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ABSTRACT

The depth of networks plays a crucial role in the effectiveness of deep learning.
However, the memory requirement for backpropagation scales linearly with the
number of layers, which leads to memory bottlenecks during training. Moreover,
deep networks are often unable to handle time-series data appearing at irregular
intervals. These issues can be resolved by considering continuous-depth networks
based on the neural ODE framework in combination with reversible integration
methods that allow for variable time-steps. Reversibility of the method ensures
that the memory requirement for training is independent of network depth, while
variable time-steps are required for assimilating time-series data on irregular in-
tervals. However, at present, there are no known higher-order reversible methods
with this property. High-order methods are especially important when a high level
of accuracy in learning is required or when small time-steps are necessary due to
large errors in time integration of neural ODEs, for instance in context of complex
dynamical systems such as Kepler systems and molecular dynamics. The require-
ment of small time-steps when using a low-order method can significantly increase
the computational cost of training as well as inference. In this work, we present
an approach for constructing high-order reversible methods that allow adaptive
time-stepping. Our numerical tests show the advantages in computational speed
when applied to the task of learning dynamical systems.

1 INTRODUCTION

Deep neural networks are widely used across various learning tasks (Russakovsky et al., 2015; Esteva
et al., 2017), and their depth often plays a crucial role in the effectiveness of learning. These networks
have also been shown to be particularly useful in the tasks of learning models of dynamical systems
(Chen et al., 2018; Raissi et al., 2018a; Rudy et al., 2019b; Schüssler et al., 2019; Rudy et al., 2019a;
Liu et al., 2022; Raissi et al., 2018b). It was recently shown that the use of numerical methods for
neural network architectures can provide impressive results with theoretical guarantees (Haber &
Ruthotto, 2017; Chang et al., 2018; Celledoni et al., 2021; Maslovskaya & Ober-Blöbaum, 2024).
In this work we use the theory of symmetric numerical methods for the construction of a new class
of reversible neural networks. The new class allows memory efficient computations of gradients
in training and reduced computational costs in learning models of dynamical systems, where the
parameters typically need to be identified to high accuracy and the depth of the networks can be very
large. Our network architecture constitutes an important contribution to ensure scalability of neural
ODEs to high-dimensional dynamical systems that arise, for instance, as discretizations of systems
governed by partial differential equations.

The high memory costs of computing the gradient of very deep neural networks using the back-
propagation algorithms poses a significant bottleneck in their training, hindering their scalability
and efficiency. To address this, a neural ODE approach combined with the adjoint method has been
proposed for gradient computations (Chen et al., 2018), which avoids storing intermediate states
during forward propagation, potentially making the cost of gradient computation independent of
network depth. However, it was quickly realized (Gholaminejad et al.; Zhuang et al., 2020) that using
this approach with arbitrary discretization methods leads to incorrect gradients.

The solution of this problem is to use reversible integrators, which ensure accurate gradient com-
putations by reconstructing intermediate states precisely during backward integration. However,
symplectic reversible integrators (Chang et al., 2018), which are a large class of well studied integra-
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tors, do not allow adaptivity in the step size and require a particular structure in the neural ODE. This
makes them unsuitable for use in time-series applications where data appears at irregular intervals,
when time-steps need to be decreased adaptively to achieve a prescribed accuracy in the learning of
dynamical systems, or when the identified model is used to predict continuous trajectories.

Adaptive time-stepping for numerical integrators for differential equations is a well-established field
in numerical analysis (Hairer et al., 2013; Deuflhard & Bornemann, 2002). In adaptive time-stepping,
step sizes for an integration step are selected such that an estimate for the local error is below a given
error tolerance. In this way, computational cost in numerical integration can be saved when large
step sizes are sufficient to obtain accurate results, while step sizes are automatically decreased when
required. The only reversible methods compatible with variable time-step selection without losing
the reversibility property are asynchronous leapfrog (ALF) (Mutze, 2016), which is based on the
classical Verlet method (also known as leapfrog method) (Verlet, 1967), and the reversible Heun
method (Kidger et al., 2021).

ALF has been used to construct neural network architectures known as MALI networks (Zhuang et al.,
2021). These methods are based on operating on an augmented space: a neural ODE in the original
variable z is extended to a larger space and replaced by a neural ODE in (z, v). Both methods are
known to be of order of accuracy (2, 1) in (z, v) (Mutze, 2016), which makes them computationally
costly in learning tasks that require high accuracy in the integration of the neural ODE, in particular,
in learning of dynamical systems. To be able to reach high accuracy, the lower order methods are
forced to use small step sizes and, as a result, have higher computational costs. This phenomenon
was highlighted in the examples in (Matsubara et al., 2021). Furthermore, we show in C.1 that in
parameter identification tasks there is a direct relation between the order of a numerical integrator and
the order of accuracy of identified parameters. Therefore, there is a need for higher order reversible
methods, which we address in this paper.

Various machine learning techniques have emerged in the past decades for approximating models
of dynamical systems (Ghadami & Epureanu, 2022). These include methods based on Gaussian
processes (Bouvrie & Hamzi, 2017; Raissi & Karniadakis, 2018; Hamzi & Owhadi, 2021), sparse
regression on libraries of basis functions (Brunton et al., 2016; Tran & Ward, 2017; Reinbold et al.,
2021), and recurrent neural networks (RNNs) (ichi Funahashi & Nakamura, 1993; Bailer-Jones
et al., 1998; Karniadakis et al., 2021). In particular, the neural ODE approach (Chen et al., 2018)
identified an important connection between the RNN structure and the numerical methods available
for integration of differential equations. This was generalized by universal differential equations in
(Rackauckas et al., 2021) for different types of differential equations. Other generalizations include
physics informed learning of dynamical systems (Greydanus et al., 2019; Cranmer et al., 2020b;
Jin et al., 2020; Chen et al., 2020) and operator approximation (Chen & Chen, 1995; Lu et al.,
2021; Lin et al., 2023; Boullé & Townsend, 2024). If the training data consists of time-series data
that corresponds to a constant time-step, neural ODEs can be trained with a low order method and
time-series can be predicted with high accuracy provided that the trained neural ODE is integrated
with the same integrator that was used during training (Zhu et al., 2021; David & Méhats, 2023; Offen
& Ober-Blöbaum, 2022; Ober-Blöbaum & Offen, 2023). However, in realistic examples, snapshots
of trajectories with variable time-steps need to be processed (Raissi et al., 2018b; Rudy et al., 2019b;
Liu et al., 2022). Moreover, a discretization-independent prediction of the system’s evolution is
often desired and learning of underlying differential equations requires high accuracy in the learned
parameters, which requires high accuracy simulation.

We demonstrate that our approach can be applied to high-dimensional dynamical systems, including
those arising from discretizations of partial differential equations. This is a highly active research
area. Other approaches in this context include model order reduction based techniques and operator
inference (see the review (Kramer et al., 2024) or e.g. (Sharma et al., 2024; 2023; Allen-Blanchette
et al., 2020; Mason et al., 2022)), or structure-preserving approaches for discrete field theories (Qin,
2020; Offen & Ober-Blöbaum, 2024; Offen, 2024).

The main contribution of this paper is the development of a methodology to construct reversible
neural networks based on higher order numerical methods. First, we prove that, in contrast to the
analysis in (Mutze, 2016), ALF is of order 2 in both (z, v) at even time-steps. Using this property
and the theory of composition methods, we construct a class of reversible networks of any even order.
A particular architecture based on 4th order networks is compared to the already known ALF method
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on examples of learning dynamical systems. The comparison of the two methods with adaptive
time-stepping shows that the proposed higher order method is computationally more efficient.

