
Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

Jinghan Li 1 Zhicheng Sun 1 Yadong Mu 1

Abstract

In the endeavor to make autonomous robots take
actions, task planning is a major challenge that
requires translating high-level task descriptions
to long-horizon action sequences. Despite recent
advances in language model agents, they remain
prone to planning errors and limited in their
ability to plan ahead. To address these limitations
in robotic planning, we advocate a self-refining
scheme that iteratively refines a draft plan until
an equilibrium is reached. Remarkably, this
process can be optimized end-to-end from an
analytical perspective without the need to curate
additional verifiers or reward models, allowing
us to train self-refining planners in a simple
supervised learning fashion. Meanwhile, a
nested equilibrium sequence modeling procedure
is devised for efficient closed-loop planning
that incorporates useful feedback from the
environment (or an internal world model). Our
method is evaluated on the VirtualHome-Env
benchmark, showing advanced performance
with improved scaling w.r.t. inference-time
computation. Code is available at https:
//github.com/Singularity0104/
equilibrium-planner.

1. Introduction
Recent advances in large language models (LLMs) have
spurred tremendous progress in robotic planning (Huang
et al., 2022; Li et al., 2022; Singh et al., 2023; Driess et al.,
2023; Ahn et al., 2023; Huang et al., 2023; Zhao et al., 2023;
Hu et al., 2024). Based on their extensive world knowledge,
LLM agents seem close to autonomously performing robotic
tasks, such as in household scenarios. However, growing
evidence shows that existing LLM agents struggle with task
planning (Kaelbling & Lozano-Pérez, 2011) that decom-

1Peking Unviersity, China. Correspondence to: Yadong Mu
<myd@pku.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

poses a high-level task into mid-level actions. While this
problem requires long-horizon planning as well as consid-
eration of environmental feedback, LLMs are often limited
by: (1) unidirectional dependency: due to autoregressive
generation, previous tokens cannot attend to future tokens,
resulting in limited ability to plan ahead (Wu et al., 2024);
(2) lack of error correction for existing outputs, unless with
a heavy system 2; (3) fixed forward process hindering the
allocation of more inference computation to further improve
planning performance. These inherent limitations of LLMs
inhibit closed-loop long-horizon robotic planning.

To address the above challenges of LLM planners in closed-
loop long-horizon planning, we advocate the approach of
self-refinement (Welleck et al., 2023; Shinn et al., 2023;
Kim et al., 2023b; Madaan et al., 2023) that iteratively im-
proves a previously generated plan. The reasons behind are
threefold: (1) bidirectional dependency: since the output
is conditioned on a previous draft plan, it can attend to all
tokens in the plan (from an old version), thus improving its
ability to plan ahead; (2) internal error correction which
allows implicit self-correction in a forward pass without
an explicit, heavy system 2; (3) dynamic computation allo-
cation by iterating through a self-refinement process until
convergence. However, such a self-refining strategy imposes
significant training difficulties because it requires backprop-
agation through infinite self-refining steps (Werbos, 1990).
This may be seen as an extreme case that reflects some
of the general challenges in teaching LLMs to plan and
reason. Existing solutions include curating process supervi-
sion (Uesato et al., 2022; Lightman et al., 2024) or applying
reinforcement learning (Zelikman et al., 2024; Jaech et al.,
2024; Kumar et al., 2025; Guo et al., 2025), but they are
considerably more complex than supervised training and
remain unproven in the absence of efficient verifiers.

This work proposes a simple supervised learning framework
for planning via self-refinement. Specifically, we formu-
late the self-refining process as a fixed-point problem that
recursively refines the plan until the equilibrium point, as
illustrated in Figure 1. While the forward process of this
fixed-point problem could be solved efficiently using root-
finding methods, more interestingly, its backpropagation
can be skipped since its gradient is explicated by the im-
plicit function theorem (Krantz & Parks, 2002) as in deep
equilibrium models (Bai et al., 2019; Geng & Kolter, 2023).

1

https://github.com/Singularity0104/equilibrium-planner
https://github.com/Singularity0104/equilibrium-planner
https://github.com/Singularity0104/equilibrium-planner

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

plan* (feedback*)

Input, plan (feedback)

Should I change
the plan? No

Input, plan0 (feedback0)

plant (feedbackt)

(a) Equilibrium in planning (b) Iterative planning until an equilibrium is reached

Figure 1: Illustration of the equilibrium point in planning. We view planning as a self-refinement process in which the
ideal plan emerges as an equilibrium point, remaining unchanged by any refinement attempts even with newer information
(e.g. feedback from the environment or a world model). This enables us to tackle robotic planning from an optimization
perspective around its equilibrium, bypassing the need for sophisticated reinforcement learning.

It is noted that the derived gradient term may be further sim-
plified through a Jacobian-free approximation (Fung et al.,
2022) to facilitate training. These analytical techniques al-
low end-to-end supervised training of the LLM planner to
accomplish self-refinement without the need for additional
verifiers or reward models in reinforcement learning-based
counterparts, greatly enhancing simplicity and practicality.
And after training, our equilibrium model-based planner
dynamically allocates more inference computation based on
the number of iterations needed to solve the equilibrium,
thereby achieving better planning performance.

Another important cue for self-refinement in robotic tasks is
closed-loop feedback from the environment. To efficiently
incorporate environmental feedback, we devise a nested
equilibrium sequence modeling procedure consisting of in-
ner and outer loops, where the inner loop iteratively refines
a plan using previous feedback, while the outer loop up-
dates the feedback by interacting with the environment.
This enables closed-loop planning from even a few envi-
ronmental interactions. Moreover, the nested equilibrium
solving process is accelerated by reusing the previously de-
rived equilibrium. We further implement the above design
within an LLM agent framework, seamlessly integrating
the equilibrium model-based planner, an experience mem-
ory buffer containing past plans and feedback, and a world
model to estimate feedback in the absence of environmental
interactions, thus allowing the planning system to operate
effectively in closed-loop long-horizon robot task planning
scenarios. The core contributions of our work are as follows:

• We present equilibrium sequence modeling, a simple train-
ing approach for self-refining LLMs based on equilibrium
models, allowing for end-to-end supervised learning with-
out additional verifiers or reward models.

• A nested equilibrium solving process is proposed to ef-

ficiently incorporate closed-loop feedback into the equi-
librium sequence modeling, reusing previous equilibrium
solutions to alleviate inference computation. It is further
implemented with a world model to improve practicality.

• Our method is evaluated on the VirtualHome-Env bench-
mark (Puig et al., 2018; Liao et al., 2019), demonstrating
its advantageous performance with better scaling w.r.t.
inference computation than tree-based alternatives.

2. Related Work
LLMs for Planning. LLMs demonstrate outstanding capa-
bilities in robotic planning (Silver et al., 2024; Zhang et al.,
2023; Nayak et al., 2024; Wang et al., 2024). Scaling up
inference computation to improve LLMs’ performance on
planning and reasoning tasks has received increasing atten-
tion (Brown et al., 2024; Snell et al., 2025; Wu et al., 2025;
Jaech et al., 2024; Guo et al., 2025). Precedent techniques
involving chain-of-thought (Wei et al., 2022; Zelikman et al.,
2022; 2024), repeated sampling (Wang et al., 2023; Brown
et al., 2024) and tree search (Yao et al., 2023a; Zhao et al.,
2023) showed preliminary results with handcraft system
2. Alternatively, a method called self-refinement (Welleck
et al., 2023; Shinn et al., 2023; Kim et al., 2023b; Madaan
et al., 2023) suggests recursively refining the existing LLM
output in an autonomous manner, but it relies heavily on
prompting or sophisticated reinforcement learning. To fully
exploit its potential, we propose an end-to-end optimization
method for self-refinement via deep equilibrium models.

Deep Equilibrium Models (Bai et al., 2019) are infinite-
depth neural networks specified by fixed-point problems
x∗ = fθ(x

∗), where fθ is an equilibrium layer. While
their inference can take infinite steps by the fixed-point
iteration, their gradients are estimated using implicit differ-
entiation (Krantz & Parks, 2002) without backpropagating

2

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

through all layers, thus enabling memory-efficient training.
They have been extensively applied to tasks such as visual
understanding (Bai et al., 2020; 2022) and image genera-
tion (Pokle et al., 2022; Geng et al., 2023; Bai & Melas-
Kyriazi, 2024). In this paper, we apply the fixed-point for-
mulation of deep equilibrium models to the self-refinement
process in LLM planners, allowing for simple supervised
training to refine themselves. More detailed introduction to
deep equilibrium models is presented in Appendix A.

3. Method
We study the problem of robot task planning that aims to de-
compose a high-level task description into long-horizon mid-
level action sequences (Kaelbling & Lozano-Pérez, 2011).
In the following, we first introduce the closed-loop robotic
planning problems (Section 3.1). Then we discuss the limi-
tations of LLM planners in self-refinement (Section 3.2) and
address them with a novel equilibrium sequence modeling
scheme (Section 3.3). This framework is adapted to closed-
loop feedback with efficient designs in Section 3.4. Finally,
practical implementations are presented in Section 3.5.

3.1. Problem statement

We assume that the agent runs in a fully observed envi-
ronment with coarse feedback. Given a high-level task
described in natural language instruction Ih and the cor-
responding environment information Env, the agent is re-
quired to decompose Ih into a sequence of low-level ac-
tions {a1, a2...an} as an action plan to accomplish its sub-
goals {g1, g2, ...gm}, where an are semantic actions from
the given action space and gm are goal-oriented conditions
that are invisible to the agent. In terms of closed-loop task
planning, we allow the agent to interact with the environ-
ment many times and receive feedback for adjustment.

3.2. Preliminaries on Self-Refinement

The prevailing LLMs are intrinsically limited in planning,
as their unidirectional dependency results in limited capa-
bility to plan ahead (Wu et al., 2024), and the lack of error
correction hinders closed-loop planning. These reasons call
for alternative mechanisms to address robot task planning.

Recently, Welleck et al. (2023); Shinn et al. (2023);
Kim et al. (2023b); Madaan et al. (2023) proposed self-
refinement, which uses an LLM fθ to iteratively refine the
previous LLM output. This strategy naturally addresses
the above limitations, since it introduces bidirectional to-
ken dependency and a dynamic error correction mechanism.
Formally, let xt denote a draft plan and ct denote context
(e.g. environmental feedback), then planning may be viewed
as a self-refinement process as follows:

xt+1 = fθ(xt, ct). (1)

However, self-refinement via prompting (Shinn et al., 2023;
Kim et al., 2023b; Madaan et al., 2023) has been found
to be very limited by Huang et al. (2024). Alternative
training-based methods require careful curation of train-
ing sequences (Welleck et al., 2023; Havrilla et al., 2024) or
reinforcement learning (Qu et al., 2024; Kumar et al., 2025)
and are therefore difficult to implement, even for domains
with efficient verifiers such as coding and math. Overall,
they remain deficient for robotic planning compared to sys-
tem 2-based alternatives, as shown in Hu et al. (2024).

3.3. Self-Refinement as An Equilibrium Model

To address the training inefficiency of self-refinement ap-
proaches, this section proposes equilibrium sequence model-
ing, a simple supervised training scheme for teaching LLM
planners to self-refine through the lens of deep equilibrium
models (Bai et al., 2019; Geng & Kolter, 2023).

Let us first consider a simplified scenario of self-refinement
without environmental feedback, namely that the context
ct is fixed, e.g. to a predefined system message c. Then,
the self-refinement process in Equation (1) reduces to a
fixed-point problem concerning only the plan xt. Denote
the initial plan by x0 = ∅ and the equilibrium plan, i.e. the
endpoint, by x∗, then its trajectory can be expressed as:

(x0, c)→ . . .→ (xt, c)→ . . .→ (x∗, c). (2)

Although its forward process is tractable with existing root-
solving techniques, such as the classic fixed-point iteration
or alternative numerical methods (Broyden, 1965; Ander-
son, 1965), its training requires recurrent backpropagation
through multiple self-refining steps (Werbos, 1990). This re-
sults in an extremely inefficient and unstable computational
process where end-to-end training fails.

