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Abstract

The generation of terabytes of hydrogeological sen-
sor data each year has driven a growing demand
for hydrological data analysis to aid in water re-
source prediction and management. However, these
data present complex spatio-temporal dependencies,
especially for large-scale data. Traditional statis-
tical methods like PCA often fail to capture non-
linear temporal patterns, and existing deep learn-
ing approaches do not effectively focus on integrat-
ing spatial context. This paper introduces a deep
spatio-temporal autoencoder architecture to learn
embeddings from decades of French groundwater
level data. By using contrastive learning, we com-
bine time series and their geographical coordinates
to generate low-dimensional embeddings. We demon-
strate that these embedding vectors are highly effec-
tive for downstream tasks, unsupervised clustering,
compared with traditional methods. Crucially, our
approach achieves a Normalized Mutual Infor-
mation (NMI) score exceeding 0.55 against an
expert-labeled ground truth, confirming that the
learned representations capture physically meaning-
ful subsurface characteristics.

1 Introduction

Understanding groundwater level is essential for
managing groundwater resources, supporting fore-
casting and assessing geological hazards. Nowadays,
modern sensors generate vast amounts of contin-
uous data, but extracting meaningful patterns is
always challenging due to noise, non-linearities, and
intricate dependencies across multiple temporal and
spatial scales. While traditional statistical methods
like PCA are limited by their linearity and inability
to handle sequential data, or models like ARIMA do
not work well for Long-term time series data. To ad-
dress these limitations, we propose a deep learning
framework for spatio-temporal representations from
hydrogeological data. With the contributions: (1)
We introduce a autoencoder architecture using CNN
and MLP-Mixers [1] for long-range dependency, (2)
We demonstrate that adding spatial coordinates sig-
nificantly improves the quality of embedding vectors
(3) we also demonstrate that the embedding vectors
from our model capture a classification structure
that strongly aligns with expert-defined labels.
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Subsurface Insight: Spatio-Temporal Embeddings for Hydrogeo-

2 Methodology

2.1 Data and Preprocessing

We use a large-scale dataset from France since
1960 [2]. Let the initial raw dataset be denoted
as Draw = {(Xi, Ci)}¥,, where X; is the raw time
series from sensor i, and C; represents its geographi-
cal coordinates. First, missing values are filled using
surrounding values. However, to avoid affecting the
distribution of the data when sampling, any time
series with a continuous gap exceeding 30 days is
segmented at the missing. This process each origi-
nal series X; into a set of one or more continuous
sub-series, or segments, {S; 1,S5;2,..., Sik,; }, where
k; > 1. Next, each outlier in segment S;; is re-
moved using the interquartile range (IQR) method,
where any data point outside the range is clipped.
After that, we apply two-step normalization. First,
a Box-Cox power transformation is applied to stabi-
lize variance. Then, we apply Z-score normalization
to ensure consistency across the entire data set.

Finally, our dataset is a collection of all normalized
segments, each paired with its original sensor’s nor-
malized coordinates, denoted as {(S; ;,C;)}. This
structure is specifically designed for our contrastive
learning framework, where any two segments orig-
inating from the same sensor i (e.g., S; ; and 5} )
constitute a positive pair.

2.2 Model Architecture.

Our model is an autoencoder inspired by TimeMixer
[3, 4] and uses a convolutional neural network (CNN)
[5]. As illustrated in the figure 1, it processes two
inputs: a time series window W € RE*! and its
geographical coordinates C' € R2.

The core of the encoder consists of two parallel
processing paths followed by a fusion layer. The
time series path first processes the input window W
through a series of 1D CNN blocks (A) to extract
a hierarchy of local features. These features are then
combined by several Mixer Blocks to capture long-
range connections. Concurrently, the spatial path
processes the geographical coordinates C' by an MLP
to produce a location embedding. Crucially, the
outputs from both the temporal path and the spatial
path are then concatenated and passed through
a final fusion layer (MLP) to create the latent
embedding e. The latent embedding e serves as the
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input for two downstream heads, each corresponding
to a distinct training objective. First, it is passed to
the decoder, which reconstructs the original time
series W using a U-Net-like architecture to ensure
high-fidelity output [6]. Second, e is fed through a
projection head for the contrastive learning task.

Time Series Loca
J
A Y
A. CNN MLP
Y
B. Mixer
; C. Embeding
\4 \ 4
Decoder Projection
y Y
Reconstructed Series (S) Projection (z)

Figure 1. Our final architecture, henceforth referred
to as 'Our Model’, consists of a CNN branch for local
feature extraction and an MLP-Mixer branch for long-
range dependencies

Training Objective, the model is trained end-
to-end to minimize a composite loss function, which
combines a reconstruction objective and a con-
trastive learning objective:

Ltotal = Lcontrastive + Ofﬁrecon

Here, Liecon is the Mean Squared Error (MSE)
between W and W and The hyperparameter « is
a weighting factor that balances the contribution
of the reconstruction loss. For the contrastive task,
we pass the embedding e through a projection and
compute the NT-Xent loss [7], which encourages
similar time series to have closer embeddings in the
projection space. After training, only the encoder
and fusion modules are used for downstream tasks.
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3 Results and Analysis

We trained our model on a training set of 8,805
segments, validating on 2,202 segments. Models
were trained using the Adam optimizer with a learn-
ing rate of 10~* and early stopping. The evaluation
of the embedding quality was done in two stages.

First, to validate our architectural design choices,
we conducted an ablation study comparing our full
model against several variants using internal clus-
tering metrics (k=4). Our full proposed archi-
tecture is denoted as ”Our Model”. We compare it
against a PCA baseline and key architectural vari-
ants to justify our design choices. The results are
summarized in Table 1. Our full model achieves the
highest Silhouette Score and lowest WCSS. Notably,
(Our Model (no loca)) significantly decreases per-
formance, confirming the importance of integrating
spatial information.

Second, to validate embedding vectors quality
in the real-world, we use a small dataset, experts
classified it into “IG” sectors based on geological,
hydrogeological, topographical, and administrative
criteria, which were used as reference labels in the
BSN study [8] to evaluate clustering performance,
we clustered the embedding vectors into 66 groups,
corresponding to the number of labeled. This com-
parison yielded a Normalized Mutual Informa-
tion (NMI) score exceeding 0.55, which shows a
strong correspondence of our clustering with the ex-
pert classification, and indicates that the model has
learned to capture hydrologically significant features.

Table 1. Comparison of clustering performance. ” Our
Model (CNN+Mixer)” is our full proposed architecture.
Bold values indicate the best result for each metric. For
WCSS and DBI, lower scores are better.

Model Sil  WCSS DBI
Our Model 0,58 36.279 0,60
Our Model (no loca) 0,50 175.329 0,65
PCA 0.53 447.094 0,55
CNN+Att 0.54 171.369 0,62
CNN+Mixer+Att 0.35 265.529 1,19

4 Conclusion

We have presented an architecture effectively cap-
tures complex patterns, and we also demonstrate
that incorporating geographical information is cru-
cial for learning high-quality representations. The
embedding vectors work well in unsupervised cluster-
ing, proven effective on real data. Future work will
explore applying these embeddings to downstream
tasks such as forecasting and anomaly detection.
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