2 BACKGROUND

2.1 NEURAL ODE
Assume that an unknown function F : X → Y is approximated by a neural network based on training
data {xi, yi = F(xi)}ni=1. The neural ODE approach to the deep network design employs the idea
of continuous-depth networks and their discretization by a numerical method. The continuous-depth
network is defined as a flow of a neural ODE of the form

ż(t) = f(z(t), θ(t)), z(0) = (x1, . . . , xn), (1)

on the time interval [0, T ] for some vector field f . Discretization of a neural ODE with a numerical
method of step size h is defined as follows

zj+1 = σh(zj , θj), j = 0, . . . , N − 1,

z0 = z,
(2)

where zj is the value of the feature variable at the jth layer with the total number of layers N and
z = (x1, . . . , xn). The step size can be chosen in an adaptive manner for each layer and it is not
considered as an optimization parameter. The learning problem is to find parameters {θj}N−1

j=0 which
lead to the best approximation of F . The parameters are usually found as a solution of the following
optimization problem.

min
{θj}

J = L(zN , y)

zj+1 = σh(zj , θj), j = 0, . . . , N − 1,

z0 = z,

(3)

where L(·, ·) is a loss function which measures the distance between the output of the network and
the training data y = (y1, . . . , yN ).

Because of the connection between network equation 2 and the corresponding neural ODE equation 1,
there exists a continuous counterpart of equation 3 which makes equation 3 an approximation of an
optimal control problem of the form

min
θ(t)

J = L(z(T ), y)

ż(t) = f(z(t), θ(t)), t ∈ [0, T ],

z(0) = z.

(4)

Solutions of equation 3 are usually found using methods based on gradient descent. Such methods
require computations of the gradients of the loss function with respect to all parameters {θj}N−1

j=0 .

2.2 METHODS OF GRADIENT COMPUTATIONS

Backpropagation Let J = L(zN , y). By the chain rule, the gradient is given by

∂

∂θj
J = ∇zL(zN , y)⊤

∂zN
∂zN−1

· · · ∂zj+2

∂zj+1

∂zj+1

∂θj
.

To avoid computationally expensive multiplication of large matrices, the formula is evaluated from
the left to the right (backpropagation). This requires that the intermediate values zj (j = 1, . . . , N )
are available. Their size corresponds to the width of the layer and their number to the network’s
depth N .

Adjoint method This approach is based on the formula for the continuous gradients via adjoint
variables p(t). The adjoint variables are the solution of

ṗ = − ∂

∂z
f(z(t), θ(t))⊤p, p(T ) = ∇L(z(T ), y), (5)

on time interval [0, T ] and the differential of J(θ) with respect to θ(t) is calculated as follows

DJ(θ(t)) = p⊤(t)
∂

∂θ
f(z(t), θ(t)). (6)
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This method is particularly interesting when the available memory is limited. In this case, the
forward propagation is done to obtain the value of z(T ) and ∇L(z(T ), y), there is no need to save
the intermediate values zj and the computational graph, because the backpropagation is realized by
integrating the equations for (z(t), p(t)) numerically backward in time. The correct discretization of
the state-adjoint equations leads to the same expression for the gradient as the one obtained in the
backpropagation approach. Still, the values of zj obtained by the numerical integration backward do
not always coincide with the values obtained in the forward pass. This is why this approach usually
leads to inexact gradients. This issue can be solved by considering reversible networks.
Checkpointing An alternative approach for memory reduction is checkpointing (Gholaminejad
et al.), which stores a few intermediate states for a regeneration of the computation graph. In case of
adaptive time-stepping it was described in (Zhuang et al., 2020) and further improved in (Matsubara
et al., 2021) for the class of Runge-Kutta methods. This is a highly efficient approach, when used
in combination with higher order methods. In this case, a small number of checkpoints is required
to get a high accuracy in learning. However, when the learning task is to learn a dynamical system
from long trajectories of complex systems, then the number of checkpoints becomes large and can
lead to memory leaks. This is why it is important to have an alternative approach based on reversible
networks with the memory costs independent from the given task.

2.3 REVERSIBLE NEURAL NETWORK

A reversible network is a network with the property that there exists an explicit formula for backward
propagation zj+1 7→ zj that exactly inverts a forward pass zj 7→ zj+1, i.e., there exists a map σ̃(·),
such that zj = σ̃(zj+1) and zj+1 = σh(σ̃(zj+1), θj). It requires that the time-steps t0, . . . , tN
have been stored when the forward propagation was computed but it does not require storage of
the (potentially very high-dimensional) intermediate values zj . The discretizations of neural ODE
equation 2, which admit this property are called reversible methods. As for now, there are only two
known reversible methods allowing for an adaptive choice of the step size, namely, asynchronous
leapfrog (Zhuang et al., 2021) and reversible Heun (Kidger et al., 2021).

This notion of reversibility for neural networks needs to be contrasted with the notion of time-
reversibility or symmetry for numerical integrators. In the context of neural networks, reversibility
means that there exists an explicit, efficient formula to invert the forward pass. In numerical
integration theory, a time-reversible or symmetric numerical integrator is a formula to advance
the solution of an ordinary differential equation by time h such that its inverse is obtained by
substituting h by −h (Hairer et al., 2006, II.3). In case of the dynamical system f(z(t), θ(t)) from
equation 2, if the discretization by a numerical method zj+1 = σh(zj , θ(tj)) is symmetric, then it
implies zj = σ−h(zj+1, θ(tj+1)), or equivalently, zj = σ−h(zj+1, θj+1). Therefore, we can set
σ̃(·) = σ−h(·, θj+1), which implies that the method is reversible. The symmetry of integrators is
beneficial in the context of the article as inverses of the methods required for backpropagation take
simple forms and efficient classical techniques to construct higher order methods (Hairer et al., 2006,
II.4) apply.
Asynchronous Leapfrog (ALF) method As the optimization parameter θ(t) in the dynamics
f(z(t), θ(t)) depends on time, it can be seen as a part of f and written simply fθ(z(t), t). The
ALF method requires the augmentation of the pair of state and time (z, t) with the velocity v which
approximates fθ(z(t), t). We denote a step forward of the ALF method with the step size h by ΨALF

h .
Given a triple (zj , vj , tj) and a step size h, the algorithm generates in the forward pass the next values
(zj+1, vj+1, tj+1) as follows(

zj+1

vj+1

)
= ΨALF

h (zj , vj , tj) =

(
zj + hfθ(zj +

h
2 vj , tj +

h
2 )

2fθ(zj +
h
2 vj , tj +

h
2 )− vj

)
, tj+1 = tj + h. (7)

The step backward calculates (zj , vj , tj) from (zj+1, vj+1, tj+1) as follows(
zj

vj

)
= ΨALF

−h (zj+1, vj+1, tj+1), tj = tj+1 − h. (8)

If the method is initialized at (z0, f(z0, t0), t0), then ALF is a second order method in z and first
order method in v, as it was shown in (Zhuang et al., 2021). The order of accuracy is the order in
step size h of the error of the numerical flow compared with the exact flow of the ODE (Hairer et al.,
2006). Notice that ALF is symmetric by definition.
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The reversible Heun method is another reversible method based on state-space augmentation and
was introduced in (Kidger et al., 2021). The method was shown to be also of second order in z and
first order in v. In addition, it is a symmetric method. In the following part of the paper we will
concentrate on the construction of higher order methods based on ALF, but the same can be also
applied to the reversible Heun method.

3 NEW REVERSIBLE ARCHITECTURES

A general approach in numerical analysis to construct higher order symmetric methods is by compo-
sition (Hairer et al., 2006; 2013; Blanes et al., 2024a). In this case one can start with a lower order
numerical method and construct a new method by composition of the lower order method with a
particular choice of step sizes. This construction leads to a method of higher order of accuracy.

