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ABSTRACT

Bayesian clustering accounts for uncertainty but is computationally demanding at
scale. Furthermore, real-world datasets often contain missing values, and sim-
ple imputation ignores the associated uncertainty, resulting in suboptimal results.
We present Cluster-PFN, a Transformer-based model that extends Prior-Data Fit-
ted Networks (PFNs) to unsupervised Bayesian clustering. Trained entirely on
synthetic datasets generated from a finite Gaussian Mixture Model (GMM) prior,
Cluster-PFN learns to estimate the posterior distribution over both the number of
clusters and the cluster assignments. Our method estimates the number of clusters
more accurately than handcrafted model selection procedures such as AIC, BIC
and Variational Inference (VI), and achieves clustering quality competitive with
VI while being orders of magnitude faster. Cluster-PFN can be trained on com-
plex priors that include missing data, outperforming imputation-based baselines
on real-world genomic datasets, at high missingness. These results show that the
Cluster-PFN can provide scalable and flexible Bayesian clustering.

1 INTRODUCTION

Figure 1: Cluster-PFN usage. In (a), we provide k = 0 to the Cluster-PFN, which signals the
Cluster-PFN it should predict the number of clusters P (k|X). In (b), we provide k = 3 to the
Cluster-PFN, meaning it should group the data into 3 clusters. In this case, it will estimate the
probability for each cluster for each object, also called the cluster responsibilities.

Clustering is an unsupervised learning technique that aims to group similar data points together. In
this work, we focus on model-based clustering, where a probabilistic model, in our case a finite
Gaussian Mixture Model (GMM), is used to represent the data. However, GMMs rely on point
estimates of parameters and do not account for uncertainty.

Bayesian approaches address this limitation by placing prior distributions over model parameters,
allowing for more robust and uncertainty-aware clustering. While this provides a principled way to
incorporate uncertainty into the clustering process, inference in Bayesian models is typically compu-
tationally intensive, even when using approximate inference methods such as Variational Inference
(VI) (Hoffman et al., 2013; Jordan et al., 1999; Wainwright & Jordan, 2008).

Müller et al. (2024) introduced Prior-Data Fitted Networks (PFNs), which are meta-learned models
that approximate Bayesian inference. Built on the Transformer architecture (Vaswani et al., 2017),
PFNs learn to approximate posterior probabilities in supervised settings using a single forward pass,
trained entirely on synthetic data generated from a prior. PFNs have demonstrated improved speed
and accuracy compared to traditional Bayesian inference methods (Müller et al., 2024; Adriaensen
et al., 2023).
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We ask whether a PFN can be trained to perform Bayesian clustering by learning from synthetic data
generated under a GMM clustering prior. We propose Cluster-PFN, a Transformer-based model that
extends the PFN framework to the unsupervised setting, enabling efficient, accurate, and flexible
Bayesian clustering. See Figure 1 for its usage: it can estimate the posterior over the number of
clusters, and it can estimate cluster responsibilities. We structure our investigation around the fol-
lowing research questions:

RQ1: Can the Cluster-PFN effectively cluster synthetic and real-world datasets? We show
that Cluster-PFN can cluster data with up to five features, provide posterior probabilities for cluster
memberships, and can provide a user-specified number of clusters.

RQ2: How does the Cluster-PFN compare to GMMs with handcrafted criteria (AIC, BIC,
silhouette) and VI in estimating the number of clusters? We find that Cluster-PFN predicts the
number of clusters with greater accuracy than handcrafted criteria and VI. Our Cluster-PFN is the
first model that can learn approximations to estimate the number of clusters in a scalable manner,
and by a similar argument of Müller et al. (2024), our Cluster-PFN approximates the posterior.

RQ3: How does the Cluster-PFN perform against VI in terms of clustering quality and un-
certainty estimation? We demonstrate that Cluster-PFN performs similarly to VI across external
metrics, even when evaluated on datasets much larger than those used for training, while being
orders of magnitude faster.

RQ4: How does the Cluster-PFN model compare to baseline imputation methods in terms
of external evaluation metrics when handling missing data? While VI requires particular prior
distributions, the PFN can learn from arbitrary priors. We illustrate this by training a PFN on a prior
that integrates missing data (at random). We show that for real world genomic data, the Cluster-PFN
outperforms baseline models at missingness levels of 30% and above.

Section 2 outlines the background of Bayesian inference and PFNs. Section 3 describes the Cluster-
PFN. Section 4 describes the experimental setup and Section 5 presents the results. Additional
results are provided in the appendices, including different priors, experimental conditions, additional
metrics, and comparisons with more baselines. Section 6 discusses the approximations made by
Cluster-PFN and broader implications. Section 7 concludes with a summary and future directions.

2 BACKGROUND

In this section, we discuss Bayesian Clustering and Prior-Data Fitted Networks (PFNs).

Bayesian Clustering. In the context of clustering, we consider a dataset of observations
X = {x1, x2, . . . , xn} ⊂ Rd where each observed data point xi is associated with a latent dis-
crete variable zi indicating its cluster assignment. Furthermore, there is a probabilistic model that
models the density of each cluster; that is, the GMM model. Say zi = 1, then the first Gaussian Mix-
ture determines the density of this xi. Assuming K clusters, the GMM model has K means and K
covariance matrices. We refer to these parameters as θ. The goal is to infer the cluster assignments
(also called responsibilities) z = z1, . . . , zn, along with estimates of the cluster parameters.

In the Bayesian setting, the aim is not only to get estimates of the parameters, but also to model their
uncertainty. These uncertainties are naturally also incorporated into the responsibilities. Bayesian
approaches incorporate uncertainty by placing a prior over latent variables and model parameters,
and then inferring a posterior distribution over possible clusterings given the observed data. Using
Bayes’ theorem, the posterior can be expressed as:

p(θ, z | X) =
p(θ, z)p(X | θ, z)

p(X)
=

p(θ, z)p(X | θ, z)∫
z,θ

p(θ, z)p(X | θ, z)dzdθ
(1)

However, exact inference of this posterior is generally intractable due to the difficulty of marginal-
izing over all latent variables and parameters when computing the marginal p(X). This is a high-
dimensional integral over z and θ.