Instead, we approach it directly from an analytical perspec-
tive. Assuming access only to outcome supervision L(·, y)
on the plan, e.g. its distance to the ground truth plan y, then
self-refinement is formulated as an optimization problem
minimizing the loss function of the equilibrium plan:

min
θ

L(x∗, y)

s.t. x∗ = fθ(x
∗, c).

(3)

Interestingly, the above optimization problem can be solved
without backpropagating over the entire inference process.
As the following theorem indicates, we can directly differ-
entiate through its fixed point regardless of the solution path,
with only a constant computational and memory cost.
Theorem 3.1. (Implicit Function Theorem (Bai et al., 2019;
Krantz & Parks, 2002)) Assuming that

(
I − ∂fθ

∂x∗

)
is invert-

ible, then the loss gradient of Equation (3) w.r.t. θ is given
by:

∂L

∂θ
=

∂L

∂x∗

(
I − ∂fθ

∂x∗

)−1
∂fθ
∂θ

. (4)

3

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

Input

plan0

plan1

(feedback0)

Input

plan1

plan2

(feedback1)

Input

plant

plan*

(feedbackt)

Input

plan*

plan*

(feedback*)

Input

plan*

plangt

(feedback*)

Inputs

Output

Iter 0 Iter 1 Iter t Iter t+1

…

…

…

(a) Inference: solving equilibrium via fixed-point iteration (b) Training

Figure 2: Illustration of equilibrium sequence modeling with two alternating steps: (a) Prior to training, the model undergoes
iterative inference to reach an equilibrium plan. (b) Then, it is pushed away from the equilibrium towards the ground truth
by a supervised loss. This teaches the model to self-refine by mapping a suboptimal equilibrium plan to a better plan.

Its proof is given in Appendix A.4. It is noteworthy that the
inverse Jacobian term A = (I − ∂fθ

∂x∗)
−1 within the above

gradient is difficult to compute exactly, for which existing
work often approximates through the damped fixed-point
unrolling or the Neumann series (Geng et al., 2021b). For
computational efficiency, we drop the inverse Jacobian term
using A ≈ I as in Fung et al. (2022); Geng et al. (2021a);
Choe et al. (2023), the latter work having been validated on
Transformer-based LLMs:

∂L

∂θ
=

∂L

∂x∗
∂fθ
∂θ

. (5)

For a comprehensive introduction to equilibrium models
and this approximation, please refer to Appendix A.

Equilibrium Sequence Modeling. Based on the simpli-
fied gradient estimation, we reformulate its training into a
supervised learning problem. According to the chain rule,
the derived gradient is exactly the gradient of the following
optimization problem associated with the equilibrium x∗:

min
θ

L(fθ(x
∗, c), y). (6)

This new formula represents a new equilibrium sequence
modeling scheme that can be implemented in two alter-
nating steps: (1) In the first step, we solve the fixed-point
problem by iterative inference of LLM based on the previ-
ous output tokens xt until the new output tokens converges,
yielding an equilibrium plan x∗. (2) In the second step, the
equilibrium x∗ is paired with the ground truth plan y as a
training sequence, which is used as in the standard super-
vised finetuning pipeline to teach the LLM to self-refine.
The two-step procedure is illustrated in Figure 2.

It features two intuitive advantages: (1) instead of directly
regressing the ground truth, it gently adjusts the equilibrium

point, which reduces overfitting compared to the vanilla
supervised finetuning; (2) by guiding the LLM to map a sub-
optimal plan x∗ to a better plan y, it teaches self-refinement
via a simple supervised loss, without requiring additional
value functions or reward models (Welleck et al., 2023;
Havrilla et al., 2024; Qu et al., 2024; Kumar et al., 2025).

3.4. Equilibrium Models with Feedback

This section extends the derived equilibrium sequence mod-
eling to a more practical scenario where the environment
may provide some closed-loop feedback, e.g. failure details,
during plan execution. Such auxiliary information would be
an effective cue for planners to further refine their plan.

To take into account environmental feedback, we consider
an adaptive context ct that is influenced by the plan xt rather
than fixed. Then, the previously considered equilibrium
solving process of Equation (2) should be revised as an
iterative process coupling the plan xt with the feedback ct,
starting from x0 = c0 = ∅:

(x0, c0)→ . . .→ (xt, ct)→ . . .→ (x∗, c∗). (7)

After the modification, the existing derivations only hold
when we neglect the derivatives related to c∗. Fortunately,
this is a natural choice due to the non-differentiability of
most feedbacks. Therefore, the equilibrium planner can
be trained in a similar supervised way as in Equation (6)
and Figure 2, and after training it would be able to self-
refine based on the latest feedback just by forward passes.
However, iteratively interacting with the environment to
obtain feedback is costly and may not be recoverable. In
response, we devise a nested equilibrium solving scheme
for more efficient closed-loop planning.

4

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

Algorithm 1 Inference of Equilibrium Planner

Require: planner fθ, environment or world model Env, number of iterations N .
Initialize a start point x0 and feedback c0.
for i← 0 to N or converged do

Solve inner equilibrium loop to obtain x∗
t . ▷ Equation (8)

Update next plan xt+1 and feedback ct+1 with Env. ▷ Equations (9) and (10)
Ensure: generated plan x∗.

(feedbackt)plant

World modelEquilibrium planner

Equilibrium memory

Environment

Figure 3: Illustration of our proposed framework. It incorporates (1) a memory containing all equilibrium experiences
during inference, (2) a self-refining planner trained on equilibrium plans alongside the ground truth, and (3) a world model
trained on experiences to simulate environmental feedback. Three modules work synergistically for closed-loop planning.
The planner interacts with the environment to output plant with equilibrium sequence modeling and the equilibrium plans
with feedback are stored in the equilibrium memory. During training, The planner is trained on these equilibrium plans
together with the ground truth while the world model is trained on the past experiences stored in the equilibrium memory.

Nested Equilibrium Solving. Inspired by the introspection
process in human daily life, we propose to divide equilib-
rium solving into a nested loop process. The inner loop
introspects on the existing plan and feedback and takes no
action, while the outer loop interacts with the environment
to update the feedback. Formally, each inner loop is an
equilibrium solving process with fixed feedback ct:

x1
t = fθ(x

0
t , ct)

· · ·
x∗
t = fθ(x

∗
t , ct).

(8)

Thanks to this inner-loop introspection mechanism, our equi-
librium model can be more efficient in closed-loop planning,
outperforming with fewer environmental interactions.

Reusing Equilibrium Solution. Another efficiency bottle-
neck is the equilibrium solving. Considering that its speed
depends largely on the initial plan, it is unnecessary to restart
from ∅ every time. Therefore, we accelerate equilibrium
solving by reusing the previously derived equilibrium plan
as the starting point of the next iteration, similar to Bai et al.
(2022); Bai & Melas-Kyriazi (2024):

xt+1 = x∗
t . (9)

which corresponds to the starting point x0
t+1 of the inner

loop. Similarly, history feedback could be reused across

different inner loops. This is achieved by initializing the
context of the next inner loop by concatenating the previous
feedback and the latest feedback (paired with its plan):

ct+1 = (xt+1,Env(xt+1)) ∥ ct, (10)

where ∥ denotes concatenation. The nested inference proce-
dure with reuse of equilibrium is described in Algorithm 1.

3.5. Practical Implementation

This section discusses the implementation of the proposed
equilibrium planner. To enable effective training while inter-
acting with the environment, the following two modules are
carefully devised to complement the planner: an experience
memory that caches all equilibrium plans and their feedback
during equilibrium solving, and a world model to estimate
the feedback in the absence of environmental interactions.
The complete planning framework is illustrated in Figure 3
and the specific implementation details are explained below.

Equilibrium Experience Memory. During the training
process, our equilibrium model interacts with the environ-
ment only when the inner loop reaches the equilibrium point.
This results in a small number of equilibrium points, which
may not be sufficient for supervised training. To improve
our training efficiency and stability, we opt to cache all
previously obtained equilibrium points, along with their

5

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

Table 1: Performance on VirtualHome-Env without correction. Our planner achieves state-of-the-art performance in most
evaluations. Note that the Exec. metrics are marked in gray because they are already high and can easily exceed 99% with
simple automated rules (by truncating illegal output). See Table 8 in the appendix for full comparisons with Tree-Planner.

Novel Scene and Task Novel Scene Novel Task

Exec. SR GCR Exec. SR GCR Exec. SR GCR

GPT-3.5 API:
Zero-shot Planner 16.49 1.07 1.52 - - - - - -
ProgPrompt 35.04 12.54 19.99 - - - - - -
Iterative-Planner 44.54 27.04 33.25 - - - - - -
Tree-PlannerN=25 55.74 28.33 39.96 - - - - - -
Tree-PlannerN=50 49.01 28.14 35.84 - - - - - -

Finetuned Llama 3 8B:
Supervised 93.55 24.19 32.55 96.84 41.05 49.81 95.94 26.07 35.53
Tree-PlannerN=25 95.16 38.71 63.18 96.08 51.58 69.45 95.50 40.38 63.75
Tree-PlannerN=50 94.94 38.71 63.50 96.06 51.58 69.54 95.40 39.74 63.29
Ours 90.32 40.32 65.40 95.79 65.26 79.47 93.38 41.88 62.76

Table 2: Performance on VirtualHome-Env with up to 10 corrections. Our planner consistently leads in SR and GCR
performance. In particular, the comparison with SELF-REFINE confirms the effectiveness of our new training method.

Novel Scene and Task Novel Scene Novel Task

Exec. SR GCR Exec. SR GCR Exec. SR GCR

GPT-3.5 API:
Local Replan 79.66 37.46 51.90 - - - - - -
Global Replan 82.09 37.93 52.46 - - - - - -
Tree-PlannerN=25 89.13 35.30 56.65 - - - - - -
Tree-PlannerN=50 88.26 41.58 59.55 - - - - - -

Finetuned Llama 3 8B:
SELF-REFINE 96.77 43.55 65.18 92.63 54.74 70.24 94.44 39.96 62.37
Tree-PlannerN=25 95.16 41.94 56.49 96.08 55.79 68.82 95.50 42.09 57.83
Tree-PlannerN=50 94.94 43.55 58.91 96.06 58.95 70.00 95.40 43.38 59.79
Ours 91.94 56.45 76.63 97.89 77.89 87.07 92.31 54.91 74.18

environmental feedback, in an experience memory. There-
after, these equilibrium points can be sampled repeatedly
for versatile training purposes. For example, for the planner,
we randomly sample a batch of equilibrium points at each
training epoch, which are paired with the ground truth for su-
pervised training. In particular, the most recent equilibrium
points are sampled more frequently to reduce distribution
shift. Next, we describe another crucial component.

Internal Feedback from World Model. Due to inefficiency
of interacting with the environment, we construct a world
model (Ha & Schmidhuber, 2018) to provide the neces-
sary feedback in closed-loop planning. Our world model
takes the environmental context, task instruction and current
plan as inputs and predicts some basic types of feedback.
This definition is slightly simpler than the commonly used
world model, which requires simulation of the environmen-
tal states, and therefore may be easier to train. Concretely,

we implement the world model with an LLM and finetune it
on the planner’s equilibrium feedback over all iterations for
better generalizability. And during inference, we alternate
between using real and generated feedback at each iteration
for a good balance between performance and efficiency.