Numerical experiments, see Appendix A, show that ALF is of second order in the error with respect
to a high accuracy solver in both z and v. This is surprising as the order of consistency of ALF in v is
only 1 (Zhuang et al., 2021). Indeed, as we show below, a method consisting of a composition of two
steps of ALF has order of consistency 2 in (z, v), which explains the convergence behaviour. This
observation is required to apply theory for composition methods (Hairer et al., 2013; Blanes et al.,
2024a; Yoshida, 1990) to (two steps of) ALF.
Theorem 3.1. Composition of two steps of ALF methods, i.e. ΨALF

h/2 ◦ΨALF
h/2 , applied to ż = f(z, t)

provides second order accurate approximations of position z and velocity v = ż.

The proof of the theorem is based on comparing the terms in the Taylor series of the exact flow of
a differential equation and the numerical flow obtained by composition of two steps of the ALF
method. We refer to the Appendix A.1 for the computations. The composition of two steps of the
ALF method, each with time-step h

2 , will be called ALF2 and denoted by ΨALF2
h . Now we are

in a classical situation, with ALF2 a one step reversible method of even order and we can apply
the composition methods to construct higher order methods. In this work we consider the Yoshida
approach (Yoshida, 1990). Yoshida composition permits to construct methods of a higher accuracy
by composing numerical methods of order 2k for some integer k. It is defined by a symmetric
composition of the same method Ψ2k (2k stands for the order) with different step sizes

ΨY
h = Ψ2k

ah ◦Ψ2k
bh ◦Ψ2k

ah

with time-steps defined by

a =
1

2− 2
1

2k+1

, b = 1− 2a.

Theorem 3.2 ((Yoshida, 1990)). Yoshida composition of a reversible method Ψ2k of order 2k has
order 2k + 2 and is reversible.

Yoshida is not the only composition method that can be used, another possible approach is Suzuki
composition (Suzuki, 1991). Several approaches are reviewed in (Hairer et al., 2006; Blanes et al.,
2024b).
Remark 3.3. The approach based on Yoshida composition might require checkpoints in case of
certain neural ODEs, e.g., when the learning task is to learn a dispersive partial differential equation
such as heat equation. This is because the Yoshida composition forces the use of negative time-steps,
which can be a problem in dissipative cases, where it can lead to instability.

In the following, we will denote by ΨY,2k
h the higher order methods obtained by Yoshida composition

of ALF2, where 2k is the order of the method. The constructed higher order reversible method can be
used for the construction of a reversible network. In this case, the step forward and the step backward
are defined recursively based on the steps forward and backward of a lower order method ΨY,2k−2

h .
The starting method of order 2 is the ALF2 method, i.e. ΨY,2

h = ΨALF2
h by abuse of notation.

Adaptive stepping One of the main advantages in the construction of reversible methods based
on ALF is that they allow for adaptive step sizes (Hairer et al., 2006). This can be done in the same
manner as for ALF (Zhuang et al., 2021), where the main idea is to delete the computational graph
and all the variables needed for the step size computations and only the value of the accepted new
step size hj is saved. As a result, values h1, . . . , hN are saved and then accessed in the integration

5
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Algorithm 1 Step forward of 2k-th order Yoshida
1. Input: (zj , vj , tj , hj)

2. Set a = 1/(2− 2
1

2k+1 ), b = 1− 2a.

3. Set (z̃1, ṽ1) = ΨY,2k−2
ahj

(zj , vj , tj), t̃1 = tj + ahj

4. Set (z̃2, ṽ2) = ΨY,2k−2
bhj

(z̃1, ṽ1, t̃1), t̃2 = t̃1 + bhj

5. Set (zj+1, vj+1) = ΨY,2k−2
ahj

(z̃2, ṽ2, t̃2), tj+1 = t̃2 + ahj

if adaptive time-stepping then
6a. compute the error of zj+1, vj+1 w.r.t. the output of a (2k + 1)st order integration method

6b. compute the new hj+1 following (Hairer et al., 2006)

else
6. hj+1 = hj

end if
7. Output: (zj+1, vj+1, tj+1, hj+1)

backward needed for gradient computations. This can be done in exactly the same manner for our
Yoshida-based methods. The resulting steps forward and backward are summarized in Algorithm 1
and Algorithm 2.
Remark 3.4. Notice that even though the reversible Heun method was proved to be of order (2, 1) in
(z, v) in (Kidger et al., 2021), it was noted in the same paper that it gains the second order in both
variables at even steps. This implies that the composition approach can be used in this case as well.

Algorithm 2 Step backward of 2k-th order Yoshida
1. Input: (zj+1, vj+1, tj+1, hj+1)

2. Set a = 1/(2− 2
1

2k+1 ), b = 1− 2a.

3. Set (z̃1, ṽ1) = ΨY,2k−2
−ahj+1

(zj+1, vj+1, tj+1), t̃1 = tj+1 − ahj+1

4. Set (z̃2, ṽ2) = ΨY,2k−2
−bhj+1

(z̃1, ṽ1, t̃1), t̃2 = t̃1 − bhj+1

5. Set (zj , vj) = ΨY,2k−2
−ahj+1

(z̃2, ṽ2, t̃2), tj = t̃2 − ahj+1

6. Set hj from h1, . . . , hN obtained in the integration forward

7. Output: (zj , vj , tj , hj)

Gradient computations The augmentation of the feature space leads to the new variable which we
denote by ϕ = (z, v). Then, the learning problem is formulated as follows with Pz(ϕ) projection of
ϕ to z

min
{θj}

J = L(Pz(ϕN ), y)

ϕj+1 = ΨY,2k
h (ϕj , θj), j = 0, . . . , N − 1,

ϕ0 = (z, f(z, θ0)).

(9)

Following (Griesse & Walther, 2004), the discrete version of equation 5 associated with equation 9 is
given by

(λN )
⊤
= ∇L(ϕN ), λj =

(
∂ϕj+1

∂ϕj

)⊤

λj+1, (10)

and the gradients are computed by

∂J(θ)

∂θj
= λ⊤

j+1

∂ϕj+1

∂θj
. (11)

The adjoint method for the gradient computation as in the MALI network (Zhuang et al., 2021) and the
reversible Heun network (Kidger et al., 2021) is based on the propagation ϕj → ϕj+1 and automatic
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differentiation for the computation of the step backward of the adjoint variable following equation 10.
The resulting method of gradient computation is summarized in Algorithm 3. Alternatively, the exact
expression of the numerical method governing the adjoint dynamics equation 10 can be obtained, see
details in Appendix B. In this case, there is no need to compute ∂ϕj+1

∂ϕj
, which makes the approach

computationally more efficient and memory efficient.

Algorithm 3 Computation of gradients
1. Input: training data z0, initialization of parameters θ, velocity v0 = f(z0, θ0)

2. Propagate through the network using ΨY,2k
h to get (zN , vN )

3. Set λz
N = ∇L(zN , y) and λv

N = 0
for j = N-1 to 1 do

4. Compute ϕj from ϕj+1 using Algorithm 2
5. Compute ϕj+1 from ϕj using Algorithm 1 to get the computational graph
6. Compute λj from λj+1 using equation 10 and AD to compute ∂ϕj+1

∂ϕj

7. Compute ∂J(θ)
∂θj

using equation 11
8. Delete λj+1, ϕj+1 and the computational graphs

end for
9. Output: gradients ∂J(θ)

∂θj
for j = 1, . . . , N − 1.

