
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADAPTIVE HIGHER ORDER REVERSIBLE INTEGRATORS
FOR MEMORY EFFICIENT DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The depth of networks plays a crucial role in the effectiveness of deep learning.
However, the memory requirement for backpropagation scales linearly with the
number of layers, which leads to memory bottlenecks during training. Moreover,
deep networks are often unable to handle time-series data appearing at irregular
intervals. These issues can be resolved by considering continuous-depth networks
based on the neural ODE framework in combination with reversible integration
methods that allow for variable time-steps. Reversibility of the method ensures
that the memory requirement for training is independent of network depth, while
variable time-steps are required for assimilating time-series data on irregular in-
tervals. However, at present, there are no known higher-order reversible methods
with this property. High-order methods are especially important when a high level
of accuracy in learning is required or when small time-steps are necessary due to
large errors in time integration of neural ODEs, for instance in context of complex
dynamical systems such as Kepler systems and molecular dynamics. The require-
ment of small time-steps when using a low-order method can significantly increase
the computational cost of training as well as inference. In this work, we present
an approach for constructing high-order reversible methods that allow adaptive
time-stepping. Our numerical tests show the advantages in computational speed
when applied to the task of learning dynamical systems.

1 INTRODUCTION

Deep neural networks are widely used across various learning tasks (Russakovsky et al., 2015; Esteva
et al., 2017), and their depth often plays a crucial role in the effectiveness of learning. These networks
have also been shown to be particularly useful in the tasks of learning models of dynamical systems
(Chen et al., 2018; Raissi et al., 2018a; Rudy et al., 2019b; Schüssler et al., 2019; Rudy et al., 2019a;
Liu et al., 2022; Raissi et al., 2018b). It was recently shown that the use of numerical methods for
neural network architectures can provide impressive results with theoretical guarantees (Haber &
Ruthotto, 2017; Chang et al., 2018; Celledoni et al., 2021; Maslovskaya & Ober-Blöbaum, 2024).
In this work we use the theory of symmetric numerical methods for the construction of a new class
of reversible neural networks. The new class allows memory efficient computations of gradients
in training and reduced computational costs in learning models of dynamical systems, where the
parameters typically need to be identified to high accuracy and the depth of the networks can be very
large. Our network architecture constitutes an important contribution to ensure scalability of neural
ODEs to high-dimensional dynamical systems that arise, for instance, as discretizations of systems
governed by partial differential equations.

The high memory costs of computing the gradient of very deep neural networks using the back-
propagation algorithms poses a significant bottleneck in their training, hindering their scalability
and efficiency. To address this, a neural ODE approach combined with the adjoint method has been
proposed for gradient computations (Chen et al., 2018), which avoids storing intermediate states
during forward propagation, potentially making the cost of gradient computation independent of
network depth. However, it was quickly realized (Gholaminejad et al.; Zhuang et al., 2020) that using
this approach with arbitrary discretization methods leads to incorrect gradients.

The solution of this problem is to use reversible integrators, which ensure accurate gradient com-
putations by reconstructing intermediate states precisely during backward integration. However,
symplectic reversible integrators (Chang et al., 2018), which are a large class of well studied integra-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

tors, do not allow adaptivity in the step size and require a particular structure in the neural ODE. This
makes them unsuitable for use in time-series applications where data appears at irregular intervals,
when time-steps need to be decreased adaptively to achieve a prescribed accuracy in the learning of
dynamical systems, or when the identified model is used to predict continuous trajectories.

Adaptive time-stepping for numerical integrators for differential equations is a well-established field
in numerical analysis (Hairer et al., 2013; Deuflhard & Bornemann, 2002). In adaptive time-stepping,
step sizes for an integration step are selected such that an estimate for the local error is below a given
error tolerance. In this way, computational cost in numerical integration can be saved when large
step sizes are sufficient to obtain accurate results, while step sizes are automatically decreased when
required. The only reversible methods compatible with variable time-step selection without losing
the reversibility property are asynchronous leapfrog (ALF) (Mutze, 2016), which is based on the
classical Verlet method (also known as leapfrog method) (Verlet, 1967), and the reversible Heun
method (Kidger et al., 2021).

ALF has been used to construct neural network architectures known as MALI networks (Zhuang et al.,
2021). These methods are based on operating on an augmented space: a neural ODE in the original
variable z is extended to a larger space and replaced by a neural ODE in (z, v). Both methods are
known to be of order of accuracy (2, 1) in (z, v) (Mutze, 2016), which makes them computationally
costly in learning tasks that require high accuracy in the integration of the neural ODE, in particular,
in learning of dynamical systems. To be able to reach high accuracy, the lower order methods are
forced to use small step sizes and, as a result, have higher computational costs. This phenomenon
was highlighted in the examples in (Matsubara et al., 2021). Furthermore, we show in C.1 that in
parameter identification tasks there is a direct relation between the order of a numerical integrator and
the order of accuracy of identified parameters. Therefore, there is a need for higher order reversible
methods, which we address in this paper.

Various machine learning techniques have emerged in the past decades for approximating models
of dynamical systems (Ghadami & Epureanu, 2022). These include methods based on Gaussian
processes (Bouvrie & Hamzi, 2017; Raissi & Karniadakis, 2018; Hamzi & Owhadi, 2021), sparse
regression on libraries of basis functions (Brunton et al., 2016; Tran & Ward, 2017; Reinbold et al.,
2021), and recurrent neural networks (RNNs) (ichi Funahashi & Nakamura, 1993; Bailer-Jones
et al., 1998; Karniadakis et al., 2021). In particular, the neural ODE approach (Chen et al., 2018)
identified an important connection between the RNN structure and the numerical methods available
for integration of differential equations. This was generalized by universal differential equations in
(Rackauckas et al., 2021) for different types of differential equations. Other generalizations include
physics informed learning of dynamical systems (Greydanus et al., 2019; Cranmer et al., 2020b;
Jin et al., 2020; Chen et al., 2020) and operator approximation (Chen & Chen, 1995; Lu et al.,
2021; Lin et al., 2023; Boullé & Townsend, 2024). If the training data consists of time-series data
that corresponds to a constant time-step, neural ODEs can be trained with a low order method and
time-series can be predicted with high accuracy provided that the trained neural ODE is integrated
with the same integrator that was used during training (Zhu et al., 2021; David & Méhats, 2023; Offen
& Ober-Blöbaum, 2022; Ober-Blöbaum & Offen, 2023). However, in realistic examples, snapshots
of trajectories with variable time-steps need to be processed (Raissi et al., 2018b; Rudy et al., 2019b;
Liu et al., 2022). Moreover, a discretization-independent prediction of the system’s evolution is
often desired and learning of underlying differential equations requires high accuracy in the learned
parameters, which requires high accuracy simulation.

We demonstrate that our approach can be applied to high-dimensional dynamical systems, including
those arising from discretizations of partial differential equations. This is a highly active research
area. Other approaches in this context include model order reduction based techniques and operator
inference (see the review (Kramer et al., 2024) or e.g. (Sharma et al., 2024; 2023; Allen-Blanchette
et al., 2020; Mason et al., 2022)), or structure-preserving approaches for discrete field theories (Qin,
2020; Offen & Ober-Blöbaum, 2024; Offen, 2024).

The main contribution of this paper is the development of a methodology to construct reversible
neural networks based on higher order numerical methods. First, we prove that, in contrast to the
analysis in (Mutze, 2016), ALF is of order 2 in both (z, v) at even time-steps. Using this property
and the theory of composition methods, we construct a class of reversible networks of any even order.
A particular architecture based on 4th order networks is compared to the already known ALF method

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

on examples of learning dynamical systems. The comparison of the two methods with adaptive
time-stepping shows that the proposed higher order method is computationally more efficient.

2 BACKGROUND

2.1 NEURAL ODE
Assume that an unknown function F : X → Y is approximated by a neural network based on training
data {xi, yi = F(xi)}ni=1. The neural ODE approach to the deep network design employs the idea
of continuous-depth networks and their discretization by a numerical method. The continuous-depth
network is defined as a flow of a neural ODE of the form

ż(t) = f(z(t), θ(t)), z(0) = (x1, . . . , xn), (1)

on the time interval [0, T ] for some vector field f . Discretization of a neural ODE with a numerical
method of step size h is defined as follows

zj+1 = σh(zj , θj), j = 0, . . . , N − 1,

z0 = z,
(2)

where zj is the value of the feature variable at the jth layer with the total number of layers N and
z = (x1, . . . , xn). The step size can be chosen in an adaptive manner for each layer and it is not
considered as an optimization parameter. The learning problem is to find parameters {θj}N−1

j=0 which
lead to the best approximation of F . The parameters are usually found as a solution of the following
optimization problem.

min
{θj}

J = L(zN , y)

zj+1 = σh(zj , θj), j = 0, . . . , N − 1,

z0 = z,

(3)

where L(·, ·) is a loss function which measures the distance between the output of the network and
the training data y = (y1, . . . , yN ).

