
Automatic Source Code Summarization via
Reinforcement Learning

Zhuangbin Chen
Department of Computer Science

The Chinese University of Hong Kong
Shatin, Hong Kong

1155100476@link.cuhk.edu.hk

Yuelong Shen
Department of Computer Science

The Chinese University of Hong Kong
Shatin, Hong Kong

1155156114@link.cuhk.edu.hk

Abstract

Due to the fast development of computer and software, the volume of today’s code
has reached an unprecedented level. For large-scale systems (e.g., cloud computing
systems) with billions lines of codes, the majority of its maintenance effort is
code management. And much of this effort is spent on understanding related
source codes. With high-quality code summaries, one can quickly understand what
a function does (even without reading the code). However, it’s nontrivial for a
programmer to write good comments for source codes. If the code summary can
be automatically generated, then we can greatly accelerate the whole pipeline of
software development. To this end, in this project we develop a reinforcement
learning framework to enhance the automatic generation of code summarization.
By properly defining the key modules, we employ an actor-critic network to solve
this problem. Experimental results demonstrate that our model outperforms vallina
sequence to sequence model by a noticeable margin. Introduction video of this
project is available here1.

1 Introduction

Code summarization is to provide a compact and informative natural language description for
the functionality of a code snippet. Such summaries can not only facilitate the understanding of
programmers, but also benefit the task of software maintenance. Figure 1 illustrate an example of
Python code snippet together with a comment that summarizes the high-level function of the code.
With high-quality code summaries, one can quickly understand what a function does (even without
reading the code). However, writing summary could be a massive burden for developers, hence only
a small fraction of all code will be paired with a comment. Therefore, it is of practical importance to
automate this process, as done by some existing work [1, 2, 3, 4].

Reinforcement learning (RL) is one of the basic machine learning paradigms, which is able to interact
with an environment and learn what actions to take in order to maximize the cumulative reward. Due
to the exceptional ability of learning without labels, it has been employed in many applications, such
as robotics, video games, natural language processing, and computer vision.

In this proposal, we plan to apply the principles of reinforcement learning to help the process of
automatic generation of code summaries. Specifically, we follow the popular setting of data-driven
code summarization which is composed of an encoder (learn the latent representation of code snippets)
and a decoder (generate code comments based on the representation). In the decoding phrase, we
leverage reinforcement learning to assist the selection of output words that can achieve a better
performance.

1introduction video

https://mycuhk-my.sharepoint.com/:f:/g/personal/1155100476_link_cuhk_edu_hk/Ejyfr5roZIJFtRdePjysI-kB0V7XfN-tOEdN6RvboahMIQ?e=0gLrEL

1 """Sets the seed for generating random numbers to a random number on all GPUs. It’s
↪→ safe to call this function if CUDA is not available; in that case, it is
↪→ silently ignored."""

2 def seed_all() -> None:
3 random_seed = 0
4 seeded = False
5 for i in range(device_count()):
6 default_generator = torch.cuda.default_generators[i]
7 if not seeded:
8 default_generator.seed()
9 random_seed = default_generator.initial_seed()

10 seeded = True
11 else:
12 default_generator.manual_seed(random_seed)

Figure 1: A Python code snippet excerpted from Pytorch, where the comment above the function is
the corresponding code summary.

The remainder of this report is organized as follows. Section 2 briefly introduces some related work
about code summarization. Section 3 presents some preliminaries of language model and neural
sequence generation model. Section 4 elaborates on our reinforcement learning framework for code
summarization. Section 5 shows the experimental results. Finally, Section 6 concludes this project.

2 Related Work

In the literature, some effort has been devoted to the automatic generation of code summary. For
example, [1, 2] attempted to generate comments for code based on templates or rules, which was
done by learning the semantic representation of code using statistical language models. Sridhara et
al. constructed a database containing a software word usage model. Then, they defined a series of
rules about tokenized function/variable names, which are used to generate comment. Other statistical
models include topic models and n-grams, for example, Movshovitz-Attias et al. predict comments
from Java source files.

Recent work [3, 4] pursues this goal by resorting to more advanced models, e.g., deep neural networks,
which mainly follow an encoder-decoder framework. Specifically, they formulate code summarization
as a neural translation problem and employ Recurrent Neural Networks (RNN e.g., LSTM) to encode
the code snippets and utilize another RNN to decode that hidden state to coherent sentences.