Costs comparison We will use the following notations: d is the dimension of z, T is the length
of the time interval in the continuous-depth setting, N is the number of layers, M stands for the
number of layers in f , when f is given by a neural network itself, s denotes the number of steps
needed for the computation of a time-step in the adaptive step size selection, p is the order of the
considered numerical method and r is the number of evaluations of f used in the numerical method
(e.g. stages in Runge-Kutta methods or compositions in our approach). We show the comparison
of the new proposed approach with the standard backpropagation approach, adjoint method version
NODE (Chen et al., 2018), ACA approach (Zhuang et al., 2020) and MALI approach (Zhuang et al.,
2021) in Table 1, which extends the Table 1 in (Zhuang et al., 2021). We use big O notation, when
the constants depend on the learning tasks.

Computational costs The compositional structure of the proposed method directly implies that the
computation costs for gradient computations are equal to the computational costs by ALF multiplied
by r, the number of the compositions. Notice that N depends on the order p of the discretization
method and becomes smaller when the order is higher for fixed ε and T . As a result, ALF method
needs more time-steps, than higher order methods for ε < 1, which is related to the bias in the learned
parameters in the task of identification of the parameters, as explained in Appendix C.1 and illustrated
in Figure 4, and to the training error.

Memory costs The gradient computation requires to compute ∂ϕj+1

∂ϕj
leading to the storage of all

the intermediate states involved in the step forward. This increases the memory costs of MALI by
a factor r, see Table 1. Notice that the approach presented in Appendix B does not require to store
all the intermediate states. Indeed, a step backward of the state-adjoint system is a composition of
rescaled steps backward of the ALF method. Therefore, we only need to store one intermediate state
obtained in the composition at a time. This makes the method of the same memory cost as MALI.
Notice that depending on the depth of the network, adaptive checkpointing as in (Matsubara et al.,
2021) can be added. When no checkpoints are needed the behaviour is as in NODE and in the worst
case the behaviour is as in the backprop. In general, the number of checkpoints depends on N , which
depends linearly on T . Therefore, more checkpoints are needed in case of large T .

4 EXPERIMENTS

4.1 PARAMETER IDENTIFICATION IN DYNAMICAL SYSTEMS

We consider the identification problem of unknown parameters of a dynamical system. The structure
of the differential equations is assumed to be known, but some parameters in the equations are
unknown. The training data is given by snapshots of trajectories {xl(ti)}i,l with l = 1, . . . L, i =
0, . . . , I . The goal is to learn the parameters from the given trajectories. This class of problems can
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Table 1: Comparison of costs in gradient computations for different approaches
Method Computational costs Memory costs Number of epochs N in

function of accuracy ε∗

Backprop r × d×M ×N × s× 2 r×d×M×N×s T ×O(ε−
1

p+1 )

NODE r × d×M ×N × s× 2 d×M T ×O(ε−
1

p+1 )

ACA r × d×M ×N × (s+ 1) d× (M +N) T ×O(ε−
1

p+1 )

MALI d×M ×N × (s+ 2) d× (M + 1) T ×O(ε−
1
3 )

Proposed
method

r × d×M ×N × (s+ 2) r∗∗×d×(M+1) T ×O(ε−
1

p+1 )

∗ ε is the error tolerance for the estimation of the local error in the stepsize selection
∗∗ Memory costs of the proposed method can be reduced to r = 1, if the gradients are computed as in

AppendixB

be naturally treated using the neural ODE approach. The vector field f in equation 1 is given by the
known differential equation and θ = θ1, . . . , θs is the set of unknown parameters. In this case, the
learning problem can be stated in the form of equation 9, where the same θ1, . . . , θs appear all at
each layer. The training data z0 = (x1(t0), . . . , xL(t0)) stands for the initial points and y includes
all the other points of the given trajectories. We denote by y(ti) the points in y corresponding to
trajectories at time ti for i = 1, . . . , I . The loss have a particular structure in this case as it depends
on the intermediate states obtained during the integration of neural ODE, namely, it depends on
(zN1 , . . . , zNI

), to measure the distance with the given trajectories points (y(t1), . . . , y(tI)). As a
result, it takes the form L =

∑I
i=1 Li(zNi , y(ti)). Because of the additive form of the loss, the

gradients can be computed as a sum of the corresponding gradients of L1, . . . , LI as follows
∂L

∂θi
=

∂L1

∂θi
+ · · ·+ ∂LI

∂θi
, i = 1, . . . , s,

where each of the terms in the sum is computed using Algorithm 3. The memory efficiency is still
important in this case, because we do not store all the intermediate states at the propagation forward,
but only the states which approximate the trajectories at the desired times t1, . . . , tI .
Statistical inference In simulation based inference or likelihood-free inference probabilistic meth-
ods are employed to identify parameters in models based on repeated forward simulations (Cranmer
et al., 2020a). Traditionally, these consider the forward pass as a black box (such as Approximate
Bayesian Computation (ABC) (Rubin, 1984; Beaumont et al., 2002)) and do not require differentia-
bility with respect to the model parameters or the inputs. This needs to be contrasted to our proposed
neural network architecture, which is designed to circumvent large memory requirements in the
computation of gradients when the layers are wide. Indeed, a combination of our architecture with
simulation based inference models that do make use of gradients such as (Graham & Storkey, 2017)
constitutes an interesting avenue for future research.

4.1.1 KEPLER PROBLEM

We consider the Kepler problem, where the dynamics describes the evolution of the position q and
velocity v of a mass point moving around a much heavier body. It is modeled on the 4-dimensional
space x = (q, v) ∈ R2 × R2. The equations are defined on the time interval [0, 1] as follows

q̇ = v, v̇ = − α

∥q∥3
q, (12)

with an unknown parameter α ∈ R. The training set is given by the initial condition x(t0) and q-
coordinate of 5 points on a trajectory of equation 12 generated with α = π/4 ≈ 0.785, i.e. {q(ti)}5i=1.
The task is to learn α as accurately as possible. From the training set we form z0 = x(t0) and the
corresponding y(ti) = q(ti) for i = 1, . . . , 5. We set up a learning problem in the form of equation 9
with the loss defined by L =

∑5
i=1 ∥qNi

− q(ti)∥2 with qNi
projection of zNi

to q-coordinate and
Ni the number of time-steps used in the integration from ti−1 to ti. We compare two algorithms for
performing the numerical integration during training, namely, ALF and the Yoshida composition
of ALF2 of order 4. We write Y4 for the Yoshida composition method for shortness. We test the
wall-clock time required to reach loss accuracy 10−8 using adaptive methods. The tests are run for
different initializations of α in optimization. The results can be seen in Table 2. It can be observed
that in all tests, Y4 is at least four times faster than ALF. The reason of the faster training for Y4 is

8
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Table 2: Time to reach accuracy 10−8 using adaptive methods in the Kepler problem
Computation time

Initial value of α adaptive ALF adaptive Y4
0.1 7.68 sec 2.42 sec
0.7 4.07 sec 1.02 sec
0.75 3.26 sec 0.803 sec
0.8 2.5 sec 0.44 sec
1.3 8.39 sec 3.85 sec

Table 3: Time to reach accuracy 10−4 using adaptive methods in nonlinear oscillators problem
Computation time

Mean parameter error at initialization adaptive ALF adaptive Y4
0.28897009 81608 sec 51720 sec
0.29821727 68645 sec 40646 sec
0.30549358 56764 sec 29990 sec
0.30289593 96301 sec 46524 sec
0.29106813 22161 sec 13790 sec

in using larger step sizes for the forward integration. The lower order method requires smaller step
sizes to reach the same accuracy defined by an error tolerance and this leads to more steps in the
computation of trajectories. Additional results for the Kepler problem supporting the reasoning can
be found in Appendix C.1.