4. Experiments
4.1. Experimental Settings

Benchmark. The VirtualHome-Env benhmark (Puig et al.,
2018; Liao et al., 2019) is adopted during the experiments.
It contains 1360 long-horizon tasks with ground truth action
sequence annotations (average length 10.8) and provides
updated scene graphs after each action, allowing simulation
of closed-loop feedback. To analyze the generalizability, we
divided the dataset into a training set and three test subsets,
including the novel scene set, the novel task set, and the

6

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

4

5

1

2
3

Output log
[WALK] <home_office>
[WALK] <chair>
[FIND] <chair>
[GRAB] <chair>
[WALK] <dining_room>

Wrong relative pos:
<chair> and <floor>
<character> and <home_office>

[WALK] <home_office>
[WALK] <chair>
[FIND] <chair>
[GRAB] <chair>
[WALK] <dining_room>

Same plan, task fail

5

5

1

2

4
3

Output log
[WALK] <home_office>
[WALK] <chair>
[FIND] <chair>
[GRAB] <chair>
[WALK] <dining_room>

Task fail, trackback * 1

[WALK] <bedroom>

Tree traversal end, task fail

1

2

5
6

4
3

5

Output log
[WALK] <home_office>
[WALK] <chair>
[FIND] <chair>
[GRAB] <chair>
[PUTBACK] <chair>

<home_office>

Wrong relative pos:
<chair> and <floor>

[WALK] <home_office>
[WALK] <chair>
[FIND] <chair>
[GRAB] <chair>
[WALK] <floor>
[PUTBACK] <chair> <floor>

Task success

(a) SELF-REFINE (b) Tree-Planner (c) Ours

Figure 4: Visualization of our self-correction process compared to the baselines SELF-REFINE and Tree-Planner. The task
instruction is “Take a comfortable chair and place it in the entrance hall”.

novel scene and task set. More statistics and examples about
VirtualHome-Env can be found in Appendix B.1.

Metrics. We use executability (Exec.), success rate (SR),
goal conditions recall (GCR) following Hu et al. (2024).
Exec. evaluates whether the plan can be executed in given
the environment, SR refers to whether the goal is accom-
plished, and GCR measures the proportion of goal condi-
tions achieved. To examine closed-loop planning capabili-
ties, we study two test settings, without error correction or
with up to 10 corrections, the latter allowing self-correction
based on environmental feedback. We also evaluate compu-
tational efficiency by measuring TFLOPS at inference.

Baselines. Our method is compared with Tree-Planner (Hu
et al., 2024), SELF-REFINE (Madaan et al., 2023), and a
supervised finetuned planner. They are all reproduced using
finetuned Llama 3 8B (Dubey et al., 2024) (the original
Llama cannot achieve meaningful SR due to format errors).
In addition, we consider several baseline methods that call
the GPT-3.5 API, including ProgPrompt (Singh et al., 2023),
Zero-shot Planner (Huang et al., 2022) and two self-refining
planners, Local Replan (Raman et al., 2022; Guo et al.,
2023) and Global Replan (Shinn et al., 2023). Their results
are for reference only. See Appendix B.2 for details.

Implementation Details. Our implementation is consis-
tent with the baseline methods by finetuning from Llama 3
8B (Dubey et al., 2024) on the VirtualHome-Env training

set (paired with the equilibrium points). The number of
finetuning epochs is set to 6, and the learning rate is 0.0002.
The world model is finetuned on all planner interactions
for 5 epochs using the same learning rate. A greedy LLM
sampling strategy is used in later refinement steps until con-
vergence. Moreover, we implement the KV cache to speed
up inference. Further details are provided in Appendix B.3.

4.2. Main Results

The experimental results in the two planning setups, without
correction or with up to 10 corrections, are summarized
in Tables 1 and 2. Overall, our method achieves the lead-
ing performance on the majority of metrics. Specifically,
the experimental results show that: (1) Even without error
correction, our self-refining process still brings a significant
improvement of 14% on SR in the novel scene subset, with
other metrics superior or comparable to the previous leading
method. (2) By incorporating environmental feedback, our
approach improves all metrics by more than 11% and up
to 19%, showing clear advantages. (3) Similar to the exist-
ing finetuning-based methods, our generated plans exhibit a
high executability of over 90%, which can be improved to
99% by simply truncating illegal overlength outputs. These
results clearly confirm the advantages of our approach.

In particular, Table 2 compares the efficacy of our training
scheme, equilibrium sequence modeling, against alternative
self-correction methods. It shows more than 11% improve-

7

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

Table 3: Effectiveness of different types of feedback. They are measured under the constraint of up to 10 rounds of internal
or external feedback. Our trained planner is able to take into account various types of feedback to refine the plan.

Novel Scene and Task Novel Scene Novel Task

World model Env. Exec. SR GCR Exec. SR GCR Exec. SR GCR

88.71 33.87 59.98 96.79 49.47 66.60 93.80 34.62 59.06
✓ 83.87 51.61 75.13 96.84 75.79 85.79 92.31 56.62 75.53

✓ 90.32 40.32 65.40 95.79 65.26 79.47 93.38 41.88 62.76
✓ ✓ 91.94 56.45 76.63 97.89 77.89 87.07 92.31 54.91 74.18

25 26 27

Inference TFLOPS

30

35

40

45

50

55

60

Su
cc

es
s r

at
e

(%
)

Ours
Tree-Planner
SELF-REFINE

(a) Scaling of performance w.r.t.
inference-time computation

5 10 15 20 25

Plan length

20

40

60

80

Su
cc

es
s r

at
e

(%
)

Ours
Tree-Planner
SELF-REFINE

(b) Comparison of performance
over different planning horizons

Figure 5: Performance analysis vs. inference computation
and plan length. Our method shows leading scaling w.r.t. in-
ference computation and long-horizon planning capabilities.
The inference computation is measured by TFLOPS, and
we consider KV cache when computing inference TFLOPS.

ment over the prompting-based self-refinement method
SELF-REFINE (Madaan et al., 2023) and more than 12%
improvement over the system 2-based Tree-Planner (Hu
et al., 2024). The former stems from the effectiveness of
our training objective, while the latter is due to the flexible
self-correction mechanism without extensive manual design.
Meanwhile, we maintain a simplistic supervised finetuning
fashion similar to the compared methods, without intricate
reinforcement learning. These validates the effectiveness of
equilibrium sequence modeling in robot task planning.

4.3. Visualization

Figure 4 further compares our self-correction process with
the baseline methods. As can be seen, our method is bet-
ter at incorporating environmental feedback to improve the
plan, while the baselines fail by simply repeating the pre-
vious plan, or by making only local adjustments that are
insufficient. The rationale behind is that our method can flex-
ibly take into account feedback through forward passes of
LLMs, allowing arbitrary changes based on its knowledge.
In contrast, the tree-based alternative requires backtracking
in a tree, which is costly and does not fully exploit the ver-
balized knowledge in the feedback. More qualitative results
are illustrated in Figures 10 to 14 of the appendix.

1 2 3 4
Feedback iterations

35

40

45

50

55

60

Su
cc

es
s r

at
e

(%
)

Ours
Ours w/o reuse

(a) Improving efficiency through
reusing equilibrium solutions

5 10 15 20 25
Plan length

2.5

3.0

3.5

4.0

4.5

5.0

Fi
xe

d-
po

in
t i

te
ra

tio
ns

(b) Dynamic compute allocation
for more complex plans

Figure 6: Ablation study on computational efficiency. Our
method reuses equilibrium solutions and dynamically allo-
cates inference compute to improve performance-efficiency
tradeoff. The latter is measured by the number of fixed-point
iterations before convergence with mean and std.

4.4. Ablation Study

This section validates the effectiveness of our method in per-
formance and efficiency. See Appendix C for more results.

Effectiveness of various feedback. As can be observed
in Table 3, incorporating external feedback from the environ-
ment or internal feedback from the world model consistently
improves performance. Even though the world model does
not provide as much improvement as the real environment,
it also increases performance by over 3%. In particular, the
synergy of both types of feedback yields the highest per-
formance on most of the metrics, further confirming their
effectiveness. In the following analysis, we will focus on our
method using only environmental feedback for simplicity.

Scaling of performance. Here, we follow Brown et al.
(2024); Snell et al. (2025); Wu et al. (2025); Jaech et al.
(2024); Guo et al. (2025) in considering the scaling w.r.t.
inference computation. The results in Figure 5a show that
our method achieves better performance-computation trade-
off along with leading scaling w.r.t. inference computation.
Thus, more inference budget can be allocated to improve its
performance. Furthermore, in Figure 5b, we show that its
performance advantage is largely due to better long-horizon
planning capabilities, achieving more than twice the success
rate of baselines on extremely long plans (length>20).

8

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

Table 4: Convergence analysis. They summarize the number
of iterations for LLMs to reach a fixed point over 10 runs
on 60 random tasks with the equilibrium solving prompts.
Each of them can reach convergence in a few steps.

Mean Std Min Max

Original Llama-3-8B 6.70 2.12 3.22 14.98
Original Qwen-2.5-0.5B 4.80 2.13 2.69 9.43
Original Qwen-2.5-7B 7.68 5.03 2.46 16.78
Supervised Finetuned Llama 2.46 0.88 2.02 3.80
Ours 3.02 1.61 2.32 4.07

Computational efficiency. Although our planner training
is slower than baselines (36h vs. 12h) due to the equilib-
rium solving process for synthesizing training pairs (≈24h),
it exhibits a competitive inference efficiency. For exam-
ple, our method takes 16h to evaluate, while Tree-Planner
takes 24h. This can be attributed to our design of reusing
equilibrium in nested equilibrium solving, As illustrates
in Figure 6a, it accelerates the convergence, achieving better
performance (>55%) with significantly fewer interactions.
Furthermore, Figure 6b shows that our planner dynamically
allocates compute for tasks of different complexity.

Fixed-point convergence. Table 4 shows the number of
iterations for an LLM to reach its fixed point, aggregated
over 10 initial plan for each of 60 random tasks. All LLMs
considered, including the original Llama and Qwen, the
supervised finetuned Llama, and our model, can converge
to a fixed point within a few iterations, regardless of the
initial sequence. This is partly due to our greedy sampling
strategy (described in Appendix B.3) that reduces the LLMs’
randomness, after which they tend to repeat themselves
(please see Figures 4a, 10a and 11a) and converge easily.

Robustness to noisy feedback. Table 5 shows the robust-
ness of our model when the environment is disturbed by
noise. The case where the model only receives environmen-
tal feedback is considered. During inference, we randomly
replace some of the feedback with incorrect feedback, such
as incorrect feedback types or incorrect corresponding ob-
jects and actions. As shown in the results, our model exhibits
stable performance under small amounts of noise (≤10%),
demonstrating its robustness in a disturbed environment.

5. Conclusion
This work proposes an equilibrium model-based LLM plan-
ner that is capable of self-refining plans from external and
internal feedback. Unlike existing self-refinement methods
based on prompting or sophisticated reinforcement learning,
our proposed equilibrium sequence modeling allows simple
supervised training of the self-refining planners. Moreover,
it also enables the planner to efficiently incorporate environ-

Table 5: Robustness to disturbed environment. During in-
ference, random feedback is injected into the environmental
feedback according to the noise ratio. Our model remains
stable, demonstrating robustness to noisy feedback.

Both Novel Novel Scene Novel Task

Noise ratio SR GCR SR GCR SR GCR

0% 51.61 75.13 75.79 85.79 56.62 75.53
5% 51.61 74.30 75.79 85.40 54.27 73.89

10% 53.23 73.43 74.74 85.84 53.85 73.09
20% 50.00 73.10 73.68 83.22 54.49 71.80

mental feedback or a world model for closed-loop planning.
We implement the proposed approach on the VirtualHome-
Env benchmark, and the experimental results suggest that
it can dynamically allocate inference-time computation to
achieve state-of-the-art robot task planning performance.

Impact Statement
This paper presents a supervised learning framework for im-
proving the closed-loop long-horizon capabilities of LLM
agents, with the potential to complement the prevailing rein-
forcement learning-based or prompting-based frameworks.
However, we note that any such improvement in planning
capabilities should be treated with caution. For example, the
LLM agent could autonomously create sub-goals that are
threatening to humans, e.g., gaining more control. This calls
for further research into LLM interpretability and safety.