Particularly, there are also some attempts to improve the quality of code summarization using
reinforcement learning, such as [5, 6]. In this project, we intend to have a deep understanding of how
reinforcement learning can facilitate the auto-generation of code summaries for code snippets. More
importantly, we will explore possible ways towards achieving a better performance.

3 Preliminaries

3.1 Notations and Terminologies

Given a (code snippet, code summary) pair, we first tokenize them by the symbol space and then
remove meaningless stop words like "a", "an", and "the". Let x = (x1, x2, ..., x|x|) denote a word
sequence of source code snippet, y = (y1, y2, ..., y|y|) denote a word sequence of code summary,
where | · | is the length of sequence. Particularly, we use yi:j to denote (yi, yi+1, ..., yj). Our goal is
to correctly generate y given the corresponding x. D = (x1, y1), (x2, y2), ..., (xN , yN) is the training
set, where N denotes the number of training instances.

2

3.2 Language Model and Semantic Representation for Code

Language model computes the probability of occurrence of a word sequence. We denote the
probability of a sequence ofN words {x1, x2, ..., xN} as p(x1, x2, ..., xN), which is formally defined
as:

p(x1:N) =

N∏
i=1

p(xi|x1:i−1) (1)

In our project, we adopt neural language model as the language model, which reads the words in the
sentence one by one, and predicts the next word at each time step. At time step t, the probability of
the next word p(xt+1|x1:t) is estimated as:

p(xt+1|x1:t) = g(ht)
ht = f(ht−1, e(xt))

(2)

where e is the embedding layer that transforms input word xt into a continuous vector space, ht is the
hidden state at time t, which is generated based on previous hidden state ht−1 and the current input
xt, g is a stochastic output layer (typically a softmax for discrete outputs) that generates output tokens.
Particularly, the RNN that computes the hidden state ht is called encoder, and decoder calculates
p(xt+1|xt). The last hidden state of the encoder is often regarded as the semantic representation of a
code snippet. Finally, the objective of the language model is given as follows:

max
θ
L(θ) = max

θ
E

(x,y)∼D
log p(y|x; θ) (3)

where θ represents model parameters. LSTM (Long Short-Term Memory) is adopted in this project
due to its exceptional ability to model the complex relationship of sequential data. The LSTM
calculates the hidden state hi as follows:

i = σ(Wiht−1 + Uixt + bi)

f = σ(Wfht−1 + Ufxt + bf)

o = σ(Woht−1 + Uoxt + bo)

g = tanh(Wght−1 + Ugxt + bg)

gt = f � gt−1 + i� g
ht = o� tanh(gt)

(4)

where σ is the element-wise sigmoid function and � is the element-wise product; Ui,Uf ,Ug,Uo
denote the weight matrices of different gates for input xt and Wi,Wf ,Wg,Wo are the weight
matrices for hidden state ht; while bi, bf , bg, bo represent the bias vectors.

4 Methodology

One important problem of previous approaches is that they do not directly optimize the goal. Specifi-
cally, when code summaries are generated, some metrics will be applied to calculate the performance.
Such metrics are usually different from the loss defined by the network. Moreover, previous ap-
proaches generate words at each time step, which lack a global view to guide the learning of the
model. Reinforcement learning is an ideal solution to address this problems. This is because it allows
us to directly set the evaluation metric as the reward. And we can calculate the reward for a code
summary when it is completely generated.

4.1 Reinforcement Learning

We formulate the task of code summarization as a reinforcement learning problem by defining
the key modules, in which an agent interacts with the environment in discrete time steps. At

3

each time step t = 1, 2, ..., T , the agent produces an action, i.e., a word, sampled from the policy
π(ŷ|x; θ) = p(ŷ|x; θ). After that, the agent transits to the next time step t + 1 and reaches a new
state st+1 = (ŷ1:t, x, y). Finally, the reward r(ŷ1:T , y) can be calculated when the agent travels
through the entire code snippet sequence and produces a code summary sequence ŷ1:T . This is related
to the evaluation metric and we adopt a widely-used one called BLEU [7], which uses a modified
form of precision to compare a predicted sequence against the ground truth sequence. Therefore, the
accumulative reward is the gain of BLEU.

In this project, we adopt a deep reinforcement learning framework named Actor-Critic network to
assist decoder network in generating code summaries based on the semantic representation of code
snippets.