To make inference tractable, several algorithms can be used, such as Variational Inference (VI) and
Markov-Chain Monte Carlo (MCMC) (Andrieu et al., 2003; Neal, 2012; Welling & Teh, 2011). We
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Figure 2: Full training pipeline of the Cluster-PFN

focus on VI, which is commonly used for Bayesian clustering with GMMs (when using conjugate
priors (Bishop, 2006, p. 474)). VI approximates the posterior with a simpler, factorized distribu-
tion: q(θ, z) = q(θ)q(z) (Bishop, 2006; Blei & Jordan, 2006). This is known as the mean field
approximation for the Bayesian Gaussian Mixture Model. As this assumption imposes restrictions
on the form of these distributions, the variational distribution does not necessarily converge to the
true posterior. Instead, it converges to the best possible approximation within the constraints of the
variational family.

Prior-Data Fitted Networks. Müller et al. (2024) introduce a Transformer-based architecture
known as Prior-Data Fitted Networks (PFNs), which leverages in-context learning to approximate
posterior predictive distributions (PPDs) in supervised learning settings. During training, tasks are
sampled from a prior over datasets p(D), producing D = {(xi, yi)}Ni=1, where xi ∈ Rd are feature
vectors and yi ∈ R are corresponding targets. These targets can either correspond to classification
labels or regression targets. The model is also provided with a query input xtest, for which it must
predict a distribution over the corresponding output y. The PFN is trained to minimize the loss:

ℓθ = ED∪{xtest,y}∼p(D) [− log qθ(y | xtest,D)] ,

where qθ denotes the PFN parameterized by θ. In other words, the PFN is trained to predict the
target for a test point, given a training set. These are sampled from a dataset. For each batch, new
datasets are sampled, and thus the PFN is trained on millions of datasets. Predictions for the test
points are made in a single forward pass, meaning the PFN learns to infer each test object’s label
in one pass. Implicitly, the PFN is performing learning within the forward pass itself, making this
a form of meta-learning. Since the PFN is trained on a prior, it can be shown that minimizing this
objective is equivalent to minimizing the KL divergence between the model’s predictive distribution
and the true PPD. Thus, the PFN learns to approximate Bayesian inference and will estimate the
posterior distributions.

Crucially, the underlying model that determines y = f(x) can be quite high-dimensional (for exam-
ple, it can be a multilayer perceptron). The PFN approach avoids estimating these parameters; this
is crucial, since focusing on the prediction target, y, which is relatively low-dimensional, leads to a
less challenging learning problem. Furthermore, the PFN approach models each object (x, y) as a
token in the context of the Transformer. For test objects, the y is substituted with zero. Transformer
encoder layers then operate on tokens, resulting in a final embedding per object, which is decoded
by an MLP to obtain the final prediction for y for the test points.

3 CLUSTER-PFN

We first present an overview of the Cluster-PFN and its objectives. Then we discuss its design
decisions, and how the Cluster-PFN differs from typical supervised PFNs by Müller et al. (2024).

Objectives. The Cluster-PFN should: (1) predict the number of clusters in [1,K] (with a fixed
maximum K), (2) predict the responsibilities of each object, (3) be able to produce k ∈ [1,K]
clusters when requested by the user, (4) be able to deal with multiple dimensionalities and missing
data. First, we discuss how to estimate the number of clusters, which is relatively straightforward.
Then we discuss how to estimate the responsibilities, when k is provided or not. This is more
challenging; we need to design a PFN that can train even when labels can be exchanged, and we
discuss how to estimate responsibilities when the number of clusters is unknown.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Overview. The full training pipeline is illustrated in Figure 2. The data x1 to xN is input to the
model, together with k, the number of clusters as requested by the user. The output of the Cluster-
PFN is a vector of responsibilities per object, indicating the estimated posterior probability of the
object belonging to a particular cluster. Inputting k = 0 means the Cluster-PFN will predict the
posterior over the number of clusters.

Differences with supervised PFNs. Unlike supervised learning, unsupervised learning does not
provide labels. All feature vectors of all objects are embedded by an MLP. Similar to the PFN, the
resulting embeddings represent the objects as tokens in a transformer. The embeddings obtained
after the final transformer layer for each object will be used to estimate the responsibilities. Further-
more, there is no training or test set; all objects are processed in the same way. This simplifies the
PFN setup. Müller et al. (2024) does not allow attention between test objects. Since we have no
train and test split, all objects can attend to each other.

Estimating the number of clusters. Estimating the number of clusters is, in fact, a supervised
learning task. We generate a synthetic dataset with k clusters, where k is in [1, 2, . . . ,K]. Since we
know there are k clusters, the dataset has as label k. Since the dataset can have a varying number of
objects, a transformer is ideal to process it — since it can deal with sequences of varying lengths.

To estimate the number of clusters, we introduce a special object ρ that always has a feature vector
of minus ones so the transformer can distinguish it from the normalized input data ([0, 1]). We also
encode this object using an MLP and concatenate it to the other embeddings to yield an extra token
in the context. Since this token should collect information from other tokens, we let each token in
the context attend this object, but not the other way around. After the transformer layers, a final
MLP decodes this to probabilities for the number of clusters. By a similar argument of Müller et al.
(2024), the Cluster-PFN probabilities will approximate the true Bayesian posterior over the number
of clusters.

Estimating responsibilities and dealing with label invariance. The PFNs of Müller et al. (2024)
classify objects into classes. This is done by taking their embeddings at the end of the transformer
and using an MLP to turn this into class probabilities. We adopt the same approach, but replace y
with the assigned cluster label, which is available to us during synthetic data generation.

However, inherently in clustering, there is permutation invariance between the labels. Since cluster
labels in y are arbitrary, the same clustering can be represented by multiple permutations. For
training the PFN for classification this is not problematic; the training set provides the matching
between the clusters and labels. For clustering, however, we have no train set and test set, and never
observe any labels. This ambiguity due to label permutation invariance complicates learning, as the
model receives inconsistent supervision across tasks. Because of this, the PFN cannot learn.

