
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CUBEBENCH: DIAGNOSING INTERACTIVE, LONG-
HORIZON SPATIAL REASONING UNDER PARTIAL OB-
SERVATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model (LLM) agents, while proficient in the digital realm, face
a significant gap in physical-world deployment due to the challenge of forming
and maintaining a robust spatial mental model. We identify three core cognitive
challenges hindering this transition: spatial reasoning, long-horizon state track-
ing via mental simulation, and active exploration under partial observation. To
isolate and evaluate these faculties, we introduce CubeBench, a novel genera-
tive benchmark centered on the Rubik’s Cube. CubeBench uses a three-tiered
diagnostic framework that progressively assesses agent capabilities, from founda-
tional state tracking with full symbolic information to active exploration with only
partial visual data. Our experiments on leading LLMs reveal critical limitations,
including a uniform 0.00% pass rate on all long-horizon tasks, exposing a funda-
mental failure in long-term planning. We also propose a diagnostic framework to
isolate these cognitive bottlenecks by providing external solver tools. By analyz-
ing the failure modes, we provide key insights to guide the development of more
physically-grounded intelligent agents.

B B B…
G G G…
OOO…

…

Tier 1: Full Symbolic State

Tier 2: Full Visual State Tier 3: Partial Visual State

Figure 1: An overview of the performance of leading LLMs on the CubeBench benchmark, broken
down by its three diagnostic tiers. Tier 1 (Full Symbolic State) tests foundational state tracking
using complete symbolic information, where the best average pass rate is only 37.5%. Tier 2 (Full
Visual State) challenges visual and spatial reasoning by requiring agents to interpret a 2D unfolded
map, and Tier 3 (Partial Visual State) evaluates active exploration from partial views. Across
all tiers, GPT-5 emerges as the top-performing model, though the results highlight a significant
performance gap between symbolic and visual reasoning tasks.

1 INTRODUCTION

Agents powered by Large Language Models (LLMs) have demonstrated remarkable potential within
the digital realm (Gao et al., 2025; Fang et al., 2025). Their proficiency in using tools to navigate
websites or write code heralds the dawn of general-purpose AI assistants (Luo et al., 2025; Ma et al.,
2025). However, a far grander ambition is to deploy these agents into the physical world. This vision
confronts a significant gap: an agent’s success on one-dimensional, symbolic tasks does not readily

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

translate to effective decision-making in three-dimensional, dynamic environments. The physical
world demands more than language comprehension; it requires the ability to form and maintain a
robust spatial mental model (Johnson-Laird, 1980; 1983).

Spatial Reasoning Exploration and Reasoning
under Partial Observation

Long-Horizon State Tracking through Mental Simulation

Partial
Observations Full Cube String

Actual Outcome

…

…

Little Error Accumulates
Thought

OOWBBWBBW
GG Y GG Y RR Y
GGG OOOOOO
RR B RR B RR B
YY O YY B YY B
WWGWWGWWR

F

F

U’

U’

B

B

U

U

Figure 2: Visualization of the three core
cognitive challenges required for spatial
reasoning.

This gap manifests as critical deficiencies in the core
cognitive abilities of current agents, which we show in
Fig. 2. We identify three such challenges. The first is
Spatial Reasoning: physical tasks are inherently three-
dimensional, requiring an agent to comprehend an ob-
ject’s geometry, the relative positions of its components,
and the precise consequences of actions in 3D space. The
second is Long-Horizon State Tracking through Mental
Simulation. Unlike digital tasks where state is often ex-
ternally visible, physical interaction requires an agent to
internally maintain and update its world model over long
action sequence planning, where even minor errors can
accumulate and lead to catastrophic failure. Finally, and
most crucially, is the ability for Exploration and Reason-
ing under Partial Observation. The real world rarely provides complete information, so an agent
must actively explore its environment to construct a complete mental model from limited views.

To rigorously measure and advance these core capabilities, isolated from the complexities of phys-
ical perception, we introduce CubeBench, a novel, generative benchmark centered on the Rubik’s
Cube. We posit that the cube serves as an ideal laboratory; its deterministic rules and vast state
space allow us to conduct controlled experiments that isolate the three core cognitive faculties. To
achieve this, CubeBench features a three-tiered diagnostic framework to progressively probe an
agent’s capabilities: Tier 1 tests foundational state tracking with complete symbolic information;
Tier 2 challenges visual and spatial reasoning by requiring the creation of a 3D model from a 2D
unfolded map; and Tier 3 evaluates active exploration using only partial visual information.

Our comprehensive evaluation on CubeBench reveals a staggering performance gap in current
LLMs. The results are stark: across all models, the pass rate on any long-horizon task is a
uniform 0.00, exposing a critical failure in long-term planning and state tracking. Even on short-
horizon symbolic tasks, the top-performing LLM, GPT-5 1 , achieves a success rate of just 0.75,
merely matching the performance of a traditional Policy Gradient agent and highlighting the diffi-
culty of even basic structured reasoning. Furthermore, our experiments with dense rewards show
that while external feedback can provide a local guide on simpler problems, it is insufficient to over-
come these core planning deficits. By equipping agents with solver tools, our diagnostic framework
successfully pinpoints these failures, isolating long-horizon planning as a primary bottleneck and
the inability to reason from partial observations as a more fundamental challenge.

In summary, the primary contributions of this paper are:

• We identify and formalize three core cognitive challenges that impede the deployment of
LLM agents into the physical world: spatial reasoning, long-horizon state tracking, and
exploration under partial observation.

• We propose CubeBench, a novel, generative benchmark for the controlled evaluation of
these cognitive challenges, decoupled from the complexities of visual perception.

• Through extensive experiments on leading LLMs, we reveal their current limitations in
forming and utilizing spatial mental models, offering key insights for future development.

• We demonstrate through intervention studies—specifically solver integration and learning
from experience—that the identified limitations of base LLMs can be significantly miti-
gated, pointing toward promising avenues for building more capable agents.

2 RELATED WORKS

Self-evolving Agents. The paradigm of AI is shifting from static, pre-trained models to dynamic,
self-evolving agents (Gao et al., 2025; Fang et al., 2025) capable of continual learning and adap-

1Accessed via OpenRouter (ID: openai/gpt-5) with unspecified reasoning effort.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: A comparison of agentic benchmarks. Besides the three core cognitive challenges, we also
evaluate key task characteristics: Verifiable Outcome Reward, which assesses if the environment
operates on fixed, predictable principles rather than subjective or stochastic outcomes such as LLM-
as-a-judge; Non-static environment, which measures if the state of the environment changes with
different agent actions; and whether the task is Humanly Challenging, requiring deliberate explo-
ration for acquiring problem-solving skills beyond simple perception or motor control.

Core Cognitive Challenges Environmental & Task Properties
Benchmark Type 3D Reasoning Long-Hori. ST. Track Partial Obs. Verifiable Outcome Rwd. Non-static Env. Humanly Challenging
Search ✗ ✓ ✗ ✓ ✗ ✓
Code ✗ ✓ ✓ ✓ ✓ ✓
GUI ✗ ✓ ✗ ✓ ✓ ✗
Embodied Simulators ✓ ✓ ✓ ✓ ✓ ✗
Gyms ✗ ✓ ✓ ✓ ✓ ✓
ARC-AGI-3 ✗ ✓ ✗ ✓ ✓ ✓
MINDCUBE ✓ ✗ ✗ ✓ ✗ ✗
CubeBench (Ours) ✓ ✓ ✓ ✓ ✓ ✓
✓ for being explicitly designed to test the capability. ✓ for being partially tested in the benchmark. ✗ for benchmarks not primarily focusing on this capability.

tation from experience (Wang et al., 2024a;b; Luo et al., 2025; Zhang et al., 2025b; Hu et al.,
2024a; 2025; Liang et al., 2024a; Ma et al., 2025). Unlike foundational agents with fixed capa-
bilities, self-evolving agents can autonomously modify their own components—including memory
(Zhang et al., 2024a; Zhou et al., 2024; Liang et al., 2024b; Xu et al., 2025b; Zhao et al., 2024a;
Chhikara et al., 2025; Guan et al., 2024; Yu et al., 2025), tools (Qiu et al., 2025; Haque et al., 2025;
Zheng et al., 2025; Zhao et al., 2024b; Qu et al., 2025; Wang et al., 2025), and architecture (Zhuang
et al., 2025; Zhang et al., 2025c; Sapkota et al., 2025) — in response to environmental interaction.
As these agents evolve to tackle the physical world, a fundamental shift in their evaluation is re-
quired—moving beyond traditional static assessments to benchmarks that can rigorously measure
the acquisition and application of spatial intelligence.

Benchmarks for Self-evolving Agents. Existing benchmarks (Chan et al., 2024; Chen et al., 2024b;
Wei et al., 2025; Levy et al., 2024; Wu et al., 2025; Mialon et al., 2023; Liu et al., 2023; Chen et al.,
2025a; Zhu et al., 2025; Hu et al., 2024b), however, are not designed for these dynamics. As shown
in Table 1, different categories of benchmarks test these cognitive skills to varying degrees, but none
provides a focused, isolated evaluation. Digital environments for Search and GUI interaction (Xie
et al., 2024; Zhang et al., 2025a; Levy et al., 2024; Wu et al., 2025; Zhou et al., 2023; Deng et al.,
2023; Mialon et al., 2023; Wei et al., 2025; Phan et al., 2025), for instance, are primarily 2D and
feature explicit states, thus not addressing 3D spatial reasoning. While Code and Gym environments
(Hu et al., 2024b; Jimenez et al., 2023; Chan et al., 2024; Chen et al., 2025b; Aleithan et al., 2024;
Yang et al., 2024; Xu et al., 2024; Su et al., 2025; Tassa et al., 2018; Yu et al., 2020; Rajeswaran
et al., 2017) require long-horizon state tracking, they do not involve the complex 3D geometric
understanding that is crucial for physical-world tasks. Embodied simulators (Gao et al., 2024; Yang
et al., 2025b; Li et al., 2024; Savva et al., 2019b; Shridhar et al., 2021; Kolve et al., 2017) do engage
all three faculties but inherently couple them with complex visual perception, making it difficult to
isolate cognitive failures. While recent work like MindCube (Liu et al., 2024) evaluates reasoning
on static 3D scenes, our work introduces the challenge of updating a spatial model through long-
horizon, state-altering interaction.

In this work, we develop CubeBench, which is specifically designed to fill this gap by decoupling
perception from reasoning. Its deterministic, rule-based nature makes it an ideal suite for studying
an agent’s evolution; when an agent fails, the cause can be precisely attributed to a failure in its
internal spatial model or its long-horizon planning, as shown in Sec. 4.3. Furthermore, CubeBench’s
generative nature allows for the creation of a virtually infinite curriculum of tasks with fine-grained
difficulty, enabling the rigorous evaluation of an agent’s ability to learn and adapt over time—a
cornerstone of assessing true self-evolution (Gao et al., 2025).

3 THE CUBEBENCH BENCHMARK

3.1 TASK DEFINITION

We formalize the Rubik’s Cube challenge as a Partially Observable Markov Decision Process
(POMDP), providing a structured framework to analyze agent behavior. A POMDP is defined by
a tuple (S,A, T,R,Ω, O), where S is a set of states, A is a set of actions, T is the state transition
function, R is the reward function, Ω is a set of observations, and O is the observation function. In

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

State

Action
Space

Face View Vertex View

Partial Visual

OOO B B B B B B
R R R G G G G G G

G G G OOOOOO
B B B R R R R R R
Y Y Y Y Y Y Y Y Y

WWWWWWWWW

Full Symbolic Full Visual

make_move(R) make_move(R) make_move(R) (12 Actions)

Transformed
State

OOWBBWBBW
GG Y GG Y RR Y
GGG OOOOOO
RR B RR B RR B
YY O YY B YY B
WWGWWGWWR

(12 Actions) (12 Actions)

Tier 1 Tier 2 Tier 3

apply_view_
Transformation
(up) (4 Actions)

 (4 Actions)Figure 3: Illustration on the three-tiered task of CubeBench. Tier 1 (Full Symbolic State) pro-
vides the agent with complete state information in a string format, which makes the problem a fully
observable MDP. Tier 2 (Full Visual State) presents the full state as a 2D unfolded map, which chal-
lenges the agent’s visual thinking. Tier 3 (Partial Visual State) provides only a partial view of the
cube (Face view or Vertex view), which requires the agent to explore the environment to gather the
full state information.

this context, the agent’s goal is to learn a policy π(a|o) that selects an action a ∈ A given an obser-
vation o ∈ Ω to maximize the expected cumulative reward. We now define each of these components
within the CubeBench environment.

3.1.1 STATE SPACE

The state space S encompasses all possible configurations of the 3x3x3 Rubik’s Cube. The internal
state of the cube, s ∈ S, is deterministically represented by a data structure that tracks the color
of the 54 individual facelets (stickers). This symbolic representation is unambiguous and allows
for perfect state tracking within the simulation. The Rubik’s Cube is a classic example of a system
governed by the principles of group theory. Each move corresponds to a permutation of the cube’s
facelets, and the set of all possible move sequences forms a mathematical group. This deterministic,
non-stochastic nature makes it an ideal environment for isolating an agent’s reasoning and planning
capabilities from the complexities of physical uncertainty. The state space is vast, containing over
43 quintillion (4.3× 1019) unique configurations, yet it is finite and structured. This combination of
immense scale and deterministic rules makes it a compelling microcosm for studying autonomous
problem-solving on tasks that are too large for naive search but are perfectly predictable.

3.1.2 OBSERVATION SPACE

The observation space Ω is defined by the observation function O(s), which maps the true internal
state s to an observation o that is presented to the agent. As shown in Fig. 3, CubeBench features a
three-tiered observation space, where each tier presents the state information in a different modality,
posing distinct perceptual challenges.

Tier 1: Full Symbolic State. The observation is a 54-character string that symbolically represents
the complete state of the cube. Each character corresponds to the color of a single facelet (e.g., ‘W’
for White, ‘R’ for Red, ‘B’ for Blue, ‘O’ for Orange, ‘G’ for Green, ‘Y’ for Yellow). In this
tier, the observation function provides the full state information as a 54-character structed string,
making the problem a fully observable MDP.

Tier 2: Full Visual State. The observation is a single image depicting the cube’s complete 2D
unfolded map, which visually presents all 54 facelets in a planar layout. This tier specifically chal-
lenges an agent’s visual reasoning capabilities, requiring it to mentally fold the 2D layout into a
coherent 3D spatial model to understand the adjacency of faces that are not contiguous in the planar
representation.

Tier 3: Partial Visual State. The observation is a single image of a partial view of the cube. This
can be either an image of a single face (face view) or an image from a corner’s perspective showing

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

three adjacent faces (vertex view). In this tier, the observation function provides incomplete state
information, thus formulating the task as a true POMDP.

3.1.3 ACTION SPACE

The action space A consists of the set of discrete, deterministic commands an agent can execute to
interact with the environment.

State Transition Actions: The primary action for rotating the cube, which implements the environ-
ment’s transition function T (s, a). A make move command accepts one of 12 standard Singmaster
notation inputs corresponding to a 90-degree rotation of a face: F (Front), B (Back), L (Left), R
(Right), U (Up), D (Down), and their counter-clockwise prime versions (F’, B’, etc.).

Observation-Altering Actions: An action exclusive to Tier 3 that allows the agent to change its
observational viewpoint (i.e., up, down, left, right) without altering the cube’s underlying state s.
This is the primary mechanism for exploration in the partially observable setting.

3.1.4 REWARD FUNCTION

The agent’s objective is to reach the solved state. We define two types of reward signals within
CubeBench to facilitate and evaluate this process.

Sparse Terminal Reward: The primary success metric is a sparse, binary reward. The agent re-
ceives a reward of R = 1 upon entering the terminal solved state (i.e., all stickers on six faces
are matched), and R = 0 for all other state transitions. The agent’s goal is to find a policy that
maximizes the probability of achieving this terminal reward within the given constraints.

Dense Progressive Reward: To potentially guide the agent’s search process, we also implement an
optional dense reward mechanism. Unlike a state-value function, our dense rewards are calculated
as the change in a given metric before and after a state transition action. Specifically, the reward
Rt for taking state transition action at in state st to reach state st+1 is defined as the difference in a
metric function ϕ(s):

Rt = ϕ(st+1)− ϕ(st)

We implemented and tested three different metric functions (ϕ) to explore how the conceptual gran-
ularity of the feedback affects agent performance. (1) Sticker Metric (ϕsticker): This function
quantifies the total number of individual facelets (stickers) that are in their correct home positions.
The score ϕsticker(s) ranges from 9 for a highly scrambled cube to 54 for the solved state. This
provides a fine-grained, low-level signal of progress. (2) Face Metric (ϕface): This function counts
the number of fully solved faces, where all 9 stickers on a face are correct. It provides a high-level,
more conceptually grounded signal that is sparser than the sticker metric. (3) Heuristic Metric
(ϕheuristic): This function uses an algorithmic heuristic from a common solving method to estimate
the distance to the goal state. It is designed to provide a more informed, albeit abstract, numerical
signal, which we explain in detail in Sec. J. As a default setting, we also include a no reward
condition where Rt = 0 for all transitions.

3.2 TASK EVALUATION AND GENERATION

Observation

Thought

Code

Execution

CodeAct Loop

``` python
moves = ["D' ", "L'", "B'", "U", … , "D'"]
for move in moves:
    make_move(move)
state = get_observation()
print(state)
```

YBYWRYGWO
GBBGGBWGB
GYWOBYYRB
OORRYWRRG
YYWOOBRRR

OGBOWWOGW

I have analyzed the cube
state and found a
solution sequence using
an online solver. The
sequence is D' L' B' U
… D’. I will now apply
these moves to the cube.

D' L

B' U

D’

…

Figure 4: Illustration on the interaction
protocol.

Agent Interaction Protocol. The agent’s interaction
with the environment follows the ReAct paradigm (Yao
et al. (2022)), structured into a sequence of decision-
making steps. As shown in Fig. 4, we define a single step
as a complete Thought-Code-Observation block.
Within each step, the agent first generates its reasoning
(Thought), then writes and executes code to interact
with the environment (Code), and finally receives the
output of that code as feedback (Observation) for its
next cycle. Each experimental run is subject to a maxi-
mum of 20 steps and a timeout of 30 minutes to ensure
fair comparison. Note that in each step, the agent could
write code to make more than one move.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Experiment 1:

Basic
CubeAgent

CubeAgent with
 Rewards

Basic
Agent

Ideal-Solver
Agent

Standard-Solver
Agent

Sticker

Face
No reward

Heuristic

❖ Diagnose whether failures
stem from planning, state
reconstruction, or data
transformation.

❖ Solve the task from first
principles

❖ Rely entirely on internal
faculties.

❖ Clarify whether, and what
kind of heuristic signals can
aid in its search process.

Experiment Number

CubeAgent with
Tools

Experiment 2:

Experiment 3:

make_move()

get_observation()

apply_view_transformation()
(for Tier 3)

#

-

…

d goal

Figure 5: Visualization of our three-part diagnostic framework for systematically evaluating
LLM agents. To answer Q1, we test a basic agent with only fundamental interaction tools to
establish its baseline capabilities from first principles. For Q2, we augment the agent with various
dense reward signals to determine if external feedback can effectively guide its search process.
Finally, to address Q3, we deploy agents with different levels of tool support to diagnose whether
failures originate from high-level planning, state reconstruction, or procedural data transformation.

Evaluation Metrics. Our primary metrics are designed to measure both success and effort. The
Pass Rate is the fraction of test cases successfully solved within the execution constraints, serving
as the primary measure of an agent’s capability. To quantify search effort, we use the Number of
make move calls (#MM) as a proxy. We report this metric aggregated in three ways: the average
over all normally terminated runs, the average over only successful runs, and the maximum count
observed across all normally terminated runs.

Task Generation and Difficulty Scaling. We define task difficulty based on the optimal number
of moves required to solve a given cube configuration, a metric we refer to as the state’s depth.
A state’s depth serves as a robust proxy for its complexity; solving high-depth states is infeasible
through random exploration and necessitates a coherent strategy. To generate our test cases, we
employ a provably optimal solver (see Appendix K). For a target depth d, we generate scrambled
states and confirm their optimality by verifying that a solution of length d exists, but no solution of
length d − 1 can be found. This guarantees the true depth is precisely d. The detail of this process
is described in the appendix. To analyze agent performance across varying complexities, we group
these cases into two distinct categories: Short-Horizon tasks, comprising states with depths of 1, 2,
3, and 4, and Long-Horizon tasks, which include the more challenging depths of 8, 12, 16, and 20.
The configuration of the generated test split is described in detail in Sec.G.

4 DIAGNOSING LLM AGENT CAPABILITIES ON CUBEBENCH

In this section, we introduce our systematic framework for evaluating Large Language Model (LLM)
agents on the CubeBench benchmark. As shown in Fig. 5, the evaluation process is designed as a
three-part diagnostic, structured around three central research questions that aim to progressively
uncover the cognitive strengths and weaknesses of current agents:

Questions

• Q1: What are the baseline capabilities and limitations of current LLM agents when trying
to solve the typical cube problem in an unaided setting?

• Q2: Can the introduction of dense reward signals effectively guide an agent’s context-
based reasoning process and enhance its performance on these complex spatial tasks?

• Q3: How can we design a diagnostic evaluation to isolate the impact of each core cognitive
challenge, thereby identifying the primary bottlenecks for agent failure—is it high-level
planning, state reconstruction from partial perception, or spatial reasoning?

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Baseline performance across modalities and horizons on CubeBench. Top row: metric
groups (Pass rate, #MM, where #MM is the average number of make move calls); second row:
observation modalities; third row: task horizons (Short = S, depths 1–4; Long = L, depths 8, 12,
16, 20). Tier 3 denotes the hardest split, evaluated under two projections: Face View and Vertex
View. Blue shading denotes open-source models , and pink denotes proprietary models . For each
metric column, we shade the top-3 entries (red = 1st, orange = 2nd, yellow = 3rd). We also train
an MLP with policy gradient on the Full Symbolic setting; details are in Sec. H. “−” : Model
does not support visual inputs.