Acknowledgements. The work is supported by an internal
grant of Peking University (2024JK28), a grant from China
Tower Corporation Limited. We thank Xingjian Bai and
Liyuan Wang for their helpful discussions.

References
Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O.,

David, B., Finn, C., Fu, C., Gopalakrishnan, K., Hausman,
K., et al. Do as I can, not as I say: Grounding language
in robotic affordances. In Conference on Robot Learning,
pp. 287–318, 2023.

Anderson, D. G. Iterative procedures for nonlinear integral
equations. Journal of the ACM, 12(4):547–560, 1965.

Athalye, A., Kumar, N., Silver, T., Liang, Y., Lozano-Pérez,
T., and Kaelbling, L. P. Predicate invention from pixels
via pretrained vision-language models. arXiv preprint
arXiv:2501.00296, 2024.

Bai, S., Kolter, Z., and Koltun, V. Deep equilibrium models.
In Advances in Neural Information Processing Systems,
pp. 690–701, 2019.

9

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

Bai, S., Koltun, V., and Kolter, J. Z. Multiscale deep equi-
librium models. In Advances in Neural Information Pro-
cessing Systems, pp. 5238–5250, 2020.

Bai, S., Geng, Z., Savani, Y., and Kolter, Z. Deep equi-
librium optical flow estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 620–630, 2022.

Bai, X. and Melas-Kyriazi, L. Fixed point diffusion models.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 9430–9440,
2024.

Banach, S. Sur les opérations dans les ensembles abstraits
et leur application aux équations intégrales. Fundamenta
Mathematicae, 3(1):133–181, 1922.

Bolte, J., Pauwels, E., and Vaiter, S. One-step differentiation
of iterative algorithms. In Advances in Neural Informa-
tion Processing Systems, pp. 77089–77103, 2023.

Brooks, T., Peebles, B., Holmes, C., DePue, W., Guo,
Y., Jing, L., Schnurr, D., Taylor, J., Luhman, T.,
Luhman, E., et al. Video generation models as world
simulators. https://openai.com/research/
video-generation-models-as-world-
simulators, 2024.

Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V.,
Ré, C., and Mirhoseini, A. Large language monkeys:
Scaling inference compute with repeated sampling. arXiv
preprint arXiv:2407.21787, 2024.

Broyden, C. G. A class of methods for solving nonlinear
simultaneous equations. Mathematics of Computation,
19(92):577–593, 1965.

Cai, T., Li, Y., Geng, Z., Peng, H., Lee, J. D., Chen, D.,
and Dao, T. Medusa: Simple LLM inference acceleration
framework with multiple decoding heads. In Interna-
tional Conference on Machine Learning, pp. 5209–5235,
2024.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. Neural ordinary differential equations. In Advances in
Neural Information Processing Systems, pp. 6572–6583,
2018.

Choe, S. K., Mehta, S. V., Ahn, H., Neiswanger, W., Xie, P.,
Strubell, E., and Xing, E. Making scalable meta learning
practical. In Advances in Neural Information Processing
Systems, pp. 26271–26290, 2023.

Driess, D., Xia, F., Sajjadi, M. S., Lynch, C., Chowdhery,
A., Ichter, B., Wahid, A., Tompson, J., Vuong, Q., Yu, T.,
et al. PaLM-E: An embodied multimodal language model.
In International Conference on Machine Learning, pp.
8469–8488, 2023.

Du, Y., Yang, S., Florence, P., Xia, F., Wahid, A., Sermanet,
P., Yu, T., Abbeel, P., Tenenbaum, J. B., Kaelbling, L. P.,
et al. Video language planning. In International Confer-
ence on Learning Representations, 2024.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

El Ghaoui, L., Gu, F., Travacca, B., Askari, A., and Tsai, A.
Implicit deep learning. SIAM Journal on Mathematics of
Data Science, 3(3):930–958, 2021.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional Conference on Machine Learning, pp. 1126–1135,
2017.

Fung, S. W., Heaton, H., Li, Q., McKenzie, D., Osher,
S., and Yin, W. JFB: Jacobian-free backpropagation for
implicit networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 6648–6656, 2022.

Garima, Liu, F., Kale, S., and Sundararajan, M. Estimating
training data influence by tracing gradient descent. In
Advances in Neural Information Processing Systems, pp.
19920–19930, 2020.

Geng, Z. and Kolter, J. Z. TorchDEQ: A library for deep
equilibrium models. arXiv preprint arXiv:2310.18605,
2023.

Geng, Z., Guo, M.-H., Chen, H., Li, X., Wei, K., and Lin,
Z. Is attention better than matrix decomposition? In
International Conference on Learning Representations,
2021a.

Geng, Z., Zhang, X.-Y., Bai, S., Wang, Y., and Lin, Z. On
training implicit models. In Advances in Neural Informa-
tion Processing Systems, pp. 24247–24260, 2021b.

Geng, Z., Pokle, A., and Kolter, Z. One-step diffusion
distillation via deep equilibrium models. In Advances
in Neural Information Processing Systems, pp. 41914–
41931, 2023.

Guan, L., Valmeekam, K., Sreedharan, S., and Kambham-
pati, S. Leveraging pre-trained large language models to
construct and utilize world models for model-based task
planning. In Advances in Neural Information Processing
Systems, pp. 79081–79094, 2023.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. DeepSeek-R1:
Incentivizing reasoning capability in LLMs via reinforce-
ment learning. arXiv preprint arXiv:2501.12948, 2025.

10

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

Guo, Y., Wang, Y.-J., Zha, L., Jiang, Z., and Chen, J.
DoReMi: Grounding language model by detecting and
recovering from plan-execution misalignment. arXiv
preprint arXiv:2307.00329, 2023.

Ha, D. and Schmidhuber, J. World models. arXiv preprint
arXiv:1803.10122, 2018.

Havrilla, A., Raparthy, S. C., Nalmpantis, C., Dwivedi-
Yu, J., Zhuravinskyi, M., Hambro, E., and Raileanu, R.
GLoRe: When, where, and how to improve LLM reason-
ing via global and local refinements. In International Con-
ference on Machine Learning, pp. 17719–17733, 2024.

Hu, M., Mu, Y., Yu, X. C., Ding, M., Wu, S., Shao, W.,
Chen, Q., Wang, B., Qiao, Y., and Luo, P. Tree-planner:
Efficient close-loop task planning with large language
models. In International Conference on Learning Repre-
sentations, 2024.

Huang, J., Chen, X., Mishra, S., Zheng, H. S., Yu, A. W.,
Song, X., and Zhou, D. Large language models cannot
self-correct reasoning yet. In International Conference
on Learning Representations, 2024.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage models as zero-shot planners: Extracting action-
able knowledge for embodied agents. In International
Conference on Machine Learning, pp. 9118–9147, 2022.

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence,
P., Zeng, A., Tompson, J., Mordatch, I., Chebotar, Y.,
et al. Inner monologue: Embodied reasoning through
planning with language models. In Conference on Robot
Learning, pp. 1769–1782, 2023.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. OpenAI o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Kaelbling, L. P. and Lozano-Pérez, T. Hierarchical task
and motion planning in the now. In IEEE International
Conference on Robotics and Automation, pp. 1470–1477,
2011.

Kidger, P., Morrill, J., Foster, J., and Lyons, T. Neural
controlled differential equations for irregular time series.
In Advances in Neural Information Processing Systems,
pp. 6696–6707, 2020.

Kidger, P., Foster, J., Li, X., and Lyons, T. J. Neural SDEs as
infinite-dimensional GANs. In International Conference
on Machine Learning, pp. 5453–5463, 2021.

Kim, B., Kim, J., Kim, Y., Min, C., and Choi, J. Context-
aware planning and environment-aware memory for in-
struction following embodied agents. In Proceedings of

the IEEE/CVF International Conference on Computer
Vision, pp. 10936–10946, 2023a.

Kim, G., Baldi, P., and McAleer, S. Language models can
solve computer tasks. In Advances in Neural Information
Processing Systems, pp. 39648–39677, 2023b.

Kim, T., Min, C., Kim, B., Kim, J., Jeung, W., and Choi, J.
ReALFRED: An embodied instruction following bench-
mark in photo-realistic environments. In European Con-
ference on Computer Vision, 2024.

Kou, S., Hu, L., He, Z., Deng, Z., and Zhang, H. CLLMs:
Consistency large language models. In International Con-
ference on Machine Learning, pp. 25426–25440, 2024.

Krantz, S. G. and Parks, H. R. The Implicit Function The-
orem: History, Theory, and Applications. Birkhäuser,
2002.

Kumar, A., Zhuang, V., Agarwal, R., Su, Y., Co-Reyes, J. D.,
Singh, A., Baumli, K., Iqbal, S., Bishop, C., Roelofs,
R., Zhang, L. M., , et al. Training language models to
self-correct via reinforcement learning. In International
Conference on Learning Representations, 2025.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Li, S., Puig, X., Paxton, C., Du, Y., Wang, C., Fan, L.,
Chen, T., Huang, D.-A., Akyürek, E., Anandkumar, A.,
et al. Pre-trained language models for interactive decision-
making. In Advances in Neural Information Processing
Systems, pp. 31199–31212, 2022.

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter,
B., Florence, P., and Zeng, A. Code as policies: Lan-
guage model programs for embodied control. In IEEE
International Conference on Robotics and Automation,
pp. 9493–9500, 2023.

Liao, Y.-H., Puig, X., Boben, M., Torralba, A., and Fidler,
S. Synthesizing environment-aware activities via activity
sketches. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6291–
6299, 2019.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. In International
Conference on Learning Representations, 2024.

Liu, B., Jiang, Y., Zhang, X., Liu, Q., Zhang, S., Biswas,
J., and Stone, P. LLM+P: Empowering large language
models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023.

11

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

Liu, H., Simonyan, K., and Yang, Y. DARTS: Differen-
tiable architecture search. In International Conference on
Learning Representations, 2019.

Luketina, J., Berglund, M., Greff, K., and Raiko, T. Scalable
gradient-based tuning of continuous regularization hyper-
parameters. In International Conference on Machine
Learning, pp. 2952–2960, 2016.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L.,
Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S., Yang,
Y., et al. SELF-REFINE: Iterative refinement with self-
feedback. In Advances in Neural Information Processing
Systems, pp. 46534–46594, 2023.

McDermott, D. M. The 1998 AI planning systems competi-
tion. AI Magazine, 21(2):35–35, 2000.

Nayak, S., Morrison Orozco, A., Have, M., Zhang, J., Thiru-
malai, V., Chen, D., Kapoor, A., Robinson, E., Gopalakr-
ishnan, K., Harrison, J., et al. Long-horizon planning for
multi-agent robots in partially observable environments.
Advances in Neural Information Processing Systems, 37:
67929–67967, 2024.

Peebles, W. and Xie, S. Scalable diffusion models with
transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 4195–4205,
2023.

Pokle, A., Geng, Z., and Kolter, Z. Deep equilibrium ap-
proaches to diffusion models. In Advances in Neural
Information Processing Systems, pp. 37975–37990, 2022.

Puig, X., Ra, K., Boben, M., Li, J., Wang, T., Fidler, S.,
and Torralba, A. VirtualHome: Simulating household
activities via programs. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 8494–8502, 2018.

Puig, X., Shu, T., Li, S., Wang, Z., Liao, Y.-H., Tenenbaum,
J. B., Fidler, S., and Torralba, A. Watch-and-help: A chal-
lenge for social perception and human-AI collaboration.
In International Conference on Learning Representations,
2021.

Qu, Y., Zhang, T., Garg, N., and Kumar, A. Recursive
introspection: Teaching language model agents how to
self-improve. In Advances in Neural Information Pro-
cessing Systems, 2024.

Raman, S. S., Cohen, V., Rosen, E., Idrees, I., Paulius, D.,
and Tellex, S. Planning with large language models via
corrective re-prompting. In Advances in Neural Informa-
tion Processing Systems Workshops, 2022.