To resolve this, we impose a consistent labeling convention during data generation to break the
symmetry. Specifically, we select the data point closest to the origin and assign it label 0. We then
iteratively assign increasing labels to the clusters based on distance to the origin. This deterministic
relabeling enforces a fixed ordering of cluster indices across datasets, so the Cluster-PFN can learn.

Conditioning on the number of clusters. The Cluster-PFN should be able to condition on the
number of clusters k. To this end, k is taken as input to the Cluster-PFN and fed into an MLP. The
resulting embedding is added to all objects in the context. This makes sure that all objects are aware
of the number of clusters to be used. Note that k is not used to restrict the dimensionality of the
posterior of z. As such, the Cluster-PFN can, for example, assign objects to 4 clusters, while k = 3
is input by the user. When k = 0, the PFN will estimate the number of clusters.

Computing responsibilities when the number of clusters is unknown. When the user feeds
in k = 0, the transformer still computes the responsibilities. However, the Cluster-PFN outputs the
joint distribution p(z | X) = p(z | X, k = 1) p(k = 1) + ... + p(z | X, k = K) p(k = K)
performing full Bayesian inference over a varying number of clusters and their responsibilities.
This joint formulation introduces a problem. Since we broke the cluster invariance of the labels,
lower cluster labels are observed more often than higher ones. Because of this, later clusters receive
disproportionately low responsibilities.

4
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To resolve this, the Cluster-PFN requires two forward passes when k = 0 to estimate responsibilities.
The first forward pass determines the posterior over the number of clusters. Then, usually, one takes
k with maximal posterior probability (user choice). The Cluster-PFN is then run again on the same
data, while feeding in the desired k. In this case, the correct Bayesian responsibilities are obtained.

Data generation. The training process begins with zero-one scaled input data. We provide the
true number of clusters via k with probability 0.5, and set k to zero otherwise. This setup allows
the model to learn both cluster count prediction as well as conditional clustering to retrieve respon-
sibilities. Everything is a classification task; thus, we use cross entropy as a loss function. Even
when k ̸= 0 the loss with respect to the clusters is always applied. The Cluster-PFN is trained
in batches, where each batch consists of multiple clustering datasets. The number of clusters is
sampled uniformly in [1,K] for each dataset.

4 EXPERIMENTAL SETUP

This section goes over the procedure for the synthetic data generation as well as the baselines and
metrics used to evaluate the performance.

The finite GMM prior. First, we sample k ∼ U(1,K) and then draw cluster parameters and
data points from the Bayesian GMM (see Appendix A for the plate diagram). Let K denote the
number of mixture components and N the number of data points. The generative process begins by
drawing mixture weights π from a Dirichlet prior: p(π) = Dir(π | α) = C(α)

∏K
k=1 π

α−1
k , where

C(α0) is a normalization constant that ensures the mixing proportions sum up to 1. This essentially
provides the prior probability of sampling from each cluster. For each component i ∈ {1, 2, . . . , k},
a mean µi and covariance Σi are sampled from a Normal-Inverse-Wishart prior. This is a standard
conjugate prior for GMMs, which makes the VI approximation much simpler. Note that this is not
a necessary condition for the PFN and favors VI.

Finally, for each data point i ∈ {1, . . . , N}, a latent assignment zi ∼ Categorical(π) is drawn,
indicating the cluster membership, and the observation xi ∼ N (µzi ,Σzi) is sampled from the cor-
responding Gaussian component. To extend Cluster-PFN to handle missingness, we apply random
masking during training: in each dataset, a random proportion of entries (uniformly sampled be-
tween 0–80%) is set to missing. For more details about the distributions and hyperparameters, refer
to Appendix B

Trained models. We train Cluster-PFN models under three input settings: (i) 2D inputs, (ii) inputs
ranging from 2D to 5D (lower-dimensional inputs are zero-padded to a consistent 5D size), and (iii)
5D inputs with missing values. For each setting, we train two models: one on Easy clusters and
one on Hard clusters. Cluster difficulty is determined by the β hyperparameter: β = 0.01 yields
well-separated (Easy) clusters, while β = 0.1 produces overlapping (Hard) clusters. All other
hyperparameters are fixed at α = 0.1, m = 0, W = I , and v = d, where d is the input dimension.

Each epoch samples 100 datasets, with dataset sizes drawn as N ∼ U(100, 500). 2D models are
trained for 600,000 epochs over 40 GPU hours, while 2D-5D models are trained for 900,000 epochs
over 60 GPU hours. All experiments are conducted on an NVIDIA L40 GPU. Additional architec-
tural details are provided in Appendix C.

Baselines for predicting the number of clusters To evaluate the performance of the Cluster-PFN
in predicting the number of clusters, we compare it against the GMM using three standard model
selection criteria: the Akaike Information Criterion (AIC) (Akaike, 1974), the Bayesian Information
Criterion (BIC) (Schwarz, 1978), and the Silhouette Score (Rousseeuw, 1987). For each of these
handcrafted criteria, we fit a GMM across a range of candidate cluster numbers from 2 to K, ex-
cluding 1 since the silhouette score is undefined for a single cluster, and select the cluster count that
yields the optimal score.

For VI, we follow the approach of Bishop (2006). Specifically, we fit models with components
ranging from 2 to K and select the one with the highest variational lower bound. To account for the
multimodality of the posterior, we include an additional penalty term of ln(k!) for each candidate k.
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(b) Cluster-PFN prediction (k=2)
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(c) Cluster-PFN prediction (k=3)

Figure 3: Cluster-PFN prediction on the Old Faithful dataset (Cluster-PFN trained on Easy prior).

Evaluating clustering performance. Since both the Cluster-PFN and VI produce probabilistic
cluster assignments, we evaluate model performance using metrics that capture hard and soft label
clustering. To obtain the hard cluster labels, we first perform model selection to determine the
number of clusters. We then fit the model and assign each data point to the cluster with the highest
posterior probability. When just comparing the Cluster-PFN and VI, we also include k = 1 cluster.

For hard cluster assignments, we employ three standard external metrics: Adjusted Rand Index
(ARI) (Hubert & Arabie, 1985a), Adjusted Mutual Information (AMI) (Vinh et al., 2010), and Purity
(Manning et al., 2008). ARI quantifies the agreement between predicted and true labels, adjusted for
chance. AMI measures the mutual dependence between predicted and true labels, also adjusted for
chance. Purity assesses the extent to which predicted clusters contain points from a single ground-
truth class. To evaluate the probabilistic predictions, we compute the Negative Log-Likelihood
(NLL) of the true cluster assignments under the model’s predicted posterior distribution. Since the
cluster labels produced by the models may be permuted, we compute the NLL under all possible
label permutations and report the minimum value obtained. Additional details of these metrics can
be found in Appendix D.

Real world datasets and studying robustness to missingness. To evaluate clustering under
missingness, we use four real-world genomic benchmark datasets: one RNA sequencing dataset
(Network et al., 2013) and three GWAS summary statistics datasets (Julienne et al., 2020), assessing
external metric scores. These datasets were also used in prior work by McCaw et al. (2022) to
study missingness, which motivated our choice, though that study applied a standard GMM rather
than a Bayesian approach. For each dataset of size N × d, we introduce missingness by masking a
proportion of random elements. Each higher missingness level builds on the previous mask, while
ensuring at least one element per row remains observed.

Among the Cluster-PFN models trained on the Easy and Hard priors, the one trained on the Hard
prior performed best on real-world benchmarks. We evaluated it against baseline methods, applying
feature-wise mean or median imputation on missing values (reporting only median results, as both
gave similar outcomes) and using handcrafted model selection to assign cluster labels. VI was
provided with the same priors used for the hard datasets.

5 RESULTS

RQ1.1: Clustering real-world data. We begin by qualitatively analyzing Cluster-PFN’s clus-
tering on the Old Faithful dataset, a classic real-world dataset. It records eruption durations and
waiting times (Corduneanu & Bishop, 2001), and we use it to visually assess the Cluster-PFN’s
performance. Figure 3 shows the clustering results produced by Cluster-PFN trained on the Easy
prior on the Old Faithful dataset. The model assigns the highest posterior probability to 2 clusters,
followed by 3 clusters. The partitionings for the clustering conditioned on 2 and 3 clusters are also
shown, demonstrating that both align well with the underlying structure of the data.

RQ1.2: Clustering with user-supplied condition on synthetic data. We also qualitatively evalu-
ate the model’s behavior when conditioned on a specified number of clusters. Figure 4 illustrates the
Cluster-PFN’s predictions on data sampled from the prior (4a) under different conditioning scenar-
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(c) Cluster-PFN prediction (k=2)
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Figure 4: Cluster-PFN predictions on prior-data for different conditions (Easy prior).

Table 1: % of correct cluster counts predicted
across 1000 datasets (E = Easy, H = Hard).

Model 2D E 5D E 2D H 5D H

Cluster-PFN 64 72 44 52
GMM (AIC) 36 41 29 31
GMM (BIC) 42 41 29 28
GMM (SIL) 21 25 12 14
VI (1 init) 42 30 32 26

Table 2: Cluster count accuracy and runtime
for 1000 2D Easy datasets.

Model Accuracy (% ↑) Time (s↓)

Cluster-PFN 64 0.02
VI (1 init.) 42 1.06
VI (10 inits.) 51 10.39
VI (50 inits.) 54 52.19
VI (100 inits.) 54 103.66

ios. The model assigned the highest posterior probability to three clusters (0.92), failing to capture
the true distribution of four clusters. It assigned lower probabilities to four clusters (0.06) and two
clusters (0.002). When conditioned on these cluster counts, the figure illustrates the model’s ability
to generate coherent and flexible clusterings. However, Cluster-PFN does not always adhere strictly
to the conditioning; its adherence is further analyzed in Appendix E.1. Especially, if it is clear
there are k clusters, but it is conditioned on a wildly different number, it may fail to adhere to the
conditioning.

RQ2: Comparison to GMM and VI for estimating the number of clusters To evaluate the
accuracy of the Cluster-PFN’s cluster count predictions, we compare its performance against es-
tablished handcrafted methods and VI. We sample 1000 datasets and measure the proportion of
instances in which each method correctly predicts the true number of clusters. Table 1 reports the
percentage of correctly predicted cluster counts across different models. Cluster-PFN consistently
achieves the highest accuracy, outperforming all baseline methods in every setting. Overall, these
findings underscore Cluster-PFN’s strong capability to recover the true number of clusters across
varying levels of problem difficulty and dimensionality.

This experiment was initially conducted with VI using a single initialization. We examine how
increasing the number of initializations impacts cluster prediction performance, analyzing the trade-
off between runtime and accuracy. For this analysis,we sample 1,000 datasets from the 2D Easy
setting and compare Cluster-PFN against VI with varying initialization counts. All VI runs are
executed sequentially. Table 2 displays Cluster-PFN obtaining the highest accuracy and being 50
times faster than the fastest VI configuration. Increasing the number of VI initializations improves
accuracy marginally and results in a linear growth in runtime.

RQ3: Clustering quality and uncertainty estimation of Cluster-PFN and VI To evaluate the
cluster assignment performance of Cluster-PFN, we sample 1,000 datasets and compute the ARI,
AMI, Purity, and NLL scores for both Cluster-PFN and VI (with 10 initializations).

As shown in Figure 5a, the violin plot for the 2D Hard dataset illustrates that the distribution of ex-
ternal metric scores (AMI, ARI, Purity) is similar between Cluster-PFN and VI. The corresponding
NLL histogram in Figure 5c shows a similar pattern, with most values concentrated below 1. Unlike
VI, Cluster-PFN assigns a nonzero probability to every cluster, so its NLL values never reach exactly
0 or infinity. This explains the last bar in the VI histogram, which contains a considerable number
of infinite values — these occur when VI underestimates the number of clusters. The experiments
so far were conducted on datasets containing 100 to 500 points.
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Figure 5: External metrics and NLL on 2D Hard datasets with model selection: (a)–(b) show metric
distributions for small and large datasets, (c)–(d) show corresponding NLL histograms.