Because of the connection between network equation 2 and the corresponding neural ODE equation 1,
there exists a continuous counterpart of equation 3 which makes equation 3 an approximation of an
optimal control problem of the form

min
θ(t)

J = L(z(T ), y)

ż(t) = f(z(t), θ(t)), t ∈ [0, T ],

z(0) = z.

(4)

Solutions of equation 3 are usually found using methods based on gradient descent. Such methods
require computations of the gradients of the loss function with respect to all parameters {θj}N−1

j=0 .

2.2 METHODS OF GRADIENT COMPUTATIONS

Backpropagation Let J = L(zN , y). By the chain rule, the gradient is given by

∂

∂θj
J = ∇zL(zN , y)⊤

∂zN
∂zN−1

· · · ∂zj+2

∂zj+1

∂zj+1

∂θj
.

To avoid computationally expensive multiplication of large matrices, the formula is evaluated from
the left to the right (backpropagation). This requires that the intermediate values zj (j = 1, . . . , N )
are available. Their size corresponds to the width of the layer and their number to the network’s
depth N .

Adjoint method This approach is based on the formula for the continuous gradients via adjoint
variables p(t). The adjoint variables are the solution of

ṗ = − ∂

∂z
f(z(t), θ(t))⊤p, p(T ) = ∇L(z(T ), y), (5)

on time interval [0, T ] and the differential of J(θ) with respect to θ(t) is calculated as follows

DJ(θ(t)) = p⊤(t)
∂

∂θ
f(z(t), θ(t)). (6)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

This method is particularly interesting when the available memory is limited. In this case, the
forward propagation is done to obtain the value of z(T ) and ∇L(z(T ), y), there is no need to save
the intermediate values zj and the computational graph, because the backpropagation is realized by
integrating the equations for (z(t), p(t)) numerically backward in time. The correct discretization of
the state-adjoint equations leads to the same expression for the gradient as the one obtained in the
backpropagation approach. Still, the values of zj obtained by the numerical integration backward do
not always coincide with the values obtained in the forward pass. This is why this approach usually
leads to inexact gradients. This issue can be solved by considering reversible networks.
Checkpointing An alternative approach for memory reduction is checkpointing (Gholaminejad
et al.), which stores a few intermediate states for a regeneration of the computation graph. In case of
adaptive time-stepping it was described in (Zhuang et al., 2020) and further improved in (Matsubara
et al., 2021) for the class of Runge-Kutta methods. This is a highly efficient approach, when used
in combination with higher order methods. In this case, a small number of checkpoints is required
to get a high accuracy in learning. However, when the learning task is to learn a dynamical system
from long trajectories of complex systems, then the number of checkpoints becomes large and can
lead to memory leaks. This is why it is important to have an alternative approach based on reversible
networks with the memory costs independent from the given task.

2.3 REVERSIBLE NEURAL NETWORK

A reversible network is a network with the property that there exists an explicit formula for backward
propagation zj+1 7→ zj that exactly inverts a forward pass zj 7→ zj+1, i.e., there exists a map σ̃(·),
such that zj = σ̃(zj+1) and zj+1 = σh(σ̃(zj+1), θj). It requires that the time-steps t0, . . . , tN
have been stored when the forward propagation was computed but it does not require storage of
the (potentially very high-dimensional) intermediate values zj . The discretizations of neural ODE
equation 2, which admit this property are called reversible methods. As for now, there are only two
known reversible methods allowing for an adaptive choice of the step size, namely, asynchronous
leapfrog (Zhuang et al., 2021) and reversible Heun (Kidger et al., 2021).

This notion of reversibility for neural networks needs to be contrasted with the notion of time-
reversibility or symmetry for numerical integrators. In the context of neural networks, reversibility
means that there exists an explicit, efficient formula to invert the forward pass. In numerical
integration theory, a time-reversible or symmetric numerical integrator is a formula to advance
the solution of an ordinary differential equation by time h such that its inverse is obtained by
substituting h by −h (Hairer et al., 2006, II.3). In case of the dynamical system f(z(t), θ(t)) from
equation 2, if the discretization by a numerical method zj+1 = σh(zj , θ(tj)) is symmetric, then it
implies zj = σ−h(zj+1, θ(tj+1)), or equivalently, zj = σ−h(zj+1, θj+1). Therefore, we can set
σ̃(·) = σ−h(·, θj+1), which implies that the method is reversible. The symmetry of integrators is
beneficial in the context of the article as inverses of the methods required for backpropagation take
simple forms and efficient classical techniques to construct higher order methods (Hairer et al., 2006,
II.4) apply.
Asynchronous Leapfrog (ALF) method As the optimization parameter θ(t) in the dynamics
f(z(t), θ(t)) depends on time, it can be seen as a part of f and written simply fθ(z(t), t). The
ALF method requires the augmentation of the pair of state and time (z, t) with the velocity v which
approximates fθ(z(t), t). We denote a step forward of the ALF method with the step size h by ΨALF

h .
Given a triple (zj , vj , tj) and a step size h, the algorithm generates in the forward pass the next values
(zj+1, vj+1, tj+1) as follows(

zj+1

vj+1

)
= ΨALF

h (zj , vj , tj) =

(
zj + hfθ(zj +

h
2 vj , tj +

h
2 )

2fθ(zj +
h
2 vj , tj +

h
2 )− vj

)
, tj+1 = tj + h. (7)

The step backward calculates (zj , vj , tj) from (zj+1, vj+1, tj+1) as follows(
zj

vj

)
= ΨALF

−h (zj+1, vj+1, tj+1), tj = tj+1 − h. (8)

If the method is initialized at (z0, f(z0, t0), t0), then ALF is a second order method in z and first
order method in v, as it was shown in (Zhuang et al., 2021). The order of accuracy is the order in
step size h of the error of the numerical flow compared with the exact flow of the ODE (Hairer et al.,
2006). Notice that ALF is symmetric by definition.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The reversible Heun method is another reversible method based on state-space augmentation and
was introduced in (Kidger et al., 2021). The method was shown to be also of second order in z and
first order in v. In addition, it is a symmetric method. In the following part of the paper we will
concentrate on the construction of higher order methods based on ALF, but the same can be also
applied to the reversible Heun method.

3 NEW REVERSIBLE ARCHITECTURES

A general approach in numerical analysis to construct higher order symmetric methods is by compo-
sition (Hairer et al., 2006; 2013; Blanes et al., 2024a). In this case one can start with a lower order
numerical method and construct a new method by composition of the lower order method with a
particular choice of step sizes. This construction leads to a method of higher order of accuracy.

Numerical experiments, see Appendix A, show that ALF is of second order in the error with respect
to a high accuracy solver in both z and v. This is surprising as the order of consistency of ALF in v is
only 1 (Zhuang et al., 2021). Indeed, as we show below, a method consisting of a composition of two
steps of ALF has order of consistency 2 in (z, v), which explains the convergence behaviour. This
observation is required to apply theory for composition methods (Hairer et al., 2013; Blanes et al.,
2024a; Yoshida, 1990) to (two steps of) ALF.
Theorem 3.1. Composition of two steps of ALF methods, i.e. ΨALF

h/2 ◦ΨALF
h/2 , applied to ż = f(z, t)

provides second order accurate approximations of position z and velocity v = ż.

The proof of the theorem is based on comparing the terms in the Taylor series of the exact flow of
a differential equation and the numerical flow obtained by composition of two steps of the ALF
method. We refer to the Appendix A.1 for the computations. The composition of two steps of the
ALF method, each with time-step h

2 , will be called ALF2 and denoted by ΨALF2
h . Now we are

in a classical situation, with ALF2 a one step reversible method of even order and we can apply
the composition methods to construct higher order methods. In this work we consider the Yoshida
approach (Yoshida, 1990). Yoshida composition permits to construct methods of a higher accuracy
by composing numerical methods of order 2k for some integer k. It is defined by a symmetric
composition of the same method Ψ2k (2k stands for the order) with different step sizes

ΨY
h = Ψ2k

ah ◦Ψ2k
bh ◦Ψ2k

ah

with time-steps defined by

a =
1

2− 2
1

2k+1

, b = 1− 2a.

Theorem 3.2 ((Yoshida, 1990)). Yoshida composition of a reversible method Ψ2k of order 2k has
order 2k + 2 and is reversible.

