
ECOLORA: Communication-Efficient Federated Fine-Tuning of Large
Language Models

Anonymous ACL submission

Abstract

To address data locality and privacy restric-001
tions, Federated Learning (FL) has recently002
been adopted to fine-tune large language mod-003
els (LLMs), enabling improved performance004
on various downstream tasks without requir-005
ing aggregated data. However, the repeated006
exchange of model updates in FL can result in007
prohibitively high communication costs, hinder-008
ing the distributed learning process. To address009
this challenge, we propose ECOLORA, a novel010
communication-efficient federated fine-tuning011
framework for LLMs. Leveraging the modular012
structure, we propose a round-robin segment013
sharing scheme, where each client uploads only014
a complementary LoRA segment per round to015
reduce network bandwidth. It is further com-016
bined with adaptive sparsification methods tai-017
lored to LoRA’s training dynamics and lossless018
encoding techniques. We conduct extensive019
evaluations on both question-answering and020
value-alignment tasks across multiple datasets021
and models. The results show that ECOLORA022
significantly reduces communication overhead023
without compromising performance. For in-024
stance, it reduces communication time by up to025
79% and total training time by up to 65%.026

1 Introduction027

With the advancements in scaling laws (Kaplan028

et al., 2020), the parameter sizes of pre-trained lan-029

guage models have grown exponentially (Chowdh-030

ery et al., 2023). Despite this rapid expansion, large031

language models (LLMs) remain constrained by032

their inherent knowledge boundaries, limiting their033

effectiveness in certain downstream tasks (Mao034

et al., 2024). These limitations necessitate task-035

specific fine-tuning. However, the substantial data036

required for fine-tuning is often distributed across037

multiple entities, raising significant privacy con-038

cerns related to data sharing.039

Federated fine-tuning has emerged as a promis-040

ing approach to mitigate these concerns. Re-041

cent studies have largely focused on integrating 042

parameter-efficient fine-tuning (PEFT) methods 043

into federated learning (FL) to reduce computa- 044

tional costs (Che et al., 2023; Cho et al., 2024; 045

Babakniya et al.; Zhang et al., 2024; Sun et al., 046

2024; Bai et al., 2024), where a widely adopted 047

strategy involves transmitting low-rank adaptation 048

(LoRA) modules during the FL process. While 049

LoRA significantly reduces the number of param- 050

eters exchanged compared to full fine-tuning, the 051

massive scale of LLMs means that even these mod- 052

ules remain relatively large. Furthermore, repeat- 053

edly exchanging these modules during multiple 054

communication rounds results in prohibitively high 055

communication costs, making communication the 056

essential bottleneck in training time. 057

Such prohibitive overhead can significantly hin- 058

der the participation of diverse clients, a key foun- 059

dation for federated learning. More specifically, 060

network connection speeds and their associated 061

costs vary significantly across different areas, of- 062

ten differing by orders of magnitude (Howdle, 063

2023). For instance, many less-developed coun- 064

tries achieve bandwidths below 2 Mbps (Sumra, 065

2024), and rural areas often suffer from even poorer 066

connections due to limited infrastructure. These 067

disparities can prevent a large percentage of par- 068

ticipants from contributing to FL due to expensive 069

and unstable connectivity, excluding valuable high- 070

quality data and undermining fairness in the learn- 071

ing process (Dorfman et al., 2023). Furthermore, 072

network speeds are highly asymmetric, with up- 073

load speeds often being significantly slower than 074

download speeds (Konečnỳ, 2016), which presents 075

additional challenges for FL. 076

In this work, we propose ECOLORA, a novel 077

Efficient Communication framework specifically 078

tailored to the unique training strategies and dy- 079

namics of federated fine-tuning of LLMs. First, 080

leveraging the modular structure of LoRA, we in- 081

troduce a round-robin segment-sharing scheme in 082
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which each client transmits only a complementary083