To evaluate Cluster-PFN’s ability to generalize to larger datasets, we tested 150 datasets, each con-
taining 10,000 data points ( 5b and 5d). Both plots show that Cluster-PFN maintains performance
comparable to VI, with similar distributions across external metrics and NLL values. This demon-
strates that Cluster-PFN, despite being trained on smaller datasets, can scale effectively while pre-
serving accurate clustering quality. We also evaluated the inference speed of Cluster-PFN and VI on
the 5D Hard datasets across varying dataset sizes, using 10 initializations for VI and 100 sampled
datasets. Cluster-PFN was consistently faster: for 100 points, it took approximately 0.03 s versus
4 s for VI; for 5,000 points, approximately 4 s versus 134 s; and for 20,000 points, approximately
60 s versus 410 s.

We do not have space for all experiments here. In this study, model selection was applied to Cluster-
PFN and VI to determine the cluster count. Appendix E.2 shows violin plots and histograms for the
remaining Easy and Hard priors, both when the number of clusters is unknown and when provided,
confirming the results in Figure 5. Appendix E.3 reports the percentage of datasets where one
model outperforms the other for each metric; VI often achieves more wins, but ties are frequent. We
also compared Cluster-PFN with GMM, K-means++ by ranking models across external metrics on
sampled datasets; Cluster-PFN consistently outperforms these baselines, as shown in Appendix E.4.
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Figure 6: ARI scores of different models at varying levels of missing data in real-world datasets.
{model} median indicates the models were fitted on the median-imputed dataset. Error bars repre-
sent the standard error across 20 simulations (higher scores indicate better clustering).

RQ4: Performance of missingness on real-world data. Figure 6 shows ARI versus missingness.
At low missingness, both standard and missingness-trained Cluster-PFN underperform the baselines
on 3/4 datasets, but on GLS1, the missingness-trained model outperforms nearly all methods across
most levels. For 20–30% missingness and above, the missingness-trained Cluster-PFN outperforms
all baselines and declines more slowly. Notably, the standard Cluster-PFN performs poorly even
at 0% missingness, worse than the missingness-trained model, suggesting that the Cluster-PFN
learns more effectively under more challenging conditions offered by the missingness prior. See
Appendix E.5 for AMI, Purity, and results on mean-imputed datasets, which show similar patterns.

6 DISCUSSION

The results are clear: when predicting the number of clusters, the performance of the Cluster-PFN
shines and is significantly better than previous approaches, such as VI, BIC, AIC, and the Silhouette
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score. On data from the prior, the Cluster-PFN mostly matches the performance of VI. However, for
real-world data, the Cluster-PFN is not always competitive, only offering clear benefits on the GLS1
dataset. The Cluster-PFN however does perform well for high missingness, illustrating the power of
complex priors that integrate missingness which can be effortlessly integrated into the Cluster-PFN.
Suboptimal performance observed on GLS2 and GLS3 may arise from prior-misspecification: since
the PFN is trained only on data from the GMM prior, it may suffer a domain shift when encountering
real-world data that does not adhere well to the prior. This was also observed recently by Viering
et al. (2025). Solutions are developing more complex priors to increase the training data diversity;
or real-world data can also be integrated into PFN training.

We have argued before that the Cluster-PFN approximates the true Bayesian posterior over the
number of clusters — without relying on any further assumptions. Responsibilities are estimated
independently, making them conditionally independent—a weaker approximation than VI, which
factorizes over θ and z. In principle, a transformer could avoid approximations to z by capturing the
full joint posterior in an auto-regressive manner. This would involve sequentially decoding posterior
predictions, each conditioned on previously assigned points. The major downside of this approach
is that it would require one forward pass per object. Meanwhile, the Cluster-PFN of our design only
requires one or two forward passes, making it computationally attractive. Finally, the Cluster-PFN
does not provide the outputs θ. This is a conscious choice; θ is high-dimensional and has strong
dependencies (thus requiring auto-regressive output), and therefore we hypothesize it will be harder
to learn. By focusing on responsibilities, we use the same trick as PFNs: low-dimensional outputs
for more easy learning. An auto-regressive approach, on the other hand, would not require any
symmetry breaking that we require, and may offer improved approximation.

One clear downside to our framework and that of the PFN in general is that it requires a large up-
front cost to train the transformer for a particular prior. If one is interested in changing priors during
the analysis, VI and other approximations are more natural. One line of work is Whittle et al. (2025),
who develop PFN-like models for multiple priors, which can be integrated into our work as well.

Finally, PFN models are often compared to MCMC in terms of speed. To our knowledge, this is the
first time that PFNs are compared to the VI-approximation, which is especially practically relevant
since VI is typically much faster than MCMC. Even in this case, we find that PFNs can offer further
speed advantages while closely matching VI’s performance. It should be noted that the conjugate
prior chosen in our experiments favors VI, since it makes the VI approximation tractable and fast.

7 SUMMARY, LIMITATIONS AND FUTURE RESEARCH

We presented Cluster-PFN, a Transformer-based model for computing posterior cluster assignments.
Cluster-PFN predicts cluster membership probabilities, estimates the number of clusters, and sup-
ports conditional clustering when a cluster count is specified. Our experiments demonstrate that it
produces accurate and coherent clusterings, adapts effectively to conditioning, and consistently out-
performs traditional handcrafted methods (AIC, BIC, silhouette) and VI in estimating the number of
clusters. Additionally, it achieves competitive performance with VI while offering faster inference
and strong generalization to larger datasets. When missingness reaches 30% or more, Cluster-PFN
outperforms all baseline methods for the real-world datasets.