4.1.2 NONLINEAR HARMONIC OSCILLATOR

In the second example we consider a system of coupled Duffing oscillators, which describes the
movements of a coupled system of mass points attached with springs with nonlinear elastic forces.
The dynamics of N mass points is given by the following equations

q̇i = vi, v̇i = −aiqi − biq
3
i −

N∑
j=1

ei,j(qi − qj), i = 1, . . . , N, (13)

with the condition ei,j = ej,i. Positions of N mass points are given by q = (q1, · · · , qN ) ∈ RN and
velocities by v = (v1, · · · , vN ) ∈ RN . We set x = (q, v) ∈ R2N . In the numerical experiments
we fix N = 10 and assume that parameters ai, bi, ei,j ∈ R for i, j = 1, . . . , 10 are unknown. As
a result, equation 13 has dimension 20 with 65 unknown parameters. The training set consists of
initial and final positions of 200 trajectories, that is z0 = (x1(t0), . . . , x200(t0)) and y = y(t1) =
(x1(t1), . . . , x200(t1)). In this setting, we compare the computational time to reach a certain training
accuracy of ALF and Y4 with adaptive time-stepping and the training accuracy of ALF and Y4 with
fixed step-size. We present the wall-clock times to reach the training accuracy 10−4 in Table 3. The
time required by Y4 to reach accuracy 10−4 is almost two times smaller which illustrates the lower
computational costs of the method. As before, the ALF method with adaptive time-stepping requires
smaller step sizes and more steps are used in each epoch of the optimization. Details with additional
results confirming the behaviour are presented in Appendix C.2.1.

4.2 LEARNING OF DYNAMICAL SYSTEMS PARAMETERIZED BY NEURAL NETWORK

We consider a problem, where a part of the structure of the differential equations is known and
the unknown part is approximated using a neural network. Our goal is to find the neural network
parameterization such that the resulting trajectories of the system are as close as possible to given
trajectories from the training set. As before, the problem can be treated by the neural ODE approach.
In this case the vector field f in equation 1 is given by a neural network.

4.2.1 NONLINEAR HARMONIC OSCILLATOR

We consider the problem of approximating the potential function of a physical system, given by the
Duffing oscillators with two mass points. Equations can be equivalently written as

q̇ = v, v̇ = −∇V (q), (14)
with q = (q1, q2), v = (v1, v2) and V (q) stands for the potential energy of the system. The learning
task is to learn V (q). The gradient of the potential is approximated using a neural network with 51500

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Time to get accuracy 10−2 by adaptive methods in oscillators problem parameterized by NN
Computation time

Random initialization of parameters in NN adaptive ALF adaptive Y4
Initialization 1 2504 sec 1974 sec
Initialization 2 2961 sec 1857 sec
Initialization 3 4185 sec 2627 sec
Initialization 4 3542 sec 2125 sec
Initialization 5 3396 sec 2616 sec

Table 5: Wallclock time to get the training loss below 10−3 by adaptive methods in discretized PDE
Computation time

Random initialization of parameters in NN adaptive ALF adaptive Y4
Initialization 1 336.6808 sec 138.5936 sec
Initialization 2 169.5010 sec 133.6825 sec
Initialization 3 180.8185 sec 140.3172 sec
Initialization 4 153.7389 sec 128.2795 sec
Initialization 5 142.7732 sec 142.9196 sec

parameters. To obtain the potential from the learned vector field, we apply numerical integration
methods to the neural network approximating −∇V (q). We compare the computational time of
ALF and Y4 to reduce the value of the loss function below 10−2. The results presented in Table 4
show that Y4 is faster than ALF in completing the training on different random initializations of the
network parameters.

4.2.2 DISCRETIZED WAVE EQUATION

In the second example we consider the 1-dimensional wave equation utt(t, x) = uxx(t, x) −
∇V (u(t, x)) on the spatial-temporal domain [0, 1]× [0, 0.3] with periodic boundary conditions in
space for the potential V (u) = 1

2u
2. On a spatial, equidistant, periodic mesh with mesh width

∆x = 1
40 we seek to describe the system’s evolution by the first order system

u̇d = vd, v̇d = f(ud), (15)

where the unknown function f is parametrized as a fully connected ReLU neural network with one
hidden layer of size 100. The dimension of (ud, vd) is 40. We compare the training performance of
ALF and Y4. Both adaptive methods are employed with the same error tolerance. Yoshida is faster in
finishing each epoch and the optimizer takes less time to minimize the training loss below 10−3. The
precise results are reported in Table 5 for 5 random initializations in the training. This illustrates the
applicability of our method to the highly active research area of learning models of systems that are
governed by partial differential equations.

5 CONCLUSION

In this work, we construct higher order reversible methods. These constitute explicit numerical
integrators which are compatible with adaptive step-size selection strategies. The methods are
employed to train deep neural networks that are based on neural ODEs. Thanks to the reversibility
property, we avoid high memory requirements for backpropagation in the optimization procedure of
the network parameters. Memory efficient backpropagation allows an application of deep architectures
to the identification tasks of models of high-dimensional dynamical systems, which arise, for instance,
as spatial discretizations of partial differential equations. As the method is based on neural ODEs, it
can be trained with time-series data at irregular time-steps and can predict continuous time-series
data. We showed the advantages of the newly constructed networks on the example of a network
based on a 4th order method and demonstrate lower memory costs and faster training in comparison
to lower order methods.

While the examples in the article focus on system identification tasks for systems governed by
differential equations, extensions to neural stochastic differential equations (Kidger et al., 2021) are
of interest and applications to normalizing flows or image processing (Allen-Blanchette et al., 2020)
can be an exciting avenue to explore in future works.
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A ERROR ANALYSIS OF ALF2

Example A.1. Consider a simple example of a differential equation on R given by

ż = z2 + t+ sin(zt) +
1

z2 + 1
. (16)

We solve the equation numerically using the ALF method and compare with a solution of high
accuracy for different step sizes. The results are plotted in Figure 1 and show the second order
behaviour in both (z, v) variables.

A.1 PROOF OF THEOREM 3.1

We show that the local error of ALF2 in (z, v) is of order O(h3). Let us consider the Taylor expansion
of the exact flow (z(t), v(t)) around (z(t0), v(t0) = f(z0, t0)).

z(t0 + h) = z0 + hf(z0, t0) +
h2

2

(
∂f

∂z
(z0, t0) ◦ f(z0, t0) +

∂f

∂t
(z0, t0)

)
+O(h3),
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Figure 1: Log-log plot of the global error of trajectories (z(t), v(t)) of equation 16 defined on time
interval [0, 1.0] and obtained by ALF with h ranging from 0.5 to 10−3.

v(t0 + h) = f(z0, t0) + h

(
∂f

∂z
(z0, t0) ◦ f(z0, t0) +

∂f

∂t
(z0, t0)

)
+

h2

2
(
∂2f

∂z2
(z0, t0)(f(z0, t0), f(z0, t0))+

∂f

∂z
(z0, t0)◦

∂f

∂z
(z0, t0)◦f(z0, t0)+2

∂2f

∂z∂t
(z0, t0)◦f(z0, t0)

+
∂f

∂z
(z0, t0) ◦

∂f

∂t
(z0, t0) +

∂2f

∂t2
(z0, t0)) +O(h3).

Now we consider the same for the numerical flow obtained with ALF2, that is composition of two
steps of ALF each with the step size h

2 . One step of ALF2 from (z0, v0) leads to (z1, v1) of the form

z1(h) = z0 +
h

2
(f(z0 +

h

4
f(z0, t0), t0 +

h

4
) + f(z0 + hf(z0 +

h

4
f(z0, t0), t0 +

h

4
)

− h

4
f(z0, t0), t0 +

3h

4
)),

and

v1(h) = v0+2(f(z0+hf(z0+
h

4
f(z0, t0), t0+

h

4
)− h

4
v0, t0+

3h

4
)−f(z0+

h

4
f(z0, t0), t0+

h

4
)).