Yoshida is not the only composition method that can be used, another possible approach is Suzuki
composition (Suzuki, 1991). Several approaches are reviewed in (Hairer et al., 2006; Blanes et al.,
2024b).
Remark 3.3. The approach based on Yoshida composition might require checkpoints in case of
certain neural ODEs, e.g., when the learning task is to learn a dispersive partial differential equation
such as heat equation. This is because the Yoshida composition forces the use of negative time-steps,
which can be a problem in dissipative cases, where it can lead to instability.

In the following, we will denote by ΨY,2k
h the higher order methods obtained by Yoshida composition

of ALF2, where 2k is the order of the method. The constructed higher order reversible method can be
used for the construction of a reversible network. In this case, the step forward and the step backward
are defined recursively based on the steps forward and backward of a lower order method ΨY,2k−2

h .
The starting method of order 2 is the ALF2 method, i.e. ΨY,2

h = ΨALF2
h by abuse of notation.

Adaptive stepping One of the main advantages in the construction of reversible methods based
on ALF is that they allow for adaptive step sizes (Hairer et al., 2006). This can be done in the same
manner as for ALF (Zhuang et al., 2021), where the main idea is to delete the computational graph
and all the variables needed for the step size computations and only the value of the accepted new
step size hj is saved. As a result, values h1, . . . , hN are saved and then accessed in the integration

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Step forward of 2k-th order Yoshida
1. Input: (zj , vj , tj , hj)

2. Set a = 1/(2− 2
1

2k+1 ), b = 1− 2a.

3. Set (z̃1, ṽ1) = ΨY,2k−2
ahj

(zj , vj , tj), t̃1 = tj + ahj

4. Set (z̃2, ṽ2) = ΨY,2k−2
bhj

(z̃1, ṽ1, t̃1), t̃2 = t̃1 + bhj

5. Set (zj+1, vj+1) = ΨY,2k−2
ahj

(z̃2, ṽ2, t̃2), tj+1 = t̃2 + ahj

if adaptive time-stepping then
6a. compute the error of zj+1, vj+1 w.r.t. the output of a (2k + 1)st order integration method

6b. compute the new hj+1 following (Hairer et al., 2006)

else
6. hj+1 = hj

end if
7. Output: (zj+1, vj+1, tj+1, hj+1)

backward needed for gradient computations. This can be done in exactly the same manner for our
Yoshida-based methods. The resulting steps forward and backward are summarized in Algorithm 1
and Algorithm 2.
Remark 3.4. Notice that even though the reversible Heun method was proved to be of order (2, 1) in
(z, v) in (Kidger et al., 2021), it was noted in the same paper that it gains the second order in both
variables at even steps. This implies that the composition approach can be used in this case as well.

Algorithm 2 Step backward of 2k-th order Yoshida
1. Input: (zj+1, vj+1, tj+1, hj+1)

2. Set a = 1/(2− 2
1

2k+1 ), b = 1− 2a.

3. Set (z̃1, ṽ1) = ΨY,2k−2
−ahj+1

(zj+1, vj+1, tj+1), t̃1 = tj+1 − ahj+1

4. Set (z̃2, ṽ2) = ΨY,2k−2
−bhj+1

(z̃1, ṽ1, t̃1), t̃2 = t̃1 − bhj+1

5. Set (zj , vj) = ΨY,2k−2
−ahj+1

(z̃2, ṽ2, t̃2), tj = t̃2 − ahj+1

6. Set hj from h1, . . . , hN obtained in the integration forward

7. Output: (zj , vj , tj , hj)

Gradient computations The augmentation of the feature space leads to the new variable which we
denote by ϕ = (z, v). Then, the learning problem is formulated as follows with Pz(ϕ) projection of
ϕ to z

min
{θj}

J = L(Pz(ϕN ), y)

ϕj+1 = ΨY,2k
h (ϕj , θj), j = 0, . . . , N − 1,

ϕ0 = (z, f(z, θ0)).

(9)

Following (Griesse & Walther, 2004), the discrete version of equation 5 associated with equation 9 is
given by

(λN )
⊤
= ∇L(ϕN ), λj =

(
∂ϕj+1

∂ϕj

)⊤

λj+1, (10)

and the gradients are computed by

∂J(θ)

∂θj
= λ⊤

j+1

∂ϕj+1

∂θj
. (11)

The adjoint method for the gradient computation as in the MALI network (Zhuang et al., 2021) and the
reversible Heun network (Kidger et al., 2021) is based on the propagation ϕj → ϕj+1 and automatic

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

differentiation for the computation of the step backward of the adjoint variable following equation 10.
The resulting method of gradient computation is summarized in Algorithm 3. Alternatively, the exact
expression of the numerical method governing the adjoint dynamics equation 10 can be obtained, see
details in Appendix B. In this case, there is no need to compute ∂ϕj+1

∂ϕj
, which makes the approach

computationally more efficient and memory efficient.

Algorithm 3 Computation of gradients
1. Input: training data z0, initialization of parameters θ, velocity v0 = f(z0, θ0)

2. Propagate through the network using ΨY,2k
h to get (zN , vN )

3. Set λz
N = ∇L(zN , y) and λv

N = 0
for j = N-1 to 1 do

4. Compute ϕj from ϕj+1 using Algorithm 2
5. Compute ϕj+1 from ϕj using Algorithm 1 to get the computational graph
6. Compute λj from λj+1 using equation 10 and AD to compute ∂ϕj+1

∂ϕj

7. Compute ∂J(θ)
∂θj

using equation 11
8. Delete λj+1, ϕj+1 and the computational graphs

end for
9. Output: gradients ∂J(θ)

∂θj
for j = 1, . . . , N − 1.

Costs comparison We will use the following notations: d is the dimension of z, T is the length
of the time interval in the continuous-depth setting, N is the number of layers, M stands for the
number of layers in f , when f is given by a neural network itself, s denotes the number of steps
needed for the computation of a time-step in the adaptive step size selection, p is the order of the
considered numerical method and r is the number of evaluations of f used in the numerical method
(e.g. stages in Runge-Kutta methods or compositions in our approach). We show the comparison
of the new proposed approach with the standard backpropagation approach, adjoint method version
NODE (Chen et al., 2018), ACA approach (Zhuang et al., 2020) and MALI approach (Zhuang et al.,
2021) in Table 1, which extends the Table 1 in (Zhuang et al., 2021). We use big O notation, when
the constants depend on the learning tasks.

Computational costs The compositional structure of the proposed method directly implies that the
computation costs for gradient computations are equal to the computational costs by ALF multiplied
by r, the number of the compositions. Notice that N depends on the order p of the discretization
method and becomes smaller when the order is higher for fixed ε and T . As a result, ALF method
needs more time-steps, than higher order methods for ε < 1, which is related to the bias in the learned
parameters in the task of identification of the parameters, as explained in Appendix C.1 and illustrated
in Figure 4, and to the training error.

Memory costs The gradient computation requires to compute ∂ϕj+1

∂ϕj
leading to the storage of all

the intermediate states involved in the step forward. This increases the memory costs of MALI by
a factor r, see Table 1. Notice that the approach presented in Appendix B does not require to store
all the intermediate states. Indeed, a step backward of the state-adjoint system is a composition of
rescaled steps backward of the ALF method. Therefore, we only need to store one intermediate state
obtained in the composition at a time. This makes the method of the same memory cost as MALI.
Notice that depending on the depth of the network, adaptive checkpointing as in (Matsubara et al.,
2021) can be added. When no checkpoints are needed the behaviour is as in NODE and in the worst
case the behaviour is as in the backprop. In general, the number of checkpoints depends on N , which
depends linearly on T . Therefore, more checkpoints are needed in case of large T .