Currently, Cluster-PFN is invariant to sample permutations but not to feature permutations. In-
corporating feature invariance, as explored in Arbel et al. (2025); Hollmann et al. (2025), could
improve robustness and generalization. For these architectures, the PFN can also be applied to
dimensions higher than encountered during training. Additionally, scaling Cluster-PFN to handle
higher-dimensional inputs would be a valuable direction for assessing its performance on more
complex datasets. Especially in bio-informatics, it seems there are popular priors for count data
(negative-binomial mixture models, see (Wade, 2023)) — it would be useful to train Cluster-PFNs
specialized for such applications. We have stuck to a fairly standard GMM prior that is conjugate
so that VI simplifies and that is well-known; our Cluster-PFN opens the door to investigations of
highly complex priors that could not be studied before due to computational concerns. Finally, our
prior sticks to a finite GMM prior with a bounded number of clusters, which allows us to approach
predicting the cluster count as a classification problem. How to extend our work to mixture models
of unbounded size (e.g. Dirichlet process) remains a challenging open question.
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8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we fixed random seeds throughout all stages of our experiments. This
includes synthetic data generation, evaluation of the models, as well as the creation of missingness
masks, ensuring that results can be consistently replicated.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Steven Adriaensen, Herilalaina Rakotoarison, Samuel Müller, and Frank Hutter. Efficient bayesian
learning curve extrapolation using prior-data fitted networks, 2023.

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic
Control, 19(6):716–723, 1974.

Christophe Andrieu, Nando Freitas, Arnaud Doucet, and Michael Jordan. An introduction to mcmc
for machine learning. Machine Learning, 50:5–43, 01 2003.

Michael Arbel, David Salinas, and Frank Hutter. Equitabpfn: A target-permutation equivariant prior
fitted networks, 2025.

Christopher M Bishop. Pattern recognition and machine learning, volume 4. Springer, 2006.

David Blei and Michael Jordan. Variational inference for dirichlet process mixtures. Bayesian
Analysis, 1, 03 2006.

Adrian Corduneanu and Christopher Bishop. Variational bayesian model selection for mixture dis-
tribution. Artificial Intelligence and Statistics, 18:27–34, 01 2001.

Matt Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational inference,
2013.

Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature, 01 2025.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2(1):193–218,
1985a. ISSN 1432-1343.

Lawrence Hubert and Phipps Arabie. Comparing partitions. J. Classif., 2(1):193–218, December
1985b.

Michael Jordan, Zoubin Ghahramani, Tommi Jaakkola, and Lawrence Saul. An introduction to
variational methods for graphical models. Machine Learning, 37:183–233, 01 1999.

H. Julienne, P. Lechat, V. Guillemot, C. Lasry, C. Yao, R. Araud, V. Laville, B. Vilhjalmsson,
H. Ménager, and H. Aschard. Jass: command line and web interface for the joint analysis of gwas
results. NAR Genomics and Bioinformatics, 2(1):lqaa003, Mar 2020.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with restarts. CoRR,
abs/1608.03983, 2016.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information
Retrieval. Cambridge University Press, 2008.

Z. R. McCaw, H. Aschard, and H. Julienne. Fitting gaussian mixture models on incomplete data.
BMC Bioinformatics, 23(208), 2022.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
formers can do bayesian inference, 2024.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012.

Cancer Genome Atlas Research Network, J. N. Weinstein, E. A. Collisson, G. B. Mills, K. R. Shaw,
B. A. Ozenberger, K. Ellrott, I. Shmulevich, C. Sander, and J. M. Stuart. The cancer genome atlas
pan-cancer analysis project. Nature Genetics, 45(10):1113–1120, Oct 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
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A PRIOR DATA GENERATION

This section provides the Bayesian plate diagram of the prior.

B DISTRIBUTIONS

Here, we provide more details on the Dirichlet Distribution and Wishart distribution.

B.1 DIRICHLET DISTRIBUTION

The Dirichlet is a multivariate distribution, over K random variables 0 ≤ µk ≤ 1,
∑K

k=1 = 1.
Denoting µ = (µ1, ..., µk)

T and α = (α1, .., αn)
T , we have

p(π) = Dir(π|α0) = C(α0)

K∏
k=1

πα0−1
k (2)

where C(α) = Γ(α̂)
Γ(α̂1)...Γ(α̂K) and Γ(α) =

∫
tα−1e−tdt

The purpose of C(α) is that it serves as a normalization constant so the pdf integrates to 1.

B.2 WISHART DISTRIBUTION

W(Λ | W, ν) = B(W, ν) |Λ|(ν−D−1)/2 exp

(
−1

2
Tr(W−1Λ)

)
(3)

Where

B(W, ν) = |W |−ν/2

(
2νD/2 πD(D−1)/4

D∏
i=1

Γ

(
ν + 1− i

2

))−1

(4)

Where W is a D ×D symmetric, positive definite matrix. The parameter ν is called the number of
degrees of freedom and is restricted to v ≥ D.
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C FURTHER EXPERIMENTAL SETUP AND TRAINING DETAILS

We provide all the details regarding the architecture, and we also show some of the loss curves that
we observe during training.

C.1 ARCHITECTURE

The Cluster-PFN architecture is fully based on the PyTorch Paszke et al. (2019) library and utilizes
the encoder component of the Transformer. It employs an embedding dimension of 256 and a hidden
dimension of 512. The model uses 4 attention heads and consists of 4 encoder layers. Each encoder
layer includes the following components:

1. Multi-Head Self-Attention with 4 attention heads
2. Add & Layer Normalization applied after the attention mechanism
3. Position-wise Feedforward Network, consisting of:

• A linear layer: 256 → 512
• ReLU activation
• A linear layer: 512 → 256

4. Add & Layer Normalization applied after the feedforward network

After passing through the encoder, a final layer maps each input to 10 output values. Each output
represents the probability of the data point belonging to a specific cluster.

We use a cosine annealing (Loshchilov & Hutter, 2016) learning rate schedule with a warm-up,
applied to an AdamW optimizer initialized with a tuned learning rate of 0.001.

C.2 LOSS FUNCTION

The loss function used is the cross-entropy loss. There are two components to the overall loss: the
loss from the data point cluster assignments and the loss from the predicted number of clusters. The
final loss is computed as the sum of the average cluster assignment loss and the cluster prediction
loss.

D EXTERNAL METRIC FORMULAS

Here, we discuss the meaning of the metrics in more detail and their interpretation.

D.1 ADJUSTED RAND INDEX

RI =
TP + TN

TP + FP + FN + TN
(5)

The Rand Index measures the similarity between clusterings by examining pairs of data points:

• TP (True Positives): Pairs of points that are in the same cluster in both the predicted and
true clusterings.