Pass rate #MM

Full Symbolic Full Visual Face view Vertex view Full Symbolic Full Visual Face view Vertex view

Model S L S L S L S L S L S L S L S L

GPT-5 0.75 0.00 0.20 0.00 0.40 0.00 0.05 0.00 85869.16 438193.56 387.42 376.47 161.65 189.00 8773.00 5574.45
MLP (Policy Gradient) 0.75 0.00 – – – – – – 5.17 400.00 – – – – – –
gpt-oss-120b 0.20 0.00 – – – – – – 115585.30 197923.80 – – – – – –
Grok-4 0.20 0.00 0.05 0.00 0.00 0.00 0.00 0.00 3.75 9.45 3.35 60.00 3.45 3.25 42.00 9.75
Kimi K2 (2024-09-05) 0.15 0.00 – – – – – – 47446.30 1297.06 – – – – – –
Gemini 2.5 Pro 0.10 0.00 0.05 0.00 0.05 0.00 0.00 0.00 180.50 114.45 36.15 36.25 7.60 8.25 27.35 25.65
DeepSeek-R1 (2025-05-28) 0.05 0.00 – – – – – – 28143.85 37819.20 – – – – – –
Claude Sonnet 4 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 69.10 126.75 27.55 23.20 6.70 25.10 19.30 65.35
Qwen3-Max 0.05 0.00 – – – – – – 35.20 43.35 – – – – – –
DeepSeek-V3.1 0.05 0.00 – – – – – – 33.80 20.85 – – – – – –
doubao-seed-1-6-vision 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.70 11.25 12.75 12.35 12.75 10.65 14.65 13.85
InternVL-3 (78B) 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 56499.75 61.15 48.45 49.75 42.90 38.11 62.00 79.95
Qwen2.5-VL-72B-Instruct 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 47390.10 51351.79 45.25 36.10 13.30 15.55 80.75 30.05
kimi-vl-a3b-thinking 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5276.13 0.18 0.00 0.11 0.00 0.00 1.06 0.05
GPT-4o 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 83.90 104.10 106.70 104.50 50.40 59.00 118.45 115.35
GLM-4.5V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 36.85 55.55 30.75 39.70 51.70 58.21 35.50 101.70
Gemma-3-27B-IT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.60 18.25 30.30 26.10 19.95 20.30 23.60 16.10
Seed-OSS-36B-Instruct 0.00 0.00 – – – – – – 14.68 10.94 – – – – – –

4.1 EXPERIMENT 1: BASIC AGENT WITH NO AID

Experimental Setup. To answer our first research question, we establish the baseline capabilities
of unaided LLMs. For this experiment, we utilize the Basic Agent configuration. This agent is
provided with only the fundamental interaction tools: make move, get observation, and,
for Tier 3 tasks, apply view transformation. It must solve the task from first principles,
relying entirely on its internal faculties for planning and reasoning. We evaluated this agent across
all four observation modalities (Full Symbolic, Full Visual, Face view, and Partial
Visual) on both short- and long-horizon tasks. The results are presented in Table 5.

Key Observations. (1) All models exhibit a 0.00 pass rate on long-horizon tasks across all input
modalities. (2) For short-horizon tasks, non-zero pass rates are achieved almost exclusively with the
symbolic string input; performance on all visual inputs is near or at zero for most models. (3) A clear
performance hierarchy is evident, with GPT-5’s 0.75 pass rate on the symbolic task significantly ex-
ceeding all other models. A Policy Gradient agent matches GPT-5’s performance, outperforming
most LLMs in this setting. (4) On the Full Symbolic task, a subset of models engage in com-
putationally intensive search, indicated by average #MM counts several orders of magnitude higher
than other models.

Insights. (1) The universal failure on long-horizon tasks is direct evidence of a fundamental deficit
in Long-Horizon State Tracking through Mental Simulation. A related case study is presented in
Sec. L.2. (2) The sharp performance decline from symbolic to visual inputs indicates that Visual
Thinking is a primary limiting factor for these agents. (3) While symbolic inputs enable search-
based strategies, they are often computationally expensive. A notable phenomenon emerges in these
tasks: agents exhibit a diversity of problem-solving strategies. Lower #MM values typically corre-
spond to directly reasoning through the sequence of moves logically, whereas higher #MM values are
indicative of search-based strategies. The choice of searching algorithm substantially impacts pass
rates. More capable agents, such as GPT-5, tend to systematically search using algorithms like beam
search and iterative deepening depth-first search (IDDFS) with skills like backtracking, as shown in
Sec. L.1 and L.2. In contrast, less capable agents often devolve into largely unguided enumeration
(shown in L.3). However, even models such as GPT-5 struggle to perform effective pruning; their
capabilities remain insufficient to curb the rapid growth in computational complexity, leading to
failures on long-horizon tasks (shown in L.4).

4.2 EXPERIMENT 2: CUBEAGENT WITH REWARDS

Experimental Setup. Our second experiment was designed to measure the impact of different
dense reward mechanisms on agent performance. We used the Basic Agent agent configuration

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Pass rates of different agent types across modalities and horizons on CubeBench. Met-
rics include Pass rate (higher is better). Modalities: Full Symbolic, Full Visual, Face
View, Vertex View. Tier 3 denotes the hardest split and is evaluated under two projections:
Face View and Vertex View. Horizons: Short (S) and Long (L).

Full Symbolic Full Visual Face view Vertex view

Model Reward Type S L S L S L S L

GPT-5

no reward 0.75 0.00 0.20 0.00 0.40 0.00 0.05 0.00
face 0.85 0.00 0.55 0.00 0.50 0.00 0.40 0.00
sticker 0.65 0.00 0.55 0.00 0.55 0.00 0.50 0.00
heuristic 0.50 0.00 0.45 0.00 0.65 0.00 0.30 0.00

Gemini 2.5 Pro

no reward 0.10 0.00 0.05 0.00 0.05 0.00 0.00 0.00
face 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sticker 0.10 0.00 0.00 0.00 0.05 0.00 0.00 0.00
heuristic 0.05 0.00 0.00 0.00 0.10 0.00 0.00 0.00

Claude Sonnet 4

no reward 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
face 0.10 0.00 0.10 0.00 0.05 0.00 0.00 0.00
sticker 0.25 0.00 0.15 0.00 0.00 0.00 0.05 0.00
heuristic 0.20 0.00 0.05 0.00 0.05 0.00 0.10 0.00

as the testbed. Its performance was evaluated under four distinct conditions: a baseline with no
progressive feedback (no reward), and three conditions providing different dense reward signals
(face, sticker, and heuristic), which are introduced in Sec. 3.1.4 and used as the return
value for the make move function. This direct comparison aims to clarify whether, and what kind
of dense rewardss can aid the agent. The results are presented in Table 3.

Key Observations. (1) On short-horizon tasks, dense rewards generally lead to an increase in pass
rates. (2) The pass rate on all long-horizon tasks remains at 0.00, regardless of the presence or type
of dense reward. (3) The impact of rewards is inconsistent; in some cases, such as for GPT-5 on the
Full Symbolic task with heuristic or sticker rewards, performance is lower than the
no-reward baseline. (4) The ability to leverage rewards varies notably across models.

Insights. (1) Dense rewards can guide an agent’s search on short-horizon tasks by providing a local
heuristic guide. (2) The failure of rewards on long-horizon tasks indicates that local feedback cannot
compensate for a fundamental deficit in long-horizon state tracking. (3) On visual inputs, agents may
leverage reward signals through symbolic reasoning, bypassing genuine visual reasoning, as shown
in Sec. L.5. (4) For more capable agents like GPT-5, an external reward can potentially conflict with
their emergent internal strategies, leading to suboptimal performance. For less capable agents that
may lack a strong internal strategy, any form of guidance from a dense reward is often helpful, as
seen with Claude Sonnet 4. The case studies are presented in Sec. L.6 and L.7 respectively.

4.3 EXPERIMENT 3: CUBEAGENT WITH SOLVER TOOLS

Experimental Setup. To precisely identify the primary bottlenecks in agent performance, our fi-
nal experiment removes the burden of long-horizon planning by equipping agents with an opti-
mal solver. We introduce two distinct configurations to isolate different cognitive challenges: the
Standard-Solver Agent and the Ideal-Solver Agent. The Standard-Solver Agent is given a solver
that requires a specific, strict symbolic input format. To succeed, this agent must first accurately per-
ceive the cube’s state, then perform the crucial step of translating that perception into the required
format. This translation process is non-trivial, as it requires spatial understanding to reconcile
potential differences between the environment’s state representation (e.g., one type of 2D unfolded
map) and the solver’s expected input (e.g., a different face order or vertex numbering scheme). Fi-
nally, the agent must execute the solver’s plan. This setup tests the agent’s ability to handle state
reconstruction, spatial transformation, and procedural tool use.

In contrast, the Ideal-Solver Agent is provided with a more advanced tool that automates the trans-
lation step. This agent can directly pass its perceived state to the solver, thus bypassing the data
formatting challenge. By comparing the performance of these two agents, we can isolate whether
failures stem from reconstructing a state from perception or from the challenge of spatial under-
standing during translation. The results are presented in Table 4.

The Diagnosing Framework. Our evaluation is structured as a progressive, three-step diagnostic
process designed to systematically isolate and assess the core cognitive faculties of an agent. (1)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Comparison of pass rates for Basic, Standard-Solver, and Ideal-Solver agent configura-
tions. Modalities: Full Symbolic, Full Visual, Face View, Vertex View. Tier 3
denotes the hardest split and is evaluated under two projections: Face View and Vertex View.
Horizons: Short (S) and Long (L).

Full Symbolic Full Visual Face view Vertex view

Model Agent Type S L S L S L S L

GPT-5
Basic 0.75 0.00 0.20 0.00 0.40 0.00 0.05 0.00
Standard-Solver 0.95 0.95 0.65 0.70 1.00 0.95 0.00 0.00
Ideal-Solver 1.00 1.00 0.95 0.80 0.85 1.00 0.00 0.00

Gemini 2.5 Pro
Basic 0.10 0.00 0.05 0.00 0.05 0.00 0.00 0.00
Standard-Solver 0.70 0.65 0.25 0.00 0.20 0.00 0.00 0.00
Ideal-Solver 1.00 1.00 0.25 0.00 0.00 0.00 0.00 0.00

Claude Sonnet 4
Basic 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Standard-Solver 0.35 0.85 0.00 0.00 0.00 0.00 0.00 0.00
Ideal-Solver 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Diagnosing Long-Horizon State Tracking and Planning. We first diagnose long-horizon tracking
by comparing the Basic Agent with the Standard-Solver Agent on long-horizon symbolic tasks. The
Basic Agent relies on internal reasoning, while the Standard-Solver outsources the planning chal-
lenge to an optimal tool. Their performance gap reveals the agent’s intrinsic planning capability. (2)
Diagnosing Spatial Reasoning and Procedural Tool Use. Next, we diagnose the spatial reason-
ing required for tool use by comparing the Standard-Solver Agent to the Ideal-Solver Agent. Since
both agents offload planning, the performance gap isolates the challenge of spatial thinking, which
translates perceptual input into a usable format for the tool. (3) Diagnosing Active Exploration
under Partial Observation. Finally, to isolate exploration, we evaluate the Ideal-Solver Agent in a
partial observation setting. The ideal tool removes both planning and translation challenges, leaving
only the task of reconstructing a complete world model from fragmented information. Success here
depends entirely on the agent’s ability to actively explore its environment.

Key Observations. (1) The addition of the tools generally leads to marked performance gains
compared to the basic agent. (2) There is still a performance gap between the Standard-Solver and
Ideal-Solver agents. (3) On Full Visual and Face view tasks, only GPT-5 maintains strong
performance, while all models fail universally on the Vertex view task.

Insights. (1) High-level, multi-step planning, or Long-Horizon State Tracking, is a primary deficit
that can be successfully offloaded to external solvers. (2) The procedural challenge of using tools
is non-trivial, rendering Spatial Reasoning an important challenge to resolve for further develop-
ment. (3) An unanticipated but noteworthy finding is the emergence of tool-learning strategies in
the Standard-Solver Agent. In some instances, we observed a remarkable capability for autonomous
tool-learning, where agents learn to master the tool through trial-and-error experimentation for this
spatial conversation, as shown in Sec. L.8. (4) A significant performance gap exists between the
Face view and Vertex view tasks. The reason is that the orderly, grid-like structure of the
Face view allows agents to succeed by recasting the task as an algorithmic parsing problem.
This indicates that models will attempt to bypass direct spatial reasoning in favor of a parsing-based
approach whenever possible, and their performance suffers when the input’s complexity, as in the
Vertex view, makes this bypass strategy infeasible. The corresponding case study is presented
in Sec. L.9.

5 CONCLUSION

In this work, we introduced CubeBench, a diagnostic benchmark designed to probe the cognitive
faculties required for spatial reasoning. Our comprehensive experiments demonstrate a critical fail-
ure in current leading models, which uniformly achieve a zero pass rate on all long-horizon tasks
and struggle to bridge the gap from visual perception to symbolic understanding. Our diagnostic
framework successfully isolated these bottlenecks, confirming fundamental deficits in Spatial Rea-
soning, Long-Horizon State Tracking through Mental Simulation, and Exploration and Reasoning
under Partial Observation. Our findings underscore the need for future research to focus on develop-
ing more robust spatial mental models and grounding agents in the principles of three-dimensional
interaction to unlock their potential in the physical world.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide necessary tool suite to reproduce our results at https://anonymous.4open.
science/r/CubeBench-ICLR26-34B7/.

REFERENCES

Optimal solutions for the rubik’s cube — kociemba’s algorithm. https://en.wikipedia.
org/wiki/Optimal_solutions_for_the_Rubik%27s_Cube#Kociemba’s_
algorithm. Accessed September 2025.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716–
23736, 2022.

Reem Aleithan, Haoran Xue, Mohammad Mahdi Mohajer, Elijah Nnorom, Gias Uddin, and Song
Wang. Swe-bench+: Enhanced coding benchmark for llms. arXiv preprint arXiv:2410.06992,
2024.

Josep Aulinas, Yvan Petillot, Joaquim Salvi, and Xavier Lladó. The slam problem: a survey. Artifi-
cial Intelligence Research and Development, pp. 363–371, 2008.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learn-
ing agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Kai Chen, Xinfeng Li, Tianpei Yang, Hewei Wang, Wei Dong, and Yang Gao. Mdteamgpt: A
self-evolving llm-based multi-agent framework for multi-disciplinary team medical consultation.
arXiv preprint arXiv:2503.13856, 2025a.

Kaiyuan Chen, Yixin Ren, Yang Liu, Xiaobo Hu, Haotong Tian, Tianbao Xie, Fangfu Liu, Haoye
Zhang, Hongzhang Liu, Yuan Gong, et al. xbench: Tracking agents productivity scaling with
profession-aligned real-world evaluations. arXiv preprint arXiv:2506.13651, 2025b.

Shiqi Chen, Tongyao Zhu, Ruochen Zhou, Jinghan Zhang, Siyang Gao, Juan Carlos Niebles, Mor
Geva, Junxian He, Jiajun Wu, and Manling Li. Why is spatial reasoning hard for vlms? an
attention mechanism perspective on focus areas. arXiv preprint arXiv:2503.01773, 2025c.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 24185–24198, 2024a.

Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi Liao,
Chen Wei, Zitong Lu, et al. Scienceagentbench: Toward rigorous assessment of language agents
for data-driven scientific discovery. arXiv preprint arXiv:2410.05080, 2024b.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
production-ready ai agents with scalable long-term memory. arXiv preprint arXiv:2504.19413,
2025.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091–28114, 2023.

Jinyuan Fang, Yanwen Peng, Xi Zhang, Yingxu Wang, Xinhao Yi, Guibin Zhang, Yi Xu, Bin Wu,
Siwei Liu, Zihao Li, et al. A comprehensive survey of self-evolving ai agents: A new paradigm
bridging foundation models and lifelong agentic systems. arXiv preprint arXiv:2508.07407, 2025.

10

https://anonymous.4open.science/r/CubeBench-ICLR26-34B7/
https://anonymous.4open.science/r/CubeBench-ICLR26-34B7/
https://en.wikipedia.org/wiki/Optimal_solutions_for_the_Rubik%27s_Cube#Kociemba's_algorithm
https://en.wikipedia.org/wiki/Optimal_solutions_for_the_Rubik%27s_Cube#Kociemba's_algorithm
https://en.wikipedia.org/wiki/Optimal_solutions_for_the_Rubik%27s_Cube#Kociemba's_algorithm

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ARC Prize Foundation. Arc-agi-3: Interactive reasoning benchmark, 2025. URL https:
//arcprize.org/arc-agi/3/. Accessed: 2025-09-20.

Chen Gao, Baining Zhao, Weichen Zhang, Jinzhu Mao, Jun Zhang, Zhiheng Zheng, Fanhang Man,
Jianjie Fang, Zile Zhou, Jinqiang Cui, et al. Embodiedcity: A benchmark platform for embodied
agent in real-world city environment. arXiv preprint arXiv:2410.09604, 2024.

Huan-ang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong
Liu, Jiahao Qiu, Xuan Qi, Yiran Wu, et al. A survey of self-evolving agents: On path to artificial
super intelligence. arXiv preprint arXiv:2507.21046, 2025.

Zhenyu Guan, Xiangyu Kong, Fangwei Zhong, and Yizhou Wang. Richelieu: Self-evolving llm-
based agents for ai diplomacy. Advances in Neural Information Processing Systems, 37:123471–
123497, 2024.

Mohd Ariful Haque, Justin Williams, Sunzida Siddique, Md. Hujaifa Islam, Hasmot Ali,
Kishor Datta Gupta, and Roy George. Advanced tool learning and selection system (ATLASS):
A closed-loop framework using LLM. CoRR, abs/2503.10071, 2025.

Mengkang Hu, Pu Zhao, Can Xu, Qingfeng Sun, Jianguang Lou, Qingwei Lin, Ping Luo, and
Saravan Rajmohan. Agentgen: Enhancing planning abilities for large language model based
agent via environment and task generation. arXiv preprint arXiv:2408.00764, 2024a.

Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu Ye, Zhaoxuan
Jin, Yingru Li, Qiguang Chen, et al. Owl: Optimized workforce learning for general multi-agent
assistance in real-world task automation. arXiv preprint arXiv:2505.23885, 2025.

Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu, Zijie Yu, Yuchen Hou, Shuo Tang, and
Siheng Chen. Self-evolving multi-agent collaboration networks for software development. arXiv
preprint arXiv:2410.16946, 2024b.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Philip N Johnson-Laird. Mental models in cognitive science. Cognitive science, 4(1):71–115, 1980.

Philip Nicholas Johnson-Laird. Mental models: Towards a cognitive science of language, inference,
and consciousness. Number 6. Harvard University Press, 1983.

Herbert Kociemba. Cube explorer and kociemba’s two-phase algorithm. https://kociemba.
org/cube.htm. Accessed September 2025.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. Ai2-thor: An interactive 3d environment
for visual ai. arXiv preprint arXiv:1712.05474, 2017.

Richard E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial
Intelligence, 27(1):97–109, 1985.

Richard E. Korf. Finding optimal solutions to rubik’s cube using pattern databases. In AAAI, 1997.

Ido Levy, Ben Wiesel, Sami Marreed, Alon Oved, Avi Yaeli, and Segev Shlomov. St-
webagentbench: A benchmark for evaluating safety and trustworthiness in web agents. arXiv
preprint arXiv:2410.06703, 2024.

Bowen Li, Zhaoyu Li, Qiwei Du, Jinqi Luo, Wenshan Wang, Yaqi Xie, Simon Stepputtis, Chen
Wang, Katia P. Sycara, Pradeep Kumar Ravikumar, Alexander G. Gray, Xujie Si, and Sebastian
Scherer. Logicity: Advancing neuro-symbolic ai with abstract urban simulation, 2025. URL
https://arxiv.org/abs/2411.00773.

11

https://arcprize.org/arc-agi/3/
https://arcprize.org/arc-agi/3/
https://kociemba.org/cube.htm
https://kociemba.org/cube.htm
https://arxiv.org/abs/2411.00773

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu Zhou, Sanjana Srivastava, Cem Gokmen,
Tony Lee, Erran Li Li, Ruohan Zhang, et al. Embodied agent interface: Benchmarking llms for
embodied decision making. Advances in Neural Information Processing Systems, 37:100428–
100534, 2024.

Xuechen Liang, Yangfan He, Yinghui Xia, Xinyuan Song, Jianhui Wang, Meiling Tao, Li Sun,
Xinhang Yuan, Jiayi Su, Keqin Li, Siyuan Chen, and Tianyu Shi. Self-evolving agents with
reflective and memory-augmented abilities. arXiv preprint arXiv:2409.00872, 2024a.

Xuechen Liang, Yangfan He, Yinghui Xia, Xinyuan Song, Jianhui Wang, Meiling Tao, Li Sun, Xin-
hang Yuan, Jiayi Su, Keqin Li, et al. Self-evolving agents with reflective and memory-augmented
abilities. arXiv preprint arXiv:2409.00872, 2024b.

Fangzheng Liu, Don Derek Haddad, and Joe Paradiso. Mindcube: an interactive device for gauging
emotions. In Adjunct Proceedings of the 37th Annual ACM Symposium on User Interface Software
and Technology, pp. 1–2, 2024.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Junyu Luo, Weizhi Zhang, Ye Yuan, Yusheng Zhao, Junwei Yang, Yiyang Gu, Bohan Wu, Binqi
Chen, Ziyue Qiao, Qingqing Long, Rongcheng Tu, Xiao Luo, Wei Ju, Zhiping Xiao, Yifan Wang,
Meng Xiao, Chenwu Liu, Jingyang Yuan, Shichang Zhang, Yiqiao Jin, Fan Zhang, Xian Wu,
Hanqing Zhao, Dacheng Tao, Philip S. Yu, and Ming Zhang. Large language model agent: A sur-
vey on methodology, applications and challenges, 2025. URL https://arxiv.org/abs/
2503.21460.

Xiaowen Ma, Chenyang Lin, Yao Zhang, Volker Tresp, and Yunpu Ma. Agentic neural networks:
Self-evolving multi-agent systems via textual backpropagation. arXiv preprint arXiv:2506.09046,
2025.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

Renjie Pi, Jianshu Zhang, Jipeng Zhang, Rui Pan, Zhekai Chen, and Tong Zhang. Image textual-
ization: An automatic framework for creating accurate and detailed image descriptions. arXiv
preprint arXiv:2406.07502, 2024.

Xavi Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Ruslan Partsey, Jimmy Yang,
Ruta Desai, Alexander William Clegg, Michal Hlavac, Tiffany Min, Theo Gervet, Vladimir Von-
drus, Vincent-Pierre Berges, John Turner, Oleksandr Maksymets, Zsolt Kira, Mrinal Kalakr-
ishnan, Jitendra Malik, Devendra Singh Chaplot, Unnat Jain, Dhruv Batra, Akshara Rai, and
Roozbeh Mottaghi. Habitat 3.0: A co-habitat for humans, avatars and robots, 2023.

Jianing Qi, Jiawei Liu, Hao Tang, and Zhigang Zhu. Beyond semantics: Rediscovering spatial
awareness in vision-language models. arXiv preprint arXiv:2503.17349, 2025.

12

https://arxiv.org/abs/2503.21460
https://arxiv.org/abs/2503.21460

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang, Zixin
Yao, Qihan Ren, Xun Jiang, Xing Zhou, Dongrui Liu, Ling Yang, Yue Wu, Kaixuan Huang,
Shilong Liu, Hongru Wang, and Mengdi Wang. Alita: Generalist agent enabling scalable agentic
reasoning with minimal predefinition and maximal self-evolution. CoRR, abs/2505.20286, 2025.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and
Ji-Rong Wen. From exploration to mastery: Enabling llms to master tools via self-driven interac-
tions. In ICLR. OpenReview.net, 2025.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge. God’s Number is 20.
https://www.cube20.org/, 2010.

Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge. The diameter of the
rubik’s cube group is twenty. SIAM Review, 56(4):645–670, 2014. doi: 10.1137/140973499.

Ravi Sapkota, Konstantinos I Roumeliotis, Shiva Pokhrel, and Manoj Karkee. From self-learning to
self-evolving architectures in large language models: A short survey. Authorea Preprints, 2025.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A
Platform for Embodied AI Research. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2019a.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied
ai research. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
9339–9347, 2019b.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
for everyday tasks, 2020. URL https://arxiv.org/abs/1912.01734.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning, 2021.
URL https://arxiv.org/abs/2010.03768.

Sanjana Srivastava, Chengshu Li, Michael Lingelbach, Roberto Martı́n-Martı́n, Fei Xia, Kent
Vainio, Zheng Lian, Cem Gokmen, Shyamal Buch, C. Karen Liu, Silvio Savarese, Hyowon
Gweon, Jiajun Wu, and Li Fei-Fei. Behavior: Benchmark for everyday household activities
in virtual, interactive, and ecological environments, 2021. URL https://arxiv.org/abs/
2108.03332.

Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan Ö. Arık. Learn-by-
interact: A data-centric framework for self-adaptive agents in realistic environments, 2025. URL
https://arxiv.org/abs/2501.10893.

Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah Maestre,
Mustafa Mukadam, Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan, Vladimir Von-
drus, Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel Chang, Zsolt Kira, Vladlen
Koltun, Jitendra Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training home assistants to
rearrange their habitat. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. Advances in Neural Information Processing Systems, 36:38975–
38987, 2023.

13

https://www.cube20.org/
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2108.03332
https://arxiv.org/abs/2108.03332
https://arxiv.org/abs/2501.10893

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hongru Wang, Yujia Qin, Yankai Lin, Jeff Z. Pan, and Kam-Fai Wong. Empowering large lan-
guage models: Tool learning for real-world interaction. In Proceedings of the 47th Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
’24, pp. 2983–2986, New York, NY, USA, 2024a. Association for Computing Machinery. ISBN
9798400704314. doi: 10.1145/3626772.3661381. URL https://doi.org/10.1145/
3626772.3661381.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Ji-
akai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on
large language model based autonomous agents. Frontiers of Computer Science, 18(6), March
2024b. ISSN 2095-2236. doi: 10.1007/s11704-024-40231-1. URL http://dx.doi.org/
10.1007/s11704-024-40231-1.

Renxi Wang, Xudong Han, Lei Ji, Shu Wang, Timothy Baldwin, and Haonan Li. Toolgen: Unified
tool retrieval and calling via generation. In ICLR. OpenReview.net, 2025.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents. arXiv preprint arXiv:2504.12516, 2025.

Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang,
Yulan He, Deyu Zhou, Pengjun Xie, et al. Webwalker: Benchmarking llms in web traversal.
arXiv preprint arXiv:2501.07572, 2025.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040–52094, 2024.

Frank F Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, et al. Theagentcompany: benchmarking llm agents on
consequential real world tasks. arXiv preprint arXiv:2412.14161, 2024.

Wenrui Xu, Dalin Lyu, Weihang Wang, Jie Feng, Chen Gao, and Yong Li. Defining and evaluating
visual language models’ basic spatial abilities: A perspective from psychometrics. arXiv preprint
arXiv:2502.11859, 2025a.

Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic
memory for llm agents. arXiv preprint arXiv:2502.12110, 2025b.

Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
space: How multimodal large language models see, remember, and recall spaces. In Proceedings
of the Computer Vision and Pattern Recognition Conference, pp. 10632–10643, 2025a.

John Yang, Carlos E Jimenez, Alex L Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R Narasimhan, et al. Swe-bench multimodal:
Do ai systems generalize to visual software domains? arXiv preprint arXiv:2410.03859, 2024.

Rui Yang, Hanyang Chen, Junyu Zhang, Mark Zhao, Cheng Qian, Kangrui Wang, Qineng Wang,
Teja Venkat Koripella, Marziyeh Movahedi, Manling Li, et al. Embodiedbench: Comprehen-
sive benchmarking multi-modal large language models for vision-driven embodied agents. arXiv
preprint arXiv:2502.09560, 2025b.

Jianzhu Yao, Kevin Wang, Ryan Hsieh, Haisu Zhou, Tianqing Zou, Zerui Cheng, Zhangyang Wang,
and Pramod Viswanath. Spin-bench: How well do llms plan strategically and reason socially?,
2025. URL https://arxiv.org/abs/2503.12349.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Hongli Yu, Tinghong Chen, Jiangtao Feng, Jiangjie Chen, Weinan Dai, Qiying Yu, Ya-Qin Zhang,
Wei-Ying Ma, Jingjing Liu, Mingxuan Wang, et al. Memagent: Reshaping long-context llm with
multi-conv rl-based memory agent. arXiv preprint arXiv:2507.02259, 2025.

14

https://doi.org/10.1145/3626772.3661381
https://doi.org/10.1145/3626772.3661381
http://dx.doi.org/10.1007/s11704-024-40231-1
http://dx.doi.org/10.1007/s11704-024-40231-1
https://arxiv.org/abs/2503.12349

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Danyang Zhang, Lu Chen, Situo Zhang, Hongshen Xu, Zihan Zhao, and Kai Yu. Large language
models are semi-parametric reinforcement learning agents. Advances in Neural Information Pro-
cessing Systems, 36, 2024a.

Dingchu Zhang, Yida Zhao, Jialong Wu, Baixuan Li, Wenbiao Yin, Liwen Zhang, Yong Jiang,
Yufeng Li, Kewei Tu, Pengjun Xie, and Fei Huang. Evolvesearch: An iterative self-evolving
search agent. arXiv preprint arXiv:2505.22501, 2025a.

Genghan Zhang, Weixin Liang, Olivia Hsu, and Kunle Olukotun. Adaptive self-improvement llm
agentic system for ml library development. arXiv preprint arXiv:2502.02534, 2025b.

Guanghui Zhang, Li Niu, Jianwei Fang, Kun Wang, Lu Bai, et al. Multi-agent architecture search
via agentic supernet. arXiv preprint arXiv:2502.04180, 2025c.

Wenyu Zhang, Wei En Ng, Lixin Ma, Yuwen Wang, Junqi Zhao, Allison Koenecke, Boyang Li, and
Lu Wang. Sphere: Unveiling spatial blind spots in vision-language models through hierarchical
evaluation. arXiv preprint arXiv:2412.12693, 2024b.

Zheyuan Zhang, Fengyuan Hu, Jayjun Lee, Freda Shi, Parisa Kordjamshidi, Joyce Chai, and Ziqiao
Ma. Do vision-language models represent space and how? evaluating spatial frame of reference
under ambiguities. arXiv preprint arXiv:2410.17385, 2024c.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm
agents are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 19632–19642, 2024a.

Haiteng Zhao, Chang Ma, Guoyin Wang, Jing Su, Lingpeng Kong, Jingjing Xu, Zhi-Hong Deng,
and Hongxia Yang. Empowering large language model agents through action learning. CoRR,
abs/2402.15809, 2024b.

Boyuan Zheng, Michael Y. Fatemi, Xiaolong Jin, Zora Zhiruo Wang, Apurva Gandhi, Yueqi Song,
Yu Gu, Jayanth Srinivasa, Gaowen Liu, Graham Neubig, and Yu Su. Skillweaver: Web agents
can self-improve by discovering and honing skills. CoRR, abs/2504.07079, 2025.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, et al. Symbolic learning enables self-evolving agents.
arXiv preprint arXiv:2406.18532, 2024.

Kunlun Zhu, Hongyi Du, Zhaochen Hong, Xiaocheng Yang, Shuyi Guo, Zhe Wang, Zhenhailong
Wang, Cheng Qian, Xiangru Tang, Heng Ji, et al. Multiagentbench: Evaluating the collaboration
and competition of llm agents. arXiv preprint arXiv:2503.01935, 2025.

Yangyang Zhuang, Wenjia Jiang, Jiayu Zhang, Ze Yang, Joey Tianyi Zhou, and Chi Zhang.
Learning to be a doctor: Searching for effective medical agent architectures. arXiv preprint
arXiv:2504.11301, 2025.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

Model. The LLMs employed in our study are GPT-5 and Gemini 2.5 Pro.

Scope. We used large language models (LLMs) only as general-purpose assistants for language pol-
ishing, typo checking, and minor code boilerplate generation. LLMs did not contribute to research
ideation or produce novel scientific claims, proofs, or results.

Human oversight and verification. All text and code produced with LLM assistance were reviewed,
corrected, and verified by the authors. Experimental results were reproduced independently of any
LLM outputs.

Data governance. We did not share proprietary or sensitive data with third-party services beyond
materials already included in the anonymous submission artifacts.

Attribution. LLMs are not authors and bear no responsibility for the content; full responsibility lies
with the paper’s authors.

B WHAT EXACTLY DOES CUBEBENCH MEASURE?

CubeBench is not intended to be a broad coverage benchmark that competes with large embodied
suites or classical Rubik’s Cube solvers. Instead, it serves as a minimal, verifiable, factorized diag-
nostic environment. By stripping away perception noise, multi-object dynamics, affordances, and
actuation, it allows us to focus on three core cognitive abilities that repeatedly emerge as bottle-
necks for LLM/MLLM agents in more complex settings: (i) 3D spatial reasoning, (ii) long-horizon
non-commutative planning, and (iii) belief-state construction under partial observability.

Our three-tier design decouples these abilities by progressively increasing the burden placed on
the agent’s internal world model. Tier 1 (Full Symbolic) exposes a complete 54-character state, so
all perception and grounding are provided by the environment; this setting primarily stresses non-
commutative long-horizon planning and state tracking. Tier 2 (Full Visual) replaces the symbolic
string with a 2D unfolded image, forcing the agent to construct its own symbolic representation
from pixels: segmenting the cube, clustering colors, assigning stickers to faces, and mapping the
2D layout to a consistent 3D frame before any planning can begin. Tier 3 (Partial Visual) further
restricts each observation to a single face or corner view, plus view-change actions, so the agent
must actively explore, aggregate partial views over time, and maintain a coherent latent world state
while its own actions continuously perturb the cube.

On top of these observation tiers, the different solver configurations act as controls that selectively
remove specific difficulties. A Basic Agent must handle perception, internal state tracking, planning,
and formatting. In the Standard-Solver setting, we outsource optimal planning to a Kociemba-
based solver, so performance is driven mainly by visual → symbolic translation and correct schema
formatting. The Ideal-Solver setting goes one step further by also hiding the solver’s input schema,
leaving only the requirement to output a correct symbolic cube state; any gap between Standard-
and Ideal-Solver performance therefore isolates visual grounding and spatial mapping errors rather
than planning or string-format issues.

This factorized design explains “what” CubeBench measures in contrast to existing planning and
embodied benchmarks. Classical planning suites such as PlanBench (Valmeekam et al., 2023),
SPIN-Bench (Yao et al., 2025), and ARC/ARC-AGI (Foundation, 2025) probe rich algorithmic and
combinatorial structures, but they do not directly target the specific triad of 3D spatial reasoning,
non-commutative dynamics, and partial-observation belief-state tracking in a single, fully verifi-
able physical system. Conversely, embodied 3D suites such as ALFRED (Shridhar et al., 2020),
Habitat(Savva et al., 2019a; Szot et al., 2021; Puig et al., 2023), BEHAVIOR-100 (Srivastava et al.,
2021), LogiCity (Li et al., 2025), EmbodiedBench (Yang et al., 2025b), and EAI (Li et al., 2024)
place agents in visually rich, multi-object worlds with realistic physics and affordances, but neces-
sarily entangle perception, control, and high-level reasoning. As several of these works themselves
emphasize, final success rates in such environments make it difficult to pinpoint which cognitive
ability has failed.

CubeBench occupies an orthogonal niche in this landscape. It uses a single rigid object with de-
terministic kinematics to provide a low-noise, automatically verifiable testbed where failures can

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

be crisply attributed: incorrect 3D world modeling, short effective planning horizons, or unstable
belief-state tracking under partial observation. The negative results we obtain—universal collapse
at depth 8, severe degradation from symbols to images, and near-zero success under partial views—
mirror the failure modes reported in broader embodied benchmarks, but in a setting where they can
be disentangled and systematically ablated. In this sense, CubeBench is best viewed as a first diag-
nostic stop before running expensive embodied evaluations: if an agent already fails to maintain a
consistent 3D mental model and long-horizon plan in this simplified domain, it is unlikely to succeed
in more complex physical worlds.

C REVISED BASELINE PERFORMANCE USING MOVE RATIOS

To account for the variation in task difficulty, we introduce the Number of Move Ratio (#MR) as a
normalized measure of search efficiency. Optimal path lengths increase non-linearly with scramble
depth, therefore we define #MR as the ratio of the agent’s move count to the optimal solution length:

#MR (number of move ratio) =
#MM (number of make moves)
depth (number of optimal moves)

Table 5: Baseline performance across modalities and horizons on CubeBench. Top row: metric
groups (Pass rate, #MR, where #MR is the average number of move ratios; second row: obser-
vation modalities; third row: task horizons (Short = S, depths 1–4; Long = L, depths 8, 12, 16,
20). Tier 3 denotes the hardest split, evaluated under two projections: Face View and Vertex View.
Blue shading denotes open-source models , and pink denotes proprietary models . For each metric
column, we shade the top-3 entries (red = 1st, orange = 2nd, yellow = 3rd). We also train an
MLP with policy gradient on the Full Symbolic setting; details are in Sec. H. “−” : Model
does not support visual inputs.

Pass rate #MR

Full Symbolic Full Visual Face view Vertex view Full Symbolic Full Visual Face view Vertex view

Model S L S L S L S L S L S L S L S L

GPT-5 0.75 0.00 0.20 0.00 0.40 0.00 0.05 0.00 27124.66 33982.78 149.29 29.22 51.25 17.69 8378.55 672.57
MLP (Policy Gradient) 0.75 0.00 – – – – – – 5.17 400.00 – – – – – –
gpt-oss-120b 0.20 0.00 – – – – – – 47173.21 14219.57 – – – – – –
Grok-4 0.20 0.00 0.05 0.00 0.00 0.00 0.00 0.00 1.84 0.97 1.76 5.28 1.81 0.25 18.36 0.84
Kimi K2 (2024-09-05) 0.15 0.00 – – – – – – 23705.38 118.25 – – – – – –
Gemini 2.5 Pro 0.10 0.00 0.05 0.00 0.05 0.00 0.00 0.00 59.01 12.55 19.30 3.13 4.05 0.55 13.28 1.85
DeepSeek-R1 (2025-05-28) 0.05 0.00 – – – – – – 14074.89 4724.51 – – – – – –
Claude Sonnet 4 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 28.59 9.05 14.81 1.93 2.67 2.43 9.40 5.75
Qwen3-Max 0.05 0.00 – – – – – – 15.92 3.48 – – – – – –
DeepSeek-V3.1 0.05 0.00 – – – – – – 21.89 1.66 – – – – – –
doubao-seed-1-6-vision 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.77 0.94 6.79 1.00 6.26 0.84 7.47 1.10
InternVL-3 (78B) 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 56466.74 4.85 23.27 3.95 18.16 2.61 29.14 6.84
Qwen2.5-VL-72B-Instruct 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 43712.71 2575.65 18.26 2.54 5.97 1.26 27.28 2.44
kimi-vl-a3b-thinking 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2623.57 0.01 0.00 0.01 0.00 0.00 0.36 0.00
GPT-4o 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 48.10 8.01 52.67 8.48 24.85 4.55 55.41 9.41
GLM-4.5V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.61 5.44 15.48 3.35 28.49 5.17 21.08 8.33
Gemma-3-27B-IT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.29 1.56 15.49 2.09 9.38 1.64 11.49 1.21
Seed-OSS-36B-Instruct 0.00 0.00 – – – – – – 9.22 0.93 – – – – – –

D THE NO-CODE EXPERIMENT

Experimental Setup. In our primary evaluation (the Code setting, which corresponds to the Basic
Agent configuration in Experiment 1), agents are permitted to write and execute Python code. While
writing code to perform search algorithms is a valid problem-solving strategy in the agentic era, we
acknowledge that distinguishing intrinsic spatial reasoning from programmatic search is crucial.
To isolate the model’s internal state tracking and planning capabilities from code-based search, we
introduce a No-Code evaluation mode. In this mode, the agent must output a pre-planned sequence
(e.g., "moves":[‘D’’, ‘B’, ‘B’]) without the ability to manage control flows during tool
use. This mode is more consistent with common tool-use interfaces such as the OpenAI API. We
conducted an ablation study comparing the No-Code and Code settings on the Short-Horizon Full
Symbolic tasks. The results are presented in Table 6.

Key Observations & Insights. (1) Models employing intensive search strategies (High #MR) suf-
fered catastrophic declines. Both GPT-5 (0.75 to 0.25) and gpt-oss-120b (0.20 to 0.00) saw their
performance evaporate as their search volume collapsed (e.g., GPT-5 #MR: ∼27k to ∼72; gpt-oss-
120b #MR: ∼47k to ∼14). This confirms that for these agents, the code-based search compensates

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

for limited internal planning. (2) Models with initially low search volume (Low #MR) displayed
mixed outcomes rather than a uniform drop. Grok-4 improved (0.20 to 0.30) in the No-Code setting,
while many remained poor.

Table 6: Comparison of agent performance in No-Code vs. Code settings on Short-Horizon Full
Symbolic tasks. #MR is averaged over testcases.

No Code Code
Model Pass Rate #MR Pass Rate #MR
GPT-5 0.25 72.79 0.75 27124.66
gpt-oss-120b 0.00 14.20 0.20 47173.21
Grok-4 0.30 2.02 0.20 1.84
Kimi-K2-0905 0.00 55.15 0.15 23705.38
Gemini 2.5 Pro 0.15 18.68 0.10 59.01
Claude Sonnet 4 0.00 68.03 0.05 28.59
DeepSeek-V3.1 0.00 17.11 0.05 21.89
DeepSeek-R1-0528 0.00 12.28 0.05 14074.89
Qwen3-Max 0.00 18.11 0.05 15.92
GPT-4o 0.05 61.53 0.00 48.10
GLM-4.5v 0.00 4.31 0.00 16.61

Figure 6: Pass rates and average number of move ratios (#MR) across varying depths. Top row:
Pass Rates for Tier 1 (Left) and Tier 2/3 (Right). Bottom row: Corresponding #MR analysis.

E DEPTH-WISE METRICS

Experimental Setting. We adopt the experimental protocol from Experiment 1, extending the eval-
uation to three independent trials per test case to ensure robustness. For this analysis, we mainly
focus exclusively on the top-performing models in Experiment 1. The comparative results are pre-
sented in Figure 6.

Key Observations & Insights.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(1) Depth-vs-Performance. In the Tier 1 setting, top-tier models capable of systematic search (e.g.,
GPT-5) maintain high accuracy across Depths 1–4, , with pass rates decaying gracefully. Conversely,
less capable models (e.g., Grok-4) succeed at Depth 1 via direct policy but degrade immediately at
Depth 2. In Tier 2/3 settings, the performance cliff arrives earlier. While agents can manage Depth
1 tasks, we observe a drop starting at just Depth 2. A universal limit appears between Depth 4 and
8. Pass rates drop to 0.00 at Depth 8 across all settings, confirming that current planning capabilities
fail to track state over extended horizons.

(2) Depth-vs-#MR. We interpret the #MR metric not as a measure of “effort” scaling linearly with
difficulty, but as an indicator of cognitive mode. A low move count typically signals reliance on
direct intuition or trivial heuristics, while a high move count signals the activation of explicit search.
The switch is often a discrete jump rather than a gradual increase. A close examination of execution
traces reveals how agents dynamically adapt within a single trial. Typically, search-based agents
begin with low-cost heuristics, switching to high-volume search when those initial attempts fail. In
rare instances (e.g., Appendix L.2), we observe a further strategic shift: abandoning search entirely
to implement structured human algorithms, such as the Beginner’s Method (see Appendix J), as a
fallback.

F RELATED WORKS (CONT.)

Spatial Cognition. The ability to reason about three-dimensional space (Li et al., 2023; Pi et al.,
2024; Alayrac et al., 2022), a cornerstone of intelligence, relies on an internal spatial mental model
(Johnson-Laird, 1980; 1983) to infer unseen properties and predict the consequences of actions.
(Yang et al., 2025a; Zhang et al., 2024c) This concept is rooted in cognitive science and has been
a long-standing goal, with specialized systems like SLAM in robotics (Aulinas et al., 2008) and
NeRFs (Mildenhall et al., 2021) in computer vision designed to construct explicit 3D representa-
tions. However, the intrinsic ability of Large Language Models (LLMs) (Bai et al., 2025; Hurst
et al., 2024; Chen et al., 2024a), which excel at sequential data, to form and manipulate such spatial
models remains a critical open question. Recent works have begun to probe this (Xu et al., 2025a;
Zhang et al., 2024b; Chen et al., 2025c; Qi et al., 2025); for instance, MindCube (Liu et al., 2024)
evaluates an agent’s ability to reason about a static 3D scene by reasoning about its complete layout
from a few partial viewpoints. While also leveraging partial observations, CubeBench introduces
the distinct challenge of long-horizon interaction with a dynamic cube. Our work therefore shifts
the focus from reasoning about static perspectives to the more complex challenge of updating a
mental model through direct, state-altering interaction with the environment, emphasizing mental
simulation and long-horizon state tracking.

G CONFIGURATION OF TEST SPLIT

Our evaluation set is constructed across eight distinct levels of task difficulty. These levels are
determined by the state’s ”depth”, which is the optimal number of moves required to solve a given
cube configuration. For each of the eight difficulty levels, we sample five unique initial states.
Each state is then tested across four different environment settings derived from the three-tiered
framework: Full Symbolic (Tier 1), Full Visual (Tier 2), and the two Partial Visual modalities (Face
View and Vertex View) from Tier 3. This methodology yields a total of 160 unique evaluation
configurations (8 difficulties × 5 states × 4 settings) for each Large Language Model (LLM) agent.
To provide an estimate of the resources required, a single, complete evaluation run of these 160
configurations on GPT-5 consumes a total of 59.3 million tokens (50.2 million input tokens and 9.1
million output tokens), resulting in a total cost of approximately $153, based on the pricing of $1.25
per million input tokens and $10 per million output tokens.

H INTRODUCTION TO THE POLICY GRADIENT BASELINE

As a baseline for comparison in the Full Symbolic setting, we implement a classic reinforce-
ment learning agent based on the Policy Gradient (PG) method. Policy Gradient algorithms directly
optimize the parameters of a policy by estimating the gradient of the expected return. The core idea
is to adjust the policy’s parameters to increase the probability of taking actions that lead to higher

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

cumulative rewards. Our implementation uses the REINFORCE algorithm, a foundational Monte
Carlo policy gradient method.

The objective of the REINFORCE algorithm is to maximize the expected total discounted reward,
J(θ), by updating the policy parameters θ in the direction of the gradient ∇θJ(θ). The policy
gradient theorem provides an estimate for this gradient:

∇θJ(θ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(at|st)Gt

]

where πθ(at|st) is the policy (the probability of taking action at in state st), and Gt =
∑T

k=t γ
k−trk

is the total discounted return from time step t onward.