4 EXPERIMENTS

4.1 PARAMETER IDENTIFICATION IN DYNAMICAL SYSTEMS

We consider the identification problem of unknown parameters of a dynamical system. The structure
of the differential equations is assumed to be known, but some parameters in the equations are
unknown. The training data is given by snapshots of trajectories {xl(ti)}i,l with l = 1, . . . L, i =
0, . . . , I . The goal is to learn the parameters from the given trajectories. This class of problems can

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison of costs in gradient computations for different approaches
Method Computational costs Memory costs Number of epochs N in

function of accuracy ε∗

Backprop r × d×M ×N × s× 2 r×d×M×N×s T ×O(ε−
1

p+1 )

NODE r × d×M ×N × s× 2 d×M T ×O(ε−
1

p+1 )

ACA r × d×M ×N × (s+ 1) d× (M +N) T ×O(ε−
1

p+1 )

MALI d×M ×N × (s+ 2) d× (M + 1) T ×O(ε−
1
3 )

Proposed
method

r × d×M ×N × (s+ 2) r∗∗×d×(M+1) T ×O(ε−
1

p+1 )

∗ ε is the error tolerance for the estimation of the local error in the stepsize selection
∗∗ Memory costs of the proposed method can be reduced to r = 1, if the gradients are computed as in

AppendixB

be naturally treated using the neural ODE approach. The vector field f in equation 1 is given by the
known differential equation and θ = θ1, . . . , θs is the set of unknown parameters. In this case, the
learning problem can be stated in the form of equation 9, where the same θ1, . . . , θs appear all at
each layer. The training data z0 = (x1(t0), . . . , xL(t0)) stands for the initial points and y includes
all the other points of the given trajectories. We denote by y(ti) the points in y corresponding to
trajectories at time ti for i = 1, . . . , I . The loss have a particular structure in this case as it depends
on the intermediate states obtained during the integration of neural ODE, namely, it depends on
(zN1 , . . . , zNI

), to measure the distance with the given trajectories points (y(t1), . . . , y(tI)). As a
result, it takes the form L =

∑I
i=1 Li(zNi , y(ti)). Because of the additive form of the loss, the

gradients can be computed as a sum of the corresponding gradients of L1, . . . , LI as follows
∂L

∂θi
=

∂L1

∂θi
+ · · ·+ ∂LI

∂θi
, i = 1, . . . , s,

where each of the terms in the sum is computed using Algorithm 3. The memory efficiency is still
important in this case, because we do not store all the intermediate states at the propagation forward,
but only the states which approximate the trajectories at the desired times t1, . . . , tI .
Statistical inference In simulation based inference or likelihood-free inference probabilistic meth-
ods are employed to identify parameters in models based on repeated forward simulations (Cranmer
et al., 2020a). Traditionally, these consider the forward pass as a black box (such as Approximate
Bayesian Computation (ABC) (Rubin, 1984; Beaumont et al., 2002)) and do not require differentia-
bility with respect to the model parameters or the inputs. This needs to be contrasted to our proposed
neural network architecture, which is designed to circumvent large memory requirements in the
computation of gradients when the layers are wide. Indeed, a combination of our architecture with
simulation based inference models that do make use of gradients such as (Graham & Storkey, 2017)
constitutes an interesting avenue for future research.

4.1.1 KEPLER PROBLEM

We consider the Kepler problem, where the dynamics describes the evolution of the position q and
velocity v of a mass point moving around a much heavier body. It is modeled on the 4-dimensional
space x = (q, v) ∈ R2 × R2. The equations are defined on the time interval [0, 1] as follows

q̇ = v, v̇ = − α

∥q∥3
q, (12)

with an unknown parameter α ∈ R. The training set is given by the initial condition x(t0) and q-
coordinate of 5 points on a trajectory of equation 12 generated with α = π/4 ≈ 0.785, i.e. {q(ti)}5i=1.
The task is to learn α as accurately as possible. From the training set we form z0 = x(t0) and the
corresponding y(ti) = q(ti) for i = 1, . . . , 5. We set up a learning problem in the form of equation 9
with the loss defined by L =

∑5
i=1 ∥qNi

− q(ti)∥2 with qNi
projection of zNi

to q-coordinate and
Ni the number of time-steps used in the integration from ti−1 to ti. We compare two algorithms for
performing the numerical integration during training, namely, ALF and the Yoshida composition
of ALF2 of order 4. We write Y4 for the Yoshida composition method for shortness. We test the
wall-clock time required to reach loss accuracy 10−8 using adaptive methods. The tests are run for
different initializations of α in optimization. The results can be seen in Table 2. It can be observed
that in all tests, Y4 is at least four times faster than ALF. The reason of the faster training for Y4 is

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Time to reach accuracy 10−8 using adaptive methods in the Kepler problem
Computation time

Initial value of α adaptive ALF adaptive Y4
0.1 7.68 sec 2.42 sec
0.7 4.07 sec 1.02 sec
0.75 3.26 sec 0.803 sec
0.8 2.5 sec 0.44 sec
1.3 8.39 sec 3.85 sec

Table 3: Time to reach accuracy 10−4 using adaptive methods in nonlinear oscillators problem
Computation time

Mean parameter error at initialization adaptive ALF adaptive Y4
0.28897009 81608 sec 51720 sec
0.29821727 68645 sec 40646 sec
0.30549358 56764 sec 29990 sec
0.30289593 96301 sec 46524 sec
0.29106813 22161 sec 13790 sec

in using larger step sizes for the forward integration. The lower order method requires smaller step
sizes to reach the same accuracy defined by an error tolerance and this leads to more steps in the
computation of trajectories. Additional results for the Kepler problem supporting the reasoning can
be found in Appendix C.1.

4.1.2 NONLINEAR HARMONIC OSCILLATOR

In the second example we consider a system of coupled Duffing oscillators, which describes the
movements of a coupled system of mass points attached with springs with nonlinear elastic forces.
The dynamics of N mass points is given by the following equations

q̇i = vi, v̇i = −aiqi − biq
3
i −

N∑
j=1

ei,j(qi − qj), i = 1, . . . , N, (13)

with the condition ei,j = ej,i. Positions of N mass points are given by q = (q1, · · · , qN ) ∈ RN and
velocities by v = (v1, · · · , vN ) ∈ RN . We set x = (q, v) ∈ R2N . In the numerical experiments
we fix N = 10 and assume that parameters ai, bi, ei,j ∈ R for i, j = 1, . . . , 10 are unknown. As
a result, equation 13 has dimension 20 with 65 unknown parameters. The training set consists of
initial and final positions of 200 trajectories, that is z0 = (x1(t0), . . . , x200(t0)) and y = y(t1) =
(x1(t1), . . . , x200(t1)). In this setting, we compare the computational time to reach a certain training
accuracy of ALF and Y4 with adaptive time-stepping and the training accuracy of ALF and Y4 with
fixed step-size. We present the wall-clock times to reach the training accuracy 10−4 in Table 3. The
time required by Y4 to reach accuracy 10−4 is almost two times smaller which illustrates the lower
computational costs of the method. As before, the ALF method with adaptive time-stepping requires
smaller step sizes and more steps are used in each epoch of the optimization. Details with additional
results confirming the behaviour are presented in Appendix C.2.1.

4.2 LEARNING OF DYNAMICAL SYSTEMS PARAMETERIZED BY NEURAL NETWORK

We consider a problem, where a part of the structure of the differential equations is known and
the unknown part is approximated using a neural network. Our goal is to find the neural network
parameterization such that the resulting trajectories of the system are as close as possible to given
trajectories from the training set. As before, the problem can be treated by the neural ODE approach.
In this case the vector field f in equation 1 is given by a neural network.

4.2.1 NONLINEAR HARMONIC OSCILLATOR

We consider the problem of approximating the potential function of a physical system, given by the
Duffing oscillators with two mass points. Equations can be equivalently written as

q̇ = v, v̇ = −∇V (q), (14)
with q = (q1, q2), v = (v1, v2) and V (q) stands for the potential energy of the system. The learning
task is to learn V (q). The gradient of the potential is approximated using a neural network with 51500

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Time to get accuracy 10−2 by adaptive methods in oscillators problem parameterized by NN
Computation time

Random initialization of parameters in NN adaptive ALF adaptive Y4
Initialization 1 2504 sec 1974 sec
Initialization 2 2961 sec 1857 sec
Initialization 3 4185 sec 2627 sec
Initialization 4 3542 sec 2125 sec
Initialization 5 3396 sec 2616 sec

Table 5: Wallclock time to get the training loss below 10−3 by adaptive methods in discretized PDE
Computation time

Random initialization of parameters in NN adaptive ALF adaptive Y4
Initialization 1 336.6808 sec 138.5936 sec
Initialization 2 169.5010 sec 133.6825 sec
Initialization 3 180.8185 sec 140.3172 sec
Initialization 4 153.7389 sec 128.2795 sec
Initialization 5 142.7732 sec 142.9196 sec

parameters. To obtain the potential from the learned vector field, we apply numerical integration
methods to the neural network approximating −∇V (q). We compare the computational time of
ALF and Y4 to reduce the value of the loss function below 10−2. The results presented in Table 4
show that Y4 is faster than ALF in completing the training on different random initializations of the
network parameters.

4.2.2 DISCRETIZED WAVE EQUATION

In the second example we consider the 1-dimensional wave equation utt(t, x) = uxx(t, x) −
∇V (u(t, x)) on the spatial-temporal domain [0, 1]× [0, 0.3] with periodic boundary conditions in
space for the potential V (u) = 1

2u
2. On a spatial, equidistant, periodic mesh with mesh width

∆x = 1
40 we seek to describe the system’s evolution by the first order system

u̇d = vd, v̇d = f(ud), (15)

where the unknown function f is parametrized as a fully connected ReLU neural network with one
hidden layer of size 100. The dimension of (ud, vd) is 40. We compare the training performance of
ALF and Y4. Both adaptive methods are employed with the same error tolerance. Yoshida is faster in
finishing each epoch and the optimizer takes less time to minimize the training loss below 10−3. The
precise results are reported in Table 5 for 5 random initializations in the training. This illustrates the
applicability of our method to the highly active research area of learning models of systems that are
governed by partial differential equations.

5 CONCLUSION

In this work, we construct higher order reversible methods. These constitute explicit numerical
integrators which are compatible with adaptive step-size selection strategies. The methods are
employed to train deep neural networks that are based on neural ODEs. Thanks to the reversibility
property, we avoid high memory requirements for backpropagation in the optimization procedure of
the network parameters. Memory efficient backpropagation allows an application of deep architectures
to the identification tasks of models of high-dimensional dynamical systems, which arise, for instance,
as spatial discretizations of partial differential equations. As the method is based on neural ODEs, it
can be trained with time-series data at irregular time-steps and can predict continuous time-series
data. We showed the advantages of the newly constructed networks on the example of a network
based on a 4th order method and demonstrate lower memory costs and faster training in comparison
to lower order methods.

While the examples in the article focus on system identification tasks for systems governed by
differential equations, extensions to neural stochastic differential equations (Kidger et al., 2021) are
of interest and applications to normalizing flows or image processing (Allen-Blanchette et al., 2020)
can be an exciting avenue to explore in future works.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Christine Allen-Blanchette, Sushant Veer, Anirudha Majumdar, and Naomi Ehrich Leonard.
LagNetViP: A Lagrangian neural network for video prediction (AAAI 2020 symposium on physics
guided ai), 2020.

Coryn A L Bailer-Jones, David J C MacKay, and Philip J Withers. A recurrent neural network for
modelling dynamical systems. Network: Computation in Neural Systems, 9(4):531, nov 1998. doi:
10.1088/0954-898X/9/4/008. URL https://dx.doi.org/10.1088/0954-898X/9/4/
008.

Mark A Beaumont, Wenyang Zhang, and David J Balding. Approximate bayesian computation
in population genetics. Genetics, 162(4):2025–2035, December 2002. ISSN 1943-2631. doi:
10.1093/genetics/162.4.2025. URL http://dx.doi.org/10.1093/genetics/162.4.
2025.

Sergio Blanes, Fernando Casas, and Ander Murua. Splitting methods for differential equations. Acta
Numerica, 33:1–161, 2024a. doi: 10.1017/S0962492923000077.

Sergio Blanes, Fernando Casas, and Ander Murua. Splitting methods for differential equations,
2024b. URL https://arxiv.org/abs/2401.01722.

Nicolas Boullé and Alex Townsend. Chapter 3 - a mathematical guide to operator learning. In
Siddhartha Mishra and Alex Townsend (eds.), Numerical Analysis Meets Machine Learning,
volume 25 of Handbook of Numerical Analysis, pp. 83–125. Elsevier, 2024. doi: https://doi.
org/10.1016/bs.hna.2024.05.003. URL https://www.sciencedirect.com/science/
article/pii/S1570865924000036.

Jake Bouvrie and Boumediene Hamzi. Kernel methods for the approximation of nonlinear systems.
SIAM Journal on Control and Optimization, 55(4):2460–2492, 2017. doi: 10.1137/14096815X.
URL https://doi.org/10.1137/14096815X.

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy
of Sciences, 113(15):3932–3937, 2016. doi: 10.1073/pnas.1517384113. URL https://www.
pnas.org/doi/abs/10.1073/pnas.1517384113.

E. Celledoni, M. J. Ehrhardt, C. Etmann, R. I. Mclachlan, B. Owren, C.-B. Schonlieb, and
F. Sherry. Structure-preserving deep learning. European Journal of Applied Mathematics, 32(5):
888–936, 2021. ISSN 0956-7925. doi: 10.1017/S0956792521000139. URL https://www.
cambridge.org/core/article/structurepreserving-deep-learning/
15384A9F2776B2D1C1F1D3CDA390D779.

Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot Holtham. Reversible
architectures for arbitrarily deep residual neural networks. In Proceedings of the AAAI conference
on artificial intelligence, volume 32, 2018.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural
ordinary differential equations. In Advances in Neural Information Processing Systems,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE Transactions on
Neural Networks, 6(4):911–917, 1995. doi: 10.1109/72.392253.

Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neural
networks. In International Conference on Learning Representations, 2020.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based infer-
ence. Proceedings of the National Academy of Sciences, 117(48):30055–30062, 2020a. doi:
10.1073/pnas.1912789117. URL https://www.pnas.org/doi/abs/10.1073/pnas.
1912789117.

11

https://dx.doi.org/10.1088/0954-898X/9/4/008
https://dx.doi.org/10.1088/0954-898X/9/4/008
http://dx.doi.org/10.1093/genetics/162.4.2025
http://dx.doi.org/10.1093/genetics/162.4.2025
https://arxiv.org/abs/2401.01722
https://www.sciencedirect.com/science/article/pii/S1570865924000036
https://www.sciencedirect.com/science/article/pii/S1570865924000036
https://doi.org/10.1137/14096815X
https://www.pnas.org/doi/abs/10.1073/pnas.1517384113
https://www.pnas.org/doi/abs/10.1073/pnas.1517384113
https://www.cambridge.org/core/article/structurepreserving-deep-learning/15384A9F2776B2D1C1F1D3CDA390D779
https://www.cambridge.org/core/article/structurepreserving-deep-learning/15384A9F2776B2D1C1F1D3CDA390D779
https://www.cambridge.org/core/article/structurepreserving-deep-learning/15384A9F2776B2D1C1F1D3CDA390D779
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://www.pnas.org/doi/abs/10.1073/pnas.1912789117
https://www.pnas.org/doi/abs/10.1073/pnas.1912789117


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.
Lagrangian neural networks, 2020b.

Wolfgang Dahmen and Arnold Reusken. Numerik für Ingenieure und Naturwissenschaftler:
Methoden, Konzepte, Matlab-Demos, E-Learning. Springer Berlin Heidelberg, 2022. ISBN
9783662651810. doi: 10.1007/978-3-662-65181-0. URL http://dx.doi.org/10.1007/
978-3-662-65181-0.

Marco David and Florian Méhats. Symplectic learning for hamiltonian neural networks. Journal of
Computational Physics, 494:112495, 2023. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.
2023.112495. URL https://www.sciencedirect.com/science/article/pii/
S0021999123005909.

Peter Deuflhard and Folkmar Bornemann. Scientific Computing with Ordinary Differential Equations.
Springer New York, 2002. ISBN 9780387215822. doi: 10.1007/978-0-387-21582-2. URL
http://dx.doi.org/10.1007/978-0-387-21582-2.

Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau, and
Sebastian Thrun. Dermatologist-level classification of skin cancer with deep neural networks.
Nature, 542(7639):115—118, February 2017. ISSN 0028-0836. doi: 10.1038/nature21056. URL
https://europepmc.org/articles/PMC8382232.

Amin Ghadami and Bogdan I. Epureanu. Data-driven prediction in dynamical systems: recent
developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 380(2229):20210213, 2022. doi: 10.1098/rsta.2021.0213. URL https:
//royalsocietypublishing.org/doi/abs/10.1098/rsta.2021.0213.

Amir Gholaminejad, Kurt Keutzer, and George Biros. Anode: Unconditionally accurate memory-
efficient gradients for neural odes. International Joint Conferences on Artificial Intelligence. doi:
10.24963/ijcai.2019/103. URL https://par.nsf.gov/biblio/10322883.

Matthew M. Graham and Amos J. Storkey. Asymptotically exact inference in differentiable generative
models. Electronic Journal of Statistics, 11(2):5105 – 5164, 2017. doi: 10.1214/17-EJS1340SI.
URL https://doi.org/10.1214/17-EJS1340SI.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf.

R. Griesse and A. Walther. Evaluating gradients in optimal control: Continuous adjoints versus
automatic differentiation. Journal of Optimization Theory and Applications, 122(1):63–86, 2004.
ISSN 1573-2878. doi: 10.1023/B:JOTA.0000041731.71309.f1. URL https://doi.org/10.
1023/B:JOTA.0000041731.71309.f1.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems,
34(1):014004, dec 2017. doi: 10.1088/1361-6420/aa9a90. URL https://dx.doi.org/10.
1088/1361-6420/aa9a90.

Ernst Hairer, Marlis Hochbruck, Arieh Iserles, and Christian Lubich. Geometric numerical integration.
Oberwolfach Reports, 3(1):805–882, 2006.

Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric Numerical Integration: Structure-
Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Math-
ematics. Springer Berlin Heidelberg, 2013. ISBN 9783662050187. doi: 10.1007/3-540-30666-8.
URL https://doi.org/10.1007/3-540-30666-8.

Boumediene Hamzi and Houman Owhadi. Learning dynamical systems from data: A simple cross-
validation perspective, part i: Parametric kernel flows. Physica D: Nonlinear Phenomena, 421:
132817, 2021. ISSN 0167-2789. doi: https://doi.org/10.1016/j.physd.2020.132817. URL https:
//www.sciencedirect.com/science/article/pii/S0167278920308186.

12

http://dx.doi.org/10.1007/978-3-662-65181-0
http://dx.doi.org/10.1007/978-3-662-65181-0
https://www.sciencedirect.com/science/article/pii/S0021999123005909
https://www.sciencedirect.com/science/article/pii/S0021999123005909
http://dx.doi.org/10.1007/978-0-387-21582-2
https://europepmc.org/articles/PMC8382232
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2021.0213
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2021.0213
https://par.nsf.gov/biblio/10322883
https://doi.org/10.1214/17-EJS1340SI
https://proceedings.neurips.cc/paper_files/paper/2019/file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf
https://doi.org/10.1023/B:JOTA.0000041731.71309.f1
https://doi.org/10.1023/B:JOTA.0000041731.71309.f1
https://dx.doi.org/10.1088/1361-6420/aa9a90
https://dx.doi.org/10.1088/1361-6420/aa9a90
https://doi.org/10.1007/3-540-30666-8
https://www.sciencedirect.com/science/article/pii/S0167278920308186
https://www.sciencedirect.com/science/article/pii/S0167278920308186


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ken ichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by continuous time
recurrent neural networks. Neural Networks, 6(6):801–806, 1993. ISSN 0893-6080. doi: https:
//doi.org/10.1016/S0893-6080(05)80125-X. URL https://www.sciencedirect.com/
science/article/pii/S089360800580125X.

Pengzhan Jin, Zhen Zhang, Aiqing Zhu, Yifa Tang, and George Em Karniadakis. Sympnets:
Intrinsic structure-preserving symplectic networks for identifying hamiltonian systems. Neu-
ral Networks, 132:166–179, 2020. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.
2020.08.017. URL https://www.sciencedirect.com/science/article/pii/
S0893608020303063.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu
Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.
ISSN 2522-5820. doi: 10.1038/s42254-021-00314-5. URL https://doi.org/10.1038/
s42254-021-00314-5.

Patrick Kidger, James Foster, Xuechen (Chen) Li, and Terry Lyons. Efficient and accurate gradients
for neural sdes. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 18747–18761. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/9ba196c7a6e89eafd0954de80fc1b224-Paper.pdf.

Boris Kramer, Benjamin Peherstorfer, and Karen E. Willcox. Learning nonlinear reduced
models from data with operator inference. Annual Review of Fluid Mechanics, 56
(Volume 56, 2024):521–548, 2024. ISSN 1545-4479. doi: https://doi.org/10.1146/
annurev-fluid-121021-025220. URL https://www.annualreviews.org/content/
journals/10.1146/annurev-fluid-121021-025220.

Guang Lin, Christian Moya, and Zecheng Zhang. Learning the dynamical response of nonlinear non-
autonomous dynamical systems with deep operator neural networks. Engineering Applications of
Artificial Intelligence, 125:106689, 2023. ISSN 0952-1976. doi: https://doi.org/10.1016/j.engappai.
2023.106689. URL https://www.sciencedirect.com/science/article/pii/
S0952197623008734.

Yuying Liu, J. Nathan Kutz, and Steven L. Brunton. Hierarchical deep learning of multiscale differ-
ential equation time-steppers. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 380(2229):20210200, 2022. doi: 10.1098/rsta.2021.0200.
URL https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2021.
0200.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature
Machine Intelligence, 3(3):218–229, 2021. ISSN 2522-5839. doi: 10.1038/s42256-021-00302-5.
URL https://doi.org/10.1038/s42256-021-00302-5.

Sofya Maslovskaya and Sina Ober-Blöbaum. Symplectic methods in deep learning. IFAC-
PapersOnLine, 58(17):85–90, 2024. ISSN 2405-8963. doi: https://doi.org/10.1016/j.ifacol.
2024.10.118. URL https://www.sciencedirect.com/science/article/pii/
S2405896324018731. 26th International Symposium on Mathematical Theory of Networks
and Systems MTNS 2024.

Justice Mason, Christine Allen-Blanchette, Nicholas Zolman, Elizabeth Davison, and Naomi Leonard.
Learning interpretable dynamics from images of a freely rotating 3d rigid body, 2022.

Takashi Matsubara, Yuto Miyatake, and Takaharu Yaguchi. Symplectic adjoint method
for exact gradient of neural ode with minimal memory. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 20772–20784. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/adf8d7f8c53c8688e63a02bfb3055497-Paper.pdf.

Ulrich Mutze. An asynchronous leapfrog method ii, 2016.

13

https://www.sciencedirect.com/science/article/pii/S089360800580125X
https://www.sciencedirect.com/science/article/pii/S089360800580125X
https://www.sciencedirect.com/science/article/pii/S0893608020303063
https://www.sciencedirect.com/science/article/pii/S0893608020303063
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://proceedings.neurips.cc/paper_files/paper/2021/file/9ba196c7a6e89eafd0954de80fc1b224-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/9ba196c7a6e89eafd0954de80fc1b224-Paper.pdf
https://www.annualreviews.org/content/journals/10.1146/annurev-fluid-121021-025220
https://www.annualreviews.org/content/journals/10.1146/annurev-fluid-121021-025220
https://www.sciencedirect.com/science/article/pii/S0952197623008734
https://www.sciencedirect.com/science/article/pii/S0952197623008734
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2021.0200
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2021.0200
https://doi.org/10.1038/s42256-021-00302-5
https://www.sciencedirect.com/science/article/pii/S2405896324018731
https://www.sciencedirect.com/science/article/pii/S2405896324018731
https://proceedings.neurips.cc/paper_files/paper/2021/file/adf8d7f8c53c8688e63a02bfb3055497-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/adf8d7f8c53c8688e63a02bfb3055497-Paper.pdf


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Sina Ober-Blöbaum and Christian Offen. Variational learning of euler–lagrange dynamics from data.
Journal of Computational and Applied Mathematics, 421:114780, March 2023. ISSN 0377-0427.
doi: 10.1016/j.cam.2022.114780. URL http://dx.doi.org/10.1016/j.cam.2022.
114780.

C. Offen and S. Ober-Blöbaum. Symplectic integration of learned hamiltonian systems. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 32(1), 1 2022. ISSN 1089-7682. doi: 10.1063/5.
0065913. URL http://dx.doi.org/10.1063/5.0065913.

Christian Offen. Machine learning of discrete field theories with guaranteed convergence and
uncertainty quantification, 2024. URL https://arxiv.org/abs/2407.07642.

Christian Offen and Sina Ober-Blöbaum. Learning of discrete models of variational pdes from data.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 34(1), January 2024. ISSN 1089-7682.
doi: 10.1063/5.0172287. URL http://dx.doi.org/10.1063/5.0172287.

Hong Qin. Machine learning and serving of discrete field theories. Scientific Reports, 10(1),
November 2020. ISSN 2045-2322. doi: 10.1038/s41598-020-76301-0. URL http://dx.doi.
org/10.1038/s41598-020-76301-0.

Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar,
Dominic Skinner, Ali Ramadhan, and Alan Edelman. Universal differential equations for scientific
machine learning, 2021. URL https://arxiv.org/abs/2001.04385.

Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of nonlinear
partial differential equations. Journal of Computational Physics, 357:125–141, 2018. ISSN 0021-
9991. doi: https://doi.org/10.1016/j.jcp.2017.11.039. URL https://www.sciencedirect.
com/science/article/pii/S0021999117309014.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Multistep neural networks for data-
driven discovery of nonlinear dynamical systems, 2018a. URL https://arxiv.org/abs/
1801.01236.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Multistep neural networks for data-
driven discovery of nonlinear dynamical systems. arXiv preprint arXiv:1801.01236, 2018b.

Patrick A. K. Reinbold, Logan M. Kageorge, Michael F. Schatz, and Roman O. Grigoriev. Robust
learning from noisy, incomplete, high-dimensional experimental data via physically constrained
symbolic regression. Nature Communications, 12(1):3219, 2021. ISSN 2041-1723. doi: 10.1038/
s41467-021-23479-0. URL https://doi.org/10.1038/s41467-021-23479-0.

Donald B. Rubin. Bayesianly Justifiable and Relevant Frequency Calculations for the Applied
Statistician. The Annals of Statistics, 12(4):1151 – 1172, 1984. doi: 10.1214/aos/1176346785.
URL https://doi.org/10.1214/aos/1176346785.

Samuel H. Rudy, J. Nathan Kutz, and Steven L. Brunton. Deep learning of dynamics and signal-
noise decomposition with time-stepping constraints. Journal of Computational Physics, 396:
483–506, 2019a. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2019.06.056. URL https:
//www.sciencedirect.com/science/article/pii/S0021999119304644.

Samuel H. Rudy, J. Nathan Kutz, and Steven L. Brunton. Deep learning of dynamics and signal-
noise decomposition with time-stepping constraints. Journal of Computational Physics, 396:
483–506, 2019b. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2019.06.056. URL https:
//www.sciencedirect.com/science/article/pii/S0021999119304644.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. Imagenet large scale visual recognition challenge. International Journal of Computer
Vision, 115(3):211–252, 2015. ISSN 1573-1405. doi: 10.1007/s11263-015-0816-y. URL
https://doi.org/10.1007/s11263-015-0816-y.

Max Schüssler, Tobias Münker, and Oliver Nelles. Deep recurrent neural networks for nonlinear
system identification. In 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pp.
448–454, 2019. doi: 10.1109/SSCI44817.2019.9003133.

14

http://dx.doi.org/10.1016/j.cam.2022.114780
http://dx.doi.org/10.1016/j.cam.2022.114780
http://dx.doi.org/10.1063/5.0065913
https://arxiv.org/abs/2407.07642
http://dx.doi.org/10.1063/5.0172287
http://dx.doi.org/10.1038/s41598-020-76301-0
http://dx.doi.org/10.1038/s41598-020-76301-0
https://arxiv.org/abs/2001.04385
https://www.sciencedirect.com/science/article/pii/S0021999117309014
https://www.sciencedirect.com/science/article/pii/S0021999117309014
https://arxiv.org/abs/1801.01236
https://arxiv.org/abs/1801.01236
https://doi.org/10.1038/s41467-021-23479-0
https://doi.org/10.1214/aos/1176346785
https://www.sciencedirect.com/science/article/pii/S0021999119304644
https://www.sciencedirect.com/science/article/pii/S0021999119304644
https://www.sciencedirect.com/science/article/pii/S0021999119304644
https://www.sciencedirect.com/science/article/pii/S0021999119304644
https://doi.org/10.1007/s11263-015-0816-y


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Harsh Sharma, Hongliang Mu, Patrick Buchfink, Rudy Geelen, Silke Glas, and Boris Kramer. Sym-
plectic model reduction of hamiltonian systems using data-driven quadratic manifolds. Computer
Methods in Applied Mechanics and Engineering, 417:116402, 2023. ISSN 0045-7825. doi:
https://doi.org/10.1016/j.cma.2023.116402. URL https://www.sciencedirect.com/
science/article/pii/S0045782523005261.

Harsh Sharma, David A. Najera-Flores, Michael D. Todd, and Boris Kramer. Lagrangian operator
inference enhanced with structure-preserving machine learning for nonintrusive model reduction
of mechanical systems. Computer Methods in Applied Mechanics and Engineering, 423:116865,
2024. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2024.116865. URL https://www.
sciencedirect.com/science/article/pii/S004578252400121X.

Masuo Suzuki. General theory of fractal path integrals with applications to many-body theories and
statistical physics. Journal of Mathematical Physics, 32(2):400–407, 02 1991. ISSN 0022-2488.
doi: 10.1063/1.529425. URL https://doi.org/10.1063/1.529425.

Giang Tran and Rachel Ward. Exact recovery of chaotic systems from highly corrupted data.
Multiscale Modeling & Simulation, 15(3):1108–1129, 2017. doi: 10.1137/16M1086637. URL
https://doi.org/10.1137/16M1086637.

Loup Verlet. Computer ”experiments” on classical fluids. i. thermodynamical properties of lennard-
jones molecules. Phys. Rev., 159:98–103, Jul 1967. doi: 10.1103/PhysRev.159.98. URL https:
//link.aps.org/doi/10.1103/PhysRev.159.98.

Haruo Yoshida. Construction of higher order symplectic integrators. Physics Letters A, 150(5):262–
268, 1990. ISSN 0375-9601. doi: https://doi.org/10.1016/0375-9601(90)90092-3. URL https:
//www.sciencedirect.com/science/article/pii/0375960190900923.

Aiqing Zhu, Pengzhan Jin, Beibei Zhu, and Yifa Tang. Inverse modified differential equations for
discovery of dynamics, 2021.

Juntang Zhuang, Nicha Dvornek, Xiaoxiao Li, Sekhar Tatikonda, Xenophon Papademetris, and James
Duncan. Adaptive checkpoint adjoint method for gradient estimation in neural ODE. In Hal Daumé
III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pp. 11639–11649. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/v119/zhuang20a.html.

Juntang Zhuang, Nicha C. Dvornek, Sekhar Tatikonda, and James S. Duncan. Mali: A memory
efficient and reverse accurate integrator for neural odes, 2021.

A ERROR ANALYSIS OF ALF2

Example A.1. Consider a simple example of a differential equation on R given by

ż = z2 + t+ sin(zt) +
1

z2 + 1
. (16)

We solve the equation numerically using the ALF method and compare with a solution of high
accuracy for different step sizes. The results are plotted in Figure 1 and show the second order
behaviour in both (z, v) variables.

A.1 PROOF OF THEOREM 3.1

We show that the local error of ALF2 in (z, v) is of order O(h3). Let us consider the Taylor expansion
of the exact flow (z(t), v(t)) around (z(t0), v(t0) = f(z0, t0)).

z(t0 + h) = z0 + hf(z0, t0) +
h2

2

(
∂f

∂z
(z0, t0) ◦ f(z0, t0) +

∂f

∂t
(z0, t0)

)
+O(h3),

15

https://www.sciencedirect.com/science/article/pii/S0045782523005261
https://www.sciencedirect.com/science/article/pii/S0045782523005261
https://www.sciencedirect.com/science/article/pii/S004578252400121X
https://www.sciencedirect.com/science/article/pii/S004578252400121X
https://doi.org/10.1063/1.529425
https://doi.org/10.1137/16M1086637
https://link.aps.org/doi/10.1103/PhysRev.159.98
https://link.aps.org/doi/10.1103/PhysRev.159.98
https://www.sciencedirect.com/science/article/pii/0375960190900923
https://www.sciencedirect.com/science/article/pii/0375960190900923
https://proceedings.mlr.press/v119/zhuang20a.html


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

10
-3

10
-2

10
-1

10
-4

10
-2

z
ALF

v
ALF

h
2

Figure 1: Log-log plot of the global error of trajectories (z(t), v(t)) of equation 16 defined on time
interval [0, 1.0] and obtained by ALF with h ranging from 0.5 to 10−3.

v(t0 + h) = f(z0, t0) + h

(
∂f

∂z
(z0, t0) ◦ f(z0, t0) +

∂f

∂t
(z0, t0)

)
+

h2

2
(
∂2f

∂z2
(z0, t0)(f(z0, t0), f(z0, t0))+

∂f

∂z
(z0, t0)◦

∂f

∂z
(z0, t0)◦f(z0, t0)+2

∂2f

∂z∂t
(z0, t0)◦f(z0, t0)

+
∂f

∂z
(z0, t0) ◦

∂f

∂t
(z0, t0) +

∂2f

∂t2
(z0, t0)) +O(h3).

Now we consider the same for the numerical flow obtained with ALF2, that is composition of two
steps of ALF each with the step size h

2 . One step of ALF2 from (z0, v0) leads to (z1, v1) of the form

z1(h) = z0 +
h

2
(f(z0 +

h

4
f(z0, t0), t0 +

h

4
) + f(z0 + hf(z0 +

h

4
f(z0, t0), t0 +

h

4
)

− h

4
f(z0, t0), t0 +

3h

4
)),

and

v1(h) = v0+2(f(z0+hf(z0+
h

4
f(z0, t0), t0+

h

4
)− h

4
v0, t0+

3h

4
)−f(z0+

h

4
f(z0, t0), t0+

h

4
)).

Writing down the Taylor expansion in h for (z1(h), v1(h)) we find exactly the same terms as in
(z(t0 + h), v(t0 + h)) up to terms of the third order O(h3). The computations to obtain the Taylor
expansion of (z1, v1) were done using Maple software. This implies that the local error of ALF2 is
of the 3rd order, and therefore, the global error is of order 2. This completes the proof.

B NUMERICAL METHOD FOR THE ADJOINT

The expression of equation 10 for ϕk+1 obtained from ϕk by a step forward of ALF2 can be interpreted
as a rescaled step backward of ALF2 applied to the state-adjoint dynamics. Let us introduce a map
Wh depending on h, which acts on (z, v, λz, λv) as follows. It only transforms λv multiplying it by
−h2

16 , that is

Wα(z, v, λ
z, λv) =

Id 0 0 0
0 Id 0 0
0 0 Id 0
0 0 0 αId


 z

v
λz

λv

 .

Theorem B.1. The step backward of the discretized state-adjoint system associated to the ALF2
method satisfies

(zk, vk, λ
z
k, λ

v
k) = W−1

−h2

16

◦ΨALF2
−h ◦W−h2

16

(zk+1, vk+1, λ
z
k+1, λ

v
k+1), (17)

where ΨALF2
−h is applied to the state-adjoint equations of the augemented system for ϕ = (z, v)

ϕ̇(t) = f̃(ϕ(t), θ(t)), λ̇ = − ∂

∂ϕ
f̃(ϕ(t), θ(t))⊤λ,

with f̃(ϕ, θ) = (f(z, θ), ∂
∂z f(z, θ)f(z, θ)).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. In order to find the expression for ALF2, we first determine the expression for ALF and use the
chain rule. Let us compute ∂ϕk+1

∂ϕk
for ALF method, where ϕk+1 = (zk+1, vk+1) and ϕk = (zk, vk).

Differentiating equation 7 with respect to (zk, vk), we obtain

∂ϕk+1

∂ϕk
=

Id + h∂f
∂z (zk + h

2 vk, tk + h
2 )

h2

2
∂f
∂z (zk + h

2 vk, tk + h
2 )

2∂f
∂z (zk + h

2 vk, tk + h
2 ) h∂f

∂z (zk + h
2 vk, tk + h

2 )− Id

 .

This implies

λz
k =

(
Id + h

∂

∂z
f(zk +

h

2
vk, tk +

h

2
)

)
λz
k+1 + 2

∂

∂z
f(zk +

h

2
vk, tk +

h

2
)λv

k+1,

λv
k =

h2

2

∂

∂z
f(zk +

h

2
vk, tk +

h

2
)λz

k+1 +

(
h
∂

∂z
f(zk +

h

2
vk, tk +

h

2
)− Id

)
λv
k+1.

(18)

Notice that equation 18 can be equivalently written as

λz
k = λz

k+1 + h
∂

∂z
f(zk +

h

2
vk, tk +

h

2
)

(
λz
k+1 +

2

h
λv
k+1

)
,

λv
k = −2

∂

∂z
f(zk +

h

2
vk, tk +

h

2
)

(
−h2

4
λz
k+1 −

h

2
λv
k+1

)
− λv

k+1.

(19)

Let us now introduce λ̃v
k = − 4

h2λ
v
k. Then equations take the following form

λz
k = λz

k+1 + h
∂

∂z
f(zk +

h

2
vk, tk +

h

2
)

(
λz
k+1 −

h

2
λ̃v
k+1

)
,

λ̃v
k = −2

∂

∂z
f(zk +

h

2
vk, tk +

h

2
)

(
λz
k+1 −

h

2
λ̃v
k+1

)
− λ̃v

k+1.

(20)

Taking into account that zk + h
2 vk = zk+1 − h

2 vk+1 from the construction of equation 7-equation 8,
we conclude that variables (λz

k,− 4
h2λ

v
k) follow the backward integration with ALF method and its

step backward defined by equation 8 applied to the continuous equations of the adjoint equation 5.
As a result, the step backward of the adjoint variables λ can be expressed as

(λz
k, λ

v
k) = Ŵ−1

−h2

4

◦ Ψ̂ALF
−h (zk+1, vk+1) ◦ Ŵ−h2

4

(λz
k+1, λ

v
k+1),

where Ŵα is a projection of Wα to variables (λz
k, λ

v
k) and Ψ̂ALF

−h (zk+1, vk+1) stands for a projection
of the backward ALF step to (λz, λv), which is still a function of (zk+1, vk+1). To deduce the
formula for the ALF2 method, we use its composition structure, namely, ΨALF2

h = ΨALF
h/2 ◦ΨALF

h/2 .
This implies

∂ϕk+1

∂ϕk
=

∂

∂ϕk

(
ΨALF

h/2 ◦ΨALF
h/2

)
=

(
∂ΨALF2

h/2

∂ϕ
(ϕk+ 1

2
)

)
◦

(
∂ΨALF2

h/2

∂ϕ
(ϕk)

)
with

ϕk+ 1
2
= ΨALF2

h/2 (ϕk) = ΨALF2
−h/2 (ϕk+1).

As a result,

(
∂ϕk+1

∂ϕk

)⊤

=

(
∂ΨALF2

h/2

∂ϕ
(ϕk)

)⊤

◦

(
∂ΨALF2

h/2

∂ϕ
(ϕk+ 1

2
)

)⊤

= Ŵ−1
−h2

16

◦ Ψ̂ALF
−h/2(ϕk+ 1

2
) ◦ Ŵ−h2

16

◦ Ŵ−1
−h2

16

◦ Ψ̂ALF
−h/2(ϕk+1) ◦ Ŵ−h2

16

= Ŵ−1
−h2

16

◦ Ψ̂ALF
−h/2(Ψ

ALF2
−h/2 (ϕk+1)) ◦ Ψ̂ALF

−h/2(ϕk+1) ◦ Ŵ−h2

16

= Ŵ−1
−h2

16

◦ Ψ̂ALF2
−h (zk+1, vk+1) ◦ Ŵ−h2

16

.

The resulting equations for the backward step of the state-adjoint system are given in equation 17.
This completes the proof of Theorem B.1.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

The formula for the adjoint of Yoshida methods ΦY
2k follows from the composition structure of the

method and is presented the following theorem. With a slight abuse of notation we denote ΦALF2 by
ΦY

2 .
Theorem B.2. Assume that the discrete one step method in equation 2 is given for k ≥ 2 by

ΨY
2k(h) = ΨY

2k−2(ah) ◦ΨY
2k−2(bh) ◦ΨY

2k−2(ah), ϕk+1 = ΨY
2k(h) ◦ ϕk. (21)

Then the state-adjoint backward step can be computed recursively as follows

(ϕk, λk) = Ψ̃Y
2k−2(ah) ◦ Ψ̃Y

2k−2(bh) ◦ Ψ̃Y
2k−2(ah)(ϕk+1, λk+1), (22)

with Ψ̃Y
2k−2 the map, which defines the backward step of state-adjoint system of the method ΦY

2k−2.

Proof. The proof is by induction on k in the considered method ΨY
2k and is based on the composition

structure of ΨY
2k in equation 21. Let k = 2, then ΨY

4 (h) = ΨALF2
ah ◦ΨALF2

bh ◦ΨALF2
ah . By the chain

rule we have(
∂ϕk+1

∂ϕk

)⊤

=

(
∂ΨALF2

ah

∂ϕ
(ϕk+ 1

3
)

)⊤

◦
(
∂ΨALF2

bh

∂ϕ
(ϕk+ 2

3
)

)⊤

◦
(
∂ΨALF2

ah

∂ϕ
(ϕk+1)

)⊤

with
ϕk+ 2

3
= ΨALF2

−ah (ϕk+1),

ϕk+ 1
3
= ΨALF2

−bh ◦ΨALF2
−ah (ϕk+1).

By construction of the backward step of the state adjoint system by ALF2 shown in equation 17, we
have(

∂ϕk+1

∂ϕk

)⊤

= Prλ
(
W−1

ah ◦ΨALF2
−ah ◦Wah

)
◦ Prλ

(
W−1

bh ◦ΨALF2
−bh ◦Wbh

)
◦

◦ Prλ
(
W−1

ah ◦ΨALF2
−ah ◦Wah

)
,

where Ψ̂ALF2
hi

= Prλ
(
W−1

hi
◦ΨALF2

−hi
◦Whi

)
, hi ∈ {ah, bh} defines a step backward with the

ALF2 method with step-size hi in the adjoint variable. This proves the Theorem for k = 2. Let us
assume now that the statement of the theorem holds for k = k0 and we consider the adjoint method
for ΨY

2k0
(h) = ΨY

2k0−2(ah) ◦ΨY
2k0−2(bh) ◦ΨY

2k0−2(ah). As before, applying the chain rule and the
assumption of the induction, it follows that(
∂ϕk+1

∂ϕk

)⊤

=

(
∂ΨY

2k0−2(ah)

∂ϕ
(ϕ̃k+ 1

3
)

)⊤

◦

(
∂ΨY

2k0−2(bh)

∂ϕ
(ϕ̃k+ 2

3
)

)⊤

◦

(
∂ΨY

2k0−2(ah)

∂ϕ
(ϕk+1)

)⊤

=
̂̃
ΨY

2k0−2(ah) ◦
̂̃
ΨY

2k0−2(bh) ◦
̂̃
ΨY

2k0−2(ah),

where we used the notation

ϕ̃k+ 2
3
= ