('U', 39), ('L', 19)),

'FR': (('F', 5), ('R', 30)),
'FL': (('F', 3), ('L', 23)),
'RB': (('R', 32), ('B', 12)),
'LB': (('L', 21), ('B', 14)),

'FD': (('F', 7), ('D', 46)),
'RD': (('R', 34), ('D', 50)),
'BD': (('B', 16), ('D', 52)),
'LD': (('L', 25), ('D', 48)),

}

# Correct corner indices
corners = {

'UFR': [('U',44),('F',2),('R',27)],
'URB': [('U',38),('R',29),('B',9)],
'UBL': [('U',36),('B',11),('L',18)],
'ULF': [('U',42),('L',20),('F',0)],
'DFR': [('D',47),('F',8),('R',33)],
'DRB': [('D',45),('R',35),('B',15)],
'DBL': [('D',51),('B',17),('L',24)],
'DLF': [('D',53),('L',26),('F',6)],

}

# Cycles for U and D layer edges
U_cycle = ['UF', 'UR', 'UB', 'UL']
D_cycle_cw = ['FD', 'RD', 'BD', 'LD'] # Under D (clockwise)

UX_of = {'F': 'UF', 'R': 'UR', 'B': 'UB', 'L': 'UL'}
XD_of = {'F': 'FD', 'R': 'RD', 'B': 'BD', 'L': 'LD'}

def U_times(k):
for _ in range(k % 4): do('U')

def D_times(k):
for _ in range(k % 4): do('D')

def align_U_edge_to(state, cur_edge, target_edge):
ci = U_cycle.index(cur_edge)
ti = U_cycle.index(target_edge)
k = (ti - ci) % 4
U_times(k)

def align_D_edge_to(state, cur_edge, target_edge):
ci = D_cycle_cw.index(cur_edge)
ti = D_cycle_cw.index(target_edge)
k = (ti - ci) % 4
D_times(k)

def get_edge_colors(state, edge_name):
(f1, i1), (f2, i2) = edge_defs[edge_name]
return (state[i1], state[i2])

def locate_white_edge_partner(state, partner_color):
for name, ((f1,i1),(f2,i2)) in edge_defs.items():

c1, c2 = state[i1], state[i2]
if c1 == 'W' and c2 == partner_color:

return name, 0
if c2 == 'W' and c1 == partner_color:

return name, 1
return None, None

# ========== White Cross ==========

def lift_middle_white_to_U(state, edge_name, white_on_face):
# Move middle edge to U with white on U
if edge_name == 'FR':

if white_on_face == 'F': do("F'")
elif white_on_face == 'R': do("R")

elif edge_name == 'FL':
if white_on_face == 'F': do("F")
elif white_on_face == 'L': do("L'")

elif edge_name == 'RB':
if white_on_face == 'R': do("R'")
elif white_on_face == 'B': do("B")

elif edge_name == 'LB':
if white_on_face == 'L': do("L")
elif white_on_face == 'B': do("B'")
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def drop_U_side_white_to_D(state, edge_name, white_on_face):
if edge_name == 'UF' and white_on_face == 'F': do("F")
elif edge_name == 'UR' and white_on_face == 'R': do("R")
elif edge_name == 'UB' and white_on_face == 'B': do("B")
elif edge_name == 'UL' and white_on_face == 'L': do("L")

def eject_D_side_white(state, edge_name, white_on_face):
target = white_on_face + 'D'
align_D_edge_to(state, edge_name, target)
do(white_on_face + "'")

def insert_from_U_white_up(state, target_face):
desired_u = UX_of[target_face]
st2 = get_observation()
centers = centers_of(st2)
partner = centers[target_face]
current_u = None
for en in U_cycle:

(f1,i1),(f2,i2) = edge_defs[en]
c1, c2 = st2[i1], st2[i2]
if (c1 == 'W' and c2 == partner) or (c2 == 'W' and c1 == partner):

current_u = en
break

if current_u is None:
return

align_U_edge_to(st2, current_u, desired_u)
do2(target_face)

def build_white_cross():
order = ['F','R','B','L']
for face in order:

for _ in range(60):
st = get_observation()
ctr = centers_of(st)
partner = ctr[face]
# Check if solved at XD (white on D index for that edge)
xd = XD_of[face]
(f1,i1),(f2,i2) = edge_defs[xd]
d_idx = i1 if f1 == 'D' else (i2 if f2 == 'D' else None)
if d_idx is not None:

if ((st[i1] == partner and st[i2] == 'W') or (st[i2] == partner and st[i1] == 'W')) and
st[d_idx] == 'W':

break # Edge in place and oriented
# Locate target edge
en, pos = locate_white_edge_partner(st, partner)
if en is None:

break
(ef1,ei1),(ef2,ei2) = edge_defs[en]
# Determine where white is
white_on = ef1 if st[ei1] == 'W' else (ef2 if st[ei2] == 'W' else None)
if en in U_cycle:

if white_on == 'U':
insert_from_U_white_up(st, face)

else:
drop_U_side_white_to_D(st, en, white_on)

elif en in ['FR','FL','RB','LB']:
lift_middle_white_to_U(st, en, white_on)

elif en in D_cycle_cw:
if white_on == 'D':

align_D_edge_to(st, en, XD_of[face])
do2(face)

else:
eject_D_side_white(st, en, white_on)

# ========== White Corners ==========

def get_corner_colors(state, name):
return tuple(state[idx] for _, idx in corners[name])

def corner_color_set(state, name):
return set(get_corner_colors(state, name))

top_cycle = ['UFR','URB','UBL','ULF']
down_cycle = ['DFR','DRB','DBL','DLF']

def U_to_top_corner(current_top, target_top):
ci = top_cycle.index(current_top)
ti = top_cycle.index(target_top)
U_times((ti - ci) % 4)

def D_to_down_corner(current_down, target_down):
ci = down_cycle.index(current_down)
ti = down_cycle.index(target_down)
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D_times((ti - ci) % 4)

def is_corner_solved(state, name):
# White on D face and other two colors match centers
faces = [f for f,_ in corners[name]]
idxs = [i for _,i in corners[name]]
d_pos = None
for i,f in enumerate(faces):

if f == 'D':
d_pos = i
break

if d_pos is None:
return False

if state[idxs[d_pos]] != 'W':
return False

ctr = centers_of(state)
for i,f in enumerate(faces):

if f == 'D': continue
if state[idxs[i]] != ctr[f]:

return False
return True

triggers = {
'DFR': {'top':'UFR', 'do': lambda: (do('R'), do('U'), do("R'"), do("U'"))},
'DRB': {'top':'URB', 'do': lambda: (do('B'), do('U'), do("B'"), do("U'"))},
'DBL': {'top':'UBL', 'do': lambda: (do("L'"), do("U'"), do('L'), do('U'))},
'DLF': {'top':'ULF', 'do': lambda: (do("F'"), do("U'"), do('F'), do('U'))},

}

def find_corner_by_colors(state, target_set):
for name in corners:

if corner_color_set(state, name) == target_set:
return name

return None

def eject_down_corner(slot_name):
trig = triggers[slot_name]['do']
for _ in range(3):

trig()

def insert_corner(slot_name, target_set):
top_name = triggers[slot_name]['top']
trig = triggers[slot_name]['do']
for _ in range(40):

st = get_observation()
if is_corner_solved(st, slot_name):

return True
pos = find_corner_by_colors(st, target_set)
if pos is None:

return False
if pos in down_cycle:

D_to_down_corner(pos, slot_name)
eject_down_corner(slot_name)

elif pos in top_cycle:
U_to_top_corner(pos, top_name)
trig()

else:
trig()

return False

def solve_white_corners():
st = get_observation()
ctr = centers_of(st)
targets = [

('DFR', {'W', ctr['F'], ctr['R']}),
('DRB', {'W', ctr['R'], ctr['B']}),
('DBL', {'W', ctr['B'], ctr['L']}),
('DLF', {'W', ctr['L'], ctr['F']}),

]
for slot, tset in targets:

for _ in range(60):
st = get_observation()
if is_corner_solved(st, slot):

break
insert_corner(slot, tset)

# ========== Middle Layer ==========

def right_of(face):
return {'F':'R','R':'B','B':'L','L':'F'}[face]

def left_of(face):
return {'F':'L','L':'B','B':'R','R':'F'}[face]
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def is_middle_edge_solved(state, slot):
(f1, i1), (f2, i2) = edge_defs[slot]
c1, c2 = state[i1], state[i2]
ctr = centers_of(state)
return c1 == ctr[f1] and c2 == ctr[f2]

def any_middle_unsolved(state):
return not (is_middle_edge_solved(state, 'FR') and

is_middle_edge_solved(state, 'RB') and
is_middle_edge_solved(state, 'LB') and
is_middle_edge_solved(state, 'FL'))

def find_u_edge_candidate(state):
for en in U_cycle:

(f1,i1),(f2,i2) = edge_defs[en]
c1, c2 = state[i1], state[i2]
if c1 in ('O','W') or c2 in ('O','W'):

continue
return en

return None

def find_u_edge_by_colors(state, colors_set):
for en in U_cycle:

(f1,i1),(f2,i2) = edge_defs[en]
if set([state[i1], state[i2]]) == colors_set:

return en
return None

def insert_middle_from_U_above(front_face, direction):
if direction == 'right':

rf = right_of(front_face)
do('U'); do(rf); do("U'"); do(rf+"'"); do("U'"); do(front_face+"'"); do('U'); do(front_face)

else:
lf = left_of(front_face)
do("U'"); do(lf+"'"); do("U'"); do(lf); do('U'); do(front_face); do("U'"); do(front_face+"'")

def eject_incorrect_middle(front_face):
insert_middle_from_U_above(front_face, 'right')

def solve_middle_layer():
for _ in range(300):

st = get_observation()
if not any_middle_unsolved(st):

break
st = get_observation()
ctr = centers_of(st)
en = find_u_edge_candidate(st)
if en is not None:

side_map = {'UF':'F','UR':'R','UB':'B','UL':'L'}
side = side_map[en]
(f1,i1),(f2,i2) = edge_defs[en]
if f1 == side:

side_color = st[i1]
up_color = st[i2]

else:
side_color = st[i2]
up_color = st[i1]

target_front = None
for f in ['F','R','B','L']:

if ctr[f] == side_color:
target_front = f
break

if target_front is None:
do('U'); continue

st2 = get_observation()
cur = find_u_edge_by_colors(st2, set([side_color, up_color]))
if cur is None:

do('U'); continue
align_U_edge_to(st2, cur, UX_of[target_front])
if ctr[right_of(target_front)] == up_color:

insert_middle_from_U_above(target_front, 'right')
elif ctr[left_of(target_front)] == up_color:

insert_middle_from_U_above(target_front, 'left')
else:

do('U')
else:

st = get_observation()
if not is_middle_edge_solved(st, 'FR'):

eject_incorrect_middle('F')
elif not is_middle_edge_solved(st, 'RB'):

eject_incorrect_middle('R')
elif not is_middle_edge_solved(st, 'LB'):
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eject_incorrect_middle('L')
elif not is_middle_edge_solved(st, 'FL'):

eject_incorrect_middle('F')

# ========== Last Layer (OLL + PLL) ==========

U_indices = [36,37,38,39,40,41,42,43,44]
def u_face_all_orange(state):

return all(state[i] == 'O' for i in U_indices)

def u_edges(state):
return {'top': state[37], 'left': state[39], 'right': state[41], 'bottom': state[43]}

def u_cross_orange(state):
e = u_edges(state)
return e['top']=='O' and e['left']=='O' and e['right']=='O' and e['bottom']=='O'

def solve_oll_edges():
FRURUFp = ["F", "R", "U", "R'", "U'", "F'"]
for _ in range(12):

st = get_observation()
if u_cross_orange(st):

return
e = u_edges(st)
flags = {pos:(col=='O') for pos,col in e.items()}
cnt = sum(flags.values())
if cnt == 0:

do_seq(FRURUFp)
elif cnt == 2:

if flags['left'] and flags['right']:
do_seq(FRURUFp)

elif flags['top'] and flags['bottom']:
U_times(1); do_seq(FRURUFp)

else:
for _ in range(4):

st2 = get_observation()
e2 = u_edges(st2)
if e2['top']=='O' and e2['left']=='O':

do_seq(FRURUFp); break
U_times(1)

else:
do_seq(FRURUFp)

def solve_oll_corners():
sune = ["R","U","R'","U","R","U2","R'"]
antisune = ["R'","U'","R","U'","R'","U2","R"]
for _ in range(36):

st = get_observation()
if u_face_all_orange(st):

return
for _ in range(4):

st = get_observation()
if st[2] == 'O':

do_seq(sune); break
elif st[27] == 'O':

do_seq(antisune); break
else:

do('U')

edges_U_top = {
'UF': (('U',43), ('F',1)),
'UR': (('U',41), ('R',28)),
'UB': (('U',37), ('B',10)),
'UL': (('U',39), ('L',19)),

}

def edges_in_place_top(state):
ctr = centers_of(state)
for name, ((f1,i1),(f2,i2)) in edges_U_top.items():

if state[i2] != ctr[f2]:
return False

return True

def corner_side_colors_match(state, corner_name):
faces = [f for f,_ in corners[corner_name]]
idxs = [i for _,i in corners[corner_name]]
ctr = centers_of(state)
for f,i in zip(faces,idxs):

if f == 'U': continue
if state[i] != ctr[f]:

return False
return True
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def all_corners_in_place(state):
return all(corner_side_colors_match(state, name) for name in ['UFR','URB','UBL','ULF'])

corner_cycle = ["U","R","U'","L'","U","R'","U'","L"]
Ua = ["R","U'","R","U","R","U","R","U'","R'","U'","R2"]
Ub = ["R2","U","R","U","R'","U'","R'","U'","R'","U","R'"]

def solve_pll_corners():
for _ in range(12):

st = get_observation()
if all_corners_in_place(st):

return
# try to position a correct corner at UFR
for _ in range(4):

st = get_observation()
if corner_side_colors_match(st, 'UFR'):

break
do('U')

do_seq(corner_cycle)

def invert_move(m):
if m.endswith("2"): return m
if m.endswith("'"): return m[:-1]
return m + "'"

def invert_seq(seq):
return [invert_move(m) for m in reversed(seq)]

def try_edge_perm(alg):
do_seq(alg)
st = get_observation()
if is_solved_state(st) or edges_in_place_top(st):

return True
do_seq(invert_seq(alg))
return False

def solve_pll_edges():
for _ in range(12):

st = get_observation()
if edges_in_place_top(st):

return
for _ in range(4):

if try_edge_perm(Ua): return
if try_edge_perm(Ub): return
do('U')

# ========== Run the full pipeline ==========

st0 = get_observation()
if is_solved_state(st0):

final_answer("")
else:

# 1) White cross
build_white_cross()
if is_solved_state(get_observation()):

final_answer("")
# 2) White corners
solve_white_corners()
if is_solved_state(get_observation()):

final_answer("")
# 3) Middle layer
solve_middle_layer()
if is_solved_state(get_observation()):

final_answer("")
# 4) Last layer
solve_oll_edges()
solve_oll_corners()
solve_pll_corners()
solve_pll_edges()
# Align U and check
for _ in range(4):

if is_solved_state(get_observation()):
final_answer("")

do('U')
# If still not solved, print state for further iteration
print(get_observation())

</code>

Observation.
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L.3 BASIC AGENT – BRUTE-FORCE ENUMERATION

Model Agent Type Input Reward Depth

gpt-oss-120b Basic Full Symbolic No reward 12

This case demonstrates the behavior of a less capable agent in a no-reward setting. The agent exe-
cutes up to 20,000 moves, selecting each move essentially at random, with only a minimal stochas-
tic backtracking mechanism (5% chance of undoing the previous move). There is no systematic
planning, pruning, or search applied, and the cube remains unsolved. Aside from the stochastic
backtracking, the agent’s behavior is equivalent to a random walk over the state space.

Code.

import random

# Moves and their inverses
moves = ["F","F'","B","B'","L","L'","R","R'","U","U'","D","D'"]
inverse = {"F":"F'","F'":"F","B":"B'","B'":"B",

"L":"L'","L'":"L","R":"R'","R'":"R",
"U":"U'","U'":"U","D":"D'","D'":"D"}

def is_solved(state):
# solved state order: FRONT=R, BACK=G, LEFT=B, RIGHT=Y, UP=O, DOWN=W
solved = "R"*9 + "G"*9 + "B"*9 + "Y"*9 + "O"*9 + "W"*9
return state == solved

# Simulated annealing / random walk with occasional acceptance of worse moves
max_steps = 20000 # allow many moves within a single tool call
state = get_observation()
if is_solved(state):

print("Already solved")
else:

for step in range(max_steps):
if is_solved(state):

print("Cube solved at step", step)
break

mv = random.choice(moves)
make_move(mv)
new_state = get_observation()
# If the move improved (or equal) heuristic, keep it.
# We don't have direct heuristic, so we just keep the move most of the time,
# but occasionally revert a bad move to avoid dead-ends.
# Simple rule: if new_state is same as previous (unlikely) revert, else keep.
# To allow some backtracking, we revert with small probability.
keep = True
if random.random() < 0.05: # 5% chance to undo

make_move(inverse[mv])
new_state = get_observation()
keep = False

state = new_state
else:

print("Reached max steps without solving. Final state:", state)

# Final verification
final_answer("")

Not solved.

L.4 BASIC AGENT – FAILED PRUNING

Model Agent Type Input Reward Depth

GPT-5 Basic Full Symbolic No reward 12
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In this test case, the model implements a meet-in-the-middle search for Rubik’s Cube solving. The
procedure first builds a dictionary of states reachable from the solved cube (build goal map),
and then performs a forward search from the scrambled cube (forward meet in middle) to
detect an intersection. This reflects the model’s recall of classical bidirectional search techniques.

The implementation introduces several forms of pruning:

Move-level pruning. Immediate inverses are skipped. ( if m == inverse_move(last_move): continue ).
These rules eliminate trivial local redundancies such as R R’, or U U’.

State duplicate elimination. Both functions maintain a visited set
( if new_state in visited: continue ) to prevent rediscovering identical states along different paths.

Despite these measures, the pruning remains insufficient. Move-level constraints only remove redun-
dant short patterns, and the visited set curbs local repetition but cannot control the exponential
growth of unique cube states. Indeed, even at depth 5 the algorithm reports over 9,000 states in the
goal-side map. Without stronger heuristics (e.g., pattern databases or domain-specific evaluation
functions), the search rapidly exhausts computational limits without finding a solution.

This case illustrates that while the model can recall canonical pruning strategies, their limited scope
fails to achieve practical efficiency in large combinatorial spaces.

Thought.

The previous searches exceeded operation limits. I will switch to a meet-in-the-middle search:
- Build a dictionary of states reachable from the solved state within depth Dg=5 (using the learned
move permutations), storing the sequences from solved to each state.
- Then breadth-first search from the current state up to depth Ds=5, checking at each node if it
intersects the goal-side dictionary. If so, concatenate the forward path with the inverse of the
goal-side path to obtain a full solution.
- Apply the resulting sequence to the real cube using make_move, verify if solved, and if so call
final_answer("").

This approach keeps expansions manageable and avoids heavy recursion or long-running loops.

Code.

import time

# We assume these exist from earlier:
# perm_by_move, apply_perm, inverse_move, invert_seq, solved, do_moves, get_observation

move_order = ['U',"U'",'R',"R'",'F',"F'",'L',"L'",'D',"D'",'B',"B'"]

def build_goal_map(depth_limit=5, time_limit=6.0):
start_time = time.time()
# Each node: (state, last_move, seq_tuple)
start = solved
visited = set([start])
goal_map = {} # state -> seq from solved to state (tuple of moves)
frontier = [(start, None, ())]
depth = 0
while depth < depth_limit and frontier:

if time.time() - start_time > time_limit:
break

next_frontier = []
for state, last_move, seq in frontier:

for m in move_order:
if last_move is not None:

# prune: same face twice or immediate inverse
if m[0] == last_move[0] or m == inverse_move(last_move):

continue
new_state = apply_perm(state, perm_by_move[m])
if new_state in visited:

continue
visited.add(new_state)
new_seq = seq + (m,)
goal_map[new_state] = new_seq
next_frontier.append((new_state, m, new_seq))

frontier = next_frontier
depth += 1
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print("Goal-map size (<= depth", depth_limit, "):", len(goal_map))
return goal_map

def forward_meet_in_middle(start_state, goal_map, depth_limit=5, time_limit=6.0):
start_time = time.time()
if start_state in goal_map:

# Directly within goal radius
tail = invert_seq(list(goal_map[start_state]))
return True, tail

visited = set([start_state])
frontier = [(start_state, None, ())]
depth = 0
while depth < depth_limit and frontier:

if time.time() - start_time > time_limit:
break

next_frontier = []
for state, last_move, seq in frontier:

# Check meet
if state in goal_map:

tail = invert_seq(list(goal_map[state]))
return True, list(seq) + tail

for m in move_order:
if last_move is not None:

if m[0] == last_move[0] or m == inverse_move(last_move):
continue

new_state = apply_perm(state, perm_by_move[m])
if new_state in visited:

continue
visited.add(new_state)
new_seq = seq + (m,)
# Early meet check
if new_state in goal_map:

tail = invert_seq(list(goal_map[new_state]))
return True, list(new_seq) + tail

next_frontier.append((new_state, m, new_seq))
frontier = next_frontier
depth += 1

return False, None

# Build meet-in-the-middle structures
start_state = get_observation()
print("Current state:", start_state)
goal_map = build_goal_map(depth_limit=5, time_limit=5.0)
ok, solution_seq = forward_meet_in_middle(start_state, goal_map, depth_limit=5, time_limit=5.0)

if not ok or solution_seq is None:
print("First meet-in-the-middle attempt failed; trying slightly deeper on forward side...")
ok, solution_seq = forward_meet_in_middle(start_state, goal_map, depth_limit=6, time_limit=6.0)

if not ok or solution_seq is None:
print("Could not find a meet-in-the-middle solution within limits.")
final_answer("Could not solve within limits.")

else:
print("Found sequence length:", len(solution_seq))
print("Sequence:", ' '.join(solution_seq))
# Apply to real cube
do_moves(solution_seq)
final_state = get_observation()
print("Solved?", final_state == solved)
if final_state == solved:

final_answer("")
else:

final_answer("Applied a sequence, but cube not solved.")

Observation.

Current state: RGGRRWRGWOWBGGBGBOYRYYBYRYYBRGYYGBBGWOYOOWWOOOWROWRBBW
Goal-map size (<= depth 5 ): 9732
First meet-in-the-middle attempt failed; trying slightly deeper on forward side...
<Killed by the Python Interpreter>

Not solved.
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L.5 REWARD – BYPASS VISUAL REASONING

Model Agent Type Input Reward Depth

GPT-5 Basic Vertex View Heuristic 3

In this case (Step 1), the agent was required to explicitly call get observation() to view the
cube image. However, throughout its search process the agent did not make any use of the visual
input; it only called the image observation once at the end, to display the final cube state. Instead, its
entire search relied exclusively on the heuristic reward. The code shows a greedy lookahead strategy
up to depth three, where move sequences were evaluated and selected solely on the basis of their
reward values.

This behavior illustrates that when a simple external reward is available, even a capable agent may
effectively bypass the provided visual input. Rather than engaging in visual reasoning to reconstruct
the cube state, the agent defaulted to symbolic search in the move space, guided entirely by reward
optimization.

Step 1

Thought.

Thought: I'll use greedy and limited lookahead search guided by the heuristic reward. At each iteration
I will:
- Try all 12 basic moves and pick the one with the largest positive reward; if found, apply it and
continue.
- If no single move improves, try pairs of moves (depth 2) to find a positive net improvement; if
found, apply the best pair.
- If still no improvement, try depth 3 sequences for a positive net improvement; if found, apply the
best triple.
- Repeat until no improvements are found up to depth 3 or a reasonable move limit is reached.
I will then show the current cube observation so I can visually assess if it's solved. If it is, I will
call final_answer("").

Code.

# Greedy + lookahead solver using the heuristic reward

# Define moves and inverses
moves = ["F","F'","B","B'","L","L'","R","R'","U","U'","D","D'"]
inv = {m: (m[:-1] if m.endswith("'") else m + "'") for m in moves}

def try_best_sequence(max_depth=3):
"""
Try to find the best improving sequence up to max_depth.
Returns (best_reward, best_sequence) with best_reward > 0 if found, else (0, []).
"""
best_reward = 0.0
best_seq = []

# Depth 1
for m1 in moves:

r1 = make_move(m1)
# undo
_ = make_move(inv[m1])
if r1 > best_reward:

best_reward = r1
best_seq = [m1]

if best_reward > 0 or max_depth == 1:
return best_reward, best_seq

# Depth 2
for m1 in moves:

r1 = make_move(m1)
for m2 in moves:

r2 = make_move(m2)
net = r1 + r2
# undo m2
_ = make_move(inv[m2])
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if net > best_reward:
best_reward = net
best_seq = [m1, m2]

# undo m1
_ = make_move(inv[m1])

if best_reward > 0 or max_depth == 2:
return best_reward, best_seq

# Depth 3
for m1 in moves:

r1 = make_move(m1)
for m2 in moves:

r2 = make_move(m2)
for m3 in moves:

r3 = make_move(m3)
net = r1 + r2 + r3
# undo m3
_ = make_move(inv[m3])
if net > best_reward:

best_reward = net
best_seq = [m1, m2, m3]

# undo m2
_ = make_move(inv[m2])

# undo m1
_ = make_move(inv[m1])

return best_reward, best_seq

# Main improvement loop
total_improvement = 0.0
applied_moves = []
iterations = 0
max_iterations = 200 # safety cap on number of applied moves

print("Starting heuristic-guided improvement...")
while iterations < max_iterations:

iterations += 1
best_r, best_seq = try_best_sequence(max_depth=3)
if best_r <= 0 or not best_seq:

print(f"No improving sequence found at iteration {iterations}. Stopping local search.")
break

# Apply the best found sequence
seq_r_sum = 0.0
for m in best_seq:

r = make_move(m)
seq_r_sum += r
applied_moves.append(m)

total_improvement += seq_r_sum
print(f"Iteration {iterations}: Applied {best_seq} with net reward {seq_r_sum:.3f}. Total
improvement: {total_improvement:.3f}")

print(f"Finished. Applied {len(applied_moves)} moves. Total heuristic improvement from start:
{total_improvement:.3f}")
print("Final observation for visual check:")
obs = get_observation()
print(obs) # This will display the current cube in vertex view for visual verification.

Observation.

Starting heuristic-guided improvement...
Iteration 1: Applied ['D', "B'"] with net reward 4.000. Total improvement: 4.000
Iteration 2: Applied ["D'"] with net reward 2.000. Total improvement: 6.000
No improving sequence found at iteration 3. Stopping local search.
Finished. Applied 3 moves. Total heuristic improvement from start: 6.000
Final observation for visual check:
<PIL.Image.Image image mode=RGB size=84x84 at 0x75CD29633A50>

L.6 REWARD – AS A MISLEADING SIGNAL

Model Agent Type Input Reward Depth

GPT-5 Basic Full Symbolic Heuristic 3
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This experiment shows how a simplistic external reward can misalign with an advanced agent’s
internal reasoning. In Steps 2–7, GPT-5 applied several non-trivial search strategies: greedy hill-
climbing with depth-2 lookahead and random shaking, heuristic-guided DFS, constrained stochas-
tic search, and macro-based methods incorporating standard Rubik’s Cube algorithms (e.g., “Sexy
Move” and “Sune”). However, all of these approaches were centered on maximizing the provided
heuristic reward—a single numerical score intended to measure progress. The result was limited:
the heuristic plateaued (no improvement in cumulative delta), and the cube was never solved.

In Step 8, the agent explicitly reflected, “The heuristic-based approaches failed to make progress... I
will switch to a deterministic, constraint-driven search that directly targets subgoals (e.g., build the
white cross).” After abandoning the external reward and instead adopting a subgoal-based strategy,
the agent made immediate progress (white cross success).

This case illustrates that even for highly capable agents, a simplistic reward signal may conflict
with their internal problem-solving process, reducing performance until the agent reverts to its own
structured reasoning.

Due to space constraints, we only include the observation outputs and code fragments of the key
steps.

Step 2

Thought.

Thought: I will try to solve the cube using the available tools. Since we can get a heuristic reward
for each move, I’ll implement a greedy hill-climbing approach guided by this reward: at each step,
evaluate all moves and choose the one that gives the highest positive improvement. If no single move
gives improvement, I’ll try a depth-2 lookahead (pairs of moves). If still stuck, I’ll use occasional
random \shake" moves to escape local minima. I will keep checking if the cube is solved by verifying
each face is uniform; once solved, I will call final_answer("") as instructed.

Code.

from random import choice, randint, seed
seed(42)

# Helper functions
def is_solved(state):

if not isinstance(state, str) or len(state) != 54:
return False

faces = [
state[0:9], # FRONT (R)
state[9:18], # BACK (G)
state[18:27], # LEFT (B)
state[27:36], # RIGHT (Y)
state[36:45], # UP (O)
state[45:54], # DOWN (W)

]
return all(len(set(face)) == 1 for face in faces)

def inverse(move):
return move[:-1] if move.endswith("'") else move + "'"

moves = ['F', "F'", 'B', "B'", 'L', "L'", 'R', "R'", 'U', "U'", 'D', "D'"]

def try_single_moves():
# Evaluate all single moves and return the best positive move and its reward
best_move = None
best_reward = float('-inf')
for m in moves:

r = make_move(m)
# revert
make_move(inverse(m))
if r > best_reward:

best_reward = r
best_move = m

return best_move, best_reward

def try_depth2_moves():
# Evaluate all pairs of moves and return the best positive pair and cumulative reward
best_pair = None
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best_reward = float('-inf')
for m1 in moves:

r1 = make_move(m1)
for m2 in moves:

r2 = make_move(m2)
total = r1 + r2
# revert m2 then m1
make_move(inverse(m2))
if total > best_reward:

best_reward = total
best_pair = (m1, m2)

make_move(inverse(m1))
return best_pair, best_reward

def faces_solved_count(state):
# number of fully solved faces
faces = [

state[0:9], state[9:18], state[18:27], state[27:36], state[36:45], state[45:54]
]
return sum(1 for f in faces if len(set(f)) == 1)

# Start from current observation
state0 = get_observation()
print("Initial state:", state0)
print("Initially solved?", is_solved(state0))
print("Initial faces solved:", faces_solved_count(state0))

max_iterations = 600
stagnation = 0
moves_made = []
cumulative_delta = 0.0

for it in range(1, max_iterations + 1):
# Check if solved
st = get_observation()
if is_solved(st):

print(f"Solved at iteration {it} with {len(moves_made)} moves.")
final_answer("")
break

# Try best single move
m1, r1 = try_single_moves()
if r1 > 0:

rr = make_move(m1)
cumulative_delta += rr
moves_made.append(m1)
stagnation = 0

else:
# Try depth-2
pair, rpair = try_depth2_moves()
if pair is not None and rpair > 0:

rr1 = make_move(pair[0])
rr2 = make_move(pair[1])
cumulative_delta += (rr1 + rr2)
moves_made.extend([pair[0], pair[1]])
stagnation = 0

else:
# Random shake to escape local minima
rand_moves = randint(1, 3)
for _ in range(rand_moves):

m = choice(moves)
rr = make_move(m)
cumulative_delta += rr
moves_made.append(m)

stagnation += 1

# Periodic logging
if it % 20 == 0:

st = get_observation()
print(f"Iter {it}: cumulative_delta={cumulative_delta:.2f}, moves={len(moves_made)},
faces_solved={faces_solved_count(st)}")

else:
# If loop completes without break (not solved), print status
st = get_observation()
print("Not solved within iteration budget.")
print("Faces solved:", faces_solved_count(st))
print("Current state:", st)

Observation.
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Initial state: BRRBRRWRRYYOGGGGGGBBWBBWGGYBYYBYYBRROOOOOOGWWROOWWYWWY
Initially solved? False
Initial faces solved: 0
Iter 20: cumulative_delta=0.00, moves=33, faces_solved=0
Iter 40: cumulative_delta=0.00, moves=71, faces_solved=0
Iter 60: cumulative_delta=1.00, moves=105, faces_solved=0
Iter 80: cumulative_delta=0.00, moves=147, faces_solved=0
Iter 100: cumulative_delta=0.00, moves=189, faces_solved=0
Iter 120: cumulative_delta=0.00, moves=230, faces_solved=0
Iter 140: cumulative_delta=0.00, moves=267, faces_solved=0
Iter 160: cumulative_delta=0.00, moves=312, faces_solved=0
Iter 180: cumulative_delta=0.00, moves=351, faces_solved=0
Iter 200: cumulative_delta=0.00, moves=387, faces_solved=0
Iter 220: cumulative_delta=0.00, moves=431, faces_solved=0
Iter 240: cumulative_delta=0.00, moves=472, faces_solved=0
Iter 260: cumulative_delta=0.00, moves=512, faces_solved=0
Iter 280: cumulative_delta=0.00, moves=555, faces_solved=0
Iter 300: cumulative_delta=0.00, moves=595, faces_solved=0
Iter 320: cumulative_delta=0.00, moves=638, faces_solved=0
Iter 340: cumulative_delta=0.00, moves=678, faces_solved=0
Iter 360: cumulative_delta=0.00, moves=718, faces_solved=0
Iter 380: cumulative_delta=0.00, moves=757, faces_solved=0
Iter 400: cumulative_delta=0.00, moves=796, faces_solved=0
Iter 420: cumulative_delta=0.00, moves=834, faces_solved=0
Iter 440: cumulative_delta=0.00, moves=877, faces_solved=0
Iter 460: cumulative_delta=0.00, moves=922, faces_solved=0
Iter 480: cumulative_delta=0.00, moves=965, faces_solved=0
Iter 500: cumulative_delta=0.00, moves=1000, faces_solved=0
Iter 520: cumulative_delta=0.00, moves=1043, faces_solved=0
Iter 540: cumulative_delta=0.00, moves=1082, faces_solved=0
Iter 560: cumulative_delta=0.00, moves=1124, faces_solved=0
Iter 580: cumulative_delta=0.00, moves=1167, faces_solved=0
Iter 600: cumulative_delta=0.00, moves=1210, faces_solved=0

Step 3

Thought.

The previous greedy random approach did not make reliable progress in the heuristic metric. I will
switch to a monotonic heuristic-guided depth-limited search: at each iteration, I will search for a
short sequence of moves (up to a given depth) whose cumulative heuristic reward is non-negative and
preferably positive. This avoids regressing in the staged heuristic and should help climb from 0 → 7.
I will implement a DFS that only accepts moves with non-negative immediate reward, avoids repeating
the same face consecutively, and finds the best cumulative gain sequence. I will apply sequences that
yield positive gain; if none found, I can apply a neutral (0 gain) sequence to reposition and try
again with deeper depth. I will keep checking for solved state, and call final_answer("") immediately
once solved.

Stpe 4

Thought.

The previous approach explored too many branches and hit the operation limit. I’ll switch to a
constrained stochastic search that samples a limited number of short random sequences each iteration,
evaluates their net heuristic gain (sum of move rewards), and applies the best positive-gain sequence
if found. If none is found, I’ll apply a small random \shake" to escape local minima. This keeps
computation bounded and avoids deep recursion. I’ll regularly check if the cube is solved and call
final_answer("") immediately when it is.

Step 5

Thought.
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The previous stochastic and exhaustive searches were too heavy and hit the operation limit without
improving the heuristic. I will switch to a lightweight, structured macro-search: try a small library
of well-known Rubik’s Cube algorithms (sexy move, sledgehammer, sune, etc.). For each macro, I’ll
evaluate its net heuristic gain by executing it (summing rewards). If net gain > 0, I’ll keep it;
otherwise I’ll undo it. This bounded, deterministic approach reduces operations while still seeking
monotonic heuristic improvements. I’ll repeat this for a limited number of iterations, checking for
solved state frequently. If solved, I will immediately call final_answer("").

Step 8

Thought.

The heuristic-based approaches failed to make progress and hit operation limits. I will switch to a
deterministic, constraint-driven search that directly targets subgoals (e.g., build the white cross on
the Down face) by exploring short sequences using the environment as the cube model. The search:
- Applies moves via make_move and backtracks with inverse moves to keep the environment consistent.
- Prunes immediate inverses and same-face repetitions.
- Checks goal predicates by reading the state_string via get_observation().
I’ll first try to complete the white cross (four Down edges in correct positions and orientations). If
I get the cube solved at any point, I’ll immediately call final_answer("").

Code.

import random

# Utilities
def is_solved(state):

if not isinstance(state, str) or len(state) != 54:
return False

faces = [state[0:9], state[9:18], state[18:27], state[27:36], state[36:45], state[45:54]]
return all(len(set(face)) == 1 for face in faces)

def faces_solved_count(state):
faces = [state[0:9], state[9:18], state[18:27], state[27:36], state[36:45], state[45:54]]
return sum(1 for f in faces if len(set(f)) == 1)

def inverse_move(m):
return m[:-1] if m.endswith("'") else m + "'"

moves = ['F', "F'", 'B', "B'", 'L', "L'", 'R', "R'", 'U', "U'", 'D', "D'"]

# Target constraints helpers: (index -> expected color)
# Face centers for reference (fixed)
CENTER = { 'F': 4, 'B': 13, 'L': 22, 'R': 31, 'U': 40, 'D': 49 }
CENTER_COLOR = { 4:'R', 13:'G', 22:'B', 31:'Y', 40:'O', 49:'W' }

# For the white cross on Down (D), we require the four D edges to be placed and oriented correctly.
# Based on the provided net:
# Down face indices:
# 45 46 47
# 48 49 50
# 51 52 53
# Adjacent matching edges on side faces:
# DF: D[0][1]=46 with F[2][1]=7 -> colors W and R
# DR: D[1][2]=50 with R[2][1]=34 -> colors W and Y
# DB: D[2][1]=52 with Bk top-middle B[0][1]=10 -> colors W and G
# DL: D[1][0]=48 with L[2][1]=25 -> colors W and B

def cross_constraints():
return {

46: 'W', 7: 'R',
50: 'W', 34:'Y',
52: 'W', 10:'G',
48: 'W', 25:'B',

}

def edge_constraint_DF():
return {46:'W', 7:'R'}

def edge_constraint_DR():
return {50:'W', 34:'Y'}
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def edge_constraint_DB():
return {52:'W', 10:'G'}

def edge_constraint_DL():
return {48:'W', 25:'B'}

def constraints_satisfied(state, constraints):
# constraints: dict index->color
for idx, col in constraints.items():

if state[idx] != col:
return False

return True

def get_state():
return get_observation()

# Depth-limited DFS to find a sequence that satisfies a given constraints set at the end.
# Prunes immediate inverse and same-face repetitions.
def find_sequence_for_constraints(constraints, max_depth=7, max_expansions=120000):

best = {'seq': None}
counters = {'exp': 0}
path = []

def dfs(depth, last_move):
if best['seq'] is not None:

return
if depth > max_depth or counters['exp'] >= max_expansions:

return
# Check immediate goal (depth can be 0 at start)
st = get_state()
if constraints_satisfied(st, constraints):

best['seq'] = path.copy()
return

if depth == max_depth:
return

for m in moves:
if last_move is not None:

if m[0] == last_move[0]: # avoid same face twice in a row
continue

if m == inverse_move(last_move): # avoid immediate inverse
continue

r = make_move(m)
counters['exp'] += 1
path.append(m)
dfs(depth + 1, m)
if best['seq'] is not None:

# leave state as is; sequence already applied during search? No, we applied the moves
during exploration.
# We must backtrack to restore before returning control to caller
make_move(inverse_move(m))
path.pop()
return

# backtrack this move
make_move(inverse_move(m))
path.pop()
if counters['exp'] >= max_expansions or best['seq'] is not None:

return

dfs(0, None)
return best['seq']

# Function to attempt building the white cross iteratively
def build_white_cross():

targets = [edge_constraint_DF(), edge_constraint_DR(), edge_constraint_DB(), edge_constraint_DL()]
# We'll try each edge until all are solved
attempts_per_edge = 6 # bounded attempts with small random perturbations
for i, tgt in enumerate(targets):

for attempt in range(attempts_per_edge):
st = get_state()
# If edge already solved, move to next
if constraints_satisfied(st, tgt):

break
# Find a short sequence to solve this edge
seq = find_sequence_for_constraints(tgt, max_depth=6, max_expansions=90000)
if seq is not None:

# Apply the sequence (it's already applied during the search? No, we backtracked; we
need to apply now)
for m in seq:

make_move(m)
# Verify
st2 = get_state()
if not constraints_satisfied(st2, tgt):
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# If somehow not satisfied, undo and try a tiny shake
for m in reversed(seq):

make_move(inverse_move(m))
else:

break
else:

# Small random shake to change positions
k = random.randint(1, 2)
last_face = None
for _ in range(k):

cand = [m for m in moves if last_face is None or m[0] != last_face]
mv = random.choice(cand)
make_move(mv)
last_face = mv[0]

else:
# Failed to solve this edge within attempts
return False

# After solving all four individual edges, ensure full cross correctness (all 8 constraints)
st = get_state()
if constraints_satisfied(st, cross_constraints()):

return True
# If individual edges are placed but cross not fully consistent, try a short refinement to meet
full constraints
seq = find_sequence_for_constraints(cross_constraints(), max_depth=7, max_expansions=140000)
if seq is not None:

for m in seq:
make_move(m)

st2 = get_state()
return constraints_satisfied(st2, cross_constraints())

return False

# Driver: attempt to build white cross; if cube becomes solved, finalize.
random.seed(23)
state0 = get_state()
print("Start state:", state0)
print("Faces solved at start:", faces_solved_count(state0))
if is_solved(state0):

final_answer("")

success_cross = build_white_cross()
st = get_state()
print("White cross success:", success_cross, "Faces solved after cross attempt:",
faces_solved_count(st), "State:", st)

# If by chance the cube is fully solved now, finalize.
if is_solved(st):

final_answer("")

Observation.

Start state: GYOGROWRBOWWGGBORRROOWBBRGYYRWBYRWBGYYBGOOBOGRWGYWWBYY
Faces solved at start: 0
White cross success: True Faces solved after cross attempt: 0 State:
GYRGRRRRWGGWYGORBBYROGBBYBOWOWYYBYYRORGOOGBOYBWGWWWOWB

Step 9

Thought.

Thought: Great|building the white cross worked and increased the heuristic to 1. I’ll continue with the
same constraint-based search approach to solve the four white corners and complete the first layer.
I’ll encode the four down-layer corner constraints, then search short sequences that satisfy each
corner’s constraints while pruning redundant branches. If at any time the cube becomes solved, I will
immediately call final_answer("").
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L.7 REWARD – AS A GUIDANCE

Model Agent Type Input Reward Depth

Claude Sonnet 4 Basic Full Symbolic Sticker 2

In this example, the agent explicitly relies on the external reward signal to guide its search. At
each step, candidate moves are evaluated by their immediate reward: negative rewards trigger an
immediate undo (e.g., U with reward −12.0), while positive rewards are retained (e.g., D with re-
ward +12.0). The agent’s behavior shows that even a simple reward can provide effective guidance,
shaping its local search trajectory and preventing it from devolving into purely random exploration.

Step 7

Thought.

Thought: Excellent! The L move gave us a +10 reward and we now have a better cube state. Let me check
the current state and continue looking for more positive moves.

Code.

# Check current state after the L move
current_state = get_observation()
print(f"Current state after L: {current_state}")

# Count correct stickers
correct_stickers = sum(1 for i in range(54) if current_state[i] == solved_state[i])
print(f"Correct stickers now: {correct_stickers}/54")

# Continue trying more moves to see if we can improve further
remaining_moves = ["U", "D", "B"]
for move in remaining_moves:

reward = make_move(move)
print(f"Move {move}: reward = {reward}")

if reward > 0:
print(f"Keeping move {move} as it improved the cube")
break

else:
# Undo the move
opposite_move = move + "'"
undo_reward = make_move(opposite_move)
print(f"Undoing with {opposite_move}: reward = {undo_reward}")

Observation.

Current state after L: RRRRRRYYYBBBGGGGGGBBBBBBRRRYYYYYYGGGOOOOOOOOOWWWWWWWWW
Correct stickers now: 41/54
Move U: reward = -12.0
Undoing with U': reward = 12.0
Move D: reward = 12.0
Keeping move D as it improved the cube

Step 8

Thought.

Thought: Great progress! The D move gave us another +12 reward. Let me check the current state and see
how close we are to solving the cube.
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L.8 TRIAL-AND-ERROR TOOL LEARNING

Model Agent Type Input Reward Depth

GPT-5 Standard-Solver Full Symbolic No reward 8

In this example, the agent initially attempted to convert the environment state into the solver’s re-
quired format and call the planner (Step 2), but the planner returned errors due to undefined edges.
In Steps 3–5, the agent experimented with alternative mappings, but all attempts failed to produce
a valid planner input. To overcome this, the agent exhaustively explored all 46 per-face rotation
combinations to find a scheme compatible with the planner’s input format, ultimately identifying a
scheme compatible with the planner. Upon applying the planner-generated move sequence, the cube
was successfully solved. This process exemplifies trial-and-error tool learning, where the agent iter-
atively experiments, identifies the constraints of the external tool, and adapts its strategy to reliably
harness the planner for spatial reasoning tasks.

Step 2

Thought.

Thought: I have the current cube state string. Next, I will convert this environment state (color-coded
with faces in the order F,B,L,R,U,D) to the solver’s required facelet format (URFDLB), using the center
colors to map colors to face letters: O->U, Y->R, R->F, W->D, B->L, G->B. I will start with the
simplest per-face orientation (top-left to bottom-right) and face order mapping: U(36{44), R(27{35),
F(0{8), D(45{53), L(18{26), B(9{17), concatenated in that order. I will call call_planner with this
string and print the solution (or error). If a solution is returned, in the following step I will parse
and apply the moves with make_move, expanding 1/2/3 quarter-turn counts into multiple calls.

Code.

# Build mapping from environment color to solver face letter
color_to_face = {

'O': 'U', # Up
'Y': 'R', # Right
'R': 'F', # Front
'W': 'D', # Down
'B': 'L', # Left
'G': 'B', # Back

}

state = obs # from previous step
# Define the index ranges for each face in the environment (face-on, row-major)
env_faces = {

'F': list(range(0, 9)),
'B': list(range(9, 18)),
'L': list(range(18, 27)),
'R': list(range(27, 36)),
'U': list(range(36, 45)),
'D': list(range(45, 54)),

}

# Solver requires URFDLB order
solver_face_order = ['U', 'R', 'F', 'D', 'L', 'B']

# For now, assume per-face orientation is identity (face-on row-major)
solver_indices = []
for face in solver_face_order:

if face == 'U':
solver_indices.extend(env_faces['U'])

elif face == 'R':
solver_indices.extend(env_faces['R'])

elif face == 'F':
solver_indices.extend(env_faces['F'])

elif face == 'D':
solver_indices.extend(env_faces['D'])

elif face == 'L':
solver_indices.extend(env_faces['L'])

elif face == 'B':
solver_indices.extend(env_faces['B'])

# Convert environment colors to solver face-letter string in the computed order
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try:
solver_str = ''.join(color_to_face[state[i]] for i in solver_indices)

except KeyError as e:
print("Encountered unknown color in state:", e)
solver_str = None

print("Proposed solver string:", solver_str)

if solver_str is not None:
plan = call_planner(tool_cube_representation=solver_str)
print("Planner output:", plan)

Observation.

Execution logs:
Proposed solver string: DRFFUDFULBRRDRRDBBDFUDFBDFBBDRBDULLUFLLFLLFLLUURRBURBU
Planner output: Error: Some edges are undefined.
Last output from code snippet:
Error: Some edges are undefined.

Step 6

Thought.

My previous edge-validation used sorted two-letter strings but compared them to unsorted expectations,
which made all candidates fail.

I will fix the validation by comparing to the alphabetically sorted set of expected edge labels. Then
I’ll brute-force face rotations, find a valid scheme, call the planner, and verify the cube is solved.

Code.

# Fix edge validation and brute-force search for a valid per-face rotation scheme, then plan and apply
moves.

state = obs # current cube state string

# Environment face indices (row-major as per problem)
env_faces = {

'F': list(range(0, 9)),
'B': list(range(9, 18)),
'L': list(range(18, 27)),
'R': list(range(27, 36)),
'U': list(range(36, 45)),
'D': list(range(45, 54)),

}

def rotate_indices(face_indices, rotation):
# rotation: 0 (identity), 1 (90° CW), 2 (180°), 3 (270° CW)
if rotation == 0:

order = [0,1,2,3,4,5,6,7,8]
elif rotation == 1:

order = [6,3,0,7,4,1,8,5,2]
elif rotation == 2:

order = [8,7,6,5,4,3,2,1,0]
elif rotation == 3:

order = [2,5,8,1,4,7,0,3,6]
else:

raise ValueError("Invalid rotation")
return [face_indices[i] for i in order]

# Build color_to_face mapping from centers
centers = {

'F': state[4],
'B': state[9+4],
'L': state[18+4],
'R': state[27+4],
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'U': state[36+4],
'D': state[45+4],

}
color_to_face = {

centers['U']: 'U',
centers['R']: 'R',
centers['F']: 'F',
centers['D']: 'D',
centers['L']: 'L',
centers['B']: 'B'

}
print("Centers:", centers)
print("Color->Face:", color_to_face)

# Precompute rotated indices for each face and rotation to speed up
pre_rot = {face: {r: rotate_indices(env_faces[face], r) for r in range(4)} for face in
['U','R','F','D','L','B']}

def build_solver_str_fast(scheme):
idx = []
idx += pre_rot['U'][scheme['U']]
idx += pre_rot['R'][scheme['R']]
idx += pre_rot['F'][scheme['F']]
idx += pre_rot['D'][scheme['D']]
idx += pre_rot['L'][scheme['L']]
idx += pre_rot['B'][scheme['B']]
return ''.join(color_to_face[state[i]] for i in idx)

def face_base(face_letter):
base = {'U':0,'R':9,'F':18,'D':27,'L':36,'B':45}
return base[face_letter]

def get_f(s, face, pos):
return s[face_base(face)+pos]

# Edge definitions in Kociemba URFDLB indexing (face-local 0..8)
edges_def = [

(('U',7), ('F',1)), # UF
(('U',5), ('R',1)), # UR
(('U',1), ('B',1)), # UB
(('U',3), ('L',1)), # UL
(('D',1), ('F',7)), # DF
(('D',5), ('R',7)), # DR
(('D',7), ('B',7)), # DB
(('D',3), ('L',7)), # DL
(('F',5), ('R',3)), # FR
(('F',3), ('L',5)), # FL
(('B',3), ('R',5)), # BR
(('B',5), ('L',3)), # BL

]

# Expected edges as alphabetically sorted two-letter strings
expected_sorted_edges = set(['FU','RU','BU','LU','DF','DR','BD','DL','FR','FL','BR','BL'])

def edges_valid(s):
# Build sorted two-letter strings for each edge pair
counts = {}
for (f1,p1),(f2,p2) in edges_def:

a = get_f(s, f1, p1)
b = get_f(s, f2, p2)
pair = ''.join(sorted([a,b]))
if pair not in expected_sorted_edges:

return False
counts[pair] = counts.get(pair, 0) + 1

# Ensure each expected edge appears exactly once
for e in expected_sorted_edges:

if counts.get(e, 0) != 1:
return False

return True

found_scheme = None
found_solver_str = None

# Brute force all 4ˆ6 rotation combinations (4096)
outer_break = False
for u in range(4):

if outer_break: break
for r in range(4):

if outer_break: break
for f in range(4):

if outer_break: break
for d in range(4):

if outer_break: break
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for l in range(4):
if outer_break: break
for b in range(4):

scheme = {'U':u,'R':r,'F':f,'D':d,'L':l,'B':b}
s = build_solver_str_fast(scheme)
if edges_valid(s):

found_scheme = scheme
found_solver_str = s
outer_break = True
break

print("Found scheme:", found_scheme)
print("Solver string preview:", found_solver_str[:30] if found_solver_str else None)

if found_solver_str:
plan = call_planner(tool_cube_representation=found_solver_str)
print("Planner output:", plan)

Observation.

Centers: {'F': 'R', 'B': 'G', 'L': 'B', 'R': 'Y', 'U': 'O', 'D': 'W'}
Color->Face: {'O': 'U', 'Y': 'R', 'R': 'F', 'W': 'D', 'B': 'L', 'G': 'B'}
Found scheme: {'U': 0, 'R': 0, 'F': 0, 'D': 0, 'L': 0, 'B': 2}
Solver string preview: DRFFUDFULBRRDRRDBBDFUDFBDFBBDR
Planner output: R2 L1 B2 R1 U1 R1 B1 U2 D2 F2 L2 F2 U1 D2 (14f)

Then executed the solution sequence and solved at Step 7.

L.9 BYPASSING VISUAL TASKS VIA SYMBOLIC REASONING

We illustrate the performance gap between Face View and Vertex View inputs using two representa-
tive cases.

In the Face View setting, the cube is presented as regular 3 × 3 grids. The agent reframed the task
as a symbolic parsing problem: mapping each face’s colors into the URFDLB string required by
the solver. This bypassed visual reasoning, yet worked reliably due to the input’s highly ordered
structure. The planner accepted the constructed string and returned a valid solution, which the agent
executed successfully.

In the Vertex View setting, these distorted layouts cannot be parsed directly into solver input without
geometric inference. The agent nevertheless attempted symbolic reconstruction via pixel sampling,
palette classification, k-means clustering, PCA ordering, and multi-view accumulation, but the re-
sulting cube string was incomplete.

These two cases highlight a key difference between the tasks. In Face View, the orderly layout
enables a symbolic parsing shortcut that bypasses genuine visual reasoning. In Vertex View, this
strategy is infeasible, and performance drops sharply. This suggests that even highly capable models
tend to prefer symbolic over visual reasoning whenever possible, and that less regular task formats
are informative for exposing their limitations in spatial understanding.

L.9.1 FULL VIEW

Model Agent Type Input Reward Depth

GPT-5 Ideal-Solver Full Visual State no reward 20

Step 7

Thought.
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Our previous classification mistakenly excluded near-white pixels, undercounting W. I will recompute
the sticker colors by averaging patches around each sticker center while only ignoring the gray
background and black grid lines (not near-white), then classify to the nearest canonical color. I’ll
rebuild the 54-character state string, ensure it has 9 of each color, call the planner, expand and
apply the moves, and finally submit final_answer("").

Code.

# Recompute colors including white pixels properly (ignore only gray background and black grid).
img = get_observation()
w, h = img.size
BG = (50,50,50)
BLACK = (0,0,0)

def avg_color_around_include_white(p, r=6):
cx, cy = p
samples = []
for dy in range(-r, r+1):

y = cy + dy
if y < 0 or y >= h:

continue
for dx in range(-r, r+1):

x = cx + dx
if x < 0 or x >= w:

continue
rgb = img.getpixel((x,y))
if rgb == BG or rgb == BLACK:

continue
samples.append(rgb)

if not samples:
samples = [img.getpixel((cx, cy))]

sr = sum(p[0] for p in samples)/len(samples)
sg = sum(p[1] for p in samples)/len(samples)
sb = sum(p[2] for p in samples)/len(samples)
return (sr, sg, sb)

canon = {
'R': (255, 0, 0),
'G': (0, 255, 0),
'B': (0, 0, 255),
'Y': (255, 255, 0),
'O': (255, 165, 0),
'W': (255, 255, 255),

}

def classify_avg(rgbf):
r,g,b = rgbf
best=None; bd=1e18
for k,v in canon.items():

d=(r-v[0])**2+(g-v[1])**2+(b-v[2])**2
if d<bd:

bd=d; best=k
return best

def colors_from_grid_patch_inc_white(grid_points):
return [classify_avg(avg_color_around_include_white(p, r=6)) for p in grid_points]

# Use previously computed grids U_grid, F_grid, D_grid, B_grid, L_grid, R_grid
U_colors = colors_from_grid_patch_inc_white(U_grid)
F_colors = colors_from_grid_patch_inc_white(F_grid)
D_colors = colors_from_grid_patch_inc_white(D_grid)
B_colors = colors_from_grid_patch_inc_white(B_grid)
L_colors = colors_from_grid_patch_inc_white(L_grid)
R_colors = colors_from_grid_patch_inc_white(R_grid)

from collections import Counter
state = ''.join(F_colors + B_colors + L_colors + R_colors + U_colors + D_colors)
print("Color counts:", Counter(state), "length:", len(state))
print("State:", state)

# Call planner
plan = call_golden_planner(tool_cube_representation=state)
print("Planner:", plan)

# Parse and expand moves like 'L3 U1 B1 R2 ... (19f)'
import re
tokens = re.findall(r'([URFDLB])([123])', plan)
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expanded = []
for face, num in tokens:

n = int(num)
if n == 1:

expanded.append(face)
elif n == 2:

expanded.extend([face, face])
elif n == 3:

expanded.extend([face, face, face])
print("Expanded moves:", expanded)

# Apply moves
for mv in expanded:

print(make_move(move=mv))

# Submit final check
final_answer("")

Observation.

Color counts: Counter({'W': 9, 'Y': 9, 'R': 9, 'B': 9, 'O': 9, 'G': 9}) length: 54
State: WYYYRBOWGYWRWGBRWGOOYGBRWOYOOORYOBGBBYBROGGGRGBWYWBRRW
Planner: U3 F2 R2 U2 F2 D2 F2 L1 B3 R1 U2 F3 D3 L3 B3 U2 L2 R1 D3 U1 (20f)
Expanded moves: ['U', 'U', 'U', 'F', 'F', 'R', 'R', 'U', 'U', 'F', 'F', 'D', 'D', 'F', 'F', 'L', 'B',
'B', 'B', 'R', 'U', 'U', 'F', 'F', 'F', 'D', 'D', 'D', 'L', 'L', 'L', 'B', 'B', 'B', 'U', 'U', 'L',
'L', 'R', 'D', 'D', 'D', 'U']
Applied move `U` on the cube
Applied move `U` on the cube
Applied move `U` on the cube
Applied move `F` on the cube
Applied move `F` on the cube
Applied move `R` on the cube
// ...
Applied move `R` on the cube
Applied move `D` on the cube
Applied move `D` on the cube
Applied move `D` on the cube
Applied move `U` on the cube

Solved.

L.9.2 VERTEX VIEW

Model Agent Type Input Reward Depth

GPT-5 Standard-Solver Vertex View no reward 20

Step 7

Thought.

The previous approach hit the operation limit due to heavy k-means and broad view sweeps, and also
misclassified colors. I’ll switch to a lighter pipeline:
- Classify colors by nearest reference palette (O/W/R/G/B/Y) for robustness.
- Sample far fewer pixels (stride=5) and run k-means with fewer iterations (k=27, iters=8) to find
sticker centers in each view.
- Group the 27 clusters spatially into 3 faces, order each face’s 3x3 via PCA, and use the center
sticker to name the face.
- Collect exactly 5 views (right, right, down, right, right) to cover all faces.
- Convert the six color grids into the URFDLB string (O,Y,R,W,B,G mapped to U,R,F,D,L,B), call the
planner, apply the moves, then check solved state.

If the planner errors (mapping inconsistent), I’ll print the composed string to debug. Otherwise I’ll
execute the plan and finish.

Code.
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from collections import defaultdict
from math import sqrt

# Nearest-palette color mapping for robustness
PALETTE = {

'O': (255, 140, 0), # orange (slightly darker than 165 to avoid yellow confusion)
'W': (255, 255, 255),
'R': (220, 0, 0),
'G': (0, 200, 0),
'B': (0, 0, 220),
'Y': (255, 255, 0)