• TN (True Negatives): Pairs of points that are in different clusters in both the predicted and
true clusterings.

• FP (False Positives): Pairs of points that are in the same cluster in the prediction, but in
different clusters in the ground truth.

• FN (False Negatives): Pairs of points that are in different clusters in the prediction, but in
the same cluster in the ground truth.

Intuitively, the Rand Index evaluates the proportion of decisions (about whether a pair of points
should be in the same cluster or not) that the clustering algorithm got correct. However, since the
RI does not account for chance groupings, the Adjusted Rand Index introduces a normalization that
adjusts the score for random labelings (Hubert & Arabie, 1985b).
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D.2 ADJUSTED MUTUAL INFORMATION

MI(U, V ) =

|U |∑
i=1

|V |∑
j=1

|Ui ∩ Vj |
N

log

(
N |Ui ∩ Vj |
|Ui||Vj |

)
(6)

Where:

• U = {U1, U2, . . . , U|U |} is the set of ground truth clusters.

• V = {V1, V2, . . . , V|V |} is the set of predicted clusters.
• N is the total number of data points.
• |Ui ∩ Vj | is the number of data points that appear in both cluster Ui and cluster Vj .
• |Ui| and |Vj | are the sizes of clusters Ui and Vj , respectively.

The higher the mutual information, the better the clustering. However, mutual information is not
normalized and can be biased by the number of clusters. Adjusted mutual information corrects this
bias by subtracting the expected MI of random clusterings and normalizing the result Pedregosa
et al. (2011).

D.3 PURITY

Purity =
1

N

K∑
k=1

max
j

|Ck ∩ Lj | (7)

where N is the total number of data points and K is the number of clusters. Ck is the set of data
points in cluster k, and Lj as the set of data points with ground truth label j. The term |Ck ∩ Lj |
represents the number of data points in cluster k that belong to ground truth class j. In essence,
purity measures the extent to which clusters contain data points predominantly from a single true
class. A high purity value indicates that most points within each cluster belong to the same class,
reflecting better clustering performance.

D.4 NEGATIVE LOG-LIKELIHOOD

lNLL = −
N∑
i=1

K∑
k=1

yik log(pik) (8)

We sum over all data points and clusters. For each input, yik is a binary indicator that is 1 if the
sample, i belongs to the cluster k and zero otherwise, and pik is the predicted probability that sample
i belongs to cluster k. Since dataset sizes can vary, we use the average NLL as our loss metric. As
our true labels will not necessarily match with the labels from the models, we will permute the labels
and retrieve the lowest NLL given by both of the models.

E FURTHER EXPERIMENTS

E.1 ADHERING TO THE CONDITIONING MECHANISM

To quantitatively evaluate the conditioning accuracy, we sampled 30,000 synthetic datasets and pro-
vided a randomly selected cluster count as the conditioning input to the Cluster-PFN. We then mea-
sured how closely the predicted number of clusters matched the specified condition. This was done
by first obtaining the hard labels from the Cluster-PFN’s predictions and then counting the number
of unique labels. The evaluation was performed under varying thresholds:

• A threshold of 0 means the model predicted exactly the conditioned number of clusters.
• A threshold of 1 allows for a deviation of ±1 from the condition.
• A threshold of 2 allows for a deviation of ±2 from the condition.
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Figure 8: Cluster-PFN listening to condition at different thresholds (conditioning on more appropri-
ate clusters)

Figure 7: Cluster-PFN listening to condition at different thresholds (conditioning on random clus-
ters)

Figure 7 shows the accuracy across different thresholds. In the Hard setting, the Cluster-PFN adheres
to the conditioning slightly better than in the Easy setting. However, the conditioning is generally
ineffective when using randomly specified cluster numbers, as evidenced by the highest accuracy at
threshold 0 being just under 60%.

However, randomly sampling condition cluster values may not be the most meaningful way to eval-
uate the model’s conditioning ability, as some randomly assigned conditions may differ substantially
from the Cluster-PFN’s natural prediction. In such cases, forcing the model to deviate significantly
from its prediction is not very sensible.

To address this, we conduct a second experiment. Instead of randomly selecting conditions, we
begin with the model’s unconditioned prediction and perturb it by ±1 cluster. We then evaluate how
well the Cluster-PFN adapts to these nearby, more reasonable conditioning values.

We observe significantly higher accuracy when the conditioning values are more reasonable. The
model already achieves strong accuracy at a threshold of 0, with a sharp increase in performance at
a threshold of 1, and reaches perfect accuracy at the final threshold.
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E.2 EXTERNAL METRIC VIOLIN AND HISTOGRAM PLOT OF CLUSTER-PFN AGAINST VI

AMI ARI Purity0.80

0.85

0.90

0.95

1.00

Sc
or

e

violin plot 2D Easy

0-0.25
0.25-0.5

0.5-0.75
0.75-1 >1 Inf

NLL

0

100

200

300

400

500

600

700

Co
un

t

Histogram of NLL 2D Easy

Cluster-PFN VI

Figure 9: External metrics and NLL for 2D Easy datasets when the number of clusters is unknown.
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Figure 10: External metrics and NLL for 5D Easy datasets when the number of clusters is unknown.
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Figure 11: External metrics and NLL for 5D Hard datasets when the number of clusters is unknown.
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Figure 12: External metrics and NLL for 2D Easy datasets when the number of clusters is known.
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Figure 13: External metrics and NLL for 5D Easy datasets when the number of clusters is known.
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Figure 14: External metrics and NLL for 2D Hard datasets when the number of clusters is known.
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Figure 15: External metrics and NLL for 5D Hard datasets when the number of clusters is known.

E.3 EXTERNAL METRIC WIN RATE SCORES OF CLUSTER-PFN AGAINST VI

Table 3: Win rate across 1,000 datasets with both models given the true number of clusters.