portion of the LoRA module rather than the entire084

module. Second, we propose an adaptive sparsifica-085

tion technique customized for the distinct training086

dynamics observed in matrices A and B of LoRA.087

Third, the adaptive sparsification method naturally088

enables parameter distribution suitable for geomet-089

ric compression, allowing us to employ Golomb090

coding for further communication efficiency.091

To demonstrate the effectiveness of ECOLORA,092

we incorporate it into various state-of-the-art meth-093

ods across different tasks (including general ques-094

tion answering and value alignment), datasets, and095

models. Our results show significant communica-096

tion savings while preserving model performance.097

Notably, ECOLORA reduces uploaded parameters098

by up to 89% and overall communication parame-099

ters by up to 58% compared to existing approaches.100

Under practical network conditions, it reduces com-101

munication time by up to 79% and total training102

time by 65%. Moreover, our approach remains ro-103

bust under various non-i.i.d. data conditions and104

adds only minimal computational overhead.105

Our contributions are summarized as follows:106

• We propose a novel framework, ECOLORA, a107

communication-efficient federated fine-tuning108

framework for LLMs.109

• We provide a theoretical proof of the conver-110

gence of ECOLORA.111

• We conduct extensive experiments, demonstrat-112

ing that ECOLORA significantly reduces com-113

munication overhead while preserving accuracy.114

2 Related Work115

2.1 Parameter-efficient Fine-tuning of LLMs116

The large parameter size of LLMs often makes117

traditional full fine-tuning prohibitively expen-118

sive. To address this challenge, various parameter-119

efficient fine-tuning (PEFT) techniques have been120

proposed, including prefix-tuning (Li and Liang,121

2021), prompt-tuning (Lester et al., 2021), and122

adapter-based methods (Hu et al., 2023). Among123

these approaches, low-rank adaptation (LoRA) (Hu124

et al., 2022), which leverages low-rank matrices to125

re-parameterize pre-trained weight matrices, has126

received unprecedented attention. LoRA requires127

tuning less than 1% of the parameters needed for128

a full fine-tune while still achieving comparable129

performance across a wide range of downstream130

tasks, without introducing additional inference la- 131

tency. Building on these advantages, numerous 132

LoRA variants have been developed to further im- 133

prove its efficiency and accuracy (Kopiczko et al., 134

2023; Zhang et al., 2023; Liu et al., 2024). 135

2.2 Federated Fine-tuning of LLMs 136

Federated fine-tuning of LLMs has recently re- 137

ceived significant attention. Most of the exist- 138

ing work has focused on integrating PEFT meth- 139

ods into federated learning to reduce computation 140

costs (Che et al., 2023; Wu et al., 2024; Cho et al., 141

2024; Babakniya et al.; Zhang et al., 2024; Sun 142

et al., 2024; Bai et al., 2024). For example, Zhang 143

et al. (2024) incorporate LoRA into the FedAvg 144

framework so that only LoRA modules need to be 145

trained and aggregated. Extending this approach 146

to resource-constrained and heterogeneous scenar- 147

ios, Wang et al. (2024) propose a stacking-based 148

aggregation strategy for heterogeneous LoRA mod- 149

ules, where individual LoRA modules are uploaded 150

for aggregation, and the resulting stacked full-size 151

LoRA weights are distributed back to clients. Sun 152

et al. (2024) further enhance performance under 153

differential privacy guarantees and improve com- 154

putational efficiency by fine-tuning only the zero- 155

initialized LoRA matrices. Although these ap- 156

proaches reduce both computation and communica- 157

tion costs compared to full fine-tuning, transmitting 158

LoRA modules still imposes considerable overhead. 159

Even though LoRA accounts for a small portion 160

of the total parameters, the massive scale of LLMs 161

means these modules remain large. Repeatedly 162

exchanging them during multiple communication 163

rounds results in prohibitively high communica- 164

tion costs, making communication the dominant 165

bottleneck in training time. 166

Another line of research leverages zeroth-order 167

optimization methods for federated LLM fine- 168

tuning (Qin et al., 2024; Xu et al., 2024). While 169

these approaches improve communication effi- 170

ciency, their reliance on zeroth-order optimization 171

significantly reduces computational efficiency com- 172

pared to backpropagation-based methods. Con- 173

sequently, these techniques substantially increase 174

the computation time and, therefore, prolong the 175

overall training process, particularly in scenar- 176

ios with limited participating clients or resource- 177

constrained environments. 178
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Figure 1: Overview of our proposed ECOLORA.

2.3 Communication Optimization in FL179

Communication optimization in traditional feder-180

ated learning has drawn considerable attention, pri-181

marily through three techniques: quantization, spar-182

sification, and client sampling. Quantization meth-183

ods compress model parameters by representing184

them with fewer bits (Bernstein et al., 2018; Leng185

et al., 2018; Xu et al., 2020; Horvóth et al., 2022).186

However, quantization typically offers limited com-187

pression and may lead to noticeable accuracy degra-188

dation, particularly in non-IID settings. Sparsi-189

fication methods generally achieve higher com-190

pression ratios by transmitting sparse representa-191

tions of model parameters (Aji and Heafield, 2017;192

Tsuzuku et al., 2018; Sahu et al., 2021). A represen-193

tative sparsification technique, top-k sparsification194

(Aji and Heafield, 2017), selects parameters based195

on magnitude and has demonstrated robustness to196

non-IID data distributions. Lastly, client sampling197

approaches selectively include clients based on198

their expected contributions to model improvement199

by employing carefully designed criteria (Luping200

et al., 2019; Sun et al., 2019; Tang et al., 2022).201

3 Method202

3.1 Problem Formulation203

We consider an FL setting with one server and K204

devices. Each device i holds a local dataset Di =205

(xj , yj)
ni , where ni, xj , yj denote the number of206

samples, the input samples, and labels in client i,207

respectively. The total number of samples across all208

devices is N =
∑K

i=1 ni. Following recent state-209

of-the-art approaches, the pre-trained LLMs M210

remain fixed on each device, while only the LoRA211

parameters are updated and exchanged between212

device i and the server. The optimization goal is to213

find a set of LoRA parameters P to minimize the 214

global loss: 215

minP F (M,P,D) = 1
N

∑K
i=1 ni E(xj ,yj)∼Di

[
L(M,P, xj , yj)

]
,

(1) 216

where L(M,P, xj , yj) is the loss evaluated by 217

the model M with LoRA parameters P on the local 218

data (xj , yj). LoRA models the weight update 219

∆W ∈ Rm×n through a low-rank decomposition 220

BA, where B ∈ Rm×r and A ∈ Rr×n are two 221

low-rank matrices with r ≪ min(m,n). 222

3.2 System Model 223

Our primary objective is to enhance communica- 224

tion efficiency specifically for federated fine-tuning 225

of LLMs. This setting, however, differs signifi- 226

cantly from traditional FL paradigms, particularly 227

due to the use of parameter-efficient fine-tuning 228

techniques, which result in distinct training dy- 229

namics and parameter distributions. As a result, 230

conventional communication optimization meth- 231

ods, such as top-k sparsification, may fail to fully 232

leverage these unique properties, leading to subop- 233

timal communication gains. Other methods, like 234

active client sampling (Tang et al., 2022), may intro- 235

duce considerable computational overhead, which 236

undermines their practicality in LLM fine-tuning 237

scenarios. These limitations highlight the need for 238

communication-efficient techniques specifically tai- 239

lored to the characteristics of federated LLM fine- 240

tuning. To guide the design of such methods, we 241

establish the following system goals: 242

• Communication Efficiency: The framework 243

should substantially reduce communication over- 244

head while preserving model performance. 245

• Minimal Computational Overhead: Since LLM 246

fine-tuning already incurs high computational 247

costs, particularly on resource-constrained edge 248

devices, our framework should introduce mini- 249

mal additional overhead. 250

• Robustness to Non-i.i.d. Data: Because data 251

distributions can vary significantly across clients 252

in real-world settings, our framework should 253

remain robust under non-i.i.d. conditions. 254

To address these challenges, we propose ECOL- 255

ORA, a novel communication-efficient FL frame- 256

work illustrated in Figure 1. First, we propose a 257

round-robin segment-sharing scheme, leveraging 258

the modular structure of LoRA. Instead of trans- 259

mitting the entire LoRA module, each client shares 260
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only a complementary portion, significantly reduc-261

ing communication overhead. Second, we intro-262

duce an adaptive sparsification method tailored for263

the different training dynamics observed in matri-264

ces A and B. This method dynamically compresses265

parameters based on their specific training behav-266

ior, ensuring minimal performance degradation.267

Third, the adaptive sparsification method naturally268

enables a parameter distribution suitable for ge-269

ometric compression, which we exploit through270

Golomb coding to further optimize communication271

efficiency. We elaborate round-robin segment shar-272

ing, adaptive sparsification, and encoding in Sec-273

tions 3.3, 3.4, and 3.5, respectively. Additionally,274

we analyze computational overhead in Section 3.6275

and provide convergence analysis in Section 3.7.276

3.3 Round-Robin Segment Sharing277

LoRA can be treated as a modular plug-in to the278

base model as each LoRA module can be inde-279

pendently attached or removed. Leveraging this280

modularity, we propose a novel round-robin seg-281

ment sharing scheme to reduce communication282

costs, where each client only shares a portion of283

its LoRA parameters in each round. Formally,284

we partition the LoRA parameters across all lay-285

ers into Ns equally sized segments, denoted as286

P = [s0, s1, . . . , sNs−1]. In each training round t,287

each client i uploads only one segment, with the288

ID identified by (i + t) mod Ns. To ensure that289

all segments are uploaded by at least one client in290

each round, enabling complete LoRA parameter291

updates, we further require Ns ≤ Nt, where Nt is292

the number of participating clients per round.293

At the server side, segments with the same ID are294

aggregated by a weighted average, and the global295

LoRA model is reassembled from these aggregated296

segments. Let Pt denote the aggregated global297

LoRA model in the t-th round, sti,s represent the298

s-th segment uploaded by the i-th client in the t-299

th round, ck denote the set of clients who upload300

the k-th segment, and ni represent the number of301

samples in client i. The aggregation rule is:302

Pt =


∑
i∈c0

nis
t
i,0∑

i∈c0
ni

,

∑
i∈c1

nis
t
i,1∑

i∈c1
ni

, . . . ,

∑
i∈cNs−1

nis
t
i,Ns−1∑

i∈cNs−1

ni

 ,

(2)303

For example, consider Nt = 5 clients and304

Ns = 3 segments. In round t = 0, client 0 up-305

loads the segment with ID (0+ 0) mod 3 = 0, i.e.,306

s00,0; client 1 uploads s01,1; client 2 uploads s02,2;307

client 3 uploads s03,0; and client 4 uploads s04,1. The 308

server then averages s00,0 and s03,0 to form the 0-th 309

segment, averages s01,1 and s04,1 to form the 1-th 310

segment, and takes s02,2 for the 2-th segment. Be- 311

cause each client transmits only a single segment 312

in each round, this round-robin segment sharing 313

scheme reduces the upload communication load to 314

1/Ns of the total parameters. 315

However, this partial update approach introduces 316

a delay for segments that are not uploaded in a 317

given round, which can increase the number of 318

rounds required to converge. To mitigate potential 319

accuracy degradation, we leverage the local model 320

by taking a weighted average of the global and 321

local models at the beginning of each round before 322

optimization. This ensures that even if a segment 323

is not uploaded in a particular round, its previous 324

state still guides local optimization. Moreover, by 325

mixing the globally shared model (the consensus 326

among clients) with the client’s locally fine-tuned 327

model (adapted to its specific data), we improve 328

robustness under non-i.i.d. distributions. In cross- 329

device settings, only a subset of clients participates 330

in each round, which may result in some clients 331

remaining idle for many rounds and thus suffering 332

from stale local parameters that potentially hamper 333

global convergence (Xie et al., 2019) when using 334

the simple average. To address this, we employ an 335

exponential decay weighting (Chen et al., 2019) to 336

update the local LoRA model: 337

P̂t
i = (1− e−β(t−τ))Pt + e−β(t−τ)Pτ

i , (3) 338

where t denotes the current global round, τ is 339

the most recent round in which client i participated, 340

and β is a hyperparameter balancing staleness. 341

3.4 Adaptive Sparsification 342

To further reduce the communication load for both 343

uploading and downloading, we can adopt the spar- 344

sification techniques that have been successfully 345

applied in traditional FL (Aji and Heafield, 2017). 346

These techniques exploit the observation that most 347

gradient updates are near zero. Among various 348

sparsification approaches, top-k sparsification has 349

demonstrated promising performance with non- 350

i.i.d. data (Sattler et al., 2019) by selecting pa- 351

rameters with the highest k portion of magnitudes 352

for transmission. Since the LoRA module in fine- 353

tuning acts as parameter updates for LLMs, we an- 354

alyzed matrices A and B during FL training to vali- 355

date whether the LoRA updates also exhibit similar 356

sparsity in federated LLM fine-tuning, following 357
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(a) Matrix A (b) Matrix B

Figure 2: Visualization of LoRA matrices A and B at
epochs 1 (top) and 20 (bottom) during FL training.

the experimental setup in Section 4.1. Figure 2358

shows an example at epoch 0 and epoch 20. Two359

notable trends emerge from this analysis: (1) As360

training progresses, both LoRA matrices become361

sparser, with the many remaining values growing362

larger in magnitude. (2) Matrices A and B evolve363

differently; in particular, B becomes much sparser364

than A. To quantify this, we calculated the Gini365

coefficient, a statistical measure of distribution in-366

equality where larger values indicate a higher pro-367

portion of extreme values. In epoch 0, matrix A had368

a coefficient of 0.337 and matrix B had 0.243, while369

by epoch 20, these values reached 0.359 and 0.406370

respectively. These characteristics present unique371

opportunities for sparsification. First, to adapt to372

increasing sparsity, we propose time-adaptive top-373

k sparsification. We use the loss signal to scale k374

with training progress, as it both indicates training375

status and requires no additional computation:376

kt = kmin + (kmax − kmin) · e−γ(L0−Lt−1), (4)377

where kt is the sparsity level for round t, L0 is378

the initial loss, Lt−1 is the global loss for round379

t− 1, and kmax and kmin define the sparsification380

range. As training loss decreases, kt is reduced, re-381

flecting that the model has learned sufficient knowl-382

edge and updates have become sparser. Second,383

to address the distinct patterns in matrices A and384

B, we introduce a matrix-adaptive sparsification385

scheme. We set smaller kmin value for B (due to its386

higher sparsity) and use a larger γ for B to capture387

its rapid change in sparsity.388

To mitigate information loss during sparsifica-389

tion, we locally accumulate untransmitted updates390

as residuals until they become large enough for391

transmission. Let SCk denote top-k sparsification, 392

the compressed parameter P̂t+1 is computed as: 393

P̂t+1 = SCkt+1(Pt+1 +Rt), (5) 394

where Rt is the residue at round t. We then update 395

the residue as: 396

Rt+1 = Rt + Pt+1 − P̂t+1. (6) 397

R is initialized as an empty residual at the begin- 398

ning of the training. This approach ensures that 399

large updates are transmitted immediately while 400

eventually sending all updates over time. 401

3.5 Lossless Encoding 402

To communicate the set of sparse LoRA tensors 403

between the server and the client, we only need to 404

transmit the positions of the nonzero elements in 405

the flattened tensors, along with a one-bit sign and 406

16-bit values (assuming FP16) for each nonzero 407

update. However, the positions can still be expen- 408

sive to communicate because they are typically 409

stored with a fixed number of 16 bits. From an 410

information-theoretic perspective, we can further 411

compress these positions using lossless encoding 412

(Sattler et al., 2019). Specifically, rather than send- 413

ing the absolute positions of the nonzero elements, 414

we send the distances between consecutive nonzero 415

positions. Given our adaptive sparsification rate k, 416

each element is nonzero with probability k, thus 417

the distance between two consecutive nonzero el- 418

ements follows a geometric distribution with pa- 419

rameter k, where the probability of a distance of 420

length n is (1 − k)n−1k. For such geometrically 421

distributed nonnegative integers, Golomb coding 422

provides an optimal encoding scheme by represent- 423

ing each number as a combination of quotient and 424

remainder (Golomb, 1966). For example, when 425

k = 0.1, using Golomb coding can reduce the aver- 426

age number of bits required to encode each nonzero 427

position to b∗ = 4.8, which leads to approximately 428

a 3.3× compression factor per position. 429

3.6 Analysis of Computational Overhead 430

We now analyze the additional computational 431

overhead introduced by our proposed method. 432

For round-robin segment sharing, we compute a 433

weighted average of the global and local models 434

in Eq. 3. Since this is an element-wise operation, 435

it requires roughly 2|P| operations. For adaptive 436

sparsification, we could select the top-k LoRA up- 437

dates using efficient selection algorithms, such as 438
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Quicksort, which take about O
(
|P| log(|P|)

)
. Ad-439

ditionally, untransmitted gradients are accumulated440

as residuals via simple element-wise additions, con-441

tributing O
(
|P|

)
cost. For lossless encoding, we442

first compute the differences between consecutive443

indices, which takes O
(
k|P|

)
time. We then apply444

Golomb coding to each gap, also running in linear445

time with respect to k|P|. Overall, the per-round446

overhead scales nearly linearly with the number of447

LoRA parameters |P|. Since |P| is typically much448

smaller than the full model size |M|, the additional449

overhead remains minimal compared to the cost of450

forward and backward propagation.451

3.7 Convergence Analysis452

We now present the convergence analysis for453

ECOLORA, adhering to the standard procedures454

described in Li et al. (2019). Our analysis relies on455

the following assumptions:456

Assumption 1 (Smoothness). The objective457
function F is L-smooth, meaning:458

F (Pt+1) ≤ F (Pt)+⟨∇F (Pt), Pt+1−Pt⟩+
L

2
∥Pt+1−Pt∥2.459

Assumption 2 (Bounded Gradients). The ex-460
pected squared norm of the stochastic gradients is461
uniformly bounded by a constant G2:462

E
∥∥∇F (Pt)

∥∥2 ≤ G2.463

Assumption 3 (Contractive Property). There464
exists a constant δ ∈ (0, 1] such that, for any x:465

∥C(x)− x∥2 ≤ (1− δ)∥x∥2.466

We define the following constants:467

µ = η

(
5

2
+ δ(2ηL− 1)− 3ηL

)
,468

∆ =
e−β

1− e−β
L2η2N2

sG
2. (7)469

Under these assumptions, selecting the learning470

rate within the interval 1
L < η < 5−2δ

(6−4δ)L , after471

T communication rounds, ECOLORA satisfies:472

1

T

T−1∑
t=0

∥∥∇F (Pt)
∥∥2 ≤ F (P0)− F ⋆

µT
+

η(2ηL− 1)∆

µ
.473

Choosing η = O
(

1√
T

)
, we obtain the final474

convergence rate:475

1

T

T−1∑
t=0

∥∥∇F (Pt)
∥∥2

= O
(
T−1/2

)
476

The detailed proof is given in Appendix B.477

4 Experiment 478

4.1 Experimental Setup 479

Models and Datasets. We consider two tasks: 480

question answering (QA) and value alignment (VA). 481

For QA, we use Llama2 (Touvron et al., 2023) with 482

7B and 13B parameters. For VA, we use the uncen- 483

sored version of Vicuna-7B (Xu et al., 2023). As 484

instruction datasets for QA, we adopt Databricks- 485

dolly-15k (Conover et al., 2023) and Alpaca-GPT4 486

(Peng et al., 2023). For VA, we use the UltraFeed- 487

back dataset (Cui et al., 2024). 488

Evaluation Metrics. We measure both model 489

accuracy and communication efficiency. For QA 490

performance, we report results on the ARC easy 491

and challenge benchmark (Clark et al., 2018), tak- 492

ing the average of both sets as the ARC score; for 493

the VA task, we evaluate using MT-bench (Zheng 494

et al., 2023) and MMLU (Hendrycks et al., 2020) 495

following (Wang et al., 2024; Ye et al., 2024). We 496

report communication parameters and time under 497

simulated practical network conditions to assess 498

communication efficiency. 499

Baselines. Our work proposes a general com- 500

munication efficient framework to enhance exist- 501

ing federated LLM fine-tuning methods. To eval- 502

uate its effectiveness, we apply our framework to 503

state-of-the-art approaches: FedIT (Zhang et al., 504

2024), FLoRA (Wang et al., 2024), and FFA-LoRA 505

(Sun et al., 2024), and compare the resulting per- 506

formance to the original methods. 507

FL Settings and Implementation Details. Fol- 508

lowing Zhang et al. (2024), we implement our 509

framework in a federated learning environment 510

with 100 clients. In each round, we randomly sam- 511

ple 10 clients and conduct training for 40 global 512

rounds. To simulate realistic scenarios, we adopt a 513

non-i.i.d. data distribution across clients. Detailed 514

experimental configurations and hyperparameter 515

settings are provided in Appendix A1. 516

4.2 Evaluation Results 517

Results of QA Tasks. Table 1 shows the model 518

accuracy on the ARC benchmark and the commu- 519

nication overhead for various methods, both with 520

and without ECOLORA. Our approach achieves 521

performance comparable to the baseline while sig- 522

nificantly reducing communication costs. For ex- 523

ample, when applying our method to FFA-LoRA 524

1We will release our code upon publication of the paper.

6



Table 1: Comparison of accuracy and associated communication parameters (in millions) across different methods.

Model Method Alpaca Dolly
ARC Upload Param. Total Param. ARC Upload Param. Total Param.

Llama2-7B

FedIT 66.6 2520.1 5040.1 66.5 2772.1 5544.2
FedIT w/ ECOLORA 66.6 346.5 2675.7 66.5 481.1 3765.6

FLoRA 67.0 2856.1 31416.9 66.4 2688.1 29568.8
FLoRA w/ ECOLORA 67.2 350.9 24165.7 66.3 321.6 22023.9

FFA-LoRA 67.4 1512.0 3024.1 66.7 1260.0 2520.1
FFA-LoRA w/ ECOLORA 67.4 160.1 1265.2 66.7 173.9 1346.1

Llama2-13B

FedIT 70.3 3674.1 7348.2 70.1 2361.9 4723.8
FedIT w/ ECOLORA 70.4 488.9 3775.4 70.0 427.4 3254.8

FLoRA 70.3 4461.4 49075.3 69.8 4067.7 44745.1
FLoRA w/ ECOLORA 70.5 576.3 39816.7 70.1 555.8 38026.2

FFA-LoRA 70.2 2099.5 4199.0 69.9 2558.7 5117.5
FFA-LoRA w/ ECOLORA 70.2 272.0 2137.5 69.9 261.5 1943.3

(Sun et al., 2024) on Llama2-7B trained with Al-525

paca, we reduce the required upload communica-526

tion by 89%. This reduction is particularly advanta-527

geous given that upload speeds are often far slower528

than download speeds (Konečnỳ, 2016). Moreover,529

the total communication parameters are reduced530

by 58% under the same setting. Furthermore, the531

ECOLORA framework has demonstrated generaliz-532

ability across different methods, thereby expanding533

its applicability. For example, it can be combined534

with approaches that leverage heterogeneous client535

resources (Wang et al., 2024) or that strengthen536

performance under differential privacy constraints537

(Sun et al., 2024), allowing practitioners to benefit538

from the respective advantages of each approach.539

Results of VA Tasks. Alignment with human pref-540

erences is a crucial step in LLM post-training (Lee541

et al., 2023). To evaluate ECOLORA on this task,542

we implemented federated direct preference opti-543

mization (DPO) (Rafailov et al., 2023) following544

the approach of (Ye et al., 2024). Specifically, we545

use UltraFeedback as our local preference dataset;546

the response with the highest score is treated as547

the preferred response, and one of the remaining548

responses is randomly designated as the dispre-549

ferred response, following (Tunstall et al., 2023).550

As shown in Table 2, ECOLORA substantially re-551

duces both the upload and total communication552

parameters while achieving slightly higher perfor-553

mance on MT-bench and MMLU.554

4.3 Evaluation in Practical Networks555

To evaluate the performance of ECOLORA under556

realistic network conditions, we implemented a557

simulated federated learning platform following558

(Ekaireb et al., 2022), using ns-3, a widely adopted559

Table 2: Comparison of model accuracy and commu-
nication parameters (in millions) of federated DPO
with and without ECOLORA.