Rana, K., Haviland, J., Garg, S., Abou-Chakra, J., Reid, I.,
and Suenderhauf, N. SayPlan: Grounding large language

models using 3d scene graphs for scalable robot task
planning. In Conference on Robot Learning, pp. 23–72,
2023.

Santilli, A., Severino, S., Postolache, E., Maiorca, V., Man-
cusi, M., Marin, R., and Rodola, E. Accelerating trans-
former inference for translation via parallel decoding. In
Proceedings of the Annual Meeting of the Association for
Computational Linguistics, pp. 12336–12355, 2023.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K. R.,
and Yao, S. Reflexion: Language agents with verbal rein-
forcement learning. In Advances in Neural Information
Processing Systems, pp. 8634–8652, 2023.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W.,
Mottaghi, R., Zettlemoyer, L., and Fox, D. ALFRED:
A benchmark for interpreting grounded instructions for
everyday tasks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
10740–10749, 2020.

Silver, T., Dan, S., Srinivas, K., Tenenbaum, J. B., Kaelbling,
L., and Katz, M. Generalized planning in pddl domains
with pretrained large language models. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 38, pp. 20256–20264, 2024.

Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D.,
Tremblay, J., Fox, D., Thomason, J., and Garg, A. Prog-
Prompt: Generating situated robot task plans using large
language models. In IEEE International Conference on
Robotics and Automation, pp. 11523–11530, 2023.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling LLM
test-time compute optimally can be more effective than
scaling model parameters. In International Conference
on Learning Representations, 2025.

Sun, H., Zhuang, Y., Kong, L., Dai, B., and Zhang, C. Ada-
Planner: Adaptive planning from feedback with language
models. In Advances in Neural Information Processing
Systems, pp. 58202–58245, 2023.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N.,
Wang, L., Creswell, A., Irving, G., and Higgins, I. Solv-
ing math word problems with process-and outcome-based
feedback. arXiv preprint arXiv:2211.14275, 2022.

Valmeekam, K., Marquez, M., Olmo, A., Sreedharan, S.,
and Kambhampati, S. PlanBench: An extensible bench-
mark for evaluating large language models on planning
and reasoning about change. In Advances in Neural In-
formation Processing Systems, pp. 38975–38987, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 6000–6010, 2017.

12

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

Wang, J., He, G., and Kantaros, Y. Safe task planning for
language-instructed multi-robot systems using conformal
prediction. arXiv e-prints, pp. arXiv–2402, 2024.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi,
E. H., Narang, S., Chowdhery, A., and Zhou, D. Self-
consistency improves chain of thought reasoning in lan-
guage models. In International Conference on Learning
Representations, 2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models. In
Advances in Neural Information Processing Systems, pp.
24824–24837, 2022.

Welleck, S., Lu, X., West, P., Brahman, F., Shen, T.,
Khashabi, D., and Choi, Y. Generating sequences by
learning to self-correct. In International Conference on
Learning Representations, 2023.

Werbos, P. J. Backpropagation through time: What it does
and how to do it. Proceedings of the IEEE, 78(10):1550–
1560, 1990.

Wu, W., Morris, J. X., and Levine, L. Do language models
plan ahead for future tokens? In Conference on Language
Modeling, 2024.

Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. Inference
scaling laws: An empirical analysis of compute-optimal
inference for llm problem-solving. In International Con-
ference on Learning Representations, 2025.

Xie, J., Zhang, K., Chen, J., Zhu, T., Lou, R., Tian, Y., Xiao,
Y., and Su, Y. TravelPlanner: A benchmark for real-world
planning with language agents. In International Confer-
ence on Machine Learning, pp. 54590–54613, 2024.

Yang, S., Du, Y., Ghasemipour, S. K. S., Tompson, J., Kael-
bling, L. P., Schuurmans, D., and Abbeel, P. Learning
interactive real-world simulators. In International Con-
ference on Learning Representations, 2024a.

Yang, Z., Garrett, C., Fox, D., Lozano-Pérez, T., and
Kaelbling, L. P. Guiding long-horizon task and motion
planning with vision language models. arXiv preprint
arXiv:2410.02193, 2024b.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao,
Y., and Narasimhan, K. Tree of thoughts: Deliberate
problem solving with large language models. In Advances
in Neural Information Processing Systems, pp. 11809–
11822, 2023a.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K. R., and Cao, Y. ReAct: Synergizing reasoning and
acting in language models. In International Conference
on Learning Representations, 2023b.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. D. STaR:
Self-taught reasoner bootstrapping reasoning with rea-
soning. In Advances in Neural Information Processing
Systems, pp. 15476–15488, 2022.

Zelikman, E., Harik, G., Shao, Y., Jayasiri, V., Haber, N.,
and Goodman, N. D. Quiet-STaR: Language models can
teach themselves to think before speaking. In Conference
on Language Modeling, 2024.

Zhang, H., Du, W., Shan, J., Zhou, Q., Du, Y., Tenenbaum,
J. B., Shu, T., and Gan, C. Building cooperative embodied
agents modularly with large language models. arXiv
preprint arXiv:2307.02485, 2023.

Zhao, Z., Lee, W. S., and Hsu, D. Large language models as
commonsense knowledge for large-scale task planning.
In Advances in Neural Information Processing Systems,
pp. 31967–31987, 2023.

Zhu, Y., Tremblay, J., Birchfield, S., and Zhu, Y. Hierar-
chical planning for long-horizon manipulation with geo-
metric and symbolic scene graphs. In IEEE International
Conference on Robotics and Automation, pp. 6541–6548,
2021.

13

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

The appendices are organized as follows. First, the background of deep equilibrium models is discussed in Appendix A.
Then, we describe benchmarks in Appendix B.1, baselines in Appendix B.2, and our implementation details in Appendix B.3.
Lastly, additional experimental results and limitation analysis are provided in Appendices C and D.

A. Background
A.1. Deep Equilibrium Models

Traditional neural networks are constructed by explicitly stacking layers f (i), which can be limited in their expressiveness
due to the fixed number of layers and predetermined forward process. Instead, implicit models are defined by an underlying
dynamic system to be solved, such as an ordinary differential equation (Chen et al., 2018), a controlled differential
equation (Kidger et al., 2020), a stochastic differential equation (Kidger et al., 2021) or a fixed-point problem (Bai et al.,
2019).

Deep equilibrium models, first introduced in Bai et al. (2019), are a representative class of implicit models characterized
by fixed-point problems. Given an input c and a function fθ(x, c) such as a Transformer block (Bai et al., 2019) or a
Transformer (Geng et al., 2023), deep equilibrium models define infinite-level stacking of this function xi+1 = fθ(xi, c)
with i = 0, 1, . . . , L and L→∞ by solving the solution x∗ to the following fixed-point equation defined by fθ and c:

x∗ = fθ(x
∗, c) (11)

The forward pass of deep equilibrium models is root solving for the fixed-point problem. A common choice is the fixed-point
iteration method, which starts from an initial guess x0 and iteratively applies the transformation xt+1 = fθ(xt, c) until
convergence. A sufficient condition for its convergence is if fθ is a contraction mapping w.r.t. x, namely its Lipschitz
constant is less than one (Banach, 1922), which could be relaxed by the well-posedness condition in El Ghaoui et al. (2021).
More advanced root solvers include Broyden’s method (Broyden, 1965) or Anderson acceleration (Anderson, 1965).

A.2. Training Deep Equilibrium Models

Unlike traditional neural networks, whose gradient requires backpropagation through time (Werbos, 1990) at high memory
and computational cost, the gradient of deep equilibrium models is computed analytically without differentiating over its
forward pass. Given an equilibrium point x∗ = fθ(x

∗, c) and a loss function L(x∗, y), the loss gradient w.r.t. the model
parameters θ is provided by the implicit function theorem (Krantz & Parks, 2002; Bai et al., 2019) as follows:

∂L

∂θ
=

∂L

∂x∗

(
I − ∂fθ

∂x∗

)−1
∂fθ
∂θ

. (12)

Its proof is given in Appendix A.4. Due to the challenge of exactly computing the inverse Jacobian term A = (I − ∂fθ
∂x∗)

−1

in the above gradient, existing work often approximate it via the damped fixed-point unrolling or the Neumann series (Geng
et al., 2021b). Recently, Fung et al. (2022); Geng et al. (2021a) propose to approximate the inverse Jacobian term by A ≈ I ,
the former proving it under strong theoretical assumptions. In practice, dropping the inverse Jacobian/Hessian has been
used extensively in one-step gradient (Bolte et al., 2023; Luketina et al., 2016; Finn et al., 2017; Liu et al., 2019; Garima
et al., 2020) and shown to be effective on Transformer-based LLMs (Choe et al., 2023).

A.3. Transformer-based Deep Equilibrium Models

Deep equilibrium models are initially proposed on Transformer architecture (Vaswani et al., 2017) for language modeling
tasks (Bai et al., 2019). This seminal work considers a Transformer block as the basic unit fθ in the equilibrium model.
Then, Geng et al. (2021a) investigates improvements over the Transformer block by replacing self-attention with matrix
decomposition. They also introduce one-step gradient based on the approximation of A ≈ I for efficiency and stability,
assuming that the Lipschitz condition apply to a large number of matrix decomposition methods.

Recently, following the prevalence of Diffusion Transformers (Peebles & Xie, 2023), deep equilibrium models are extended
to image generation tasks. Geng et al. (2023) propose generative equilibrium Transformers consisting of two modules, one
using Transformer as the basic unit fθ in the equilibrium model. Their method yields advanced one-step image generation
results. Bai & Melas-Kyriazi (2024) replace most of the intermediate Transformer blocks with an equilibrium model, thus
significantly reducing the number of parameters and memory usage for training and inference.

14

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

A.4. Proof of Implicit Function Theorem

Theorem A.1. (Implicit Function Theorem (Bai et al., 2019; Krantz & Parks, 2002)) Let L : Rn × Rn → R be a
differentiable loss function, and let fθ : Rn ×Rp → Rn be a differentiable function parameterized by θ ∈ Rq . Consider the
following optimization problem:

min
θ

L(x∗, y)

s.t. x∗ = fθ(x
∗, c).

(13)

where x∗, y ∈ Rn, and c ∈ Rp. If
(
I − ∂fθ

∂x∗

)
is invertible, then the loss gradient w.r.t. θ is given by:

∂L

∂θ
=

∂L

∂x∗

(
I − ∂fθ

∂x∗

)−1
∂fθ
∂θ

. (14)

Proof of Theorem 3.1. To derive the loss gradient w.r.t. θ, we begin by differentiating the equilibrium condition x∗ = fθ(x
∗, c)

with respect to θ. Applying the chain rule, we have:

∂x∗

∂θ
=

∂f

∂θ
+

∂f

∂x∗
∂x∗

∂θ
. (15)

Given that
(
I − ∂fθ

∂x∗

)
is invertible, we can rearrange the above equation and solve for ∂x∗

∂θ :

∂x∗

∂θ
=

(
I − ∂fθ

∂x∗

)−1
∂fθ
∂θ

. (16)

The chain rule implies ∂L
∂θ = ∂L

∂x∗
∂x∗

∂θ . Substituting the expression for ∂x∗

∂θ , we obtain:

∂L

∂θ
=

∂L

∂x∗

(
I − ∂fθ

∂x∗

)−1
∂fθ
∂θ

. (17)

□

B. Experimental Settings
We detail the benchmark in Appendix B.1, the baselines in Appendix B.2, and our implementation details in Appendix B.3.

B.1. Benchmark

Environment. We adopt the robotic planning benchmark VirtualHome-Env (Liao et al., 2019) based on VirtualHome (Puig
et al., 2018). It consists of a complex set of 292 planning tasks in 7 different indoor scenes, provided with 1360 mid-level
action trajectories as ground truth annotations. These action trajectories are typically very long, with an average execution
length of 10.8, highlighting its long-horizon characteristic. Moreover, the VirtualHome environment provides detailed
feedback after performing each mid-level action, making it an ideal testbed for closed-loop planning.

Figure 7 visualizes a few examples sampled from the VirtualHome-Env benchmark. In each example, the planner is placed
in an environment that spans a few indoor rooms and is given a detailed description of the environment. The description is
originally in the form of a scene graph with objects as nodes and spatial relationships as edges, but for simplicity we present
the planner with only the object nodes. The planner is then asked to generate a semantic action sequence based on a short
task description. For instance, after receiving an instruction “turn on TV . . . ”, the robot agent must first walk to the table
and grab the remote control, and then point at the TV to turn it on. As seen, these planning tasks usually involve a rather
complex scene setup, and the ground truth action sequences are quite long. We provide more detailed statistics in Figure 8.

Compared to alternative embodied planning benchmarks, VirtualHome-Env features both long time horizons and closed-loop
feedback. For example, ALFRED (Shridhar et al., 2020) and ReALFRED (Kim et al., 2024) are two common embodied
instruction following benchmarks, but their plan lengths are relatively short and can be determined by a few templates,
making them unsuitable for long-horizon planning. PlanBench (Valmeekam et al., 2023) and TravelPlanner (Xie et al.,
2024) are recent benchmarks designed specifically for LLM planning, but they do not provide closed-loop feedback during
execution, which is an essential element of robotic planning. Therefore, we adopt VirtualHome-Env during the experiments.

15

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

Task description:
Bring me red cookbook

Ground truth:
[WALK] <home_office>
[WALK] <bookshelf>
[FIND] <novel>
[GRAB] <novel>
[WALK] <table>
[PUTBACK] <novel> <table>

Task description:
Bring dirty plate to sink

Ground truth:
[WALK] <dining_room>
[WALK] <table>
[FIND] <table>
[TURNTO] <table>
[FIND] <plate>
[GRAB] <plate>
[WALK] <dining_room>
[WALK] <sink>
[FIND] <sink>
[PUTBACK] <plate> <sink>

Task description:
Turn on TV with remote

Ground truth:
[WALK] <home_office>
[WALK] <table>
[FIND] <remote_control>
[GRAB] <remote_control>
[FIND] <television>
[TURNTO] <television>
[POINTAT] <television>
[SWITCHON] <television>
[PUTOBJBACK] <remote_control>

(a) (b) (c)

Figure 7: Examples in VirtualHome-Env (Puig et al., 2018; Liao et al., 2019). The planner is given a detailed description of
the environment (specifically, the objects within each rooms), a short task instruction, and is asked to output a sequence of
mid-level actions associated with the correct objects.

Action. The VirtualHome environment (Puig et al., 2018) originally supported animating 12 atomic actions based on the
Unity simulator, with the followup work VirtualHome-Env (Liao et al., 2019) adding support for more actions using a graph
simulator. It currently supports 40 atomic actions, in which 21 actions can be animated through Unity. Each action is defined
by an action name and some object arguments, and is implemented by prewritten code executors. In our experiments, we
use a full set of 40 actions included in the VirtualHome-Env dataset, summarized as follows:

1. Actions without object association: SLEEP, STANDUP, WAKEUP.
2. Actions associated with one object: WALK, FIND, GRAB, WASH, WIPE, PULL, PUSH, POUR, TURNTO, POINTAT,

WATCH, TOUCH, OPEN, CLOSE, RUN, SIT, READ, PUTON, PUTOFF, DROP, LIE, SWITCHON, SWITCHOFF,
DRINK, LOOKAT, TYPE, CUT, PUTOBJBACK, EAT, RINSE, PLUGIN, PLUGOUT, GREET, SCRUB, SQUEEZE.

3. Actions associated with two objects: PUTIN, PUTBACK.

Feedback. Because the environment includes a graph simulator of the scene graph, it can respond quickly to actions, e.g.
changing object attributes, and provide the updated scene graph at each step. In our experiments, we curate several types of
closed-loop feedback based on these scene graphs, simulating coarse feedback that may be received in real-world situations.
Specifically, we consider the following four categories of environmental feedback associated with task failure:

1. Program format feedback:“Your output does not conform to the required format”, indicating that the generated action
sequence does not conform to the required format.

2. Invalid command feedback: “Your output has an invalid command: ...”, indicating that the generated action sequence
has an illegal command line.

3. Execution feedback: “Your output is executed incorrectly in the environment.”, indicating that the generated action
sequence cannot be executed in the environment.

4. Task completion feedback: “You have not completed this task. The following objects and corresponding states do
not meet the goals: ... The following objects have wrong relative position: ...”, indicating that the generated action
sequence cannot complete the task, with more details about the task failure.

16

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

0 10 20 30
Plan length

0

20

40

60

80

100

120

140

Fr
eq

ue
nc

y

(a) Distribution of plan length

280 285 290 295 300
Number of nodes

400

420

440

460

480

500

N
um

be
r o

f e
dg

es

(b) Distribution of scene graph size

Figure 8: Detailed statistics of VirtualHome-Env (Puig et al., 2018; Liao et al., 2019). It features (a) a large set of long-
horizon plans with an average length of 10.8, and (b) 7 complex scenes containing more than 280 objects and more than 400
valid relations. For clarity, we exclude the CLOSE and FACING relations, which are redundant for most planning tasks.

Table 6: Comparison of dataset protocols of VirtualHome (Puig et al., 2018). Since previous works have not released their
dataset, we use the original VirtualHome-Env dataset (Liao et al., 2019) and perform our own partitioning.

Public #Tasks #Scenes Task Content Task Splits

Tree-Planner 35 4 Household Novel scene and task
LLM-MCTS 2000 4 Rearrangement Novel scene and task, Novel scene, Novel task, Seen scene and task
Ours ✓ 1360 7 Household Novel scene and task, Novel scene, Novel task

Dataset Split. We randomly divide the VirtualHome-Env dataset into training set and test set in a 50:50 ratio. To analyze
the generalizability of our method, we mainly study the following three subsets of the test set: novel scene set, novel task
set, and novel scene and task set. For instance, the novel scene set consists of seen planning tasks on unseen scenes. Overall,
the dataset contains 735 training trajectories, 468 trajectories within the novel task set, 95 trajectories within the novel scene
set, 62 trajectories within the novel scene and task set. Our models are first trained on the training set for a fixed number of
epochs and then evaluated on the three test subsets above.

Note that there are two alternative dataset protocols for VirtualHome, represented by LLM-MCTS (Zhao et al., 2023) and
Tree-Planne (Hu et al., 2024), as summarized in Table 6. Specifically, LLM-MCTS uses the indoor scenes of VirtualHome
and synthesizes its own dataset focusing on object rearrangement tasks. Tree-Planner uses a subset of VirtualHome-Env to
evaluate for training-free methods. However, since neither works has released their detailed dataset, therefore we simply use
the original VirtualHome-Env dataset and partition it accordingly in our experiments.

B.2. Baselines

Our method is mainly compared with Tree-Planner (Hu et al., 2024) and SELF-REFINE (Madaan et al., 2023), both
reproduced using Llama 3 8B Instruct (Dubey et al., 2024) in line with ours. The former traverses an action tree that is built
by repeated plan sampling, while the latter relies on self-refinement. To reproduce them, we perform supervised finetuning
of Llama 3 on the training split of VirtualHome-Env for the same number of epochs as our method, and then follow their
original procedures for inference. For instance, Tree-Planner is reproduced with both settings N ∈ {25, 50} in action tree
construction. The system prompts they use are similar to ours in Figure 9.

We also report the results summarized by Hu et al. (2024) for reference. They additionally considered ProgPrompt (Singh
et al., 2023), Zero-shot Planner (Huang et al., 2022) and two self-refinement planners, Local Replan (Raman et al., 2022;
Guo et al., 2023) and Global Replan (Shinn et al., 2023). Since these baselines were implemented by calling the GPT-3.5
API instead of finetuning Llama 3, we report them in the novel scene and task track for a relatively fair comparison. It is
worth noting that they adopted a smaller subset of actions and feedback, and differed in the curation of partial observations
of the environment. Therefore, their results are presented for reference only.

17

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

There are several robotic planning baselines that we have not compared due to large environmental differences. For
example, LLM-MCTS (Zhao et al., 2023) is a representative tree-search (Yao et al., 2023a) based planner. It followed
Watch-and-help (Puig et al., 2021) to generate a dataset of simple embodied tasks (mostly object rearrangement tasks),
while our work considers a more complex set of planning tasks, see Table 6. Alternative planners based on symbolic scene
graph (Zhu et al., 2021; Rana et al., 2023), code (Liang et al., 2023; Sun et al., 2023), or PDDL (McDermott, 2000; Liu
et al., 2023; Guan et al., 2023) are less flexible and difficult to implement in our environment.

You need to act as a task planner, who first draft an initial sub-task sequence and then refine it in the next few
iterations.

When the the draft sub-task sequence is Null, you should output the initial sub-task sequence.
When the the draft sub-task sequence is not Null, You should refine it based on the the draft sub-task sequence.
If you have previously generated some action sequences and tried to execute them in the environment, their feedback will be

provided to you for reference.
Each sub-task can be one of the following form: 1. [action_name]; 2. [action_name] <object name 1> (object id 1); 3. [

action_name] <object name 1> (object id 1) <object name 2> (object id 2).
The (object id) is used to tell the simulator which object the action should act on.
The number of arguments depends on the action type.
For action type 1, the available actions are: SLEEP, STANDUP, WAKEUP
For action type 2, the available actions are: WALK, FIND, GRAB, WASH, WIPE, PULL, PUSH, POUR, TURNTO, POINTAT, WATCH, TOUCH

, OPEN, CLOSE, RUN, SIT, READ, PUTON, PUTOFF, DROP, LIE, SWITCHON, SWITCHOFF, DRINK, LOOKAT, TYPE, CUT, PUTOBJBACK,
EAT, RINSE, PLUGIN, PLUGOUT, GREET, SCRUB, SQUEEZE

For action type 3, the available actions are: PUTIN, PUTBACK
All action_name of the sub-tasks must be chosen from the above actions.
You should output the sub-task sequence in succinct form.
You must output END after you have output the entire sub-task sequence.

Task name:
Grab some juice

Instructions:
I go to the fridge, and grab some juice out of it. I then get a glass, and pour the juice into the glass.

There are 4 rooms, and you are an embodied character with ID 198 in bedroom with ID 199.
The objects in each room is as follows:

Room name: home_office
Room ID: 1
Object ID and name in this room:
28 hanger
73 mat
......
Room name: dining_room
Room ID: 100
Object ID and name in this room:
116 ceiling
2005 food_food
......

Feedbacks from past executions:
Action sequence:
[WALK] <dining_room> (100)
[WALK] <cupboard> (132)
[FIND] <cupboard> (132)
[OPEN] <cupboard> (132)
[FIND] <cup> (1000)
[GRAB] <cup> (1000)
[CLOSE] <cupboard> (132)
[WALK] <freezer> (141)
[OPEN] <freezer> (141)
[FIND] <juice> (1001)
[GRAB] <juice> (1001)
[POUR] <juice> (1001) <cup> (1000)
[PUTOBJBACK] <juice> (1001)
[CLOSE] <freezer> (141)
[END]
Feedback:
You have not completed this task.
The following objects have wrong relative position: (1000, cup) and (128, table).

The draft sub-task sequence:
[WALK] <dining_room> (100)
[WALK] <cupboard> (132)
[FIND] <cupboard> (132)
[OPEN] <cupboard> (132)
[FIND] <cup> (1000)
[GRAB] <cup> (1000)
[CLOSE] <cupboard> (132)
[WALK] <freezer> (141)
[OPEN] <freezer> (141)
[FIND] <juice> (1001)
[GRAB] <juice> (1001)
[POUR] <juice> (1001) <cup> (1000)
[PUTOBJBACK] <juice> (1001)
[CLOSE] <freezer> (141)
[END]

System
Prompt

Task

Env

Feed-
back ct

Draft
Plan xt

Figure 9: Example of the prompt used by our equilibrium planner.

