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Abstract001

The generation of terabytes of hydrogeological sen-002

sor data each year has driven a growing demand003

for hydrological data analysis to aid in water re-004

source prediction and management. However, these005

data present complex spatio-temporal dependencies,006

especially for large-scale data. Traditional statis-007

tical methods like PCA often fail to capture non-008

linear temporal patterns, and existing deep learn-009

ing approaches do not effectively focus on integrat-010

ing spatial context. This paper introduces a deep011

spatio-temporal autoencoder architecture to learn012

embeddings from decades of French groundwater013

level data. By using contrastive learning, we com-014

bine time series and their geographical coordinates015

to generate low-dimensional embeddings. We demon-016

strate that these embedding vectors are highly effec-017

tive for downstream tasks, unsupervised clustering,018

compared with traditional methods. Crucially, our019

approach achieves a Normalized Mutual Infor-020

mation (NMI) score exceeding 0.55 against an021

expert-labeled ground truth, confirming that the022

learned representations capture physically meaning-023

ful subsurface characteristics.024

1 Introduction025

Understanding groundwater level is essential for026

managing groundwater resources, supporting fore-027

casting and assessing geological hazards. Nowadays,028

modern sensors generate vast amounts of contin-029

uous data, but extracting meaningful patterns is030

always challenging due to noise, non-linearities, and031

intricate dependencies across multiple temporal and032

spatial scales. While traditional statistical methods033

like PCA are limited by their linearity and inability034

to handle sequential data, or models like ARIMA do035

not work well for Long-term time series data. To ad-036

dress these limitations, we propose a deep learning037

framework for spatio-temporal representations from038

hydrogeological data. With the contributions: (1)039

We introduce a autoencoder architecture using CNN040

and MLP-Mixers [1] for long-range dependency, (2)041

We demonstrate that adding spatial coordinates sig-042

nificantly improves the quality of embedding vectors043

(3) we also demonstrate that the embedding vectors044

from our model capture a classification structure045

that strongly aligns with expert-defined labels.046

2 Methodology 047

2.1 Data and Preprocessing 048

We use a large-scale dataset from France since 049

1960 [2]. Let the initial raw dataset be denoted 050

as Draw = {(Xi, Ci)}Ni=1, where Xi is the raw time 051

series from sensor i, and Ci represents its geographi- 052

cal coordinates. First, missing values are filled using 053

surrounding values. However, to avoid affecting the 054

distribution of the data when sampling, any time 055

series with a continuous gap exceeding 30 days is 056

segmented at the missing. This process each origi- 057

nal series Xi into a set of one or more continuous 058

sub-series, or segments, {Si,1, Si,2, ..., Si,ki
}, where 059

ki ≥ 1. Next, each outlier in segment Si,j is re- 060

moved using the interquartile range (IQR) method, 061

where any data point outside the range is clipped. 062

After that, we apply two-step normalization. First, 063

a Box-Cox power transformation is applied to stabi- 064

lize variance. Then, we apply Z-score normalization 065

to ensure consistency across the entire data set. 066

Finally, our dataset is a collection of all normalized 067

segments, each paired with its original sensor’s nor- 068

malized coordinates, denoted as {(S′
i,j , C

′
i)}. This 069

structure is specifically designed for our contrastive 070

learning framework, where any two segments orig- 071

inating from the same sensor i (e.g., S′
i,j and S′

i,l) 072

constitute a positive pair. 073

2.2 Model Architecture. 074

Our model is an autoencoder inspired by TimeMixer 075

[3, 4] and uses a convolutional neural network (CNN) 076

[5]. As illustrated in the figure 1, it processes two 077

inputs: a time series window W ∈ RL×1 and its 078

geographical coordinates C ∈ R2. 079

The core of the encoder consists of two parallel 080

processing paths followed by a fusion layer. The 081

time series path first processes the input window W 082

through a series of 1D CNN blocks (A) to extract 083

a hierarchy of local features. These features are then 084

combined by several Mixer Blocks to capture long- 085

range connections. Concurrently, the spatial path 086

processes the geographical coordinates C by an MLP 087

to produce a location embedding. Crucially, the 088

outputs from both the temporal path and the spatial 089

path are then concatenated and passed through 090

a final fusion layer (MLP) to create the latent 091

embedding e. The latent embedding e serves as the 092
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input for two downstream heads, each corresponding093

to a distinct training objective. First, it is passed to094

the decoder, which reconstructs the original time095

series Ŵ using a U-Net-like architecture to ensure096

high-fidelity output [6]. Second, e is fed through a097

projection head for the contrastive learning task.098

Figure 1. Our final architecture, henceforth referred
to as ’Our Model’, consists of a CNN branch for local
feature extraction and an MLP-Mixer branch for long-
range dependencies

Training Objective, the model is trained end-099

to-end to minimize a composite loss function, which100

combines a reconstruction objective and a con-101

trastive learning objective:102

Ltotal = Lcontrastive + αLrecon

Here, Lrecon is the Mean Squared Error (MSE)103

between W and Ŵ and The hyperparameter α is104

a weighting factor that balances the contribution105

of the reconstruction loss. For the contrastive task,106

we pass the embedding e through a projection and107

compute the NT-Xent loss [7], which encourages108

similar time series to have closer embeddings in the109

projection space. After training, only the encoder110

and fusion modules are used for downstream tasks.111

3 Results and Analysis 112

We trained our model on a training set of 8,805 113

segments, validating on 2,202 segments. Models 114

were trained using the Adam optimizer with a learn- 115

ing rate of 10−4 and early stopping. The evaluation 116

of the embedding quality was done in two stages. 117

First, to validate our architectural design choices, 118

we conducted an ablation study comparing our full 119

model against several variants using internal clus- 120

tering metrics (k=4). Our full proposed archi- 121

tecture is denoted as ”Our Model”. We compare it 122

against a PCA baseline and key architectural vari- 123

ants to justify our design choices. The results are 124

summarized in Table 1. Our full model achieves the 125

highest Silhouette Score and lowest WCSS. Notably, 126

(Our Model (no loca)) significantly decreases per- 127

formance, confirming the importance of integrating 128

spatial information. 129

Second, to validate embedding vectors quality 130

in the real-world, we use a small dataset, experts 131

classified it into “IG” sectors based on geological, 132

hydrogeological, topographical, and administrative 133

criteria, which were used as reference labels in the 134

BSN study [8] to evaluate clustering performance, 135

we clustered the embedding vectors into 66 groups, 136

corresponding to the number of labeled. This com- 137

parison yielded a Normalized Mutual Informa- 138

tion (NMI) score exceeding 0.55, which shows a 139

strong correspondence of our clustering with the ex- 140

pert classification, and indicates that the model has 141

learned to capture hydrologically significant features. 142

Table 1. Comparison of clustering performance. ”Our
Model (CNN+Mixer)” is our full proposed architecture.
Bold values indicate the best result for each metric. For
WCSS and DBI, lower scores are better.

Model Sil WCSS DBI

Our Model 0,58 36.279 0,60
Our Model (no loca) 0,50 175.329 0,65
PCA 0.53 447.094 0,55
CNN+Att 0.54 171.369 0,62
CNN+Mixer+Att 0.35 265.529 1,19

143

4 Conclusion 144

We have presented an architecture effectively cap- 145

tures complex patterns, and we also demonstrate 146

that incorporating geographical information is cru- 147

cial for learning high-quality representations. The 148

embedding vectors work well in unsupervised cluster- 149

ing, proven effective on real data. Future work will 150

explore applying these embeddings to downstream 151

tasks such as forecasting and anomaly detection. 152
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