Setting Model Experiment A: VI 1 init Experiment B: VI 10 init

AMI ARI Purity NLL AMI ARI Purity NLL

2D Easy Cluster-PFN 39.1 40.0 37.2 59.5 25.8 25.9 23.6 38.6
VI 22.8 20.4 18.2 49.5 32.3 29.4 26.4 61.4
Ties 38.1 39.6 44.6 0 41.9 44.7 50 0

5D Easy Cluster-PFN 38.7 39.6 35.4 48.0 24.3 24.2 20.7 33.3
VI 18.6 15.2 14.0 52.0 26.5 22.7 21.4 66.7
Ties 42.7 45.2 50.6 0 49.2 53.1 53.1 0

2D Hard Cluster-PFN 36.4 41.4 39.4 59.1 23.8 29.3 28.1 49.9
VI 40.9 34.7 32.9 40.9 52.4 45.4 42.9 51.1
Ties 22.7 23.9 27.7 0 23.8 25.3 29 0

5D Hard Cluster-PFN 34.8 39.6 37.1 58.3 20.3 24.6 22.4 47.3
VI 39.6 33.6 32.0 41.7 51.8 46.3 44.1 52.7
Ties 25.6 26.8 30.9 0 27.9 29.1 33.5 0

Table 4: Win rate across 1,000 datasets with both models not given the true number of clusters

Setting Model Experiment A: VI 1 init Experiment B: VI 10 init

AMI ARI Purity NLL AMI ARI Purity NLL

2D Easy Cluster-PFN 27.2 28.10 15.5 40 18.5 17.6 8.3 30.8
VI 30.3 26.8 29.4 60 36.1 33.3 34.5 69.2
Ties 42.5 45.1 55.1 0 45.4 49.1 57.2 0

5D Easy Cluster-PFN 41.9 42.4 11 53.6 34.9 34.5 5.9 42.2
VI 25 22.5 25 46.4 29.1 26.3 28.2 57.8
Ties 33.1 35.1 64 0 36 39.2 65.9 0

2D Hard Cluster-PFN 21.4 25.9 22.9 53.8 14.9 19.2 18.4 49.9
VI 53.1 47.2 44.7 46.2 59.7 53.8 49.9 50.1
Ties 25.5 26.9 32.4 0 25.4 27 31.7 0

5D Hard Cluster-PFN 26.1 30.2 15 54.2 18.2 21.6 9.9 45.1
VI 51.7 46.2 49.1 45.8 58.6 54.0 54.7 54.9
Ties 22.2 23.6 35.9 0 23.2 24.4 35.4 0

Tables 3 and 4 report the percentage of datasets where each model outperforms the other, both when
the true number of clusters is provided and when it must be inferred through model selection. We
evaluate VI with both a single initialization and 10 initializations for a fairer comparison.

Table 3 shows that when the true number of clusters is known and VI is run with only one initializa-
tion, Cluster-PFN often outperforms VI—either achieving higher win rates directly or tying more
frequently. With 10 initializations, however, VI gains a clear advantage, particularly in the harder
settings, though ties remain common across many metrics.
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Table 4 highlights the more challenging scenario where the number of clusters is not provided.
Here, VI generally outperforms Cluster-PFN under both initialization settings. Nevertheless, a large
proportion of results still end in ties, indicating that Cluster-PFN remains competitive.

E.4 EXTERNAL METRIC SCORES OF CLUSTER-PFN AGAINST GMM AND K-MEANS++

We also evaluate the Cluster-PFN against traditional clustering algorithms such as GMM and K-
means++. Using 30,000 sampled datasets, we evaluate each model by computing its average ranks
across the external metrics (AMI, ARI, purity), where a rank of 1 denotes the best performance
and 3 the worst. The GMM and K-means++ were provided with the true number of clusters during
evaluation.

Table 5: Mean AMI ranks of the models across 30,000 datasets for various experiments (lower is
better).

Model Rank (↓)
2D Easy 5D Easy 2D Hard 5D Hard

Cluster-PFN 1.57 1.57 1.60 1.56
GMM 1.96 2.02 1.75 1.72
K-means++ 2.47 2.41 2.65 2.72

Model 2D Easy 5D Easy 2D Hard 5D Hard
Cluster-PFN 1.54 1.54 1.50 1.49
GMM 1.99 2.05 1.82 1.79
K-means++ 2.47 2.41 2.68 2.72

Table 6: Mean ARI ranks of the models across 30,000 datasets for various experiments (lower is
better).

Model 2D Easy 5D Easy 2D Hard 5D Hard
Cluster-PFN 1.71 1.70 1.70 1.66
GMM 1.93 1.99 1.72 1.70
K-means++ 2.36 2.31 2.58 2.64

Table 7: Mean Purity ranks of the models across 30,000 datasets for various experiments (lower is
better).

E.5 ADDITIONAL MISSINGNESS AND REAL-WORLD RESULTS
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Figure 16: AMI scores for different models at varying missingness levels in real-world median
imputed datasets. Error bars show standard error across 20 simulations (higher is better).
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Figure 17: Purity scores for different models at varying missingness levels in real-world median
imputed datasets. Error bars show standard error across 20 simulations (higher is better).
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Figure 18: ARI scores for different models at varying missingness levels in real-world mean imputed
datasets. Error bars show standard error across 20 simulations (higher is better).
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Figure 19: AMI scores for different models at varying missingness levels in real-world mean im-
puted datasets. Error bars show standard error across 20 simulations (higher is better).

0.0 0.2 0.4 0.6 0.8 1.0
Missingness level

0.4

0.5

0.6

0.7

0.8

0.9

Pu
rit

y

Purity vs Missingness RNA

0.0 0.2 0.4 0.6 0.8 1.0
Missingness level

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pu
rit

y

Purity vs Missingness GLS1

0.0 0.2 0.4 0.6 0.8 1.0
Missingness level

0.5

0.6

0.7

0.8

0.9

1.0

Pu
rit

y

Purity vs Missingness GLS2

0.0 0.2 0.4 0.6 0.8 1.0
Missingness level

0.6

0.7

0.8

0.9

1.0

Pu
rit

y

Purity vs Missingness GLS3

aic_mean bic_mean silhouette_mean VI_mean Cluster-PFN_mean Cluster-PFN trained on missingness prior

Figure 20: Purity scores for different models at varying missingness levels in real-world mean im-
puted datasets. Error bars show standard error across 20 simulations (higher is better).
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