18

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

B.3. Implementation Details

Prompt. Our approach involves two LLMs, one LLM as the equilibrium planner and an additional LLM as an optional
world model. The planner’s input is illustrated in Figure 9. As can be seen, it consists of five parts: system prompt, task
definition, environment description, history feedback, and draft plan. Notably, the system prompt is modified from Hu et al.
(2024), and the environment section describes the initial environment sorted by rooms, including the object names with their
IDs within each room. For the optional world model, we adopt a similar prompt, except that it receives more information
about the initial environment, including edges in the scene graph that indicate spatial relations. This additional information
helps the world model to better predict the environmental feedback given a generated plan.

Finetuning. Both our equilibrium planner and the world model are finetuned in a supervised manner. The equilibrium
planner is finetuned for 6 iterations with a learning rate of 0.0002. The training data is constructed adaptively using all
previous equilibrium solutions. Specifically, an equilibrium memory is maintained that buffers all equilibrium solutions,
including the newest ones. At each iteration, we curate the training data by weighted sampling from this memory (where the
newest solutions are sampled more frequently) and then pairing them with the ground truths. To prevent overfitting to the
history equilibrium, a decay ratio of 0.5 is used when sampling from the fixed points of previous iterations. Thereafter, we
update the model parameters using gradient descent according to Equation (6) for one epoch per iteration.

For the world model, we collect all interacting experiences between the planner and the environment, including plans and
feedback, and finetune it for 5 epochs using the same learning rate of 0.0002. The world model is initialized from Llama 3
8B Instruct and supervised finetuned on all the planner’s environmental interactions. This procedure takes place after the
equilibrium planner has completed training, so that all of its data can be leveraged at once. The finetuning data is constructed
in a format similar to Figure 9 in the appendix, with a different order to predict feedback from the plan. Finetuning the
world model takes about 30 hours due to its longer context (e.g. spatial relations).

Inference. The inference of our planner is described in Algorithm 1, which involves a nested equilibrium solving process.
Given the environment and the task instruction, we initialize the draft plan x0 and the feedback c0 as null and iterate through
a nested loop. Each inner loop reuses the feedback from the outer loop to self-refine the draft plan, and after the inner
loop converges, we update the feedback by interacting with the environment or world model. The ratio of environmental
interactions to world model calls is currently set to 1:1, i.e., the planner alternates between using the environmental feedback
and the world model at each loop. Note that it is possible to reduce this ratio and the number of environmental interactions
required if the planner has access to a more accurate world model. This process continues until it converges to an equilibrium
point or reaches an upper bound on the outer loop, which we set to 10 to match Tree-Planner (Hu et al., 2024) but is rarely
reached. Thus, the inference compute used is mostly determined by the convergence speed of the model itself.

Our LLM sampling strategy facilitates model convergence. Specifically, we use greedy sampling to stabilize LLM outputs,
except that the first refinement step uses top-k sampling with k = 10 for higher diversity. Since most of the text prompt
remains unchanged during equilibrium solving, we employ KV cache to accelerate inference, which can be further improved
with parallel decoding techniques (Santilli et al., 2023; Cai et al., 2024; Kou et al., 2024).

C. Additional Results
Effectiveness of our full method. We exemplify the self-correction trajectories of our full method in Figs. 10 and 11.
Compared to SELF-REFINE (Madaan et al., 2023) and Tree-Planner (Hu et al., 2024), our approach is more competent
in revising a long plan through few forward passes without additional system 2. This is attributed to our efficient training
scheme for teaching planners to self-refine. We also compare different types of feedback utilized by our planner in Figure 12.
As can be observed, internal feedback alone cannot enable successful replanning, but it can reduce environmental interactions
prior to convergence. This confirms the effectiveness of both internal and external feedback in closed-loop planning.

Effectiveness of the inner loop. Table 8 illustrates that even without feedback, our method yields significant performance
improvements. To better understand this, we visualize the self-refining traces of the inner loop in Figures 13 and 14.
Specifically, Figure 13 shows the inference trace at each inner-loop iteration. Even though the planner only succeeded in
later steps, there are consistent quality improvements in its output during the inner-loop introspection without any feedback.
Figure 14 compares our inference trace to a prompting-based alternative, where our method shows to be more effective at
steering the output toward a correct plan via the inner loop. The working mechanism of our inner loops was mentioned in
the introduction, i.e. allowing for bidirectional dependency as well as scaling of inference-time compute.

19

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

Table 8: Effectiveness of our method in the no-feedback setting, where it shows clear performance advantages.

Novel Scene and Task Novel Scene Novel Task

Exec. SR GCR Exec. SR GCR Exec. SR GCR

Supervised 93.55 24.19 32.55 96.84 41.05 49.81 95.94 26.07 35.53
SELF-REFINE 72.58 32.26 52.29 74.74 44.21 62.25 65.38 30.98 51.80
Ours 88.71 33.87 59.98 96.79 49.47 66.60 93.80 34.62 59.06

Table 9: Comparison to Tree-Planner with and without world model. Only our method shows a significant improvement.

Novel Scene and Task Novel Scene Novel Task

World model Exec. SR GCR Exec. SR GCR Exec. SR GCR

Tree-PlannerN=25 95.16 38.71 63.18 96.08 51.58 69.45 95.50 40.38 63.75
Tree-PlannerN=25 ✓ 96.25 38.71 58.71 98.81 51.58 63.94 96.66 38.46 57.40
Tree-PlannerN=50 94.94 38.71 63.50 96.06 51.58 69.54 95.40 39.74 63.29
Tree-PlannerN=50 ✓ 96.16 37.10 57.53 98.22 54.74 69.64 96.80 39.32 58.84
Ours 88.71 33.87 59.98 96.79 49.47 66.60 93.80 34.62 59.06
Ours ✓ 90.32 40.32 65.40 95.79 65.26 79.47 93.38 41.88 62.76

Comparison with Tree-Planner. As shown in Table 9, our performance is inferior to Tree-Planner in the no-feedback
setting because of the difference in refining a single plan with <10 iterations instead of generating 25 or 50 candidate plans
(giving Tree-Planner a comparative advantage). However, in the other settings that allow feedback, our method outperforms
Tree-Planner by incorporating feedback more flexibly. By taking into account feedback through forward passes of LLMs,
our method allows arbitrary changes based on the LLMs’ knowledge, and correcting multiple errors in parallel (Figure 10c).
In contrast, tree-based alternatives require backtracking in a tree, which is costly when correcting an early mistake and does
not fully exploit the implicit knowledge in feedback. For example in Figure 11, Tree-Planner ignored the earlier feedback
and made the same mistake twice ([OPEN] 〈laptop〉).

Table 7: Zero-shot evaluation on ALFRED. Our model demon-
strates better generalization without retraining.

Task classification acc. Action-object recall

SFT Llama 11% 0.50%
Ours 54% 27.08%

Generalization to environment without feedback. we
test our pre-trained VirtualHome planner on ALFRED
benchmark with updated prompts. For evaluation, we
consider two planning metrics: task classification ac-
curacy (across 7 task types in ALFRED) and recall of
ground-truth action-object pairs in the predicted plan. As
shown in Table 7, our planner generalizes significantly
better than the supervised trained planner.

D. Limitations
While our equilibrium sequence modeling improves the planning capability of LLMs, we identify the following failure
scenarios during the experiments: (1) hallucination of the equilibrium planner and the world model as in vanilla LLMs; (2)
lack of awareness of history context such as previously grabbed objects. The latter can be resolved with the context module
in Kim et al. (2023a) or reasoning techniques as in Yao et al. (2023b).

In a broader sense, our method may be limited in generalizing to new domains because it requires the ground truth
and environmental feedback during training. These procedures with the equilibrium solving process results in lower
training efficiency. Also, the current formulation only considers the explicit output plan without implicit reasoning steps.
While it is possible to synergize planning and reasoning with their combined advances, we leave this to future work due
to feasibility constraints for small-scale experiments with large reasoning LLMs (Jaech et al., 2024; Guo et al., 2025).
Furthermore, our model has only text input and no visual input, which limits its applicability in the real world. This can be
resolved by introducing video-based planners (Du et al., 2024), world models (Yang et al., 2024a; Brooks et al., 2024) and
vision-language models(Yang et al., 2024b; Athalye et al., 2024).

20

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

1

2
3

4
5…

56

Output log
[WALK] <bedroom>
[WALK] <toy1>
[FIND] <toy1>
[GRAB] <toy1>
[FIND] <toy2>
[GRAB] <toy2>
[FIND] <toy3>
[GRAB] <toy3>
[FIND] <desk>
[PUTBACK] <toy1> <desk>
[PUTBACK] <toy2> <desk>
[PUTBACK] <toy3> <desk>

Wrong relative pos:
<toy1> and <filing_cabinet>
<toy2> and <filing_cabinet>
<toy3> and <filing_cabinet>

[WALK] <bedroom>
[WALK] <toy1>
[FIND] <toy1>
[GRAB] <toy1>
[FIND] <toy2>
[GRAB] <toy2>
[FIND] <toy3>
[GRAB] <toy3>
[FIND] <desk>
[PUTBACK] <toy1> <desk>
[PUTBACK] <toy2> <desk>
[PUTBACK] <toy3> <desk>
[FIND] <bookshelf>
[PUTBACK] <toy1> <bookshelf>
[PUTBACK] <toy2> <bookshelf>
[PUTBACK] <toy3> <bookshelf>

Wrong relative pos:
<toy1> and <filing_cabinet>
<toy2> and <filing_cabinet>
<toy3> and <filing_cabinet>

...

Same plan, task fail

1

2
3

4
5

…

5
6

5

…

5 …

7

Output log
[WALK] <bedroom>
[WALK] <toy1>
[FIND] <toy1>
[GRAB] <toy1>
[FIND] <toy2>
[GRAB] <toy2>

Action fail, trackback * 2

[WALK] <dresser1>
[OPEN] <dresser1>
[PUTIN] <toy1> <dresser1>
[CLOSE] <dresser1>
[FIND] <toy2>
[GRAB] <toy2>

Task fail, trackback * 6

[WALK] <desk>
[PUTBACK] <toy1> <desk>

Task fail, trackback * 2

[WALK] <dresser2>
[OPEN] <dresser2>
[PUTIN] <toy1> <dresser2>

Tree traversal end, task fail

9
10

11 12
13

1

2
34

5
…

7

8

56

14
15
16

Output log
[WALK] <bedroom>
[WALK] <toy1>
[FIND] <toy1>
[GRAB] <toy1>
[WALK] <table>
[PUTBACK] <toy1> <table>
[WALK] <toy2>
[FIND] <toy2>
[GRAB] <toy2>
[WALK] <table>
[PUTBACK] <toy2> <table>
[WALK] <toy3>
[FIND] <toy3>
[GRAB] <toy3>
[WALK] <table>
[PUTBACK] <toy3> <table>

Wrong relative pos:
<toy1> and <filing_cabinet>
<toy2> and <filing_cabinet>
<toy3> and <filing_cabinet>

[WALK] <bedroom>
[WALK] <toy1>
[FIND] <toy1>
[GRAB] <toy1>
[WALK] <filing_cabinet>
[OPEN] <filing_cabinet>
[PUTBACK] <toy1>

<filing_cabinet>
[FIND] <toy2>
[GRAB] <toy2>
[WALK] <filing_cabinet>
[PUTBACK] <toy2>

<filing_cabinet>
[FIND] <toy3>
[GRAB] <toy3>
[WALK] <filing_cabinet>
[PUTBACK] <toy3>

<filing_cabinet>
[CLOSE] <filing_cabinet>

Task success

(a) SELF-REFINE (b) Tree-Planner (c) Ours

Figure 10: Visualization of our self-correction process in comparison with baselines. This example uses only environmental
feedback, and we include toy IDs in the presentation for clarity. The task instruction is “Pick up all the toys on the floor and
put them in their correct storage bin or shelf”.