4.1.1 Actor Network

We let actor network take the task of code summary generation, which is essentially the encoder
network. We incorporate attention mechanism into our model, whose effectiveness has been demon-
strated in a variety of neural machine translation tasks. Specifically, at the tth step of the decoding
process, the attention score for the ith token of the code summary can be calculated as follows:

αt(i) =
exp(hi · st)∑n
k=1 exp(hk · st)

(5)

where n is the number of tokens in the code snippet; hi · st is the inner project of hi and st, which
directly measures their similarity. Finally, the tth context vector ct is calculated by summing over the
hidden states of different input tokens with weight αt(i):

ct =
n∑
t=1

αt(i) · hi (6)

Finally, we add an additional hidden layer to utilize ci and st simultaneously:

c′t = tanh(Wc · [st; ct] + bc) (7)

where [·; ·] denotes the concatenation operation. Let pπ denote a policy π described by the actor
network, pπ(yt|st) denote the probability of generating tth word yt, we can have the following
equation:

pπ(yt|st) = softmax(Ws · c′t + bs) (8)

4.1.2 Critic Network

Traditional encoder-decoder framework generates sequence by maximizing the likelihood of next
word given previous generated words. Such method is not directly working on the ultimate goal of
text generation tasks, i.e., BLEU. This is where reinforcement learning can play a role. We apply a
critic network to approximate the value of generated action at time step t. We first introduce the value
function. Given the policy π, sampled actions actions (i.e., probable words), and reward function, the
value function vπ is defined as the prediction of total reward st at step t, which can be calculated as:

vπ(st) = Est+1:T ,yt:T [

T−t∑
l=0

rt+l|yt+1, ..., yT ,h] (9)

where T is the maximum step of decoding; h is the representation of code snippet. Particularly,
we can only obtain the final reward (BLEU) when the process of sequence generation terminates;
otherwise, the reward will be 0. Finally, the objective of the critic network is as follows:

J(ψ) =
1

2
‖vπ(st)− vπψ(st)‖2 (10)

4

where vπ(st) is the target value, vπψ(st) is the value predicted by critic network, and ψ is critic
network’s parameters.

5 Experiments

In this section, we first introduce the dataset used in our experiments and then show the experimental
results.

5.1 Dataset

We use the dataset collected by Barone et al. [8], which is obtained from GitHub. The dataset contains
108,726 code-comment pairs, in which the comment is regarded as a summary for the code. We
follow the preprocessing steps in [8]. Moreover, we shuffle the dataset and use the first 60% for
training, 20% for validation and the remaining for testing. The vocabulary size of the training data is
50004, while the testing data has 31227 word

5.2 Evaluation Metrics

To evaluate the performance of the proposed method, we employ two evaluation metrics: BLEU [7]
and perplexity 2.

BLEU measures the similarity between the candidate and the reference. In our experiments, the code
summary generated by our method is regarded as the candidate, while the original code comment
written by the developer is regarded as the reference. Specifically, BLEU is calculated as follows:

BLEU = BP · exp(
N∑
n=1

wn log pn), (11)

where BP is a brevity penalty that penalizes overly short candidates; N is the maximum number of
grams used in the experiments; pn is the modified n-gram precision; and wn is the weight of each pn.

Perplexity gauges how well a probability distribution or probability model predicts a sample. A low
perplexity indicates the probability distribution is good at predicting the sample. Particularly, the
perplexity of a discrete probability distribution p is defined as:

perplexity(p) = 2H(p)=2−
∑

x p(x)log2p(x)

(12)

where H(p) is the entropy of the distribution and x ranges over events.

5.3 Vallina Sequence to Sequence Model

Our baseline model is a vallina sequence to sequence model [9], which predicts words by following
the principle of maximum likelihood estimation. In our experiments, we feed a code snippet to it and
the goal is to make its output as similar as the ground truth. The training loss is shown in Figure 2.
We can see the training loss indeed decreases with iteration. Particularly, it first drops dramatically at
the first a few iterations. Then, it goes through a gentle decreasing period. Finally, the loss converges
and we stop the training. We also report the corpus reward (the average reward over the testing data)
and perplexity of the vallina seq2seq model, as shown in Figure 3. From Figure 3(a), we can see
the reward (BLEU) increases, which indicates that vallina seq2seq model is capable of learning the
ground truth comments. However, the absolute value of the reward is too small, i.e., 8, which is far
from satisfactory. Interestingly, the perplexity increases (recall that the smaller a perplexity is, the
better) with the training epoch. We believe the reason is two-fold: 1) the perplexity is not directly the
optimization goal, so the training direction deviates from this metric; 2) our vallina seq2seq is not
expressive enough to learn a good function to fit the distribution. Due to the limitation of computing
sources, we did not use a very large network. More exploration will be conducted in our future work.

2https://en.wikipedia.org/wiki/Perplexity

5

https://en.wikipedia.org/wiki/Perplexity

Figure 2: The training loss of vallina seq2seq model

1 3 5 7 9 11 13 15
Training Epoch

2

3

4

5

6

7

8

Co
rp

us
 R

ew
ar

d
(B

LE
U)

(a) The corpus reward of vallina seq2seq model

1 3 5 7 9 11 13 15
Training Epoch

120

140

160

180

200

220

240

Pe
rp

le
xi

ty

(b) The perplexity of vallina seq2seq model

Figure 3: The performance of vallina seq2seq model

5.4 Actor-Critic Network

The experimental results of our actor-critic network for improving code summarization are shown
in Figure 4. Similarly, we report the corpus reward and perplexity. From Figure 3, we can see that
the vallina seq2seq reaches its performance limit at the 9th training epoch. Therefore, we start the
reinforcement learning right from this point. In both evaluation metrics, a noticeable performance
gain is achieved. For corpus reward, the best value is now more than 14, meaning a 50% performance
improvement. For perplexity, right after applying reinforcement learning, its value starts to drop.
This means our actor-critic network is able to guide the model to the right direction. However, the
performance of our method still cannot meet our expectation. According to our analysis, the dataset
collected by Barone et al. [8] contains much noise. Specifically, some comments do not precisely
reflect the functionalities of the corresponding code snippet. Also, many comments are too short. For
future work, we plan to collect high-quality code-comment pairs, over which we believe a much better
performance can be made. Nevertheless, from our experiments, we still see our method shedding
lights on applying reinforcement learning to automated code summarization.

6 Conclusion

In this project, we utilize a popular reinforcement learning framework, i.e., actor-critic network, to
automate the generation of code summary. Specifically, we treat each time step of the decoder-encoder
network as a state and each word from the vocabulary as an action. Our actor-critic network then tries
to learn a policy which can improve the BLEU score of the generated code summary. Comprehensive
experiments on a real-world dataset from GitHub show that our model outperforms the vallina
sequence to sequence model in terms of both corpus reward (BLEU) and perplexity. Knowing that
the performance achieved is still not satisfactory, we plan to collect more high-quality dataset in

6

Start reinforcement learning

(a) The corpus reward of reinforcement learning

Start reinforcement learning

(b) The perplexity of reinforcement learning

Figure 4: The performance of reinforcement learning

future work. Meanwhile, more sophisticated deep learning mechanisms such as attention and pointer
can be considered to further boost the performance.

References
[1] Dana Movshovitz-Attias and William Cohen. Natural language models for predicting programming

comments. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 35–40, 2013.

[2] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti, Tomoki Toda, and Satoshi
Nakamura. Learning to generate pseudo-code from source code using statistical machine translation (t). In
2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 574–584.
IEEE, 2015.

[3] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Summarizing source code using a
neural attention model. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2073–2083, 2016.

[4] Tjalling Haije, Bachelor Opleiding Kunstmatige Intelligentie, E Gavves, and H Heuer. Automatic comment
generation using a neural translation model. Inf. Softw. Technol., 55(3):258–268, 2016.

[5] Wenhua Wang, Yuqun Zhang, Yulei Sui, Yao Wan, Zhou Zhao, Jian Wu, Philip Yu, and Guandong Xu.
Reinforcement-learning-guided source code summarization via hierarchical attention. IEEE Transactions
on Software Engineering, 2020.

[6] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and Philip S Yu. Improving auto-
matic source code summarization via deep reinforcement learning. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, pages 397–407, 2018.

[7] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational
Linguistics, pages 311–318, 2002.

[8] Antonio Valerio Miceli Barone and Rico Sennrich. A parallel corpus of python functions and documentation
strings for automated code documentation and code generation. arXiv preprint arXiv:1707.02275, 2017.

[9] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems, pages 3104–3112, 2014.

7

	Introduction
	Related Work
	Preliminaries
	Notations and Terminologies
	Language Model and Semantic Representation for Code

	Methodology
	Reinforcement Learning
	Actor Network
	Critic Network

	Experiments
	Dataset
	Evaluation Metrics
	Vallina Sequence to Sequence Model
	Actor-Critic Network

	Conclusion