Writing down the Taylor expansion in h for (z1(h), v1(h)) we find exactly the same terms as in
(z(t0 + h), v(t0 + h)) up to terms of the third order O(h3). The computations to obtain the Taylor
expansion of (z1, v1) were done using Maple software. This implies that the local error of ALF2 is
of the 3rd order, and therefore, the global error is of order 2. This completes the proof.

B NUMERICAL METHOD FOR THE ADJOINT

The expression of equation 10 for ϕk+1 obtained from ϕk by a step forward of ALF2 can be interpreted
as a rescaled step backward of ALF2 applied to the state-adjoint dynamics. Let us introduce a map
Wh depending on h, which acts on (z, v, λz, λv) as follows. It only transforms λv multiplying it by
−h2

16 , that is

Wα(z, v, λ
z, λv) =

Id 0 0 0
0 Id 0 0
0 0 Id 0
0 0 0 αId


 z

v
λz

λv

 .

Theorem B.1. The step backward of the discretized state-adjoint system associated to the ALF2
method satisfies

(zk, vk, λ
z
k, λ

v
k) = W−1

−h2

16

◦ΨALF2
−h ◦W−h2

16

(zk+1, vk+1, λ
z
k+1, λ

v
k+1), (17)

where ΨALF2
−h is applied to the state-adjoint equations of the augemented system for ϕ = (z, v)

ϕ̇(t) = f̃(ϕ(t), θ(t)), λ̇ = − ∂

∂ϕ
f̃(ϕ(t), θ(t))⊤λ,

with f̃(ϕ, θ) = (f(z, θ), ∂
∂z f(z, θ)f(z, θ)).

16
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Proof. In order to find the expression for ALF2, we first determine the expression for ALF and use the
chain rule. Let us compute ∂ϕk+1

∂ϕk
for ALF method, where ϕk+1 = (zk+1, vk+1) and ϕk = (zk, vk).

Differentiating equation 7 with respect to (zk, vk), we obtain

∂ϕk+1

∂ϕk
=

Id + h∂f
∂z (zk + h

2 vk, tk + h
2 )

h2

2
∂f
∂z (zk + h

2 vk, tk + h
2 )

2∂f
∂z (zk + h

2 vk, tk + h
2 ) h∂f

∂z (zk + h
2 vk, tk + h

2 )− Id

 .

This implies

λz
k =

(
Id + h

∂

∂z
f(zk +

h

2
vk, tk +

h

2
)

)
λz
k+1 + 2

∂

∂z
f(zk +

h

2
vk, tk +

h

2
)λv

k+1,

λv
k =

h2

2

∂

∂z
f(zk +

h

2
vk, tk +

h

2
)λz

k+1 +

(
h
∂

∂z
f(zk +

h

2
vk, tk +

h

2
)− Id

)
λv
k+1.

(18)

Notice that equation 18 can be equivalently written as

λz
k = λz

k+1 + h
∂

∂z
f(zk +

h

2
vk, tk +

h

2
)

(
λz
k+1 +

2

h
λv
k+1

)
,

λv
k = −2

∂

∂z
f(zk +

h

2
vk, tk +

h

2
)

(
−h2

4
λz
k+1 −

h

2
λv
k+1

)
− λv

k+1.

(19)

Let us now introduce λ̃v
k = − 4

h2λ
v
k. Then equations take the following form

λz
k = λz

k+1 + h
∂

∂z
f(zk +

h

2
vk, tk +

h

2
)

(
λz
k+1 −

h

2
λ̃v
k+1

)
,

λ̃v
k = −2

∂

∂z
f(zk +

h

2
vk, tk +

h

2
)

(
λz
k+1 −

h

2
λ̃v
k+1

)
− λ̃v

k+1.

(20)

Taking into account that zk + h
2 vk = zk+1 − h

2 vk+1 from the construction of equation 7-equation 8,
we conclude that variables (λz

k,− 4
h2λ

v
k) follow the backward integration with ALF method and its

step backward defined by equation 8 applied to the continuous equations of the adjoint equation 5.
As a result, the step backward of the adjoint variables λ can be expressed as

(λz
k, λ

v
k) = Ŵ−1

−h2

4

◦ Ψ̂ALF
−h (zk+1, vk+1) ◦ Ŵ−h2

4

(λz
k+1, λ

v
k+1),

where Ŵα is a projection of Wα to variables (λz
k, λ

v
k) and Ψ̂ALF

−h (zk+1, vk+1) stands for a projection
of the backward ALF step to (λz, λv), which is still a function of (zk+1, vk+1). To deduce the
formula for the ALF2 method, we use its composition structure, namely, ΨALF2

h = ΨALF
h/2 ◦ΨALF

h/2 .
This implies

∂ϕk+1

∂ϕk
=

∂

∂ϕk

(
ΨALF

h/2 ◦ΨALF
h/2

)
=

(
∂ΨALF2

h/2

∂ϕ
(ϕk+ 1

2
)

)
◦

(
∂ΨALF2

h/2

∂ϕ
(ϕk)

)
with

ϕk+ 1
2
= ΨALF2

h/2 (ϕk) = ΨALF2
−h/2 (ϕk+1).

As a result,

(
∂ϕk+1

∂ϕk

)⊤

=

(
∂ΨALF2

h/2

∂ϕ
(ϕk)

)⊤

◦

(
∂ΨALF2

h/2

∂ϕ
(ϕk+ 1

2
)

)⊤

= Ŵ−1
−h2

16

◦ Ψ̂ALF
−h/2(ϕk+ 1

2
) ◦ Ŵ−h2

16

◦ Ŵ−1
−h2

16

◦ Ψ̂ALF
−h/2(ϕk+1) ◦ Ŵ−h2

16

= Ŵ−1
−h2

16

◦ Ψ̂ALF
−h/2(Ψ

ALF2
−h/2 (ϕk+1)) ◦ Ψ̂ALF

−h/2(ϕk+1) ◦ Ŵ−h2

16

= Ŵ−1
−h2

16

◦ Ψ̂ALF2
−h (zk+1, vk+1) ◦ Ŵ−h2

16

.

The resulting equations for the backward step of the state-adjoint system are given in equation 17.
This completes the proof of Theorem B.1.
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The formula for the adjoint of Yoshida methods ΦY
2k follows from the composition structure of the

method and is presented the following theorem. With a slight abuse of notation we denote ΦALF2 by
ΦY

2 .
Theorem B.2. Assume that the discrete one step method in equation 2 is given for k ≥ 2 by

ΨY
2k(h) = ΨY

2k−2(ah) ◦ΨY
2k−2(bh) ◦ΨY

2k−2(ah), ϕk+1 = ΨY
2k(h) ◦ ϕk. (21)

Then the state-adjoint backward step can be computed recursively as follows

(ϕk, λk) = Ψ̃Y
2k−2(ah) ◦ Ψ̃Y

2k−2(bh) ◦ Ψ̃Y
2k−2(ah)(ϕk+1, λk+1), (22)

with Ψ̃Y
2k−2 the map, which defines the backward step of state-adjoint system of the method ΦY

2k−2.

Proof. The proof is by induction on k in the considered method ΨY
2k and is based on the composition

structure of ΨY
2k in equation 21. Let k = 2, then ΨY

4 (h) = ΨALF2
ah ◦ΨALF2

bh ◦ΨALF2
ah . By the chain

rule we have(
∂ϕk+1

∂ϕk

)⊤

=

(
∂ΨALF2

ah

∂ϕ
(ϕk+ 1

3
)

)⊤

◦
(
∂ΨALF2

bh

∂ϕ
(ϕk+ 2

3
)

)⊤

◦
(
∂ΨALF2

ah

∂ϕ
(ϕk+1)

)⊤

with
ϕk+ 2

3
= ΨALF2

−ah (ϕk+1),

ϕk+ 1
3
= ΨALF2

−bh ◦ΨALF2
−ah (ϕk+1).