21

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

Output log
[WALK] <home_office>
[WALK] <laptop>
[FIND] <laptop>
[OPEN] <laptop>
[FIND] <mail>
[GRAB] <mail>
[FIND] <desk>
[OPEN] <desk>
[PUTBACK] <laptop> <desk>
[PUTBACK] <mail> <desk>
[FIND] <keyboard>
[TYPE] <keyboard>

Wrong state:
<character> {SITTING}
Wrong relative pos:
<character> and <mail>
<character> and <chair

...

Same plan, task fail

Output log
[WALK] <home_office>
[WALK] <laptop>
[FIND] <laptop>
[OPEN] <laptop>

Action fail, trackback * 1

[GRAB] <laptop>
[FIND] <chair>
[SIT] <chair>
[SWITCHON] <laptop>
[FIND] <mail>
[GRAB] <mail>
[READ] <mail>
[FIND] <keyboard>
[TYPE] <keyboard>

Task fail, trackback * 3

[FIND] <desk>
[OPEN] <desk>

Action fail, trackback * 7

[WALK] <table>
[OPEN] <laptop>

Action fail, trackback * 2

[WALK] <desk>
[OPEN] <laptop>

Action fail, trackback * 3

[TURNTO] <laptop>
[LOOKAT] <laptop>
[SWITCHON] <laptop>
[FIND] <chair>
[SIT] <chair>
[FIND] <mail>
[GRAB] <mail>
[READ] <mail>
[FIND] <keyboard>
[TYPE] <keyboard>

Task success

Output log
[WALK] <home_office>
[WALK] <laptop>
[FIND] <laptop>
[SWITCHON] <laptop>
[TURNTO] <laptop>
[LOOKAT] <laptop>
[FIND] <mail>
[READ] <mail>
[TURNTO] <mail>
[POINTAT] <mail>
[GRAB] <mail>
[FIND] <keyboard>
[TYPE] <keyboard>

Wrong state:
<character> {SITTING}
Wrong relative pos:
<character> and <mail>
<character> and <chair>

[WALK] <home_office>
[WALK] <laptop>
[FIND] <laptop>
[SWITCHON] <laptop>
[TURNTO] <laptop>
[LOOKAT] <laptop>
[FIND] <chair>
[SIT] <chair>
[FIND] <mail>
[GRAB] <mail>
[READ] <mail>
[TURNTO] <mail>
[POINTAT] <mail>
[WRITE] <mail>
[SWITCHOFF] <laptop>

Invalid command:
[WRITE] <mail>

[WALK] <home_office>
[WALK] <laptop>
[FIND] <laptop>
[SWITCHON] <laptop>
[TURNTO] <laptop>
[LOOKAT] <laptop>
[FIND] <chair>
[SIT] <chair>
[TURNTO] <laptop>
[POINTAT] <laptop>
[TURNTO] <laptop>
[LOOKAT] <laptop>
[FIND] <mail>
[GRAB] <mail>
[READ] <mail>
[TYPE] <laptop>

Task success

(a) SELF-REFINE (b) Tree-Planner (c) Ours

Figure 11: Visualization of our self-correction process in comparison with baselines. This example uses only environmental
feedback. The task instruction is “Open email application, open new emails and respond accordingly”. Our proposed
method succeeds with fewer external feedback.

22

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

Output log
[WALK] <home_office>
[WALK] <laptop>
[FIND] <laptop>
[SWITCHON] <laptop>
[TURNTO] <laptop>
[LOOKAT] <laptop>
[FIND] <mail>
[READ] <mail>
[TURNTO] <mail>
[POINTAT] <mail>
[GRAB] <mail>
[FIND] <keyboard>
[TYPE] <keyboard>

World model feedback
Wrong state:
<character> {SITTING}
<computer> {ON}
<computer> {PLUGGED_IN}
Wrong relative pos:
<character> and <chair>

[WALK] <home_office>
[WALK] <chair>
[FIND] <chair>
[SIT] <chair>
[FIND] <computer>
[SWITCHON] <computer>
[TURNTO] <computer>
[LOOKAT] <computer>
[FIND] <laptop>
[TURNTO] <laptop>
[LOOKAT] <laptop>
[FIND] <mail>
[TURNTO] <mail>
[LOOKAT] <mail>
[GRAB] <mail>
[READ] <mail>
[FIND] <keyboard>
[TYPE] <keyboard>

World model feedback
Task success

Task fail

Output log
[WALK] <home_office>
[WALK] <laptop>
[FIND] <laptop>
[SWITCHON] <laptop>
[TURNTO] <laptop>
[LOOKAT] <laptop>
[FIND] <mail>
[READ] <mail>
[TURNTO] <mail>
[POINTAT] <mail>
[GRAB] <mail>
[FIND] <keyboard>
[TYPE] <keyboard>

Environmental feedback
Wrong state:
<character> {SITTING}
Wrong relative pos:
<character> and <mail>
<character> and <chair>

[WALK] <home_office>
[WALK] <laptop>
[FIND] <laptop>
[SWITCHON] <laptop>
[TURNTO] <laptop>
[LOOKAT] <laptop>
[FIND] <chair>
[SIT] <chair>
[FIND] <mail>
[GRAB] <mail>
[READ] <mail>
[TURNTO] <mail>
[POINTAT] <mail>
[WRITE] <mail>
[SWITCHOFF] <laptop>

Environmental feedback
Invalid command:
[WRITE] <mail>

[WALK] <home_office>
[WALK] <laptop>
[FIND] <laptop>
[SWITCHON] <laptop>
[TURNTO] <laptop>
[LOOKAT] <laptop>
[FIND] <chair>
[SIT] <chair>
[TURNTO] <laptop>
[POINTAT] <laptop>
[TURNTO] <laptop>
[LOOKAT] <laptop>
[FIND] <mail>
[GRAB] <mail>
[READ] <mail>
[TYPE] <laptop>

Task success

Output log
[WALK] <home_office>
[WALK] <laptop>
[FIND] <laptop>
[SWITCHON] <laptop>
[TURNTO] <laptop>
[LOOKAT] <laptop>
[FIND] <mail>
[READ] <mail>
[TURNTO] <mail>
[POINTAT] <mail>
[GRAB] <mail>
[FIND] <keyboard>
[TYPE] <keyboard>

World model feedback
Wrong state:
<character> {SITTING}
<computer> {ON}
<computer> {PLUGGED_IN}
Wrong relative pos:
<character> and <chair>

[WALK] <home_office>
[WALK] <chair>
[FIND] <chair>
[SIT] <chair>
[FIND] <computer>
[SWITCHON] <computer>
[TURNTO] <computer>
[LOOKAT] <computer>
[FIND] <laptop>
[TURNTO] <laptop>
[LOOKAT] <laptop>
[FIND] <mail>
[TURNTO] <mail>
[LOOKAT] <mail>
[GRAB] <mail>
[READ] <mail>
[FIND] <keyboard>
[TYPE] <keyboard>

Environmental feedback
Wrong relative pos:
<character> and <mail>

[WALK] <home_office>
[WALK] <laptop>
[FIND] <laptop>
[SWITCHON] <laptop>
[TURNTO] <laptop>
[LOOKAT] <laptop>
[FIND] <chair>
[SIT] <chair>
[TURNTO] <laptop>
[POINTAT] <laptop>
[WATCH] <laptop>
[FIND] <mail>
[TURNTO] <mail>
[LOOKAT] <mail>
[GRAB] <mail>
[READ] <mail>
[TYPE] <laptop>

World model feedback
Task success

Task success

(a) Ours w/o external feedback (b) Ours w/o internal feedback (c) Ours

Figure 12: Visualization of our self-correction process with different types of feedback. The task instruction is “Open email
application, open new emails and respond accordingly”.

23

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

Output log
[WALK] <bathroom>
[WALK] <cleaning_solution>
[FIND] <cleaning_solution>
[GRAB] <cleaning_solution>
[FIND] <rag>
[GRAB] <rag>
[POUR] <cleaning_solution>

<rag>
[PUTOBJBACK]

<cleaning_solution>
[FIND] <sink>
[TURNTO] <sink>
[LOOKAT] <sink>
[TOUCH] <sink>

Inner self-refinement

[WALK] <bathroom>
[WALK] <cleaning_solution>
[FIND] <cleaning_solution>
[GRAB] <cleaning_solution>
[FIND] <rag>
[POUR] <cleaning_solution>

<rag>
[PUTOBJBACK]

<cleaning_solution>
[FIND] <sink>
[TURNTO] <sink>
[LOOKAT] <sink>
[TOUCH] <sink>

Inner loop convergence

Environmental feedback
Wrong relative pos:
<cleaning_solution> and <sink>

Output log
[WALK] <bathroom>
[WALK] <cleaning_solution>
[FIND] <cleaning_solution>
[GRAB] <cleaning_solution>
[FIND] <sink>
[POUR] <cleaning_solution>

<sink>
[TURNTO] <sink>
[LOOKAT] <sink>
[TOUCH] <sink>

Inner self-refinement

[WALK] <bathroom>
[WALK] <cleaning_solution>
[FIND] <cleaning_solution>
[GRAB] <cleaning_solution>
[FIND] <sink>
[POUR] <cleaning_solution>

<sink>
[WAIT]
[FIND] <rag>
[GRAB] <rag>
[WIPE] <rag> <sink>
[PUTOBJBACK] <rag>
[SWITCHON] <faucet>
[RINSE] <sink>
[SWITCHOFF] <faucet>

Inner loop convergence

Environmental feedback
invalid command:
[WAIT]

Output log
[WALK] <bathroom>
[WALK] <cleaning_solution>
[FIND] <cleaning_solution>
[GRAB] <cleaning_solution>
[FIND] <sink>
[POUR] <cleaning_solution>

<sink>
[WIPE] <sink>
[PUTOBJBACK]

<cleaning_solution>

Inner loop convergence

Task success

(a) The 1st inner loop (b) The 2nd inner loop (c) The 3rd inner loop

Figure 13: Visualization of our self-correction process with inner-loop traces. This example uses only environmental
feedback. The task instruction is “Spray some cleaner and wait a minute then wipe it out”. As can be seen, each inner loop
improves planning quality: the first removes a redundant [GRAB] action, while the second adds a crucial [WIPE] action and
other interesting details.

24

Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling

Output log
[WALK] <bathroom>
[WALK] <electric_shaver>
[FIND] <electric_shaver>
[GRAB] <electric_shaver>
[FIND] <mirror>
[TURNTO] <mirror>
[LOOKAT] <mirror>
[FIND] <chair>
[SIT] <chair>
[SWITCHON] <electric_shaver>
[FIND] <beard>
[TURNTO] <beard>
[POINTAT] <beard>
[FIND] <beard>
[WIPE] <beard>

Inner loop convergence

invalid command:
[FIND] <beard>
Task fail

Output log
[WALK] <bathroom>
[WALK] <electric_shaver>
[FIND] <electric_shaver>
[GRAB] <electric_shaver>
[FIND] <mirror>
[TURNTO] <mirror>
[LOOKAT] <mirror>
[SWITCHON] <electric_shaver>
[RUN] <mirror>
[TURNTO] <mirror>
[LOOKAT] <mirror>
[SWITCHOFF] <electric_shaver>
[PUTOBJBACK] <electric_shaver>

Inner self-refinement

[WALK] <bathroom>
[WALK] <electric_shaver>
[FIND] <electric_shaver>
[GRAB] <electric_shaver>
[FIND] <mirror>
[TURNTO] <mirror>
[LOOKAT] <mirror>
[SWITCHON] <electric_shaver>
[SWITCHOFF] <electric_shaver>

Inner loop convergence

Task success

(a) Prompt-based self-refinement (b) Ours

Figure 14: Visualization of our self-correction process in comparison with prompting-based method without any feedback.
The task instruction is “Pick up razor and shave yourself”. As can be seen, the prompting-based model converges without
any self-correction, while our model achieves success.

25