}

def rgb_to_color_letter(rgb):
r,g,b = rgb
# ignore mid-gray detection here; caller ensures colored pixel
best = None
bestd = 1e18
for k,(pr,pg,pb) in PALETTE.items():

d = (r-pr)**2 + (g-pg)**2 + (b-pb)**2
if d < bestd:

bestd = d; best = k
return best

def is_colored_pixel(p):
r,g,b = p
m = max(r,g,b); n = min(r,g,b)
# reject dark (grid/outline)
if m < 60:

return False
# reject mid-gray background (low saturation, mid-high brightness)
if (m-n) < 25 and 120 <= m <= 230 and 120 <= n <= 230:

return False
# accept bright white
if r+g+b > 700:

return True
# accept sufficiently saturated colors
if (m-n) >= 35:

return True
return False

def sample_colored_pixels(img, stride=5, max_samples=1500):
px = img.load()
w,h = img.size
pts, cols = [], []
cnt = 0
for y in range(0,h,stride):

for x in range(0,w,stride):
p = px[x,y]
if is_colored_pixel(p):

pts.append((x,y))
cols.append(p)
cnt += 1
if cnt >= max_samples:

return pts, cols
return pts, cols

def kmeans_points(points, k, iters=8):
if not points or len(points) < k:

return None, None, None
# init farthest-point
centers = [points[0]]
for _ in range(1,k):

best = None; bestd = -1
for p in points:

dmin = min((p[0]-c[0])**2+(p[1]-c[1])**2 for c in centers)
if dmin > bestd:

bestd = dmin; best = p
centers.append(best)

assigns = [0]*len(points)
for _ in range(iters):

changed = False
for i,p in enumerate(points):

ci = min(range(k), key=lambda j: (p[0]-centers[j][0])**2+(p[1]-centers[j][1])**2)
if assigns[i] != ci:

assigns[i] = ci; changed = True
if not changed:

break
newc = []
for j in range(k):

xs=[points[i][0] for i in range(len(points)) if assigns[i]==j]
ys=[points[i][1] for i in range(len(points)) if assigns[i]==j]
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if xs:
newc.append((sum(xs)/len(xs), sum(ys)/len(ys)))

else:
newc.append(centers[j])

centers = newc
clusters = [[] for _ in range(k)]
for i in range(len(points)):

clusters[assigns[i]].append(i)
return centers, assigns, clusters

def majority_color(color_list):
counts = defaultdict(int)
for rgb in color_list:

c = rgb_to_color_letter(rgb)
counts[c] += 1

return max(counts.items(), key=lambda kv: kv[1])[0] if counts else 'W'

def extract_27_stickers(img):
pts, cols = sample_colored_pixels(img, stride=5, max_samples=1500)
print("Sampled colored:", len(pts))
res = kmeans_points(pts, 27, iters=8)
if res[0] is None:

return []
_, assigns27, clusters27 = res
stickers = []
for j in range(27):

idxs = clusters27[j]
if not idxs:

continue
cx = sum(pts[i][0] for i in idxs)/len(idxs)
cy = sum(pts[i][1] for i in idxs)/len(idxs)
col = majority_color([cols[i] for i in idxs])
stickers.append(((cx,cy), col))

return stickers

def pca_axes(points):
if not points:

return (1.0,0.0),(0.0,1.0)
mx = sum(p[0] for p in points)/len(points)
my = sum(p[1] for p in points)/len(points)
sxx = sum((p[0]-mx)**2 for p in points)/len(points)
syy = sum((p[1]-my)**2 for p in points)/len(points)
sxy = sum((p[0]-mx)*(p[1]-my) for p in points)/len(points)
tr = sxx+syy
det = sxx*syy - sxy*sxy
disc = max(tr*tr/4 - det, 0.0)
lam1 = tr/2 + sqrt(disc)
if abs(sxy) + abs(lam1 - sxx) < 1e-9:

u=(1.0,0.0)
else:

u=(sxy, lam1 - sxx)
n = sqrt(u[0]*u[0]+u[1]*u[1])
u=(u[0]/n, u[1]/n)

v=(-u[1], u[0])
return u,v

def kmeans_scalar(values, k=3, iters=8):
# 1D kmeans implemented via 2D wrapper to reuse
pts = [(v,0.0) for v in values]
_, assigns, clusters = kmeans_points(pts, k, iters)
return assigns, clusters

def group_into_faces(stickers):
centers=[s[0] for s in stickers]
res = kmeans_points(centers, 3, iters=8)
if res[0] is None:

return []
_, assigns3, clusters3 = res
faces=[]
for j in range(3):

idxs = clusters3[j]
group = [stickers[i] for i in idxs]
if len(group) >= 7:

faces.append(group)
return faces

def order_face_grid(face_stickers):
pts=[s[0] for s in face_stickers]
u,v = pca_axes(pts)
proj=[]
for i,(pt,col) in enumerate(face_stickers):

pu = pt[0]*u[0] + pt[1]*u[1]
pv = pt[0]*v[0] + pt[1]*v[1]
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proj.append((pu,pv,i))
col_vals = [p[0] for p in proj]
row_vals = [p[1] for p in proj]
cols_assigns, _ = kmeans_scalar(col_vals, 3, iters=8)
rows_assigns, _ = kmeans_scalar(row_vals, 3, iters=8)
col_groups = defaultdict(list); row_groups = defaultdict(list)
for idx,(pu,pv,i) in enumerate(proj):

col_groups[cols_assigns[idx]].append(i)
row_groups[rows_assigns[idx]].append(i)

ordered_cols = sorted(col_groups.keys(), key=lambda c: sum(face_stickers[i][0][0] for i in
col_groups[c])/len(col_groups[c]))
ordered_rows = sorted(row_groups.keys(), key=lambda r: sum(face_stickers[i][0][1] for i in
row_groups[r])/len(row_groups[r]))
grid = [[None]*3 for _ in range(3)]
for idx,(pu,pv,i) in enumerate(proj):

rlab = rows_assigns[idx]; clab = cols_assigns[idx]
r = ordered_rows.index(rlab); c = ordered_cols.index(clab)
grid[r][c] = face_stickers[i][1]

return grid

def faces_from_view(img):
stickers = extract_27_stickers(img)
print("Sticker clusters:", len(stickers))
faces_groups = group_into_faces(stickers)
print("Faces in this view:", len(faces_groups))
faces = {}
for group in faces_groups:

grid = order_face_grid(group)
center = grid[1][1]
faces[center] = {"grid": grid}

return faces

def accumulate_faces(acc, new_faces):
for k,v in new_faces.items():

if k not in acc:
acc[k]=v

# Collect faces from a fixed small sequence of views
observed = {}
img = get_observation()
accumulate_faces(observed, faces_from_view(img))
apply_view_transformation("view_right")
img = get_observation()
accumulate_faces(observed, faces_from_view(img))
apply_view_transformation("view_right")
img = get_observation()
accumulate_faces(observed, faces_from_view(img))
apply_view_transformation("view_down")
img = get_observation()
accumulate_faces(observed, faces_from_view(img))
apply_view_transformation("view_right")
img = get_observation()
accumulate_faces(observed, faces_from_view(img))

print("Collected faces:", list(observed.keys()))
for k in observed:

print(k, observed[k]["grid"])

# Map to solver's URFDLB letters
color_to_face_letter = {'O':'U','W':'D','R':'F','G':'B','B':'L','Y':'R'}

def grid_to_str(grid):
return ''.join(''.join(grid[r][c] for c in range(3)) for r in range(3))

def compose_URFDLB(obs):
# URFDLB color centers order: O (U), Y (R), R (F), W (D), B (L), G (B)
order = ['O','Y','R','W','B','G']
s=""
for ck in order:

if ck not in obs:
print("Warning missing face:", ck)
grid = [[ck]*3 for _ in range(3)]

else:
grid = obs[ck]["grid"]

mapped = [[color_to_face_letter.get(ch,'U') for ch in row] for row in grid]
s += grid_to_str(mapped)

return s

solver_str = compose_URFDLB(observed)
print("Solver string:", solver_str)

plan = call_planner(tool_cube_representation=solver_str)
print("Planner output:", plan)
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def execute_plan(plan_str):
toks = plan_str.strip().split()
for t in toks:

if '(' in t: # end marker with "(xf)"
break

face = t[0]
num = t[1] if len(t) > 1 else '1'
if num == '1':

print(make_move(face))
elif num == '2':

print(make_move(face))
print(make_move(face))

elif num == '3':
print(make_move(face + "'"))

if plan and not plan.strip().startswith("Error"):
execute_plan(plan)

# Final check
final_answer("")

Observation.

Sampled colored: 106
Sticker clusters: 27
Faces in this view: 3
Sampled colored: 106
Sticker clusters: 27
Faces in this view: 3
Sampled colored: 106
Sticker clusters: 27
Faces in this view: 3
Sampled colored: 103
Sticker clusters: 27
Faces in this view: 2
Sampled colored: 102
Sticker clusters: 27
Faces in this view: 2
Collected faces: ['B', 'R', None, 'O', 'G', 'W']
B [['Y', 'Y', 'O'], ['O', 'B', 'O'], [None, 'B', None]]
R [[None, 'Y', 'W'], ['R', 'R', 'Y'], [None, None, 'B']]
None [['R', None, 'G'], ['W', None, None], ['G', 'Y', 'Y']]
O [['R', 'R', 'O'], ['G', 'O', 'B'], [None, 'G', None]]
G [['B', 'G', 'W'], ['R', 'G', 'W'], ['R', 'O', None]]
W [['W', 'W', 'Y'], ['Y', 'W', 'W'], ['B', 'Y', None]]
Warning missing face: Y
Solver string: FFUBULUBURRRRRRRRRURDFFRUULDDRRDDLRURRUULUULULBDFBDFUU
Planner output: Error: Cube definition string FFUBULUBURRRRRRRRRURDFFRUULDDRRDDLRURRUULUULULBDFBDFUU
does not contain exactly 9 facelets of each color.

Not Solved.
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