Our specific implementation utilizes a Multi-Layer Perceptron (MLP) to represent the policy net-
work. The training is conducted using a curriculum learning strategy, where the agent is progres-
sively trained on more difficult tasks by increasing the scramble length of the cube. The detailed
configuration is as follows:

• Algorithm: REINFORCE
• Policy Network: A five-layer MLP with 256 neurons per layer and ReLU activation func-

tions.
• Optimizer: Adam with a learning rate of 5× 10−4.
• Discount Factor (γ): 0.99.
• Training Environment: We use 64 parallel vectorized environments for efficient data col-

lection.
• Update Rule: The policy is updated after collecting a rollout of 512 steps from each par-

allel environment, using a batch size of 512 episodes for the gradient update.
• Curriculum: Training uses the curriculum learning for better convergence. We train two

separate models, one for short-horizon tasks and one for long-horizon. For short-horizon
tasks, the model is trained sequentially on scramble depths of 1, 2, 3, and 4, with the number
of training timesteps scaled quadratically for each level (e.g., from 40,000 for depth 1 up
to 320,000 for depth 4). For long-horizon tasks, a separate model is initialized from the
converged short-horizon agent and then continues training on the more challenging depths
from 5 to 20 with 320K steps each level.

• Max Number of Make-moves During Evaluation: For short-horizon tasks, the maximum
number of making moves is set to 16. For long-horizon ones, they are set to 400.

I TOOLS FOR AGENTS

I.1 FUNDAMENTAL INTERACTION TOOLS

make move: This tool executes a single face rotation. It accepts one of 12 possible inputs corre-
sponding to standard Singmaster notation: F (Front), B (Back), L (Left), R (Right), U (Up), and D
(Down) for clockwise turns. A prime symbol (’) denotes a counter-clockwise rotation (e.g., F’).
Each call to this tool deterministically alters the cube’s internal state. Since the agent can generate
custom scripts in the Code block, this function can be called multiple times (e.g., in a loop) within
a single step to execute a sequence of moves.

get observation: This tool retrieves the current observation of the cube. The format of the
returned data is contingent upon the experimental tier:

• In Tier 1 (Full Symbolic State), it returns a 54-character string that symbolically repre-
sents the complete state of the cube.

• In Tier 2 (Full Visual State) and Tier 3 (Partial Visual State), it returns an image. De-
pending on the specific task configuration, this can be a complete 2D unfolded map of the
cube, an image of a single face (face view), or an image from a corner’s perspective (vertex
view).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

apply view transformation: Exclusive to the Tier 3 (Partial Visual State) setting, this
tool allows the agent to alter its viewpoint (e.g., up, down, left, right). This capability is essential for
actively exploring the cube to reconstruct its full state from a series of limited views.

I.2 AUXILIARY SOLVER TOOLS

StandardSolverTool and IdealSolverTool: These tools provide the agent with access to
a solver based on Kociemba’s two-phase algorithm (see Appendix K). They differ in a crucial aspect
related to data formatting. The underlying solver requires a specific input format that is distinct from
the state representation provided by the get observation tool.

• The StandardSolverTool requires the agent to perform the necessary format conver-
sion itself, thus testing its ability to transform data into a usable representation.

• The IdealSolverTool features a built-in converter. It allows the agent to input the
state in the environment’s native format and receive a solution directly, thereby bypassing
the format conversion challenge.

J HEURISTIC ALGORITHM FOR SOLVING THE RUBIK’S CUBE:
LAYER-BY-LAYER APPROACH

This subsection formalizes the heuristic algorithm for solving the 3×3 Rubik’s Cube using the layer-
by-layer (LBL) method.We drew on the method from solvethecube website 2 and adopted its illustra-
tions. The cube-solving process is divided into seven major steps, each focusing on solving specific
parts of the cube. Each step involves operations or algorithms that manipulate specific pieces, pro-
gressively solving the puzzle. As introduced in our discussion on reward functions (Sec. 3.1.4),
this LBL structure forms the basis of our Heuristic Metric (ϕheuristic). To calculate a score for any
given cube state s, we evaluate it against the seven steps of the LBL method. The state’s score,
ϕheuristic(s), is defined as the highest step number (from 0 for a scrambled cube to 7 for a solved
one) that the configuration has successfully completed.

Overall Strategy The solving process begins with the initial scrambled state S0 and progresses
through seven steps until the solved state S∗ is achieved. Each transformation corresponds to a
specific phase of the solution:

S0
f1−→ S1

f2−→ S2
f3−→ · · · f7−→ S∗

where:

f1: Forming the bottom cross.

f2: Positioning the bottom corners.

f3: Solving the second layer edges.

f4: Creating the top cross.

f5: Permuting the top edges.

f6: Positioning the top corners.

f7: Orienting the top corners.

Each step is represented by an algorithm or set of moves that solves a specific portion of the cube
without disrupting previously solved sections. See Fig. 7 for an intuitive schematic.

Step 1: Forming the Bottom Cross The first task is to form a cross on the bottom layer by
positioning the four edge pieces such that their colors match both the bottom face center and the
adjacent side centers. This step can be formalized as:

2URL:https://solvethecube.com/

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 7: The diagram from solvethecube website illustrates a heuristic method for solving a Rubik’s
Cube: (a) Forming the bottom cross, (b) Positioning the bottom corners, (c) Solving the second layer
edges, (d) Creating the top cross, (e) Permuting the top edges, (f) Positioning the top corners, and
(g) Orienting the top corners.

fcross : Cbottom → C∗
bottom

where Cbottom = {E1, E2, E3, E4} represents the four edge pieces to be positioned, and C∗
bottom

represents the state where the bottom cross is correctly formed. The process involves identifying the
edge pieces and applying algorithms to move them into place.

Step 2: Positioning the Bottom Corners After the bottom cross is formed, the next objective is
to position the bottom corner pieces. Let Cbottom-corner = {C1, C2, C3, C4} represent the four corner
pieces to be positioned in the bottom layer. This step is formalized as:

fcorners : Cbottom-corner → C∗
bottom-corner

where C∗
bottom-corner represents the correctly positioned bottom corners. The operation involves ap-

plying specific algorithms to move each corner piece into its correct location without disturbing the
already solved bottom cross.

Step 3: Solving the Second Layer Edges The next step is to solve the edges of the second layer.
Let Csecond-layer-edge = {E5, E6, E7, E8} represent the four edge pieces that need to be positioned in
the middle layer. The operation can be formalized as:

fsecond-layer : Csecond-layer-edge → C∗
second-layer-edge

where C∗
second-layer-edge represents the state where the second layer edges are correctly positioned. The

goal is to move the edge pieces from the top layer to the second layer, maintaining the solved bottom
layer.

Step 4: Creating the Top Cross After solving the second layer, the next objective is to create a
cross on the top layer. Let Ctop-edge = {E9, E10, E11, E12} represent the four edge pieces that need
to be positioned on the top layer. This step can be formalized as:

ftop-cross : Ctop-edge → C∗
top-edge

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where C∗
top-edge represents the state where the top layer edges are correctly aligned. The transforma-

tion for each edge piece is represented by:

Ei

∆Ei−−−→ E∗
i for i ∈ {9, 10, 11, 12}

The goal is to position the edge pieces correctly on the top layer without disturbing the solved
portions of the bottom and second layers.

Step 5: Permuting the Top Edges Once the top cross is formed, the next objective is to permute
the top layer edge pieces into their correct positions. This operation can be formalized as:

fpermute-edges : C
∗
top-edge → C∗∗

top-edge

where C∗∗
top-edge represents the state where the top layer edges are correctly permuted. The goal is to

apply specific algorithms that permute the top edges into their correct positions.

Step 6: Positioning the Top Corners After the top edges are permuted, the next step is to position
the top layer corners. Let Ctop-corner = {C13, C14, C15, C16} represent the four top corner pieces.
This operation can be formalized as:

fposition-corners : Ctop-corner → C∗
top-corner

where C∗
top-corner represents the state where the top corners are positioned correctly. The goal is to

apply specific algorithms to move the top layer corner pieces into their correct positions.

Step 7: Orienting the Top Corners The final step is to orient the top corners, ensuring that the
top face becomes uniform in color. This operation can be formalized as:

forient-corners : C
∗
top-corner → S∗

where S∗ represents the solved state of the Rubik’s Cube. The transformation for each corner piece
is represented by:

Ci

∆Ci−−−→ C∗
i for i ∈ {13, 14, 15, 16}

The goal is to apply specific algorithms to orient the top corners without disturbing the already
solved portions of the cube.

Mathematical Summary of the Layer-by-Layer Approach The Rubik’s Cube solution can be
mathematically summarized as a series of state transformations:

S0
fcross−−→ S1

fcorners−−−→ S2
fsecond-layer−−−−−→ S3

ftop-cross−−−−→ S4
fpermute-edges−−−−−−→ S5

fposition-corners−−−−−−→ S6
forient-corners−−−−−−→ S∗

Each transformation fcross, fcorners, . . . , forient-corners corresponds to a specific set of moves that trans-
form the cube toward the solved state. By applying these transformations in sequence, the cube is
solved layer by layer.

K CUBE SOLVERS (TWO-PHASE AND OPTIMAL)

This appendix introduces the two solvers used in our benchmark: the Two-Phase Solver and the Op-
timal Solver. The two-phase solver is used as the basic component for StandardSolverTool
and IdealSolverTool, while the optimal solver is used for generating the testcases. In the fol-
lowing , we first outline the mathematical background for the two-phase method, and then describe
the I/O formats and the roles each solver plays in our experiments.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

K.1 INPUT AND OUTPUT FORMATS FOR CUBE STATE

To interact with solvers, the cube state must be expressed in a precise facelet string representation:
a fixed ordering of all 54 stickers. Figure 8 illustrates the two indexing conventions used in our
system: (1) the Initial Format used by our environment, and (2) the Solver Format required by the
Kociemba two-phase solver.

Initial Format. The environment internally stores the cube as a 2D unfolded cross (see left of
Fig. 8). Each sticker is labeled by its face and index, e.g. U1–U9 for the Up face, R1–R9 for the
Right face, etc. Within each face, indices increase row by row from top-left to bottom-right:

U1, U2, U3, U4, U5, U6, U7, U8, U9,

and similarly for R,F,D,L,B.

The environment’s concatenation order follows the visual “cross net” layout: first the Up face, then
Left–Front–Right in a row, followed by Down, and finally the Back face. Explicitly, the 54-character
string is constructed as

(F1, . . . , F9, B1, . . . , B9, L1, . . . , L9, R1, . . . , R9, U1, . . . , U9, D1, . . . , D9).

Solver Format. The two-phase solver requires the cube state as a 54-character string, concatenated
in the strict order

(U1, . . . , U9, R1, . . . , R9, F1, . . . , F9, D1, . . . , D9, L1, . . . , L9, B1, . . . , B9).

Each character encodes the color on the corresponding facelet. For example, the string UBL...
means: - position U1 has the U-color, - position U2 has the B-color, - position U3 has the L-color,
and so on. This flattened sequence is the standard facelet string convention used in Kociemba’s
solver.

Conversion. Figure 8 shows how the Initial Format is mapped into the Solver Format. This con-
version step is crucial: any misalignment (e.g., rotated faces or incorrect indexing) produces invalid
solver inputs and prevents the plan from being executed correctly. The Standard-Solver Agent must
handle the format conversion by itself, whereas the Ideal-Solver Agent has the conversion built in
IdealSolverTool and requires no further effort.

Initial Format

U1 U2 U3

U4 U5 U6

U7 U8 U9

F1 F2 F3

F4 F5 F6

F7 F8 F9

L1 L2 L3

L4 L5 L6

L7 L8 L9

R1 R2 R3

R4 R5 R6

R7 R8 R9

D1 D2 D3

D4 D5 D6

D7 D8 D9

B1 B2 B3

B4 B5 B6

B7 B8 B9

U1 U2 U3

U4 U5 U6

U7 U8 U9

F1 F2 F3

F4 F5 F6

F7 F8 F9

L1 L2 L3

L4 L5 L6

L7 L8 L9

R1 R2 R3

R4 R5 R6

R7 R8 R9

D1 D2 D3

D4 D5 D6

D7 D8 D9

B1 B2 B3

B4 B5 B6

B7 B8 B9

Solver Format

Figure 8: Input/Output formats of cube state. Left: Initial Format used in our environment. Right:
Solver Format required by the two-phase solver. Both correspond to the same cube state but differ
in indexing layout and concatenation order.

K.2 TWO-PHASE SOLVER

Mathematical Background. Let G0 denote the full Rubik’s Cube group generated by face turns
in the half-turn metric (HTM). Using standard Singmaster letters, a convenient presentation is

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G0 = ⟨U,D,R,L, F,B⟩
= ⟨U,U ′, U2, D,D′, D2, R,R′, R2, L, L′, L2, F, F ′, F 2, B,B′, B2⟩.

That is, quarter turns, their inverses, and half turns generate the same group.

The Two-Phase method (Kociemba; wik) reduces an arbitrary state to a structured subgroup and
then completes the solve inside that subgroup. Let H (often also written as G1) be the Phase-1
target subgroup,

H =
{
g ∈ G0

∣∣all edges oriented, all corners oriented,

and the four UD-slice edges lie in the UD slice
}
.

Equivalently, H is exactly the set of states reachable using the restricted Phase-2 move set

⟨U,U ′, U2, D,D′, D2, R2, L2, F 2, B2 ⟩,
since these moves preserve the above invariants. Finally,

{e} = G2 ⊂ H ⊂ G0,

where e is the identity (the solved cube). The overall decomposition is

Phase 1: G0 → H (reduce to H) Phase 2: H → {e} (solve within H).

In practice, both phases use depth-iterative search guided by large pruning (distance) tables; Phase 1
explores cosets of H in G0, and Phase 2 searches within H down to e.

Algorithmic sketch. Phase 1 finds a short maneuver (typically ≤ 12 HTM moves) that sends the
current state into H . Phase 2 continues from H using only U±1, U2, D±1, D2, R2, L2, F 2, B2 to
reach the identity. Due to strong heuristics and symmetry reductions, solutions are obtained quickly
and are usually ≤ 20 moves, though not formally guaranteed to be optimal (Kociemba).

Typical properties. The method is fast, yields short, clean plans, and is well-suited as a callable
planning tool for agents.

K.3 OPTIMAL SOLVER (IDA* WITH COMPLETE PRUNING)

Algorithmic sketch. The Optimal Solver performs Iterative Deepening A* (IDA*) search (Korf,
1985; 1997), guided by admissible heuristics derived from large pattern/pruning databases. IDA*
combines the space-efficiency of depth-first search with the optimality guarantees of A*. The search
depth limit is increased incrementally; once a solution is found at depth d, minimality is certified
since all shorter paths have been exhausted.

Algorithm 1 IDA* with Pattern Database Heuristics
1: function IDA*(s0)
2: bound← h(s0)
3: while true do
4: t← SEARCH(s0, 0, bound)
5: if t =∞ then return failure
6: else if t = solution then return solution path
7: else
8: bound← t
9: function SEARCH(s, g, bound)

10: f ← g + h(s)
11: if f > bound then return f

12: if s is goal then return solution
13: min←∞
14: for each successor s′ of s do
15: t← SEARCH(s′, g + 1, bound)
16: if t = solution then return solution
17: if t < min then
18: min← t

return min

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Heuristic. The pruning tables (pattern databases) precompute exact solution lengths for subprob-
lems such as subsets of edges or corners. During search, these values serve as admissible heuristics,
drastically reducing the number of expanded states.

Typical properties. Under HTM, the 3 × 3 × 3 cube can always be solved within 20 moves,
with some positions requiring the exact 20 moves. (Rokicki et al., 2014; 2010). While run time
can be seconds on easy instances, hard positions near the 20-move depth may require minutes to
hours. However, the returned solution is provably optimal, making the solver suitable for dataset
construction and difficulty certification.

Table 7: Two-Phase vs. Optimal Solvers.

Solver Optimality Role
Two-Phase Near-optimal Agent tool
Optimal Provably optimal Testcase construction

L CASE STUDIES

• Sec. L.1: An agent solves the cube by applying a heuristic beam search.

• Sec. L.2: An agent tries first with IDDFS and then with the Beginner’s Method.

• Sec. L.3: A less capable agent attempts a random walk (brute-force) and fails to make progress.

• Sec. L.4: An agent implements a meet-in-the-middle search, but its pruning strategies are insuffi-
cient to overcome the exponential state space.

• Sec. L.5: An agent bypasses visual reasoning, relying exclusively on a heuristic reward to guide
its symbolic search.

• Sec. L.6: A capable agent is misled by a simplistic reward and only succeeds after abandoning it
in favor of its own subgoal-based reasoning.

• Sec. L.7: A simple external reward successfully guides an agent’s search, leading to incremental
progress.

• Sec. L.8: An agent learns to use an external planner by systematically experimenting with input
formats.

• Sec. L.9: An agent succeeds on a structured visual task by using a symbolic shortcut but fails on
a distorted view that requires genuine spatial reasoning.

L.1 BASIC AGENT – BEAM SEARCH

Model Agent Type Input Reward Depth

GPT-5 Basic Full Symbolic No reward 8

In this case, GPT-5 applies a heuristic beam search strategy to solve the Rubik’s Cube. Initially, the
agent deduces the exact permutations of the six basic moves (F, B, U, D, R, L) using randomized
scrambles and signature matching. With these move permutations, the agent can simulate cube state
transitions internally, allowing it to conduct search without repeated environment queries.

The search itself is implemented as a beam-style search with heuristic pruning:

Heuristic function: The agent uses a simple facelet mismatch count to evaluate each state relative
to the solved configuration.

Beam width: At each depth, candidate states are sorted by heuristic value, and only the top 1,500
candidates are retained (frontier = candidates[:beam width]), limiting the branching
factor.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Pruning rules: Immediate inverse moves are skipped (if last and inverse[last] ==
mv: continue), and already visited states are not revisited (if new state in visited:
continue).

During search, the frontier grows progressively with depth (e.g., 12 → 114 → 1,068 candidates
in the first three layers), demonstrating layered expansion with controlled breadth. Eventually, the
agent identifies a four-move solution, applies it, and verifies that the cube reaches the solved state.

Step 3

Thought.

Thought: The previous attempt failed because the assumed face rotation orientations for U, D, R, L did
not match the environment. I will now robustly deduce the exact permutation for each basic move (F, B,
U, D, R, L) by signature matching: I’ll run multiple randomized scrambles, snapshot the state before
and after applying the move, and then reconstruct the index permutation by matching the K-length color
signature for each index. This is independent of face orientations. With all six move permutations
learned, I’ll perform a heuristic beam search offline to find a solution, then apply the move sequence
with make_move and verify. If the cube becomes solved, I’ll call final_answer("").

Code.

import random
import time

Utilities
def inverse_move(mv):

return mv[:-1] if mv.endswith("'") else mv + "'"

def apply_seq(seq):
for m in seq:

make_move(m)

def invert_seq(seq):
return [inverse_move(m) for m in reversed(seq)]

def deduce_move_by_signature(move, trials=7, scramble_len=12):
Ensure we start from a known base and return to it after each trial and at the end.
base0 = get_observation()
pre_list = []
post_list = []

Allowed moves for scrambling
moves = ['F','B','U','D','R','L']
all_moves = moves + [m+"'" for m in moves]

for t in range(trials):
Make a scramble that avoids immediate inverses
scramble = []
last = None
for k in range(scramble_len):

while True:
m = random.choice(all_moves)
if last and inverse_move(last) == m:

continue
scramble.append(m)
last = m
break

Apply scramble
apply_seq(scramble)
s_pre = get_observation()
Apply the move to learn
make_move(move)
s_post = get_observation()
Undo the move
make_move(inverse_move(move))
Undo scramble
apply_seq(invert_seq(scramble))
Verify we returned to base0
if get_observation() != base0:

print("Warning: state mismatch after undoing scramble during deduction of", move)
pre_list.append(s_pre)
post_list.append(s_post)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Build signature vectors for each index
pre_sigs = ["".join(pre[i] for pre in pre_list) for i in range(54)]
post_sigs = ["".join(post[i] for post in post_list) for i in range(54)]

Map post index j to pre index i such that signatures match
perm = [None]*54
Build dict from signature to indices for pre
sig_to_indices = {}
for i, sig in enumerate(pre_sigs):

sig_to_indices.setdefault(sig, []).append(i)

ambiguous = []
missing = []
for j, sig in enumerate(post_sigs):

candidates = sig_to_indices.get(sig, [])
if len(candidates) == 1:

perm[j] = candidates[0]
elif len(candidates) == 0:

missing.append(j)
else:

ambiguous.append((j, candidates))

if missing or ambiguous:
Try additional trials to disambiguate
extra = 0
max_extra = 6
while (missing or ambiguous) and extra < max_extra:

extra += 1
Do one extra trial
scramble = []
last = None
for k in range(scramble_len):

while True:
m = random.choice(all_moves)
if last and inverse_move(last) == m:

continue
scramble.append(m)
last = m
break

apply_seq(scramble)
s_pre = get_observation()
make_move(move)
s_post = get_observation()
make_move(inverse_move(move))
apply_seq(invert_seq(scramble))
pre_list.append(s_pre)
post_list.append(s_post)
Recompute signatures
pre_sigs = ["".join(pre[i] for pre in pre_list) for i in range(54)]
post_sigs = ["".join(post[i] for post in post_list) for i in range(54)]
sig_to_indices = {}
for i, sig in enumerate(pre_sigs):

sig_to_indices.setdefault(sig, []).append(i)
perm = [None]*54
missing = []
ambiguous = []
for j, sig in enumerate(post_sigs):

candidates = sig_to_indices.get(sig, [])
if len(candidates) == 1:

perm[j] = candidates[0]
elif len(candidates) == 0:

missing.append(j)
else:

ambiguous.append((j, candidates))

if missing or ambiguous:
print(f"Could not uniquely deduce mapping for {move}. Missing={len(missing)},
ambiguous={len(ambiguous)}")
return None

Validate by applying to a fresh snapshot
base = get_observation()
make_move(move)
s1 = get_observation()
make_move(inverse_move(move))
Build simulated application
sim = "".join(base[perm[i]] for i in range(54))
if sim != s1:

print(f"Validation failed for move {move}.")
return None

return perm

Learn all base move permutations

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

moves = ['F','B','U','D','R','L']
perm_map = {}
for mv in moves:

print("Learning permutation for", mv)
p = deduce_move_by_signature(mv, trials=7, scramble_len=10)
if p is None:

print("Failed to learn move:", mv)
Try a second attempt with more trials if failed
p = deduce_move_by_signature(mv, trials=10, scramble_len=12)

if p is None:
print("Giving up on move:", mv)
break

perm_map[mv] = p

if len(perm_map) != 6:
print("Failed to learn all permutations. Learned:", list(perm_map.keys()))

else:
Build prime move perms
def invert_perm(perm):

inv = [0]*54
for i, src in enumerate(perm):

inv[src] = i
return inv

for mv in moves:
perm_map[mv+"'"] = invert_perm(perm_map[mv])

def sim_apply_state(state, move):
perm = perm_map[move]
return "".join(state[perm[i]] for i in range(54))

Solved target
solved = "R"*9 + "G"*9 + "B"*9 + "Y"*9 + "O"*9 + "W"*9

def heuristic(state):
Simple facelet mismatch
return sum(1 for i,ch in enumerate(state) if ch != solved[i])

Beam search
all_moves = moves + [m+"'" for m in moves]
inverse = {m: m+"'" for m in moves}
inverse.update({m+"'": m for m in moves})

start = get_observation()
if start == solved:

final_answer("")
else:

beam_width = 1500
max_depth = 20

frontier = [(start, [])]
visited = set([start])
best_h = heuristic(start)
print("Initial heuristic:", best_h)

solved_path = None

for depth in range(1, max_depth+1):
candidates = []
for state, path in frontier:

last = path[-1] if path else None
for mv in all_moves:

if last and inverse[last] == mv:
continue

new_state = sim_apply_state(state, mv)
if new_state in visited:

continue
visited.add(new_state)
new_path = path + [mv]
if new_state == solved:

solved_path = new_path
break

h = heuristic(new_state)
candidates.append((h, new_state, new_path))

if solved_path is not None:
break

if solved_path is not None:
print("Found solution of length", len(solved_path))
break

candidates.sort(key=lambda x: (x[0], len(x[2])))
frontier = [(st, p) for (h, st, p) in candidates[:beam_width]]
print(f"Depth {depth}: frontier={len(frontier)}, best_h_so_far={min([h for (h,_,_) in
candidates], default=best_h)}")
if not frontier:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

break

if solved_path is None:
print("Beam search did not find a solution.")

else:
print("Applying solution:", " ".join(solved_path))
apply_seq(solved_path)
final_state = get_observation()
print("Final state:", final_state)
if final_state == solved:

final_answer("")
else:

print("Solution application did not reach solved state. Mismatches:",
heuristic(final_state))

Observation.

Learning permutation for F
Learning permutation for B
Learning permutation for U
Learning permutation for D
Learning permutation for R
Learning permutation for L
Initial heuristic: 36
Depth 1: frontier=12, best_h_so_far=31
Depth 2: frontier=114, best_h_so_far=22
Depth 3: frontier=1068, best_h_so_far=12
Found solution of length 4
Applying solution: B R' F U
Final state: RRRRRRRRRGGGGGGGGGBBBBBBBBBYYYYYYYYYOOOOOOOOOWWWWWWWWW

Solved.

L.2 BASIC AGENT – IDDFS AND BEGINNER’S METHOD

Model Agent Type Input Reward Depth

gpt-oss-120b Basic Full Symbolic No reward 8

In this case, the agent first performs a depth-limited iterative deepening search
dfs(depth, max_depth, last_face) systematically explores move sequences, applying each candi-

date move with apply(m) and backtracking via undo(m) . Pruning strategies are directly reflected
in the code: if last_face is not None and face_of(m) == last_face: continue prevents consecutive moves
on the same face, and is_inverse(a, b) is used to avoid immediate inverse moves. Early goal
checks (if is_solved_state(get_observation())) terminate branches once a solution is found. Iterative
deepening is implemented by looping over depth limits (for d in range(limit_depth+1)).

Unfortunately, several searches failed. After a few failures, it attempted a different strategy.

In its thoughts (Steps 8-10), the agent correctly outlines the sub-goals of the beginner’s method,
from building the white cross to solving the final layer with OLL (Orientation of the Last Layer) and
PLL (Permutation of the Last Layer) algorithms.

However, the agent’s execution is undermined by a subtle but critical flaw in its internal world
model—an incorrect mapping of the cube’s indices to its symbolic representation. The agent itself
explicitly identifies this error in a moment of self-correction in Step 13, noting that ”earlier mappings
had mistakes.” Despite this high-level awareness, the cognitive load of implementing the entire long-
horizon plan within a single, complex code block introduces new, unperceived errors. The final
outcome is a failure, where the cube’s state is no closer to being solved.

Step 4

Thought.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Thought: The previous searches were too deep or inefficient. I will attempt a carefully pruned
iterative deepening search up to depth 5 using a reduced move set that includes quarter and half turns,
with early goal checks at every node and strict pruning (no repeating the same face, and no immediate
inverses). This should keep the number of operations manageable. If a solution exists within 5 moves,
it will be found and applied directly on the real cube; then I will call final_answer("").

Code.

Depth-limited IDDFS with pruning and early goal checks.
Uses moves including half turns (implemented as two quarter turns).

from time import time

def is_solved_state(s):
return (all(c == 'R' for c in s[0:9]) and

all(c == 'G' for c in s[9:18]) and
all(c == 'B' for c in s[18:27]) and
all(c == 'Y' for c in s[27:36]) and
all(c == 'O' for c in s[36:45]) and
all(c == 'W' for c in s[45:54]))

start = get_observation()
if is_solved_state(start):

final_answer("")
else:

Define move variants with half-turns
basic_faces = ['F','B','L','R','U','D']
moves = []
for f in basic_faces:

moves.append(f)
moves.append(f+"'")
moves.append(f+"2")

Helper to apply and undo moves in the environment
def apply(m):

if m.endswith("2"):
face = m[0]
make_move(face)
make_move(face)

else:
make_move(m)

def undo(m):
if m.endswith("2"):

face = m[0]
make_move(face)
make_move(face)

else:
inverse of X is X', inverse of X' is X
if m.endswith("'"):

make_move(m[0])
else:

make_move(m+"'")
def face_of(m):

return m[0]
def is_inverse(a, b):

Treat 2-turn as self-inverse
if a[0] != b[0]:

return False
if a.endswith("2") and b.endswith("2"):

return True
if a.endswith("'") and (b == a[0]):

return True
if (a == a[0]) and b.endswith("'") and (b[0] == a[0]):

return True
return False

max_nodes = 300000 # safeguard against excessive search
node_count = 0
found = False
solution_path = []

def dfs(depth, max_depth, last_face):
nonlocal node_count, found, solution_path
if found:

return True
node_count += 1
if node_count > max_nodes:

return False

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Early goal check at every node
if is_solved_state(get_observation()):

found = True
return True

if depth == max_depth:
return False

for m in moves:
pruning: avoid repeating the same face consecutively
if last_face is not None and face_of(m) == last_face:

continue
pruning: avoid immediate inverse with previous move in path if exists
prev = solution_path[-1] if solution_path else None # note: we append on success; here
prev is not applicable
Apply move
apply(m)
if dfs(depth+1, max_depth, face_of(m)):

solution_path.append(m)
return True

Backtrack
undo(m)

return False

Iterative deepening up to depth 5
start_time = time()
limit_depth = 5
for d in range(limit_depth+1):

if dfs(0, d, None):
break

If found, the moves leading to solution were applied in-place during recursion.
if found and is_solved_state(get_observation()):

final_answer("")
else:

print(f"Search exhausted (nodes={node_count}). Could not solve within depth {limit_depth}.")

Observation.

<Killed by the Python interpreter>
Maybe there is an infinite loop somewhere in the code, or you're just asking too many calculations.

Step 5, 6 still failed. Changed strategy at Step 7.

Thought.

Thought: Our previous brute-force search approaches hit interpreter limits. I will now implement a
deterministic, step-by-step white-cross builder (beginner’s method) that:
- Analyzes the current state string (observation-type is state_string).
- Locates each white edge (W with its partner color).
- Applies targeted moves to:

- Lift the white edge to the U layer with white facing up using single face turns.
- Rotate U (and D when needed) to align the edge above its correct face.
- Insert with a double face turn (X2) to place it correctly in the D (white) cross while keeping
previously placed edges intact.

I will implement robust mapping for edges and use only simple, safe moves (F/F'/F2, R/R'/R2, B/B'/B2,
L/L'/L2, U/U', D/D'). I will repeat for the four target white edges: WR (to FD), WY (to RD), WG (to
BD), WB (to LD). After building the white cross, I will check if the cube is already solved; if it is,
I will call final_answer(""). If not, we can proceed further in subsequent steps (but for now, try to
get the cross in place). Let's execute this first stage.

Code.

Build the white cross step-by-step using targeted moves.
Faces and centers per the problem:
F (front) = Red (R)
B (back) = Green (G)
L (left) = Blue (B)
R (right) = Yellow (Y)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

U (up) = Orange (O)
D (down) = White (W)

Helper: Apply a move, double move, inverse move
def do(m):

make_move(m)

def do2(face):
make_move(face); make_move(face)

def inv(m):
return m[:-1] if m.endswith("'") else (m + "'")

def is_solved_state(s):
return (all(c == 'R' for c in s[0:9]) and

all(c == 'G' for c in s[9:18]) and
all(c == 'B' for c in s[18:27]) and
all(c == 'Y' for c in s[27:36]) and
all(c == 'O' for c in s[36:45]) and
all(c == 'W' for c in s[45:54]))

Centers indices
def centers_of(state):

return {
'F': state[4], # should be 'R'
'B': state[13], # should be 'G'
'L': state[22], # should be 'B'
'R': state[31], # should be 'Y'
'U': state[40], # should be 'O'
'D': state[49], # should be 'W'

}

Edge map: name -> ((face1, idx1), (face2, idx2))
edge_defs = {

'UF': (('U', 42), ('F', 1)),
'UR': (('U', 41), ('R', 28)),
'UB': (('U', 37), ('B', 10)),
'UL': (('U', 39), ('L', 19)),
'FR': (('F', 5), ('R', 30)),
'FL': (('F', 3), ('L', 23)),
'FD': (('F', 7), ('D', 46)),
'RB': (('R', 32), ('B', 12)),
'RD': (('R', 34), ('D', 50)),
'LB': (('L', 21), ('B', 14)),
'LD': (('L', 25), ('D', 48)),
'BD': (('B', 16), ('D', 52)),

}

For each face's "UX" and "XD" reference
UX_of = {'F': 'UF', 'R': 'UR', 'B': 'UB', 'L': 'UL'}
XD_of = {'F': 'FD', 'R': 'RD', 'B': 'BD', 'L': 'LD'}

Rotations of U that cycle UF->UR->UB->UL->UF and likewise the edge names
U_cycle = ['UF', 'UR', 'UB', 'UL']
Rotations of D that cycle FD->LD->BD->RD->FD under D' (counterclockwise) or FD->RD->BD->LD->FD under
D
D_cycle_clockwise = ['FD', 'RD', 'BD', 'LD']

Helper to read current state char at a given absolute index
def read(state, idx):

return state[idx]

def get_edge_colors(state, edge_name):
(f1, i1), (f2, i2) = edge_defs[edge_name]
return (state[i1], state[i2])

def locate_white_edge_partner(state, partner_color):
Returns (edge_name, where_white) where where_white in {0,1} indexes which of the two stickers is
white
for name, ((f1, i1), (f2, i2)) in edge_defs.items():

c1, c2 = state[i1], state[i2]
if (c1 == 'W' and c2 == partner_color):

return name, 0
if (c2 == 'W' and c1 == partner_color):

return name, 1
return None, None

Rotate U k times (k in {0..3})
def U_times(k):

for _ in range(k % 4):
do('U')

Rotate D k times clockwise

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

def D_times(k):
for _ in range(k % 4):

do('D')

Align a U-layer edge to be at a specific UX position by rotating U
def align_U_edge_to(state, edge_name_current, target_UX):

edge_name_current must be one of U-layer edges: 'UF','UR','UB','UL'
compute offset
cur_idx = U_cycle.index(edge_name_current)
tgt_idx = U_cycle.index(target_UX)
k = (tgt_idx - cur_idx) % 4
U_times(k)

Align a D-layer edge to be at a specific XD position by rotating D
def align_D_edge_to(state, edge_name_current, target_XD):

cur_idx = D_cycle_clockwise.index(edge_name_current)
tgt_idx = D_cycle_clockwise.index(target_XD)
k = (tgt_idx - cur_idx) % 4
D_times(k)

Given an edge in the middle layer, lift it to U with white sticker on U using a single move.
def lift_middle_white_to_U(state, edge_name, white_on_face):

white_on_face is 'F','R','B','L' representing which face holds the white sticker for this edge.
For each middle edge we choose the face turn that moves it to the U layer with white on U.
if edge_name == 'FR':

if white_on_face == 'F':
do("F'")

elif white_on_face == 'R':
do("R")

elif edge_name == 'FL':
if white_on_face == 'F':

do("F")
elif white_on_face == 'L':

do("L'")
elif edge_name == 'RB':

if white_on_face == 'R':
do("R'")

elif white_on_face == 'B':
do("B")

elif edge_name == 'LB':
if white_on_face == 'L':

do("L")
elif white_on_face == 'B':

do("B'")
else:

Not a middle edge
pass

If in U-layer but white on side, drop it to D with white on D using a single face turn.
def drop_U_side_white_to_D(state, edge_name, white_on_face):

edge_name one of UF,UR,UB,UL; white_on_face in {'F','R','B','L'}
if edge_name == 'UF' and white_on_face == 'F':

do("F")
elif edge_name == 'UR' and white_on_face == 'R':

do("R")
elif edge_name == 'UB' and white_on_face == 'B':

do("B")
elif edge_name == 'UL' and white_on_face == 'L':

do("L")

Eject from D when white on side: bring under that face then do that face' to bring to middle/U
def eject_D_side_white(state, edge_name, white_on_face):

edge_name in {'FD','RD','BD','LD'}, white_on_face in {'F','R','B','L'}
First rotate D to bring it under the face that has the white sticker
target = white_on_face + 'D'
align_D_edge_to(state, edge_name, target)
Now do the inverse face to move the edge up into the middle layer where we can lift it in next
steps
do(white_on_face + "'")

After white edge is on U face with white up at some U*, align above its target face and insert with
X2
def insert_from_U_white_up(state, target_face):

target_face in {'F','R','B','L'}
Bring the white edge to UX position by U-turns, then do target_face2
To know current UX position, find WR edge in U layer:
But we call this only after aligning with previous helpers; safe to rotate U until the partner
color aligns with target center
We'll explicitly rotate U until the edge is at UX.
Determine which UX currently holds the (W, partner) edge
desired_edge_name = UX_of[target_face]
Find the current U-edge location of the piece with colors {W, centers[target_face]}
state2 = get_observation()

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

centers = centers_of(state2)
partner = centers[target_face]
Find among U-edges where this WR is
u_positions = ['UF','UR','UB','UL']
current_u = None
where_white = None
for en in u_positions:

(f1, i1), (f2, i2) = edge_defs[en]
c1, c2 = state2[i1], state2[i2]
if (c1 == 'W' and c2 == partner):

current_u, where_white = en, f1 # white on f1
break

if (c2 == 'W' and c1 == partner):
current_u, where_white = en, f2
break

if current_u is None:
return

Rotate U to bring it to UX_of[target_face]
align_U_edge_to(state2, current_u, desired_edge_name)
Perform the double turn to insert
do2(target_face)

Main white cross builder
def build_white_cross():

Process targets in order: F (R), R (Y), B (G), L (B)
order = ['F','R','B','L']
max_outer_iters = 80
for face in order:

iters = 0
while iters < 40:

iters += 1
st = get_observation()
ctr = centers_of(st)
partner = ctr[face] # desired partner color for this edge
Check if it's already solved at XD with correct orientation
xd = XD_of[face]
(f1, i1), (f2, i2) = edge_defs[xd]
c1, c2 = st[i1], st[i2]
Determine orientation at XD: white on D position?
if (c1 == partner and c2 == 'W') or (c2 == partner and c1 == 'W'):

Additionally ensure white is on D (i.e., the index corresponding to D in this XD)
For XD edge, the pair is (face, idx_face), (D, idx_down). The D index may be either
i1 or i2.
Identify which is D:
down_idx = i1 if f1 == 'D' else (i2 if f2 == 'D' else None)
if down_idx is not None and st[down_idx] == 'W':

Solved for this edge
break

Otherwise, locate this white-partner edge
edge_name, pos = locate_white_edge_partner(st, partner)
if edge_name is None:

Should not happen
break

Determine which faces the two stickers are on and their colors
(ef1, ei1), (ef2, ei2) = edge_defs[edge_name]
col1, col2 = st[ei1], st[ei2]

Case handling
if edge_name in ['UF','UR','UB','UL']:

U layer
Identify where white is: on U or on side
white_on = None
if st[ei1] == 'W':

white_on = ef1
elif st[ei2] == 'W':

white_on = ef2
if white_on == 'U':

Rotate U to UX and insert with face2
insert_from_U_white_up(st, face)

else:
White on side face in U layer: drop to D with single move on that face
drop_U_side_white_to_D(st, edge_name, white_on)

elif edge_name in ['FR','FL','RB','LB']:
Middle layer: lift to U with white on U
white_on = None
if st[ei1] == 'W':

white_on = ef1
elif st[ei2] == 'W':

white_on = ef2
lift_middle_white_to_U(st, edge_name, white_on)

elif edge_name in ['FD','RD','BD','LD']:

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

D layer
Determine if white is on D or on side
white_on = None
if st[ei1] == 'W':

white_on = ef1
elif st[ei2] == 'W':

white_on = ef2
if white_on == 'D':

Rotate D to bring under target face, insert with face2
current_xd = edge_name
align_D_edge_to(st, current_xd, XD_of[face])
do2(face)

else:
White on side at D layer: eject up to middle/U
eject_D_side_white(st, edge_name, white_on)

else:
Should not happen
pass

Next target
End for faces

First, if solved already, finish
st0 = get_observation()
if is_solved_state(st0):

final_answer("")
else:

Build white cross
build_white_cross()
Check if solved by chance, else continue later
st1 = get_observation()
if is_solved_state(st1):

final_answer("")
else:

Print progress: show current state to proceed next steps in subsequent iteration
print(get_observation())

Observation.

OGGYRRRBBORWRGBWGGYWBYBGYOBWOYOYGOYGROOBOYGWBWRRBWWRWY

Step 8

Thought.

I will continue solving using the beginner’s method. I already built some progress toward the white
cross. Next, I will insert the four white corners into the D (white) layer without disturbing the
cross, using standard triggers:
- For DFR (from UFR): R U R' U'
- For DRB (from URB): B U B' U'
- For DBL (from UBL): L' U' L U
- For DLF (from ULF): F' U' F U

I will:
- Define corner indices.
- Detect each target white corner by its color set {W, center(face1), center(face2)}.
- If found in D but unsolved: rotate D to bring it to the correct slot and eject with the corresponding
trigger until it pops to U.
- If found in U: rotate U to place above its target slot, then apply the corresponding trigger
repeatedly until solved.
- Repeat for all four corners, then print the current state. If solved, I will call final_answer("").

Step 9

Thought.

I will proceed with the next stage of the beginner’s method: solve the middle layer edges (second
layer) without disturbing the completed white layer. I will:

- Identify middle layer target edges (FR, FL, RB, LB).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

- Insert correct U-layer edges that do not contain U or D colors (i.e., not containing O or W).
- If no such U edges exist, eject an incorrectly placed middle edge to the U layer, then insert it
correctly.
I will then print the updated cube state (or call final_answer("") if by chance the cube becomes
solved).

Step 10

Thought.

The cube now has the first two layers solved. I will complete the last layer using beginner’s method:
- OLL: orient U (Orange) edges to a cross using the FRUR'U'F' sequence with correct U rotations; then
orient corners using Sune/anti-Sune until all U stickers are Orange.
- PLL: first permute last-layer corners using U R U' L' U R' U' L; then permute last-layer edges using
Ua/Ub permutations. I will implement helper checks and safe application with inverses so I can revert
if a guess doesn’t solve. I’ll check for solved after each stage and finish with final_answer("") if
solved.

Step 13

Thought.

I will correct the cube indexing for edges and corners (earlier mappings had mistakes), then run a full
beginner-method pipeline: build the white cross, insert white corners, solve middle-layer edges, and
finish with OLL and PLL. I will expand any \2" turns into two quarter turns so the environment accepts
them. I will check for solved after each phase, and if solved at any point, I will immediately call
final_answer("").

Code.

Corrected, end-to-end beginner method solver with accurate index mappings and safe "2" expansion.

========== Helpers and Mappings ==========

def do(m):
Expand "2" moves into two quarter turns
if m.endswith("2"):

f = m[0]
make_move(f)
make_move(f)

else:
make_move(m)

def do2(face):
make_move(face)
make_move(face)

def is_solved_state(s):
return (all(c == 'R' for c in s[0:9]) and

all(c == 'G' for c in s[9:18]) and
all(c == 'B' for c in s[18:27]) and
all(c == 'Y' for c in s[27:36]) and
all(c == 'O' for c in s[36:45]) and
all(c == 'W' for c in s[45:54]))

def centers_of(state):
return {

'F': state[4], # R
'B': state[13], # G
'L': state[22], # B
'R': state[31], # Y
'U': state[40], # O
'D': state[49], # W

}

Correct edge indices based on the provided net
edge_defs = {

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

'UF': (('U', 43), ('F', 1)),
'UR': (('U', 41), ('R', 28)),
'UB': (('U', 37), ('B', 10)),
'UL': (('U', 39), ('L', 19)),

'FR': (('F', 5), ('R', 30)),
'FL': (('F', 3), ('L', 23)),
'RB': (('R', 32), ('B', 12)),
'LB': (('L', 21), ('B', 14)),

'FD': (('F', 7), ('D', 46)),
'RD': (('R', 34), ('D', 50)),
'BD': (('B', 16), ('D', 52)),
'LD': (('L', 25), ('D', 48)),

}

Correct corner indices
corners = {

'UFR': [('U',44),('F',2),('R',27)],
'URB': [('U',38),('R',29),('B',9)],
'UBL': [('U',36),('B',11),('L',18)],
'ULF': [('U',42),('L',20),('F',0)],
'DFR': [('D',47),('F',8),('R',33)],
'DRB': [('D',45),('R',35),('B',15)],
'DBL': [('D',51),('B',17),('L',24)],
'DLF': [('D',53),('L',26),('F',6)],

}

Cycles for U and D layer edges
U_cycle = ['UF', 'UR', 'UB', 'UL']
D_cycle_cw = ['FD', 'RD', 'BD', 'LD'] # Under D (clockwise)

UX_of = {'F': 'UF', 'R': 'UR', 'B': 'UB', 'L': 'UL'}
XD_of = {'F': 'FD', 'R': 'RD', 'B': 'BD', 'L': 'LD'}

def U_times(k):
for _ in range(k % 4): do('U')

def D_times(k):
for _ in range(k % 4): do('D')

def align_U_edge_to(state, cur_edge, target_edge):
ci = U_cycle.index(cur_edge)
ti = U_cycle.index(target_edge)
k = (ti - ci) % 4
U_times(k)

def align_D_edge_to(state, cur_edge, target_edge):
ci = D_cycle_cw.index(cur_edge)
ti = D_cycle_cw.index(target_edge)
k = (ti - ci) % 4
D_times(k)

def get_edge_colors(state, edge_name):
(f1, i1), (f2, i2) = edge_defs[edge_name]
return (state[i1], state[i2])

def locate_white_edge_partner(state, partner_color):
for name, ((f1,i1),(f2,i2)) in edge_defs.items():

c1, c2 = state[i1], state[i2]
if c1 == 'W' and c2 == partner_color:

return name, 0
if c2 == 'W' and c1 == partner_color:

return name, 1
return None, None

========== White Cross ==========

def lift_middle_white_to_U(state, edge_name, white_on_face):
Move middle edge to U with white on U
if edge_name == 'FR':

if white_on_face == 'F': do("F'")
elif white_on_face == 'R': do("R")

elif edge_name == 'FL':
if white_on_face == 'F': do("F")
elif white_on_face == 'L': do("L'")

elif edge_name == 'RB':
if white_on_face == 'R': do("R'")
elif white_on_face == 'B': do("B")

elif edge_name == 'LB':
if white_on_face == 'L': do("L")
elif white_on_face == 'B': do("B'")

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

def drop_U_side_white_to_D(state, edge_name, white_on_face):
if edge_name == 'UF' and white_on_face == 'F': do("F")
elif edge_name == 'UR' and white_on_face == 'R': do("R")
elif edge_name == 'UB' and white_on_face == 'B': do("B")
elif edge_name == 'UL' and white_on_face == 'L': do("L")

def eject_D_side_white(state, edge_name, white_on_face):
target = white_on_face + 'D'
align_D_edge_to(state, edge_name, target)
do(white_on_face + "'")

def insert_from_U_white_up(state, target_face):
desired_u = UX_of[target_face]
st2 = get_observation()
centers = centers_of(st2)
partner = centers[target_face]
current_u = None
for en in U_cycle:

(f1,i1),(f2,i2) = edge_defs[en]
c1, c2 = st2[i1], st2[i2]
if (c1 == 'W' and c2 == partner) or (c2 == 'W' and c1 == partner):

current_u = en
break

if current_u is None:
return

align_U_edge_to(st2, current_u, desired_u)
do2(target_face)

def build_white_cross():
order = ['F','R','B','L']
for face in order:

for _ in range(60):
st = get_observation()
ctr = centers_of(st)
partner = ctr[face]
Check if solved at XD (white on D index for that edge)
xd = XD_of[face]
(f1,i1),(f2,i2) = edge_defs[xd]
d_idx = i1 if f1 == 'D' else (i2 if f2 == 'D' else None)
if d_idx is not None:

if ((st[i1] == partner and st[i2] == 'W') or (st[i2] == partner and st[i1] == 'W')) and
st[d_idx] == 'W':

break # Edge in place and oriented
Locate target edge
en, pos = locate_white_edge_partner(st, partner)
if en is None:

break
(ef1,ei1),(ef2,ei2) = edge_defs[en]
Determine where white is
white_on = ef1 if st[ei1] == 'W' else (ef2 if st[ei2] == 'W' else None)
if en in U_cycle:

if white_on == 'U':
insert_from_U_white_up(st, face)

else:
drop_U_side_white_to_D(st, en, white_on)

elif en in ['FR','FL','RB','LB']:
lift_middle_white_to_U(st, en, white_on)

elif en in D_cycle_cw:
if white_on == 'D':

align_D_edge_to(st, en, XD_of[face])
do2(face)

else:
eject_D_side_white(st, en, white_on)

========== White Corners ==========

def get_corner_colors(state, name):
return tuple(state[idx] for _, idx in corners[name])

def corner_color_set(state, name):
return set(get_corner_colors(state, name))

top_cycle = ['UFR','URB','UBL','ULF']
down_cycle = ['DFR','DRB','DBL','DLF']

def U_to_top_corner(current_top, target_top):
ci = top_cycle.index(current_top)
ti = top_cycle.index(target_top)
U_times((ti - ci) % 4)

def D_to_down_corner(current_down, target_down):
ci = down_cycle.index(current_down)
ti = down_cycle.index(target_down)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

D_times((ti - ci) % 4)

def is_corner_solved(state, name):
White on D face and other two colors match centers
faces = [f for f,_ in corners[name]]
idxs = [i for _,i in corners[name]]
d_pos = None
for i,f in enumerate(faces):

if f == 'D':
d_pos = i
break

if d_pos is None:
return False

if state[idxs[d_pos]] != 'W':
return False

ctr = centers_of(state)
for i,f in enumerate(faces):

if f == 'D': continue
if state[idxs[i]] != ctr[f]:

return False
return True

triggers = {
'DFR': {'top':'UFR', 'do': lambda: (do('R'), do('U'), do("R'"), do("U'"))},
'DRB': {'top':'URB', 'do': lambda: (do('B'), do('U'), do("B'"), do("U'"))},
'DBL': {'top':'UBL', 'do': lambda: (do("L'"), do("U'"), do('L'), do('U'))},
'DLF': {'top':'ULF', 'do': lambda: (do("F'"), do("U'"), do('F'), do('U'))},

}

def find_corner_by_colors(state, target_set):
for name in corners:

if corner_color_set(state, name) == target_set:
return name

return None

def eject_down_corner(slot_name):
trig = triggers[slot_name]['do']
for _ in range(3):

trig()

def insert_corner(slot_name, target_set):
top_name = triggers[slot_name]['top']
trig = triggers[slot_name]['do']
for _ in range(40):

st = get_observation()
if is_corner_solved(st, slot_name):

return True
pos = find_corner_by_colors(st, target_set)
if pos is None:

return False
if pos in down_cycle:

D_to_down_corner(pos, slot_name)
eject_down_corner(slot_name)

elif pos in top_cycle:
U_to_top_corner(pos, top_name)
trig()

else:
trig()

return False

def solve_white_corners():
st = get_observation()
ctr = centers_of(st)
targets = [

('DFR', {'W', ctr['F'], ctr['R']}),
('DRB', {'W', ctr['R'], ctr['B']}),
('DBL', {'W', ctr['B'], ctr['L']}),
('DLF', {'W', ctr['L'], ctr['F']}),

]
for slot, tset in targets:

for _ in range(60):
st = get_observation()
if is_corner_solved(st, slot):

break
insert_corner(slot, tset)

========== Middle Layer ==========

def right_of(face):
return {'F':'R','R':'B','B':'L','L':'F'}[face]

def left_of(face):
return {'F':'L','L':'B','B':'R','R':'F'}[face]

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

def is_middle_edge_solved(state, slot):
(f1, i1), (f2, i2) = edge_defs[slot]
c1, c2 = state[i1], state[i2]
ctr = centers_of(state)
return c1 == ctr[f1] and c2 == ctr[f2]

def any_middle_unsolved(state):
return not (is_middle_edge_solved(state, 'FR') and

is_middle_edge_solved(state, 'RB') and
is_middle_edge_solved(state, 'LB') and
is_middle_edge_solved(state, 'FL'))

def find_u_edge_candidate(state):
for en in U_cycle:

(f1,i1),(f2,i2) = edge_defs[en]
c1, c2 = state[i1], state[i2]
if c1 in ('O','W') or c2 in ('O','W'):

continue
return en

return None

def find_u_edge_by_colors(state, colors_set):
for en in U_cycle:

(f1,i1),(f2,i2) = edge_defs[en]
if set([state[i1], state[i2]]) == colors_set:

return en
return None

def insert_middle_from_U_above(front_face, direction):
if direction == 'right':

rf = right_of(front_face)
do('U'); do(rf); do("U'"); do(rf+"'"); do("U'"); do(front_face+"'"); do('U'); do(front_face)

else:
lf = left_of(front_face)
do("U'"); do(lf+"'"); do("U'"); do(lf); do('U'); do(front_face); do("U'"); do(front_face+"'")

def eject_incorrect_middle(front_face):
insert_middle_from_U_above(front_face, 'right')

def solve_middle_layer():
for _ in range(300):

st = get_observation()
if not any_middle_unsolved(st):

break
st = get_observation()
ctr = centers_of(st)
en = find_u_edge_candidate(st)
if en is not None:

side_map = {'UF':'F','UR':'R','UB':'B','UL':'L'}
side = side_map[en]
(f1,i1),(f2,i2) = edge_defs[en]
if f1 == side:

side_color = st[i1]
up_color = st[i2]

else:
side_color = st[i2]
up_color = st[i1]

target_front = None
for f in ['F','R','B','L']:

if ctr[f] == side_color:
target_front = f
break

if target_front is None:
do('U'); continue

st2 = get_observation()
cur = find_u_edge_by_colors(st2, set([side_color, up_color]))
if cur is None:

do('U'); continue
align_U_edge_to(st2, cur, UX_of[target_front])
if ctr[right_of(target_front)] == up_color:

insert_middle_from_U_above(target_front, 'right')
elif ctr[left_of(target_front)] == up_color:

insert_middle_from_U_above(target_front, 'left')
else:

do('U')
else:

st = get_observation()
if not is_middle_edge_solved(st, 'FR'):

eject_incorrect_middle('F')
elif not is_middle_edge_solved(st, 'RB'):

eject_incorrect_middle('R')
elif not is_middle_edge_solved(st, 'LB'):

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

eject_incorrect_middle('L')
elif not is_middle_edge_solved(st, 'FL'):

eject_incorrect_middle('F')

========== Last Layer (OLL + PLL) ==========

U_indices = [36,37,38,39,40,41,42,43,44]
def u_face_all_orange(state):

return all(state[i] == 'O' for i in U_indices)

def u_edges(state):
return {'top': state[37], 'left': state[39], 'right': state[41], 'bottom': state[43]}

def u_cross_orange(state):
e = u_edges(state)
return e['top']=='O' and e['left']=='O' and e['right']=='O' and e['bottom']=='O'

def solve_oll_edges():
FRURUFp = ["F", "R", "U", "R'", "U'", "F'"]
for _ in range(12):

st = get_observation()
if u_cross_orange(st):

return
e = u_edges(st)
flags = {pos:(col=='O') for pos,col in e.items()}
cnt = sum(flags.values())
if cnt == 0:

do_seq(FRURUFp)
elif cnt == 2:

if flags['left'] and flags['right']:
do_seq(FRURUFp)

elif flags['top'] and flags['bottom']:
U_times(1); do_seq(FRURUFp)

else:
for _ in range(4):

st2 = get_observation()
e2 = u_edges(st2)
if e2['top']=='O' and e2['left']=='O':

do_seq(FRURUFp); break
U_times(1)

else:
do_seq(FRURUFp)

def solve_oll_corners():
sune = ["R","U","R'","U","R","U2","R'"]
antisune = ["R'","U'","R","U'","R'","U2","R"]
for _ in range(36):

st = get_observation()
if u_face_all_orange(st):

return
for _ in range(4):

st = get_observation()
if st[2] == 'O':

do_seq(sune); break
elif st[27] == 'O':

do_seq(antisune); break
else:

do('U')

edges_U_top = {
'UF': (('U',43), ('F',1)),
'UR': (('U',41), ('R',28)),
'UB': (('U',37), ('B',10)),
'UL': (('U',39), ('L',19)),

}

def edges_in_place_top(state):
ctr = centers_of(state)
for name, ((f1,i1),(f2,i2)) in edges_U_top.items():

if state[i2] != ctr[f2]:
return False

return True

def corner_side_colors_match(state, corner_name):
faces = [f for f,_ in corners[corner_name]]
idxs = [i for _,i in corners[corner_name]]
ctr = centers_of(state)
for f,i in zip(faces,idxs):

if f == 'U': continue
if state[i] != ctr[f]:

return False
return True

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

def all_corners_in_place(state):
return all(corner_side_colors_match(state, name) for name in ['UFR','URB','UBL','ULF'])

corner_cycle = ["U","R","U'","L'","U","R'","U'","L"]
Ua = ["R","U'","R","U","R","U","R","U'","R'","U'","R2"]
Ub = ["R2","U","R","U","R'","U'","R'","U'","R'","U","R'"]

def solve_pll_corners():
for _ in range(12):

st = get_observation()
if all_corners_in_place(st):

return
try to position a correct corner at UFR
for _ in range(4):

st = get_observation()
if corner_side_colors_match(st, 'UFR'):

break
do('U')

do_seq(corner_cycle)

def invert_move(m):
if m.endswith("2"): return m
if m.endswith("'"): return m[:-1]
return m + "'"

def invert_seq(seq):
return [invert_move(m) for m in reversed(seq)]

def try_edge_perm(alg):
do_seq(alg)
st = get_observation()
if is_solved_state(st) or edges_in_place_top(st):

return True
do_seq(invert_seq(alg))
return False

def solve_pll_edges():
for _ in range(12):

st = get_observation()
if edges_in_place_top(st):

return
for _ in range(4):

if try_edge_perm(Ua): return
if try_edge_perm(Ub): return
do('U')

========== Run the full pipeline ==========

st0 = get_observation()
if is_solved_state(st0):

final_answer("")
else:

1) White cross
build_white_cross()
if is_solved_state(get_observation()):

final_answer("")
2) White corners
solve_white_corners()
if is_solved_state(get_observation()):

final_answer("")
3) Middle layer
solve_middle_layer()
if is_solved_state(get_observation()):

final_answer("")
4) Last layer
solve_oll_edges()
solve_oll_corners()
solve_pll_corners()
solve_pll_edges()
Align U and check
for _ in range(4):

if is_solved_state(get_observation()):
final_answer("")

do('U')
If still not solved, print state for further iteration
print(get_observation())

</code>

Observation.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

RWRORRGBRGRGRGGWGORYBYBGBOBYGGOYYYYYBBYOOWOBOORWBWWWWW

L.3 BASIC AGENT – BRUTE-FORCE ENUMERATION

Model Agent Type Input Reward Depth

gpt-oss-120b Basic Full Symbolic No reward 12

This case demonstrates the behavior of a less capable agent in a no-reward setting. The agent exe-
cutes up to 20,000 moves, selecting each move essentially at random, with only a minimal stochas-
tic backtracking mechanism (5% chance of undoing the previous move). There is no systematic
planning, pruning, or search applied, and the cube remains unsolved. Aside from the stochastic
backtracking, the agent’s behavior is equivalent to a random walk over the state space.

Code.

import random

Moves and their inverses
moves = ["F","F'","B","B'","L","L'","R","R'","U","U'","D","D'"]
inverse = {"F":"F'","F'":"F","B":"B'","B'":"B",

"L":"L'","L'":"L","R":"R'","R'":"R",
"U":"U'","U'":"U","D":"D'","D'":"D"}

def is_solved(state):
solved state order: FRONT=R, BACK=G, LEFT=B, RIGHT=Y, UP=O, DOWN=W
solved = "R"*9 + "G"*9 + "B"*9 + "Y"*9 + "O"*9 + "W"*9
return state == solved

Simulated annealing / random walk with occasional acceptance of worse moves
max_steps = 20000 # allow many moves within a single tool call
state = get_observation()
if is_solved(state):

print("Already solved")
else:

for step in range(max_steps):
if is_solved(state):

print("Cube solved at step", step)
break

mv = random.choice(moves)
make_move(mv)
new_state = get_observation()
If the move improved (or equal) heuristic, keep it.
We don't have direct heuristic, so we just keep the move most of the time,
but occasionally revert a bad move to avoid dead-ends.
Simple rule: if new_state is same as previous (unlikely) revert, else keep.
To allow some backtracking, we revert with small probability.
keep = True
if random.random() < 0.05: # 5% chance to undo

make_move(inverse[mv])
new_state = get_observation()
keep = False

state = new_state
else:

print("Reached max steps without solving. Final state:", state)

Final verification
final_answer("")

Not solved.

L.4 BASIC AGENT – FAILED PRUNING

Model Agent Type Input Reward Depth

GPT-5 Basic Full Symbolic No reward 12

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

In this test case, the model implements a meet-in-the-middle search for Rubik’s Cube solving. The
procedure first builds a dictionary of states reachable from the solved cube (build goal map),
and then performs a forward search from the scrambled cube (forward meet in middle) to
detect an intersection. This reflects the model’s recall of classical bidirectional search techniques.

The implementation introduces several forms of pruning:

Move-level pruning. Immediate inverses are skipped. (if m == inverse_move(last_move): continue).
These rules eliminate trivial local redundancies such as R R’, or U U’.

State duplicate elimination. Both functions maintain a visited set
(if new_state in visited: continue) to prevent rediscovering identical states along different paths.

Despite these measures, the pruning remains insufficient. Move-level constraints only remove redun-
dant short patterns, and the visited set curbs local repetition but cannot control the exponential
growth of unique cube states. Indeed, even at depth 5 the algorithm reports over 9,000 states in the
goal-side map. Without stronger heuristics (e.g., pattern databases or domain-specific evaluation
functions), the search rapidly exhausts computational limits without finding a solution.

This case illustrates that while the model can recall canonical pruning strategies, their limited scope
fails to achieve practical efficiency in large combinatorial spaces.

Thought.

The previous searches exceeded operation limits. I will switch to a meet-in-the-middle search:
- Build a dictionary of states reachable from the solved state within depth Dg=5 (using the learned
move permutations), storing the sequences from solved to each state.
- Then breadth-first search from the current state up to depth Ds=5, checking at each node if it
intersects the goal-side dictionary. If so, concatenate the forward path with the inverse of the
goal-side path to obtain a full solution.
- Apply the resulting sequence to the real cube using make_move, verify if solved, and if so call
final_answer("").

This approach keeps expansions manageable and avoids heavy recursion or long-running loops.

Code.

import time

We assume these exist from earlier:
perm_by_move, apply_perm, inverse_move, invert_seq, solved, do_moves, get_observation

move_order = ['U',"U'",'R',"R'",'F',"F'",'L',"L'",'D',"D'",'B',"B'"]

def build_goal_map(depth_limit=5, time_limit=6.0):
start_time = time.time()
Each node: (state, last_move, seq_tuple)
start = solved
visited = set([start])
goal_map = {} # state -> seq from solved to state (tuple of moves)
frontier = [(start, None, ())]
depth = 0
while depth < depth_limit and frontier:

if time.time() - start_time > time_limit:
break

next_frontier = []
for state, last_move, seq in frontier:

for m in move_order:
if last_move is not None:

prune: same face twice or immediate inverse
if m[0] == last_move[0] or m == inverse_move(last_move):

continue
new_state = apply_perm(state, perm_by_move[m])
if new_state in visited:

continue
visited.add(new_state)
new_seq = seq + (m,)
goal_map[new_state] = new_seq
next_frontier.append((new_state, m, new_seq))

frontier = next_frontier
depth += 1

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

print("Goal-map size (<= depth", depth_limit, "):", len(goal_map))
return goal_map

def forward_meet_in_middle(start_state, goal_map, depth_limit=5, time_limit=6.0):
start_time = time.time()
if start_state in goal_map:

Directly within goal radius
tail = invert_seq(list(goal_map[start_state]))
return True, tail

visited = set([start_state])
frontier = [(start_state, None, ())]
depth = 0
while depth < depth_limit and frontier:

if time.time() - start_time > time_limit:
break

next_frontier = []
for state, last_move, seq in frontier:

Check meet
if state in goal_map:

tail = invert_seq(list(goal_map[state]))
return True, list(seq) + tail

for m in move_order:
if last_move is not None:

if m[0] == last_move[0] or m == inverse_move(last_move):
continue

new_state = apply_perm(state, perm_by_move[m])
if new_state in visited:

continue
visited.add(new_state)
new_seq = seq + (m,)
Early meet check
if new_state in goal_map:

tail = invert_seq(list(goal_map[new_state]))
return True, list(new_seq) + tail

next_frontier.append((new_state, m, new_seq))
frontier = next_frontier
depth += 1

return False, None

Build meet-in-the-middle structures
start_state = get_observation()
print("Current state:", start_state)
goal_map = build_goal_map(depth_limit=5, time_limit=5.0)
ok, solution_seq = forward_meet_in_middle(start_state, goal_map, depth_limit=5, time_limit=5.0)

if not ok or solution_seq is None:
print("First meet-in-the-middle attempt failed; trying slightly deeper on forward side...")
ok, solution_seq = forward_meet_in_middle(start_state, goal_map, depth_limit=6, time_limit=6.0)

if not ok or solution_seq is None:
print("Could not find a meet-in-the-middle solution within limits.")
final_answer("Could not solve within limits.")

else:
print("Found sequence length:", len(solution_seq))
print("Sequence:", ' '.join(solution_seq))
Apply to real cube
do_moves(solution_seq)
final_state = get_observation()
print("Solved?", final_state == solved)
if final_state == solved:

final_answer("")
else:

final_answer("Applied a sequence, but cube not solved.")

Observation.

Current state: RGGRRWRGWOWBGGBGBOYRYYBYRYYBRGYYGBBGWOYOOWWOOOWROWRBBW
Goal-map size (<= depth 5): 9732
First meet-in-the-middle attempt failed; trying slightly deeper on forward side...
<Killed by the Python Interpreter>

Not solved.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

L.5 REWARD – BYPASS VISUAL REASONING

Model Agent Type Input Reward Depth

GPT-5 Basic Vertex View Heuristic 3

In this case (Step 1), the agent was required to explicitly call get observation() to view the
cube image. However, throughout its search process the agent did not make any use of the visual
input; it only called the image observation once at the end, to display the final cube state. Instead, its
entire search relied exclusively on the heuristic reward. The code shows a greedy lookahead strategy
up to depth three, where move sequences were evaluated and selected solely on the basis of their
reward values.

This behavior illustrates that when a simple external reward is available, even a capable agent may
effectively bypass the provided visual input. Rather than engaging in visual reasoning to reconstruct
the cube state, the agent defaulted to symbolic search in the move space, guided entirely by reward
optimization.

Step 1

Thought.

Thought: I'll use greedy and limited lookahead search guided by the heuristic reward. At each iteration
I will:
- Try all 12 basic moves and pick the one with the largest positive reward; if found, apply it and
continue.
- If no single move improves, try pairs of moves (depth 2) to find a positive net improvement; if
found, apply the best pair.
- If still no improvement, try depth 3 sequences for a positive net improvement; if found, apply the
best triple.
- Repeat until no improvements are found up to depth 3 or a reasonable move limit is reached.
I will then show the current cube observation so I can visually assess if it's solved. If it is, I will
call final_answer("").

Code.

Greedy + lookahead solver using the heuristic reward

Define moves and inverses
moves = ["F","F'","B","B'","L","L'","R","R'","U","U'","D","D'"]
inv = {m: (m[:-1] if m.endswith("'") else m + "'") for m in moves}

def try_best_sequence(max_depth=3):
"""
Try to find the best improving sequence up to max_depth.
Returns (best_reward, best_sequence) with best_reward > 0 if found, else (0, []).
"""
best_reward = 0.0
best_seq = []

Depth 1
for m1 in moves:

r1 = make_move(m1)
undo
_ = make_move(inv[m1])
if r1 > best_reward:

best_reward = r1
best_seq = [m1]

if best_reward > 0 or max_depth == 1:
return best_reward, best_seq

Depth 2
for m1 in moves:

r1 = make_move(m1)
for m2 in moves:

r2 = make_move(m2)
net = r1 + r2
undo m2
_ = make_move(inv[m2])

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

if net > best_reward:
best_reward = net
best_seq = [m1, m2]

undo m1
_ = make_move(inv[m1])

if best_reward > 0 or max_depth == 2:
return best_reward, best_seq

Depth 3
for m1 in moves:

r1 = make_move(m1)
for m2 in moves:

r2 = make_move(m2)
for m3 in moves:

r3 = make_move(m3)
net = r1 + r2 + r3
undo m3
_ = make_move(inv[m3])
if net > best_reward:

best_reward = net
best_seq = [m1, m2, m3]

undo m2
_ = make_move(inv[m2])

undo m1
_ = make_move(inv[m1])

return best_reward, best_seq

Main improvement loop
total_improvement = 0.0
applied_moves = []
iterations = 0
max_iterations = 200 # safety cap on number of applied moves

print("Starting heuristic-guided improvement...")
while iterations < max_iterations:

iterations += 1
best_r, best_seq = try_best_sequence(max_depth=3)
if best_r <= 0 or not best_seq:

print(f"No improving sequence found at iteration {iterations}. Stopping local search.")
break

Apply the best found sequence
seq_r_sum = 0.0
for m in best_seq:

r = make_move(m)
seq_r_sum += r
applied_moves.append(m)

total_improvement += seq_r_sum
print(f"Iteration {iterations}: Applied {best_seq} with net reward {seq_r_sum:.3f}. Total
improvement: {total_improvement:.3f}")

print(f"Finished. Applied {len(applied_moves)} moves. Total heuristic improvement from start:
{total_improvement:.3f}")
print("Final observation for visual check:")
obs = get_observation()
print(obs) # This will display the current cube in vertex view for visual verification.

Observation.

Starting heuristic-guided improvement...
Iteration 1: Applied ['D', "B'"] with net reward 4.000. Total improvement: 4.000
Iteration 2: Applied ["D'"] with net reward 2.000. Total improvement: 6.000
No improving sequence found at iteration 3. Stopping local search.
Finished. Applied 3 moves. Total heuristic improvement from start: 6.000
Final observation for visual check:
<PIL.Image.Image image mode=RGB size=84x84 at 0x75CD29633A50>

L.6 REWARD – AS A MISLEADING SIGNAL

Model Agent Type Input Reward Depth

GPT-5 Basic Full Symbolic Heuristic 3

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

This experiment shows how a simplistic external reward can misalign with an advanced agent’s
internal reasoning. In Steps 2–7, GPT-5 applied several non-trivial search strategies: greedy hill-
climbing with depth-2 lookahead and random shaking, heuristic-guided DFS, constrained stochas-
tic search, and macro-based methods incorporating standard Rubik’s Cube algorithms (e.g., “Sexy
Move” and “Sune”). However, all of these approaches were centered on maximizing the provided
heuristic reward—a single numerical score intended to measure progress. The result was limited:
the heuristic plateaued (no improvement in cumulative delta), and the cube was never solved.

In Step 8, the agent explicitly reflected, “The heuristic-based approaches failed to make progress... I
will switch to a deterministic, constraint-driven search that directly targets subgoals (e.g., build the
white cross).” After abandoning the external reward and instead adopting a subgoal-based strategy,
the agent made immediate progress (white cross success).

This case illustrates that even for highly capable agents, a simplistic reward signal may conflict
with their internal problem-solving process, reducing performance until the agent reverts to its own
structured reasoning.

Due to space constraints, we only include the observation outputs and code fragments of the key
steps.

Step 2

Thought.

Thought: I will try to solve the cube using the available tools. Since we can get a heuristic reward
for each move, I’ll implement a greedy hill-climbing approach guided by this reward: at each step,
evaluate all moves and choose the one that gives the highest positive improvement. If no single move
gives improvement, I’ll try a depth-2 lookahead (pairs of moves). If still stuck, I’ll use occasional
random \shake" moves to escape local minima. I will keep checking if the cube is solved by verifying
each face is uniform; once solved, I will call final_answer("") as instructed.

Code.

from random import choice, randint, seed
seed(42)

Helper functions
def is_solved(state):

if not isinstance(state, str) or len(state) != 54:
return False

faces = [
state[0:9], # FRONT (R)
state[9:18], # BACK (G)
state[18:27], # LEFT (B)
state[27:36], # RIGHT (Y)
state[36:45], # UP (O)
state[45:54], # DOWN (W)

]
return all(len(set(face)) == 1 for face in faces)

def inverse(move):
return move[:-1] if move.endswith("'") else move + "'"

moves = ['F', "F'", 'B', "B'", 'L', "L'", 'R', "R'", 'U', "U'", 'D', "D'"]

def try_single_moves():
Evaluate all single moves and return the best positive move and its reward
best_move = None
best_reward = float('-inf')
for m in moves:

r = make_move(m)
revert
make_move(inverse(m))
if r > best_reward:

best_reward = r
best_move = m

return best_move, best_reward

def try_depth2_moves():
Evaluate all pairs of moves and return the best positive pair and cumulative reward
best_pair = None

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

best_reward = float('-inf')
for m1 in moves:

r1 = make_move(m1)
for m2 in moves:

r2 = make_move(m2)
total = r1 + r2
revert m2 then m1
make_move(inverse(m2))
if total > best_reward:

best_reward = total
best_pair = (m1, m2)

make_move(inverse(m1))
return best_pair, best_reward

def faces_solved_count(state):
number of fully solved faces
faces = [

state[0:9], state[9:18], state[18:27], state[27:36], state[36:45], state[45:54]
]
return sum(1 for f in faces if len(set(f)) == 1)

Start from current observation
state0 = get_observation()
print("Initial state:", state0)
print("Initially solved?", is_solved(state0))
print("Initial faces solved:", faces_solved_count(state0))

max_iterations = 600
stagnation = 0
moves_made = []
cumulative_delta = 0.0

for it in range(1, max_iterations + 1):
Check if solved
st = get_observation()
if is_solved(st):

print(f"Solved at iteration {it} with {len(moves_made)} moves.")
final_answer("")
break

Try best single move
m1, r1 = try_single_moves()
if r1 > 0:

rr = make_move(m1)
cumulative_delta += rr
moves_made.append(m1)
stagnation = 0

else:
Try depth-2
pair, rpair = try_depth2_moves()
if pair is not None and rpair > 0:

rr1 = make_move(pair[0])
rr2 = make_move(pair[1])
cumulative_delta += (rr1 + rr2)
moves_made.extend([pair[0], pair[1]])
stagnation = 0

else:
Random shake to escape local minima
rand_moves = randint(1, 3)
for _ in range(rand_moves):

m = choice(moves)
rr = make_move(m)
cumulative_delta += rr
moves_made.append(m)

stagnation += 1

Periodic logging
if it % 20 == 0:

st = get_observation()
print(f"Iter {it}: cumulative_delta={cumulative_delta:.2f}, moves={len(moves_made)},
faces_solved={faces_solved_count(st)}")

else:
If loop completes without break (not solved), print status
st = get_observation()
print("Not solved within iteration budget.")
print("Faces solved:", faces_solved_count(st))
print("Current state:", st)

Observation.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Initial state: BRRBRRWRRYYOGGGGGGBBWBBWGGYBYYBYYBRROOOOOOGWWROOWWYWWY
Initially solved? False
Initial faces solved: 0
Iter 20: cumulative_delta=0.00, moves=33, faces_solved=0
Iter 40: cumulative_delta=0.00, moves=71, faces_solved=0
Iter 60: cumulative_delta=1.00, moves=105, faces_solved=0
Iter 80: cumulative_delta=0.00, moves=147, faces_solved=0
Iter 100: cumulative_delta=0.00, moves=189, faces_solved=0
Iter 120: cumulative_delta=0.00, moves=230, faces_solved=0
Iter 140: cumulative_delta=0.00, moves=267, faces_solved=0
Iter 160: cumulative_delta=0.00, moves=312, faces_solved=0
Iter 180: cumulative_delta=0.00, moves=351, faces_solved=0
Iter 200: cumulative_delta=0.00, moves=387, faces_solved=0
Iter 220: cumulative_delta=0.00, moves=431, faces_solved=0
Iter 240: cumulative_delta=0.00, moves=472, faces_solved=0
Iter 260: cumulative_delta=0.00, moves=512, faces_solved=0
Iter 280: cumulative_delta=0.00, moves=555, faces_solved=0
Iter 300: cumulative_delta=0.00, moves=595, faces_solved=0
Iter 320: cumulative_delta=0.00, moves=638, faces_solved=0
Iter 340: cumulative_delta=0.00, moves=678, faces_solved=0
Iter 360: cumulative_delta=0.00, moves=718, faces_solved=0
Iter 380: cumulative_delta=0.00, moves=757, faces_solved=0
Iter 400: cumulative_delta=0.00, moves=796, faces_solved=0
Iter 420: cumulative_delta=0.00, moves=834, faces_solved=0
Iter 440: cumulative_delta=0.00, moves=877, faces_solved=0
Iter 460: cumulative_delta=0.00, moves=922, faces_solved=0
Iter 480: cumulative_delta=0.00, moves=965, faces_solved=0
Iter 500: cumulative_delta=0.00, moves=1000, faces_solved=0
Iter 520: cumulative_delta=0.00, moves=1043, faces_solved=0
Iter 540: cumulative_delta=0.00, moves=1082, faces_solved=0
Iter 560: cumulative_delta=0.00, moves=1124, faces_solved=0
Iter 580: cumulative_delta=0.00, moves=1167, faces_solved=0
Iter 600: cumulative_delta=0.00, moves=1210, faces_solved=0

Step 3

Thought.

The previous greedy random approach did not make reliable progress in the heuristic metric. I will
switch to a monotonic heuristic-guided depth-limited search: at each iteration, I will search for a
short sequence of moves (up to a given depth) whose cumulative heuristic reward is non-negative and
preferably positive. This avoids regressing in the staged heuristic and should help climb from 0 → 7.
I will implement a DFS that only accepts moves with non-negative immediate reward, avoids repeating
the same face consecutively, and finds the best cumulative gain sequence. I will apply sequences that
yield positive gain; if none found, I can apply a neutral (0 gain) sequence to reposition and try
again with deeper depth. I will keep checking for solved state, and call final_answer("") immediately
once solved.

Stpe 4

Thought.

The previous approach explored too many branches and hit the operation limit. I’ll switch to a
constrained stochastic search that samples a limited number of short random sequences each iteration,
evaluates their net heuristic gain (sum of move rewards), and applies the best positive-gain sequence
if found. If none is found, I’ll apply a small random \shake" to escape local minima. This keeps
computation bounded and avoids deep recursion. I’ll regularly check if the cube is solved and call
final_answer("") immediately when it is.

Step 5

Thought.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

The previous stochastic and exhaustive searches were too heavy and hit the operation limit without
improving the heuristic. I will switch to a lightweight, structured macro-search: try a small library
of well-known Rubik’s Cube algorithms (sexy move, sledgehammer, sune, etc.). For each macro, I’ll
evaluate its net heuristic gain by executing it (summing rewards). If net gain > 0, I’ll keep it;
otherwise I’ll undo it. This bounded, deterministic approach reduces operations while still seeking
monotonic heuristic improvements. I’ll repeat this for a limited number of iterations, checking for
solved state frequently. If solved, I will immediately call final_answer("").

Step 8

Thought.

The heuristic-based approaches failed to make progress and hit operation limits. I will switch to a
deterministic, constraint-driven search that directly targets subgoals (e.g., build the white cross on
the Down face) by exploring short sequences using the environment as the cube model. The search:
- Applies moves via make_move and backtracks with inverse moves to keep the environment consistent.
- Prunes immediate inverses and same-face repetitions.
- Checks goal predicates by reading the state_string via get_observation().
I’ll first try to complete the white cross (four Down edges in correct positions and orientations). If
I get the cube solved at any point, I’ll immediately call final_answer("").

Code.

import random

Utilities
def is_solved(state):

if not isinstance(state, str) or len(state) != 54:
return False

faces = [state[0:9], state[9:18], state[18:27], state[27:36], state[36:45], state[45:54]]
return all(len(set(face)) == 1 for face in faces)

def faces_solved_count(state):
faces = [state[0:9], state[9:18], state[18:27], state[27:36], state[36:45], state[45:54]]
return sum(1 for f in faces if len(set(f)) == 1)

def inverse_move(m):
return m[:-1] if m.endswith("'") else m + "'"

moves = ['F', "F'", 'B', "B'", 'L', "L'", 'R', "R'", 'U', "U'", 'D', "D'"]

Target constraints helpers: (index -> expected color)
Face centers for reference (fixed)
CENTER = { 'F': 4, 'B': 13, 'L': 22, 'R': 31, 'U': 40, 'D': 49 }
CENTER_COLOR = { 4:'R', 13:'G', 22:'B', 31:'Y', 40:'O', 49:'W' }

For the white cross on Down (D), we require the four D edges to be placed and oriented correctly.
Based on the provided net:
Down face indices:
45 46 47
48 49 50
51 52 53
Adjacent matching edges on side faces:
DF: D[0][1]=46 with F[2][1]=7 -> colors W and R
DR: D[1][2]=50 with R[2][1]=34 -> colors W and Y
DB: D[2][1]=52 with Bk top-middle B[0][1]=10 -> colors W and G
DL: D[1][0]=48 with L[2][1]=25 -> colors W and B

def cross_constraints():
return {

46: 'W', 7: 'R',
50: 'W', 34:'Y',
52: 'W', 10:'G',
48: 'W', 25:'B',

}

def edge_constraint_DF():
return {46:'W', 7:'R'}

def edge_constraint_DR():
return {50:'W', 34:'Y'}

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

def edge_constraint_DB():
return {52:'W', 10:'G'}

def edge_constraint_DL():
return {48:'W', 25:'B'}

def constraints_satisfied(state, constraints):
constraints: dict index->color
for idx, col in constraints.items():

if state[idx] != col:
return False

return True

def get_state():
return get_observation()

Depth-limited DFS to find a sequence that satisfies a given constraints set at the end.
Prunes immediate inverse and same-face repetitions.
def find_sequence_for_constraints(constraints, max_depth=7, max_expansions=120000):

best = {'seq': None}
counters = {'exp': 0}
path = []

def dfs(depth, last_move):
if best['seq'] is not None:

return
if depth > max_depth or counters['exp'] >= max_expansions:

return
Check immediate goal (depth can be 0 at start)
st = get_state()
if constraints_satisfied(st, constraints):

best['seq'] = path.copy()
return

if depth == max_depth:
return

for m in moves:
if last_move is not None:

if m[0] == last_move[0]: # avoid same face twice in a row
continue

if m == inverse_move(last_move): # avoid immediate inverse
continue

r = make_move(m)
counters['exp'] += 1
path.append(m)
dfs(depth + 1, m)
if best['seq'] is not None:

leave state as is; sequence already applied during search? No, we applied the moves
during exploration.
We must backtrack to restore before returning control to caller
make_move(inverse_move(m))
path.pop()
return

backtrack this move
make_move(inverse_move(m))
path.pop()
if counters['exp'] >= max_expansions or best['seq'] is not None:

return

dfs(0, None)
return best['seq']

Function to attempt building the white cross iteratively
def build_white_cross():

targets = [edge_constraint_DF(), edge_constraint_DR(), edge_constraint_DB(), edge_constraint_DL()]
We'll try each edge until all are solved
attempts_per_edge = 6 # bounded attempts with small random perturbations
for i, tgt in enumerate(targets):

for attempt in range(attempts_per_edge):
st = get_state()
If edge already solved, move to next
if constraints_satisfied(st, tgt):

break
Find a short sequence to solve this edge
seq = find_sequence_for_constraints(tgt, max_depth=6, max_expansions=90000)
if seq is not None:

Apply the sequence (it's already applied during the search? No, we backtracked; we
need to apply now)
for m in seq:

make_move(m)
Verify
st2 = get_state()
if not constraints_satisfied(st2, tgt):

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

If somehow not satisfied, undo and try a tiny shake
for m in reversed(seq):

make_move(inverse_move(m))
else:

break
else:

Small random shake to change positions
k = random.randint(1, 2)
last_face = None
for _ in range(k):

cand = [m for m in moves if last_face is None or m[0] != last_face]
mv = random.choice(cand)
make_move(mv)
last_face = mv[0]

else:
Failed to solve this edge within attempts
return False

After solving all four individual edges, ensure full cross correctness (all 8 constraints)
st = get_state()
if constraints_satisfied(st, cross_constraints()):

return True
If individual edges are placed but cross not fully consistent, try a short refinement to meet
full constraints
seq = find_sequence_for_constraints(cross_constraints(), max_depth=7, max_expansions=140000)
if seq is not None:

for m in seq:
make_move(m)

st2 = get_state()
return constraints_satisfied(st2, cross_constraints())

return False

Driver: attempt to build white cross; if cube becomes solved, finalize.
random.seed(23)
state0 = get_state()
print("Start state:", state0)
print("Faces solved at start:", faces_solved_count(state0))
if is_solved(state0):

final_answer("")

success_cross = build_white_cross()
st = get_state()
print("White cross success:", success_cross, "Faces solved after cross attempt:",
faces_solved_count(st), "State:", st)

If by chance the cube is fully solved now, finalize.
if is_solved(st):

final_answer("")

Observation.

Start state: GYOGROWRBOWWGGBORRROOWBBRGYYRWBYRWBGYYBGOOBOGRWGYWWBYY
Faces solved at start: 0
White cross success: True Faces solved after cross attempt: 0 State:
GYRGRRRRWGGWYGORBBYROGBBYBOWOWYYBYYRORGOOGBOYBWGWWWOWB

Step 9

Thought.

Thought: Great|building the white cross worked and increased the heuristic to 1. I’ll continue with the
same constraint-based search approach to solve the four white corners and complete the first layer.
I’ll encode the four down-layer corner constraints, then search short sequences that satisfy each
corner’s constraints while pruning redundant branches. If at any time the cube becomes solved, I will
immediately call final_answer("").

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

L.7 REWARD – AS A GUIDANCE

Model Agent Type Input Reward Depth

Claude Sonnet 4 Basic Full Symbolic Sticker 2

In this example, the agent explicitly relies on the external reward signal to guide its search. At
each step, candidate moves are evaluated by their immediate reward: negative rewards trigger an
immediate undo (e.g., U with reward −12.0), while positive rewards are retained (e.g., D with re-
ward +12.0). The agent’s behavior shows that even a simple reward can provide effective guidance,
shaping its local search trajectory and preventing it from devolving into purely random exploration.

Step 7

Thought.

Thought: Excellent! The L move gave us a +10 reward and we now have a better cube state. Let me check
the current state and continue looking for more positive moves.

Code.

Check current state after the L move
current_state = get_observation()
print(f"Current state after L: {current_state}")

Count correct stickers
correct_stickers = sum(1 for i in range(54) if current_state[i] == solved_state[i])
print(f"Correct stickers now: {correct_stickers}/54")

Continue trying more moves to see if we can improve further
remaining_moves = ["U", "D", "B"]
for move in remaining_moves:

reward = make_move(move)
print(f"Move {move}: reward = {reward}")

if reward > 0:
print(f"Keeping move {move} as it improved the cube")
break

else:
Undo the move
opposite_move = move + "'"
undo_reward = make_move(opposite_move)
print(f"Undoing with {opposite_move}: reward = {undo_reward}")

Observation.

Current state after L: RRRRRRYYYBBBGGGGGGBBBBBBRRRYYYYYYGGGOOOOOOOOOWWWWWWWWW
Correct stickers now: 41/54
Move U: reward = -12.0
Undoing with U': reward = 12.0
Move D: reward = 12.0
Keeping move D as it improved the cube

Step 8

Thought.

Thought: Great progress! The D move gave us another +12 reward. Let me check the current state and see
how close we are to solving the cube.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

L.8 TRIAL-AND-ERROR TOOL LEARNING

Model Agent Type Input Reward Depth

GPT-5 Standard-Solver Full Symbolic No reward 8

In this example, the agent initially attempted to convert the environment state into the solver’s re-
quired format and call the planner (Step 2), but the planner returned errors due to undefined edges.
In Steps 3–5, the agent experimented with alternative mappings, but all attempts failed to produce
a valid planner input. To overcome this, the agent exhaustively explored all 46 per-face rotation
combinations to find a scheme compatible with the planner’s input format, ultimately identifying a
scheme compatible with the planner. Upon applying the planner-generated move sequence, the cube
was successfully solved. This process exemplifies trial-and-error tool learning, where the agent iter-
atively experiments, identifies the constraints of the external tool, and adapts its strategy to reliably
harness the planner for spatial reasoning tasks.

Step 2

Thought.

Thought: I have the current cube state string. Next, I will convert this environment state (color-coded
with faces in the order F,B,L,R,U,D) to the solver’s required facelet format (URFDLB), using the center
colors to map colors to face letters: O->U, Y->R, R->F, W->D, B->L, G->B. I will start with the
simplest per-face orientation (top-left to bottom-right) and face order mapping: U(36{44), R(27{35),
F(0{8), D(45{53), L(18{26), B(9{17), concatenated in that order. I will call call_planner with this
string and print the solution (or error). If a solution is returned, in the following step I will parse
and apply the moves with make_move, expanding 1/2/3 quarter-turn counts into multiple calls.

Code.

Build mapping from environment color to solver face letter
color_to_face = {

'O': 'U', # Up
'Y': 'R', # Right
'R': 'F', # Front
'W': 'D', # Down
'B': 'L', # Left
'G': 'B', # Back

}

state = obs # from previous step
Define the index ranges for each face in the environment (face-on, row-major)
env_faces = {

'F': list(range(0, 9)),
'B': list(range(9, 18)),
'L': list(range(18, 27)),
'R': list(range(27, 36)),
'U': list(range(36, 45)),
'D': list(range(45, 54)),

}

Solver requires URFDLB order
solver_face_order = ['U', 'R', 'F', 'D', 'L', 'B']

For now, assume per-face orientation is identity (face-on row-major)
solver_indices = []
for face in solver_face_order:

if face == 'U':
solver_indices.extend(env_faces['U'])

elif face == 'R':
solver_indices.extend(env_faces['R'])

elif face == 'F':
solver_indices.extend(env_faces['F'])

elif face == 'D':
solver_indices.extend(env_faces['D'])

elif face == 'L':
solver_indices.extend(env_faces['L'])

elif face == 'B':
solver_indices.extend(env_faces['B'])

Convert environment colors to solver face-letter string in the computed order

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

try:
solver_str = ''.join(color_to_face[state[i]] for i in solver_indices)

except KeyError as e:
print("Encountered unknown color in state:", e)
solver_str = None

print("Proposed solver string:", solver_str)

if solver_str is not None:
plan = call_planner(tool_cube_representation=solver_str)
print("Planner output:", plan)

Observation.

Execution logs:
Proposed solver string: DRFFUDFULBRRDRRDBBDFUDFBDFBBDRBDULLUFLLFLLFLLUURRBURBU
Planner output: Error: Some edges are undefined.
Last output from code snippet:
Error: Some edges are undefined.

Step 6

Thought.

My previous edge-validation used sorted two-letter strings but compared them to unsorted expectations,
which made all candidates fail.

I will fix the validation by comparing to the alphabetically sorted set of expected edge labels. Then
I’ll brute-force face rotations, find a valid scheme, call the planner, and verify the cube is solved.

Code.

Fix edge validation and brute-force search for a valid per-face rotation scheme, then plan and apply
moves.

state = obs # current cube state string

Environment face indices (row-major as per problem)
env_faces = {

'F': list(range(0, 9)),
'B': list(range(9, 18)),
'L': list(range(18, 27)),
'R': list(range(27, 36)),
'U': list(range(36, 45)),
'D': list(range(45, 54)),

}

def rotate_indices(face_indices, rotation):
rotation: 0 (identity), 1 (90° CW), 2 (180°), 3 (270° CW)
if rotation == 0:

order = [0,1,2,3,4,5,6,7,8]
elif rotation == 1:

order = [6,3,0,7,4,1,8,5,2]
elif rotation == 2:

order = [8,7,6,5,4,3,2,1,0]
elif rotation == 3:

order = [2,5,8,1,4,7,0,3,6]
else:

raise ValueError("Invalid rotation")
return [face_indices[i] for i in order]

Build color_to_face mapping from centers
centers = {

'F': state[4],
'B': state[9+4],
'L': state[18+4],
'R': state[27+4],

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

'U': state[36+4],
'D': state[45+4],

}
color_to_face = {

centers['U']: 'U',
centers['R']: 'R',
centers['F']: 'F',
centers['D']: 'D',
centers['L']: 'L',
centers['B']: 'B'

}
print("Centers:", centers)
print("Color->Face:", color_to_face)

Precompute rotated indices for each face and rotation to speed up
pre_rot = {face: {r: rotate_indices(env_faces[face], r) for r in range(4)} for face in
['U','R','F','D','L','B']}

def build_solver_str_fast(scheme):
idx = []
idx += pre_rot['U'][scheme['U']]
idx += pre_rot['R'][scheme['R']]
idx += pre_rot['F'][scheme['F']]
idx += pre_rot['D'][scheme['D']]
idx += pre_rot['L'][scheme['L']]
idx += pre_rot['B'][scheme['B']]
return ''.join(color_to_face[state[i]] for i in idx)

def face_base(face_letter):
base = {'U':0,'R':9,'F':18,'D':27,'L':36,'B':45}
return base[face_letter]

def get_f(s, face, pos):
return s[face_base(face)+pos]

Edge definitions in Kociemba URFDLB indexing (face-local 0..8)
edges_def = [

(('U',7), ('F',1)), # UF
(('U',5), ('R',1)), # UR
(('U',1), ('B',1)), # UB
(('U',3), ('L',1)), # UL
(('D',1), ('F',7)), # DF
(('D',5), ('R',7)), # DR
(('D',7), ('B',7)), # DB
(('D',3), ('L',7)), # DL
(('F',5), ('R',3)), # FR
(('F',3), ('L',5)), # FL
(('B',3), ('R',5)), # BR
(('B',5), ('L',3)), # BL

]

Expected edges as alphabetically sorted two-letter strings
expected_sorted_edges = set(['FU','RU','BU','LU','DF','DR','BD','DL','FR','FL','BR','BL'])

def edges_valid(s):
Build sorted two-letter strings for each edge pair
counts = {}
for (f1,p1),(f2,p2) in edges_def:

a = get_f(s, f1, p1)
b = get_f(s, f2, p2)
pair = ''.join(sorted([a,b]))
if pair not in expected_sorted_edges:

return False
counts[pair] = counts.get(pair, 0) + 1

Ensure each expected edge appears exactly once
for e in expected_sorted_edges:

if counts.get(e, 0) != 1:
return False

return True

found_scheme = None
found_solver_str = None

Brute force all 4ˆ6 rotation combinations (4096)
outer_break = False
for u in range(4):

if outer_break: break
for r in range(4):

if outer_break: break
for f in range(4):

if outer_break: break
for d in range(4):

if outer_break: break

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

for l in range(4):
if outer_break: break
for b in range(4):

scheme = {'U':u,'R':r,'F':f,'D':d,'L':l,'B':b}
s = build_solver_str_fast(scheme)
if edges_valid(s):

found_scheme = scheme
found_solver_str = s
outer_break = True
break

print("Found scheme:", found_scheme)
print("Solver string preview:", found_solver_str[:30] if found_solver_str else None)

if found_solver_str:
plan = call_planner(tool_cube_representation=found_solver_str)
print("Planner output:", plan)

Observation.

Centers: {'F': 'R', 'B': 'G', 'L': 'B', 'R': 'Y', 'U': 'O', 'D': 'W'}
Color->Face: {'O': 'U', 'Y': 'R', 'R': 'F', 'W': 'D', 'B': 'L', 'G': 'B'}
Found scheme: {'U': 0, 'R': 0, 'F': 0, 'D': 0, 'L': 0, 'B': 2}
Solver string preview: DRFFUDFULBRRDRRDBBDFUDFBDFBBDR
Planner output: R2 L1 B2 R1 U1 R1 B1 U2 D2 F2 L2 F2 U1 D2 (14f)

Then executed the solution sequence and solved at Step 7.

L.9 BYPASSING VISUAL TASKS VIA SYMBOLIC REASONING

We illustrate the performance gap between Face View and Vertex View inputs using two representa-
tive cases.

In the Face View setting, the cube is presented as regular 3 × 3 grids. The agent reframed the task
as a symbolic parsing problem: mapping each face’s colors into the URFDLB string required by
the solver. This bypassed visual reasoning, yet worked reliably due to the input’s highly ordered
structure. The planner accepted the constructed string and returned a valid solution, which the agent
executed successfully.

In the Vertex View setting, these distorted layouts cannot be parsed directly into solver input without
geometric inference. The agent nevertheless attempted symbolic reconstruction via pixel sampling,
palette classification, k-means clustering, PCA ordering, and multi-view accumulation, but the re-
sulting cube string was incomplete.

These two cases highlight a key difference between the tasks. In Face View, the orderly layout
enables a symbolic parsing shortcut that bypasses genuine visual reasoning. In Vertex View, this
strategy is infeasible, and performance drops sharply. This suggests that even highly capable models
tend to prefer symbolic over visual reasoning whenever possible, and that less regular task formats
are informative for exposing their limitations in spatial understanding.

L.9.1 FULL VIEW

Model Agent Type Input Reward Depth

GPT-5 Ideal-Solver Full Visual State no reward 20

Step 7

Thought.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

Our previous classification mistakenly excluded near-white pixels, undercounting W. I will recompute
the sticker colors by averaging patches around each sticker center while only ignoring the gray
background and black grid lines (not near-white), then classify to the nearest canonical color. I’ll
rebuild the 54-character state string, ensure it has 9 of each color, call the planner, expand and
apply the moves, and finally submit final_answer("").

Code.

Recompute colors including white pixels properly (ignore only gray background and black grid).
img = get_observation()
w, h = img.size
BG = (50,50,50)
BLACK = (0,0,0)

def avg_color_around_include_white(p, r=6):
cx, cy = p
samples = []
for dy in range(-r, r+1):

y = cy + dy
if y < 0 or y >= h:

continue
for dx in range(-r, r+1):

x = cx + dx
if x < 0 or x >= w:

continue
rgb = img.getpixel((x,y))
if rgb == BG or rgb == BLACK:

continue
samples.append(rgb)

if not samples:
samples = [img.getpixel((cx, cy))]

sr = sum(p[0] for p in samples)/len(samples)
sg = sum(p[1] for p in samples)/len(samples)
sb = sum(p[2] for p in samples)/len(samples)
return (sr, sg, sb)

canon = {
'R': (255, 0, 0),
'G': (0, 255, 0),
'B': (0, 0, 255),
'Y': (255, 255, 0),
'O': (255, 165, 0),
'W': (255, 255, 255),

}

def classify_avg(rgbf):
r,g,b = rgbf
best=None; bd=1e18
for k,v in canon.items():

d=(r-v[0])**2+(g-v[1])**2+(b-v[2])**2
if d<bd:

bd=d; best=k
return best

def colors_from_grid_patch_inc_white(grid_points):
return [classify_avg(avg_color_around_include_white(p, r=6)) for p in grid_points]

Use previously computed grids U_grid, F_grid, D_grid, B_grid, L_grid, R_grid
U_colors = colors_from_grid_patch_inc_white(U_grid)
F_colors = colors_from_grid_patch_inc_white(F_grid)
D_colors = colors_from_grid_patch_inc_white(D_grid)
B_colors = colors_from_grid_patch_inc_white(B_grid)
L_colors = colors_from_grid_patch_inc_white(L_grid)
R_colors = colors_from_grid_patch_inc_white(R_grid)

from collections import Counter
state = ''.join(F_colors + B_colors + L_colors + R_colors + U_colors + D_colors)
print("Color counts:", Counter(state), "length:", len(state))
print("State:", state)

Call planner
plan = call_golden_planner(tool_cube_representation=state)
print("Planner:", plan)

Parse and expand moves like 'L3 U1 B1 R2 ... (19f)'
import re
tokens = re.findall(r'([URFDLB])([123])', plan)

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

expanded = []
for face, num in tokens:

n = int(num)
if n == 1:

expanded.append(face)
elif n == 2:

expanded.extend([face, face])
elif n == 3:

expanded.extend([face, face, face])
print("Expanded moves:", expanded)

Apply moves
for mv in expanded:

print(make_move(move=mv))

Submit final check
final_answer("")

Observation.

Color counts: Counter({'W': 9, 'Y': 9, 'R': 9, 'B': 9, 'O': 9, 'G': 9}) length: 54
State: WYYYRBOWGYWRWGBRWGOOYGBRWOYOOORYOBGBBYBROGGGRGBWYWBRRW
Planner: U3 F2 R2 U2 F2 D2 F2 L1 B3 R1 U2 F3 D3 L3 B3 U2 L2 R1 D3 U1 (20f)
Expanded moves: ['U', 'U', 'U', 'F', 'F', 'R', 'R', 'U', 'U', 'F', 'F', 'D', 'D', 'F', 'F', 'L', 'B',
'B', 'B', 'R', 'U', 'U', 'F', 'F', 'F', 'D', 'D', 'D', 'L', 'L', 'L', 'B', 'B', 'B', 'U', 'U', 'L',
'L', 'R', 'D', 'D', 'D', 'U']
Applied move `U` on the cube
Applied move `U` on the cube
Applied move `U` on the cube
Applied move `F` on the cube
Applied move `F` on the cube
Applied move `R` on the cube
// ...
Applied move `R` on the cube
Applied move `D` on the cube
Applied move `D` on the cube
Applied move `D` on the cube
Applied move `U` on the cube

Solved.

L.9.2 VERTEX VIEW

Model Agent Type Input Reward Depth

GPT-5 Standard-Solver Vertex View no reward 20

Step 7

Thought.

The previous approach hit the operation limit due to heavy k-means and broad view sweeps, and also
misclassified colors. I’ll switch to a lighter pipeline:
- Classify colors by nearest reference palette (O/W/R/G/B/Y) for robustness.
- Sample far fewer pixels (stride=5) and run k-means with fewer iterations (k=27, iters=8) to find
sticker centers in each view.
- Group the 27 clusters spatially into 3 faces, order each face’s 3x3 via PCA, and use the center
sticker to name the face.
- Collect exactly 5 views (right, right, down, right, right) to cover all faces.
- Convert the six color grids into the URFDLB string (O,Y,R,W,B,G mapped to U,R,F,D,L,B), call the
planner, apply the moves, then check solved state.

If the planner errors (mapping inconsistent), I’ll print the composed string to debug. Otherwise I’ll
execute the plan and finish.

Code.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

from collections import defaultdict
from math import sqrt

Nearest-palette color mapping for robustness
PALETTE = {

'O': (255, 140, 0), # orange (slightly darker than 165 to avoid yellow confusion)
'W': (255, 255, 255),
'R': (220, 0, 0),
'G': (0, 200, 0),
'B': (0, 0, 220),
'Y': (255, 255, 0)

}

def rgb_to_color_letter(rgb):
r,g,b = rgb
ignore mid-gray detection here; caller ensures colored pixel
best = None
bestd = 1e18
for k,(pr,pg,pb) in PALETTE.items():

d = (r-pr)**2 + (g-pg)**2 + (b-pb)**2
if d < bestd:

bestd = d; best = k
return best

def is_colored_pixel(p):
r,g,b = p
m = max(r,g,b); n = min(r,g,b)
reject dark (grid/outline)
if m < 60:

return False
reject mid-gray background (low saturation, mid-high brightness)
if (m-n) < 25 and 120 <= m <= 230 and 120 <= n <= 230:

return False
accept bright white
if r+g+b > 700:

return True
accept sufficiently saturated colors
if (m-n) >= 35:

return True
return False

def sample_colored_pixels(img, stride=5, max_samples=1500):
px = img.load()
w,h = img.size
pts, cols = [], []
cnt = 0
for y in range(0,h,stride):

for x in range(0,w,stride):
p = px[x,y]
if is_colored_pixel(p):

pts.append((x,y))
cols.append(p)
cnt += 1
if cnt >= max_samples:

return pts, cols
return pts, cols

def kmeans_points(points, k, iters=8):
if not points or len(points) < k:

return None, None, None
init farthest-point
centers = [points[0]]
for _ in range(1,k):

best = None; bestd = -1
for p in points:

dmin = min((p[0]-c[0])**2+(p[1]-c[1])**2 for c in centers)
if dmin > bestd:

bestd = dmin; best = p
centers.append(best)

assigns = [0]*len(points)
for _ in range(iters):

changed = False
for i,p in enumerate(points):

ci = min(range(k), key=lambda j: (p[0]-centers[j][0])**2+(p[1]-centers[j][1])**2)
if assigns[i] != ci:

assigns[i] = ci; changed = True
if not changed:

break
newc = []
for j in range(k):

xs=[points[i][0] for i in range(len(points)) if assigns[i]==j]
ys=[points[i][1] for i in range(len(points)) if assigns[i]==j]

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

if xs:
newc.append((sum(xs)/len(xs), sum(ys)/len(ys)))

else:
newc.append(centers[j])

centers = newc
clusters = [[] for _ in range(k)]
for i in range(len(points)):

clusters[assigns[i]].append(i)
return centers, assigns, clusters

def majority_color(color_list):
counts = defaultdict(int)
for rgb in color_list:

c = rgb_to_color_letter(rgb)
counts[c] += 1

return max(counts.items(), key=lambda kv: kv[1])[0] if counts else 'W'

def extract_27_stickers(img):
pts, cols = sample_colored_pixels(img, stride=5, max_samples=1500)
print("Sampled colored:", len(pts))
res = kmeans_points(pts, 27, iters=8)
if res[0] is None:

return []
_, assigns27, clusters27 = res
stickers = []
for j in range(27):

idxs = clusters27[j]
if not idxs:

continue
cx = sum(pts[i][0] for i in idxs)/len(idxs)
cy = sum(pts[i][1] for i in idxs)/len(idxs)
col = majority_color([cols[i] for i in idxs])
stickers.append(((cx,cy), col))

return stickers

def pca_axes(points):
if not points:

return (1.0,0.0),(0.0,1.0)
mx = sum(p[0] for p in points)/len(points)
my = sum(p[1] for p in points)/len(points)
sxx = sum((p[0]-mx)**2 for p in points)/len(points)
syy = sum((p[1]-my)**2 for p in points)/len(points)
sxy = sum((p[0]-mx)*(p[1]-my) for p in points)/len(points)
tr = sxx+syy
det = sxx*syy - sxy*sxy
disc = max(tr*tr/4 - det, 0.0)
lam1 = tr/2 + sqrt(disc)
if abs(sxy) + abs(lam1 - sxx) < 1e-9:

u=(1.0,0.0)
else:

u=(sxy, lam1 - sxx)
n = sqrt(u[0]*u[0]+u[1]*u[1])
u=(u[0]/n, u[1]/n)

v=(-u[1], u[0])
return u,v

def kmeans_scalar(values, k=3, iters=8):
1D kmeans implemented via 2D wrapper to reuse
pts = [(v,0.0) for v in values]
_, assigns, clusters = kmeans_points(pts, k, iters)
return assigns, clusters

def group_into_faces(stickers):
centers=[s[0] for s in stickers]
res = kmeans_points(centers, 3, iters=8)
if res[0] is None:

return []
_, assigns3, clusters3 = res
faces=[]
for j in range(3):

idxs = clusters3[j]
group = [stickers[i] for i in idxs]
if len(group) >= 7:

faces.append(group)
return faces

def order_face_grid(face_stickers):
pts=[s[0] for s in face_stickers]
u,v = pca_axes(pts)
proj=[]
for i,(pt,col) in enumerate(face_stickers):

pu = pt[0]*u[0] + pt[1]*u[1]
pv = pt[0]*v[0] + pt[1]*v[1]

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

proj.append((pu,pv,i))
col_vals = [p[0] for p in proj]
row_vals = [p[1] for p in proj]
cols_assigns, _ = kmeans_scalar(col_vals, 3, iters=8)
rows_assigns, _ = kmeans_scalar(row_vals, 3, iters=8)
col_groups = defaultdict(list); row_groups = defaultdict(list)
for idx,(pu,pv,i) in enumerate(proj):

col_groups[cols_assigns[idx]].append(i)
row_groups[rows_assigns[idx]].append(i)

ordered_cols = sorted(col_groups.keys(), key=lambda c: sum(face_stickers[i][0][0] for i in
col_groups[c])/len(col_groups[c]))
ordered_rows = sorted(row_groups.keys(), key=lambda r: sum(face_stickers[i][0][1] for i in
row_groups[r])/len(row_groups[r]))
grid = [[None]*3 for _ in range(3)]
for idx,(pu,pv,i) in enumerate(proj):

rlab = rows_assigns[idx]; clab = cols_assigns[idx]
r = ordered_rows.index(rlab); c = ordered_cols.index(clab)
grid[r][c] = face_stickers[i][1]

return grid

def faces_from_view(img):
stickers = extract_27_stickers(img)
print("Sticker clusters:", len(stickers))
faces_groups = group_into_faces(stickers)
print("Faces in this view:", len(faces_groups))
faces = {}
for group in faces_groups:

grid = order_face_grid(group)
center = grid[1][1]
faces[center] = {"grid": grid}

return faces

def accumulate_faces(acc, new_faces):
for k,v in new_faces.items():

if k not in acc:
acc[k]=v

Collect faces from a fixed small sequence of views
observed = {}
img = get_observation()
accumulate_faces(observed, faces_from_view(img))
apply_view_transformation("view_right")
img = get_observation()
accumulate_faces(observed, faces_from_view(img))
apply_view_transformation("view_right")
img = get_observation()
accumulate_faces(observed, faces_from_view(img))
apply_view_transformation("view_down")
img = get_observation()
accumulate_faces(observed, faces_from_view(img))
apply_view_transformation("view_right")
img = get_observation()
accumulate_faces(observed, faces_from_view(img))

print("Collected faces:", list(observed.keys()))
for k in observed:

print(k, observed[k]["grid"])

Map to solver's URFDLB letters
color_to_face_letter = {'O':'U','W':'D','R':'F','G':'B','B':'L','Y':'R'}

def grid_to_str(grid):
return ''.join(''.join(grid[r][c] for c in range(3)) for r in range(3))

def compose_URFDLB(obs):
URFDLB color centers order: O (U), Y (R), R (F), W (D), B (L), G (B)
order = ['O','Y','R','W','B','G']
s=""
for ck in order:

if ck not in obs:
print("Warning missing face:", ck)
grid = [[ck]*3 for _ in range(3)]

else:
grid = obs[ck]["grid"]

mapped = [[color_to_face_letter.get(ch,'U') for ch in row] for row in grid]
s += grid_to_str(mapped)

return s

solver_str = compose_URFDLB(observed)
print("Solver string:", solver_str)

plan = call_planner(tool_cube_representation=solver_str)
print("Planner output:", plan)

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

def execute_plan(plan_str):
toks = plan_str.strip().split()
for t in toks:

if '(' in t: # end marker with "(xf)"
break

face = t[0]
num = t[1] if len(t) > 1 else '1'
if num == '1':

print(make_move(face))
elif num == '2':

print(make_move(face))
print(make_move(face))

elif num == '3':
print(make_move(face + "'"))

if plan and not plan.strip().startswith("Error"):
execute_plan(plan)

Final check
final_answer("")

Observation.

Sampled colored: 106
Sticker clusters: 27
Faces in this view: 3
Sampled colored: 106
Sticker clusters: 27
Faces in this view: 3
Sampled colored: 106
Sticker clusters: 27
Faces in this view: 3
Sampled colored: 103
Sticker clusters: 27
Faces in this view: 2
Sampled colored: 102
Sticker clusters: 27
Faces in this view: 2
Collected faces: ['B', 'R', None, 'O', 'G', 'W']
B [['Y', 'Y', 'O'], ['O', 'B', 'O'], [None, 'B', None]]
R [[None, 'Y', 'W'], ['R', 'R', 'Y'], [None, None, 'B']]
None [['R', None, 'G'], ['W', None, None], ['G', 'Y', 'Y']]
O [['R', 'R', 'O'], ['G', 'O', 'B'], [None, 'G', None]]
G [['B', 'G', 'W'], ['R', 'G', 'W'], ['R', 'O', None]]
W [['W', 'W', 'Y'], ['Y', 'W', 'W'], ['B', 'Y', None]]
Warning missing face: Y
Solver string: FFUBULUBURRRRRRRRRURDFFRUULDDRRDDLRURRUULUULULBDFBDFUU
Planner output: Error: Cube definition string FFUBULUBURRRRRRRRRURDFFRUULDDRRDDLRURRUULUULULBDFBDFUU
does not contain exactly 9 facelets of each color.

Not Solved.

65

	Introduction
	Related Works
	The CubeBench Benchmark
	Task Definition
	State Space
	Observation Space
	Action Space
	Reward Function

	Task Evaluation and Generation

	Diagnosing LLM Agent Capabilities on CubeBench
	Experiment 1: Basic Agent with no aid
	Experiment 2: CubeAgent with Rewards
	Experiment 3: CubeAgent with Solver Tools

	Conclusion
	LLM Usage Statement
	What Exactly Does CubeBench Measure?
	Revised Baseline Performance using Move Ratios
	The No-Code Experiment
	Depth-wise Metrics
	Related Works (cont.)
	Configuration of Test Split
	Introduction to the Policy Gradient Baseline
	Tools for Agents
	Fundamental Interaction Tools
	Auxiliary Solver Tools

	Heuristic Algorithm for Solving the Rubik's Cube: Layer-by-Layer Approach
	Cube Solvers (Two-Phase and Optimal)
	Input and Output Formats for Cube State
	Two-Phase Solver
	Optimal Solver (IDA* with Complete Pruning)

	Case Studies
	Basic Agent – Beam Search
	Basic Agent – IDDFS and Beginner's Method
	Basic Agent – Brute-Force Enumeration
	Basic Agent – Failed Pruning
	Reward – Bypass Visual Reasoning
	Reward – As a Misleading Signal
	Reward – As a Guidance
	Trial-and-Error Tool Learning
	Bypassing Visual Tasks via Symbolic Reasoning
	Full View
	Vertex View