By construction of the backward step of the state adjoint system by ALF2 shown in equation 17, we
have(

∂ϕk+1

∂ϕk

)⊤

= Prλ
(
W−1

ah ◦ΨALF2
−ah ◦Wah

)
◦ Prλ

(
W−1

bh ◦ΨALF2
−bh ◦Wbh

)
◦

◦ Prλ
(
W−1

ah ◦ΨALF2
−ah ◦Wah

)
,

where Ψ̂ALF2
hi

= Prλ
(
W−1

hi
◦ΨALF2

−hi
◦Whi

)
, hi ∈ {ah, bh} defines a step backward with the

ALF2 method with step-size hi in the adjoint variable. This proves the Theorem for k = 2. Let us
assume now that the statement of the theorem holds for k = k0 and we consider the adjoint method
for ΨY

2k0
(h) = ΨY

2k0−2(ah) ◦ΨY
2k0−2(bh) ◦ΨY

2k0−2(ah). As before, applying the chain rule and the
assumption of the induction, it follows that(
∂ϕk+1

∂ϕk

)⊤

=

(
∂ΨY

2k0−2(ah)

∂ϕ
(ϕ̃k+ 1

3
)

)⊤

◦

(
∂ΨY

2k0−2(bh)

∂ϕ
(ϕ̃k+ 2

3
)

)⊤

◦

(
∂ΨY

2k0−2(ah)

∂ϕ
(ϕk+1)

)⊤

=
̂̃
ΨY

2k0−2(ah) ◦
̂̃
ΨY

2k0−2(bh) ◦
̂̃
ΨY

2k0−2(ah),

where we used the notation

ϕ̃k+ 2
3
= ΨY

2k0−2(−ah)(ϕk+1), ϕ̃k+ 1
3
= ΨY

2k0−2(−bh) ◦ΨY
2k0−2(−ah)(ϕk+1),

and ̂̃ΨY
2k0−2 the projection of the step backward associated to the state-adjoint system and ΨY

2k0−2
method. This completes the induction step and the proof.

In case of k = 2, Theorem B.2 in combination with equation 17 leads to the following expression

Ψ̃Y
4 = W−1

−(ah)2

16

◦ΨALF2
−ah ◦W a2

b2
◦ΨALF2

−bh ◦W b2

a2
◦ΨALF2

−ah ◦W−(ah)2

16

.

The obtained results lead to the Algorithm 4 for the computation of gradients.

C DETAILS OF NUMERICAL EXPERIMENTS

In all the numerical experiments, our implementation of the Yoshida composition method uses the
code of the MALI network (Zhuang et al., 2021). We use the steps forward and backward of the ALF
method as composition steps to compute ALF2 and its Yoshida composition.
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Algorithm 4 Computation of gradients
1. Input: training data z0, initialization of parameters θ, velocity v0 = f(z0, θ0)
2. Propagate through the network using ΨY

2k to get (zN , vN )
3. Set λz

N = ∇L(zN ) and λv
N = 0

for k = N to 1 do
4. Compute ϕk, λk from ϕk+1, λk+1 using equation 17 and equation 22.
5. Compute ∂J(θ)

∂θk
using equation 11

end for
6. Output: gradients ∂J(θ)

∂θk
for k = 1, . . . N − 1.

C.1 KEPLER PROBLEM

The training data for the comparison of the computational time in Table 2 is given by a tra-

jectory x of equation 12 with initial condition x0 = (0.75, 0, 0, 0.9π
4

√
5
3 ) on time interval

[0, T ] = [0, 1], which is an elliptic orbit. The trajectory is obtained by numerical integration using
sci.integrate.odeint with relative and absolute tolerances 10−7 and 10−8 respectively and
maximum step size 10−5. The optimizer used in the training is SGD from PyTorch with initial
learning rate 0.1 and scaled by 0.95 for each epoch. For completeness, we show the evaluation of the
parameter error across the learning displayed as a function of time in Figure 2 and as a function of
epochs in Figure 3. In the plots we show the results obtained with ALF, Y4 and also Runge-Kutta 4(5)
(RK45), the latter is not a reversible method and requires storage of the intermediate states obtained
during the integration forward. This implies additional memory consumption, namely, at each epoch
the algorithm saves 8 additional states obtained during integration forward, making the memory
consumption of the training higher. The four plots in Figures 3 and 2 are obtained for different
initializations of the parameters α0 in the learning, namely, α0 = 1.3, 0.1, 0.7, 0.75.

Figure 2: Error of the learned parameter with respect to the ground truth α as a function of time.

The error landscape in Figure 4 is obtained by considering 81 trajectories obtained using the same
integration method as for the time comparison explained above for 81 different initial conditions
(x0)i in a neighborhood of x0, given by a 4-dimensional box of diameter 0.4 around x0. The points
(x0)i are chosen on a grid with a step size 0.1, which includes x0 as its point. The behaviour of ALF
and Y4 with adaptive stepping can be better understood when looking at fixed step methods, when
the step size hi = h is fixed for all the steps. The loss landscape visualized in Figure 4 for fixed step
ALF and fixed step Y4 shows that the minimum value of the loss is achieved at a better precision
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Figure 3: Error of the learned parameter with respect to the ground truth α as a function of epochs.

of the true parameter for the higher order methods than for the lower order method, which will be
explained in more detail below. The loss visualized in Figure 4 as a function of α is

L(αk) =
1

81

81∑
i=1

5∑
j=1

∑
∥(qNj

(αk))i − q(tj , (x0)i)∥2

with qNj projection of zNj to q-coordinate and αk taking 300 values in [π4 − 10−4, π
4 + 10−4]. Here

(qNj (α))i is obtained by numerical integration of equation 12.

Figure 4: Error landscape of ALF and Y4 methods for Kepler problem showing the loss computed
for the parameters in a neighbourhood of the true value of α displayed by a vertical line.

If (qNj
(α))i was obtained by exact integration of equation 12 and in the absence of noise and

round-off errors, true parameter values constitute minima for L. We interpret the application of a
numerical integrator as a perturbation of size O(hp) to the exact (qNj (α))i, where h is the step size
of the integration and p the order of the numerical method. This yields a perturbation L̃ of L of
size O(h2p) in case of the mean-square loss. Thus, assuming that the local minima of L at the true
parameter value is non-degenerate, L̃ has a local minimum within a ball around the true parameter
of size O(hp). This follows from classical discussions on the numerical conditioning of computing
zeros of a function as, for instance, in (Dahmen & Reusken, 2022, §5.2). This provides a direct
relation of the order of an integration method and the accuracy of identified parameters.
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Notice that in the adaptive-step size context the perturbation of L and, thus, the error of its minima
are controlled by the provided error tolerance. However, the discussion shows that in order to be
able to expect the same accuracy in the parameter identification, neural ODEs based on lower-order
methods require more integration steps than neural ODEs based on high-order methods.

The above O(hp) error relation in the parameter estimation constitutes an asymptotic upper bound.
In Geometric Numerical Integration errors of numerical integrators can enter in highly symmetric
way (Hairer et al., 2013). In symplectic integration of Hamiltonian systems, for instance, energy
errors enter in an unbiased form. If the sought parameter is related to the geometric structure that is
preserved by the geometric numerical integrator, parameters can potentially be estimated to higher
accuracy than expected by the order of the numerical integrator. This, together with backward error
analysis techniques, was used in (Offen & Ober-Blöbaum, 2022), for instance, to accurately identify
a Hamiltonian function of a dynamical system even though a low order method was used to discretize
the dynamical system. These techniques, however, are tailored to the geometric problem at hand,
while the approach of this article considers a more general case.