Method MT-bench MMLU Upload P. Total P.
DPO 3.26 34.8 1719.7 3439.3

w/ ECOLORA 3.28 35.4 348.8 2072.1

discrete-event simulator for network communica- 560

tions (Henderson et al., 2008). 561

Following practical uplink (UL) and downlink 562

(DL) bandwidth settings in (Konečnỳ, 2016), we 563

simulate four bandwidth scenarios: 0.2/1 Mbps, 564

1/5 Mbps, 2/10 Mbps, and 5/25 Mbps, with a fixed 565

latency of 50ms to capture different network condi- 566

tions. Figure 3 compares the computation and com- 567

munication time of ECOLORA against baselines 568

under these scenarios, using Llama2-7B trained on 569

Dolly. Our results demonstrate that as network con- 570

ditions deteriorate, communication time increas- 571

ingly dominates the total training time. This effect 572

is particularly notable given that actual throughput 573

typically falls short of theoretical bandwidth. These 574

findings underscore the importance of develop- 575

ing communication-efficient fine-tuning methods. 576

Across all conditions, ECOLORA significantly re- 577

duces communication overhead while introducing 578

minimal computational cost. For instance, under 579

the 1/5 Mbps setting, it reduces communication 580

time by 79% and total training time by 65%. More- 581

over, the additional per-round computation cost 582

remains below 3s, making ECOLORA a practical 583

solution for resource-constrained environments. 584

4.4 Ablation Study 585

In this section, we analyze the impact of various de- 586

sign components and hyperparameter choices. We 587
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(a) UL/DL: 0.2/1 Mbps (b) UL/DL: 1/5 Mbps (c) UL/DL: 2/10 Mbps (d) UL/DL: 5/25 Mbps

Figure 3: The computation and communication time of applying ECOLORA under different network conditions.

also provide a comprehensive comparison with top-588

k sparsification and present additional experiments589

under non-i.i.d. conditions in Appendix C.590

Impacts of Design Components. We conducted591

an ablation study to investigate how each design592

component influences both model performance and593

communication time (both upload and total com-594

munication) using Llama2-7B trained on the Dolly595

dataset with FedIT w/ ECOLORA method. Specifi-596

cally, we examine the following variants: (1) w/o597

Round-Robin (R.R.) Segment: The entire LoRA598

module is transmitted. (2) w/o Sparsification: The599

adaptive sparsification method is removed. (3) w/600

Fixed Sparsification: A fixed sparsification ratio601

is used while keeping the overall communication602

cost identical to that in adaptive sparsification. (4)603

w/o Encoding: The lossless encoding scheme is604

excluded. Table 3 reports the final accuracy and605

communication time required to reach the target606

accuracy of 66.5 for each variant. As shown, each607

design component notably reduces both the upload-608

ing time and total communication time. Addition-609

ally using a fixed sparsification ratio results in a610

significant accuracy drop. This decline occurs be-611

cause update patterns vary across different training612

stages and between matrices A and B, which ex-613

hibit different levels of robustness to sparsification.614

Table 3: Accuracy and communication time for achiev-
ing the target accuracy (66.5 on ARC) under different
ablations. ("–" indicates target not achieved.)

Method ARC Upload Time Total Time
w/o R.R. Segment 66.5 72.6 106.2
w/o Sparsification 66.6 25.6 55.6

w/ Fixed Sparsification 66.1 - -
w/o Encoding 66.5 29.5 68.9

Full 66.5 18.2 42.6

Impacts of Compression Levels. We examine615

how different compression levels influence model616

accuracy and communication overhead. In partic-617

ular, we vary the number of segments Ns in the618

Round-Robin scheme, as well as the minimum top-619

k thresholds for matrices A and B (kAmin, kBmin), 620

using Llama2-7B trained on the Dolly dataset with 621

FedIT w/ ECOLORA method. Table 4 reports both 622

the accuracy and the communication parameters 623

required to reach a target accuracy under differ- 624

ent compression levels. We observe that choos- 625

ing a smaller Ns can improve model accuracy and 626

thus reduce download communication overhead 627

(because fewer rounds are needed to achieve the 628

target accuracy). However, it also increases up- 629

load communication overhead. Conversely, setting 630

Ns too large can degrade model accuracy. On the 631

other hand, applying higher sparsity to matrix B 632

than to matrix A (for example, kAmin = 0.6 and 633

kBmin = 0.25) does not negatively affect model ac- 634

curacy. As discussed in Section 3.4, the B matrix is 635

intrinsically sparser than the A matrix. Practition- 636

ers should select compression levels achieving an 637

optimal balance between communication costs and 638

accuracy based on the specific network constraints. 639

Table 4: Accuracy and communication parameters for
achieving the target accuracy (66.5 on ARC) under dif-
ferent compressions. ("–" indicates target not achieved.)

Method ARC Upload P. Total P.
{Ns = 3, kA

min = 0.6, kB
min = 0.5} 66.6 688.9 3495.7

{Ns = 5, kA
min = 0.6, kB

min = 0.5} 66.5 481.1 3765.6
{Ns = 10, kA

min = 0.6, kB
min = 0.5} 66.0 - -

{Ns = 5, kA
min = 0.6, kB

min = 0.25} 66.5 271.2 2464.7
{Ns = 5, kA

min = 0.3, kB
min = 0.5} 66.2 - -

5 Conclusion 640

In this paper, we introduced ECOLORA, a 641

novel communication-efficient federated fine- 642

tuning framework for LLMs. Our approach com- 643

prises a round-robin segment sharing scheme, an 644

adaptive sparsification method, and lossless en- 645

coding. Extensive evaluations on QA and VA 646

tasks across diverse datasets and models show that 647

ECOLORA substantially reduces communication 648

overhead while maintaining accuracy. Moreover, it 649

remains robust under non-i.i.d. settings and incurs 650

minimal computational overhead. 651
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Limitations652

Due to constraints in computational resources and653

time, we focused on a single, representative feder-654

ated learning setting, following standard practice in655

existing studies. In future work, we plan to explore656

multiple federated learning scenarios involving di-657

verse client participations to further validate the658

generalizability of our approach. Additionally, we659

restricted our experiments to Llama models for660

question-answering tasks and the Vicuna model for661

value alignment tasks; investigating a wider range662

of models will be crucial for fully demonstrating663

the robustness and versatility of our method.664

Ethical Considerations665

We propose a communication-efficient federated666

learning framework designed to improve system667

efficiency while preserving data privacy. Addition-668

ally, all our experiments use public datasets, we669

have not identified any specific risks arising from670

this study. However, we remain mindful of poten-671

tial privacy and security implications that may be672

associated with federated learning in general.673
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A Experimental Settings 936

The Alpaca-GPT4 dataset contains 52K instruction- 937

following examples generated by GPT-4 using Al- 938

paca prompts. The Dolly dataset consists of 15K 939

text samples created by Databricks employees. The 940

UltraFeedback dataset comprises 64K instructions. 941

To simulate non-i.i.d. data distribution across 942

clients, we divide the datasets using a Dirichlet 943

distribution with α = 0.5. For the Dolly dataset, 944

we directly use the provided category labels for 945

splitting. Since the Alpaca dataset lacks explicit 946

categories, we generate synthetic ones. Specifi- 947

cally, we concatenate the ‘instruction’ and ‘input’ 948

fields of each sample into a single string, convert 949

these strings into TF-IDF vectors (using up to 1000 950

features and excluding English stop words), and ap- 951

ply KMeans clustering to group samples based on 952

textual similarity. The resulting clusters are treated 953

as synthetic categories, and client-specific datasets 954

are created by applying a Dirichlet-based allocation 955

to these clusters. Additionally, we consider a more 956

heterogeneous non-i.i.d. scenario in which each 957

client is assigned data from a distinct task domain. 958

We set the number of segments Ns to 5 and set 959

the sparsity rates as kmax = 0.95, kAmin = 0.6, 960

and kBmin = 0.5. We apply LoRA only to the self- 961

attention layers, following (Hu et al., 2022). For 962

QA tasks, in accordance with (Zhang et al., 2024; 963

Wang et al., 2024), we set the rank r to 16, the 964

scaling factor α to 32, and use a learning rate of 965

3×10−4. For VA tasks, following (Ye et al., 2024), 966

we choose r = 8, α = 16, and a learning rate of 967

5 × 10−4. For the Vicuna-7B model, we use an 968

uncensored instruction-following model trained on 969

the filtered WizardLM dataset (Xu et al., 2023), 970

which does not incorporate human-aligned values. 971

All datasets and models are used strictly for re- 972

search purposes, in accordance with their respec- 973
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tive licenses. When counting the total communi-974

cation parameters, we exclude those required to975

distribute the initial pre-trained LLM. To measure976

communication time, we repeat each experiment977

five times and report the average. Experiments978

on Llama2-7B are conducted using two NVIDIA979

GeForce RTX 4090 GPUs, while those on Llama2-980

13B use an NVIDIA H100 GPU.981

B Convergence Proof982

We analyze the convergence of our method follow-983

ing the standard framework adopted in FL literature984

(Li et al., 2019). We assume that the global objec-985

tive function F is differentiable and L-smooth (i.e.,986

its gradient is L-Lipschitz continuous).987

In each communication round t, the global988

model is updated as:989

Pt+1 = Pt − ηUt,990

with the effective update given by:991

Ut = ∇F (Pt) + Et,992

where Et contains errors from compression and993

round-robin segmentation. By the L-smoothness994

of F , we have:995

F (Pt+1) ≤ F (Pt) + ⟨∇F (Pt), Pt+1 − Pt⟩996

+
L

2
∥Pt+1 − Pt∥2.997

By substituting:998

Pt+1 − Pt = −η (∇F (Pt) + Et) ,999

we get:1000

F (Pt+1) ≤ F (Pt)−
(
η − Lη2

2

)
∥∇F (Pt)∥21001

−
(
η − Lη2

)
⟨∇F (Pt), Et⟩︸ ︷︷ ︸

≜A

+
Lη2

2
∥Et∥2.

(8)

1002

Then, using the identity

⟨a, b⟩ = 1

2

(
∥a∥2 + ∥b∥2 − ∥a− b∥2

)
,

we have:1003

A = −η(1− ηL)⟨∇F (Pt), Et⟩1004

= −η

2
(1− ηL)∥∇F (Pt)∥2 −

η

2
(1− ηL)∥Et∥21005

+
η

2
(1− ηL)∥∇F (Pt)− Et∥2.1006

Substituting back into the inequality (8): 1007

F (Pt+1) ≤ F (Pt)− η

(
3

2
− ηL

)
∥∇F (Pt)∥2 1008

+ η

(
ηL− 1

2

)
∥Et∥2 1009

+
η

2
(1− ηL)∥∇F (Pt)− Et∥2 1010

Assume η
2 (1− ηL) < 0 ⇒ η > 1

L , we have: 1011

F (Pt+1) ≤ F (Pt)− η

(
3

2
− ηL

)
∥∇F (Pt)∥2 1012

+ η

(
ηL− 1

2

)
∥Et∥2 (9) 1013

Now, we can decompose the error term Et as: 1014

Et = E
comp
t + E

segment
t , 1015

where E
comp
t denotes the adaptive compression er- 1016

ror, and E
segment
t denotes the segment sharing error. 1017

We denote the adaptive sparsification operator as 1018

C(·), which satisfies a contractive property, that is, 1019

for any vector x, there exists a constant δ ∈ (0, 1] 1020

such that: 1021

∥C(x)− x∥2 ≤ (1− δ)∥x∥2. 1022

Then, we get the following bound on the error 1023

E
comp
t : 1024

∥Ecomp
t ∥2 ≤ (1− δ) ∥∇F (Pt)∥2 . 1025

In our algorithm, each client updates only one 1026

segment per round. Thus, a specific segment only 1027

gets updated once every Ns rounds. We denote 1028

by Pt the current global parameters and Pτ the 1029

stale parameters from the last round a given client 1030

participated. Then by the L-smoothness property, 1031

we have: 1032

∥∇F (Pt)−∇F (Pτ )∥ ≤ L∥Pt − Pτ∥. 1033

Since the change in parameters over each round 1034

is on the order of the learning rate η times the 1035

gradient, which we assume is bounded by some G, 1036

we can get: 1037

∥∇F (Pt)−∇F (Pτ )∥ ≤ LηNsG. 1038

As our algorithm uses an exponential decay weight- 1039

ing when updating the local model, we have: 1040

∥Esegment
t ∥2 ≤

Ns∑
j=1

e−βj · (LηNsG)2 . 1041
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Because the sum
∑Ns

j=1 e
−βj is a geometric series1042

that converges to e−β

1−e−β , we obtain a bound of the1043

form:1044

∥Esegment
t ∥2 ≤ e−β

1− e−β
L2η2N2

sG
2.1045

We define ∆ = e−β

1−e−βL
2η2N2

sG
2, we have:1046

∥Et∥2 ≤ 2∥Ecomp
t ∥2 + 2∥Esegment

t ∥21047

= 2(1− δ)∥∇F (Pt)∥2 + 2∆1048

Substituting into the inequality (9):1049

F (Pt+1) ≤ F (Pt) + η (2ηL− 1) ·∆1050

− η

(
5

2
+ δ(2ηL− 1)− 3ηL

)
∥∇F (Pt)∥21051

We define µ = η(52 + δ(2ηL− 1)− 3ηL), then:1052

µ∥∇F (Pt)∥2 ≤ F (Pt)−F (Pt+1)+η (2ηL− 1)·∆1053

Summing both sides over t = 0 to T − 1:1054

T−1∑
t=0

µ∥∇F (Pt)∥2 ≤ F (P0)−F ∗+Tη (2ηL− 1)·∆1055

Finally, assuming µ > 0 ⇒ η < 5−2δ
(6−4δ)L , we have:1056

1

T

T−1∑
t=0

∥∇F (Pt)∥2 ≤
F (P0)− F ∗

µT
+
η (2ηL− 1)∆

µ
1057

Choosing η = O( 1√
T
) ensures the average1058

squared gradient norm decays as:1059

1

T

T−1∑
t=0

|∇F (Pt)|2 = O

(
1√
T

)
.1060

This completes the convergence proof.1061

C Additional Ablation Study1062

Comparison with top-k sparsification. Our1063

proposed adaptive sparsification method exploits1064

the differing sparsity patterns of matrices A and B1065

throughout the training process, in contrast to the1066

fixed threshold used in standard Top-k sparsifica-1067

tion. In this section, we present a detailed com-1068

parison between the two approaches under vary-1069

ing compression levels. Specifically, we vary the1070

threshold k for Top-k sparsification while ensuring1071

that our adaptive sparsification uses the same to-1072

tal communication budget. The results are shown1073

in Table 5. As shown, while Top-k sparsification 1074

achieves comparable performance to our method 1075

under low compression, it suffers from perfor- 1076

mance degradation as the compression level in- 1077

creases. This drop is primarily due to its inability 1078

to adapt to the evolving training dynamics and het- 1079

erogeneous parameter patterns. 1080

Table 5: Comparison of ARC of Top-k and Adaptive
Sparsification under varying compression levels.

Threshold k Fixed Top-k Adaptive Sparsification
0.9 66.5 66.6
0.7 66.1 66.5
0.6 66.1 66.5
0.5 65.8 66.3

Experiments under Non-IID Conditions with 1081

Task Heterogeneity. In some extreme federated 1082

learning scenarios, each client may possess a sig- 1083

nificantly different data distribution, such as having 1084

a distinct task domain. It is important to assess the 1085

performance of ECOLORA under such heteroge- 1086

neous conditions. We evaluate our method on the 1087

Databricks-Dolly-15k dataset by assigning each 1088

client a unique task type based on the dataset’s cat- 1089

egory field, using LLaMA-7B as the base model. 1090

The results are shown in Table 6. As shown, ECOL- 1091

ORA achieves substantial reductions in commu- 1092

nication overhead while maintaining competitive 1093

performance across non-IID, task-diverse clients. 1094

Table 6: Comparison of accuracy and parameters (in mil-
lions) under non-IID conditions divided by task domain.

Method ARC Upload Param. Total Param.
FedIT 0.664 2348.8 4697.6

FedIT w/ EcoLoRA 0.664 285.5 2157.3
FLoRA 0.663 2181.0 23991.4

FLoRA w/ EcoLoRA 0.663 292.5 19105.3
FFA-LoRA 0.665 1090.5 2181.0

FFA-LoRA w/ EcoLoRA 0.666 136.8 995.0
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