C.2 NONLINEAR HARMONIC OSCILLATOR

There are two settings considered for the learning of the dynamics equation 13. In the first setting,
the learning problem is the parameter identification as presented in Section 4.1.2. In the second case
we consider the parametrization of the potential by a neural network as described in Section 4.2.1.
Here we give more details on both problems.

C.2.1 IDENTIFICATION OF PARAMETERS

In the experiments for the time comparison shown in Table 3 we consider a set of 200 trajectories in
the training data with the initial conditions generated by the Halton sequence in a 20-dimensional
box around zero vector x0 with diameter 2.0. The trajectories are obtained by numerical inte-
gration using sci.integrate.odeint with relative and absolute tolerances 10−13 and 10−14

respectively. In the training we use AdamW optimizer from PyTorch with learning rate scheduler
ExponentialLR. The results shown in Table 3 are obtained with different learning rates, namely,
the first two with the initial learning rate 10−2 and γ = 0.995, the last three with the initial learning
rate 10−1 and γ = 0.998, 0.997, 0.99 for the tree results respectively. At each epoch we consider
all 200 trajectories, so that the loss is L = 1

200

∑200
i=1 ∥(zN )i − x(T, (x0)i)∥2 with T = 0.5. While

Table 3 compares the training time of ALF and Y4, it is also important to compare their performance
in the learned parameters. In Figure 5 we show the results in the error of the learned parameters as
a function of computational time measured at each epoch of ALF, Y4 and also RK45, which is not
reversible. We can see that Y4 in not only faster than ALF in the training but the same also holds
for the error in the learned parameters. While RK45 is the fastest to get to accurate parameters, it
also requires the storing of 80 additional states during integration at each epoch, which means a
considerable contribution to the memory costs. To better understand the reasons of the faster learning
of Y4 than ALF, we show in Figure 6 the computation time accumulated at each epoch of the training.
The computational time per epoch is smaller for Y4, which contributes to the faster convergence in
the training. In both Figures 5 and6, the four plots correspond to different random initializations of
the parameters in the optimization.

In addition to results obtained for adaptive stepping, we test ALF and Y4 with the step size fixed to
h = 0.1 and the training until either the training accuracy reaches 10−4 or the number of epochs
reaches 500. Figure 7 shows that ALF is stuck at the training accuracy 10−2 and the training stops
because of reaching 500 epochs, while Y4 converges to accuracy 10−4 with 181 epochs. The same
behaviour is observed for different parameter initialization. Decreasing the step size to h = 0.01
permits ALF to reach accuracy 10−4. The results obtained in Figure 7 show that with a fixed step size
the lower order method is unable to achieve an accuracy better than 10−2 in training loss, whereas
Y4 reaches accuracy 10−4. This illustrates what happens in the case of the adaptive time-stepping. A
lower order method needs to reduce the step size to get to better accuracy. This implies more steps in
the integration, and therefore, slower computations.
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Figure 5: Error in learned parameters as a function of time.

Figure 6: Time of computation in function of epochs. When the curve is positioned lower, the
corresponding algorithm is faster.

C.2.2 NEURAL NETWORK PARAMETRIZATION

The goal is to find the unknown potential governing equation 14. For this we assume a particular
form of the potential, namely,

V (q) =

s∑
i=1

n∑
j=1

ci,jσi(qj) +

d∑
i=1

n∑
j=1

n∑
k=j+1

Ci,j,kΣi(∥qj − qk∥),
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Figure 7: Training loss is displayed in logarithmic scale for the parameter identification in case of
coupled oscillation for ALF and Y4 with fixed step size h = 0.1.

where σi stand for different single particle potentials and Σi for double particle potentials. In the
case considered above, we have

c1,1 =
a1
2
, c1,2 =

a2
2
, σ1(q) = q2,

c2,1 =
b1
4
, c2,2 =

b2
4
, σ2(q) = q4,

C1,1,2 =
e

2
, Σ1(x) = x2.

In the learning problem, we assume that functions σ1, σ2 and Σ1 are unknown as well as parameters
a1, a2, b1, b2, e. We parameterize the derivatives a1

2 σ′
1,

a2

2 σ′
1,

b1
4 σ

′
2,

b2
4 σ

′
2 and e

2Σ
′
1 by neural networks

each and use them to model the dynamics in equation 14. We use 5 neural networks, which we
denote by ξ1, ξ2, ξ3, ξ4, ξ5. All of them have the same architecture q 7→ W1 tanh (W2 tanh (W3q)),
where W1 is a matrix of parameters of size 1× 100, matrix W2 is of size 100× 100 and W3 is of
size 100× 1. The resulting dynamics is defined by

q̇1 = v1, v̇1 = −ξ1(q1)− ξ3(q1)− ξ5(q1 − q2),

q̇2 = v2, v̇2 = −ξ2(q2)− ξ4(q2)− ξ5(q2 − q1).

The equations parameterized by neural networks are then integrated using ALF or Yoshida com-
position of ALF2 at each epoch in the training. The training data is set to be a set of 1000 trajec-
tories with the initial conditions generated by the Halton sequence in a 4-dimensional box around
x0 = (0.8,−0.4, 0.0, 0.0) with diameter 2.0. The optimizer is AdamW with initial learning rate
10−3 and scheduler ExponentialLR with γ = 0.995. In addition, we consider batches of 300
trajectories at each epoch with the resulting loss function of the same form as in the case of the
parameter identification problem.

C.3 DISCRETIZED WAVE EQUATIONS

For generation of the training data, we consider the wave equation with potential V (u) = 1
2u

2. The
true motions can be expressed in the time-dependent Fourier series as

u(t, x) =

∞∑
m=−∞

ûm(t)e2πimx/L, L = 1

where the Fourier coefficients evolve as

ûm(t) = γ−1
m v̂m,0 sin(γmt) + ûm,0 cos(γmt), γm =

√
1 +

4π2

L2
m2.

Here ûm,0, v̂m,0 are the Fourier coefficients of an initial wave u(0, x) and velocity ut(0, x), re-
spectively. Notice that a Fourier coefficient ûm(t) remains exactly zero over time if and only if
ûm,0 = 0 = v̂m,0. Training data to initial data with only finitely many nonzero Fourier coefficients
can, therefore, be obtained to machine precision by a spectral method. Alternatively, solutions can
be computed by an application of the 5-point stencil as described in Example 7 (16) in (Offen &
Ober-Blöbaum, 2024) on a fine mesh with discretization parameters ∆t = 1/160, ∆x = 1/80 and
then subsampled to a mesh with ∆t = 1/40, ∆x = 1/20. In our case both methods yield the same
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Figure 8: Two samples of the training data used in section C.3.

Figure 9: Time of computation in function of epochs. Lower curve means faster computations.

training data up to a maximum error of order 1e− 4. In the training data creation, we sample initial
ûm,0, v̂m,0 from a standard normal distribution. It is then weighted by e−4m8

such that effectively
only the first two Fourier modes are active. See figure 8 for a plot of two of the solutions to the wave
equation that were used to create the training data set. In the training, we consider initial and final
points of 50 trajectories on time interval [0, 0.3] and 30 unseen trajectories in the testing. We use the
optimiser LBFGS with the default values of the parameters. In the numerical tests, we compare the
behaviour of ALF, Y4 and Runge-Kutta 4(5). It can be seen in Figure 9 that Y4 reaches the lowest
values in the training loss faster than ALF. While RK45 is fastest, it also consumes more memory,
which can make a crucial difference in high dimensional systems. We also report a lower time of
computations per epoch for Y4 with respect to the results by ALF in Figure 10.
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Figure 10: Time of computation in function of epochs. When the curve is positioned lower, the
corresponding algorithm is faster.
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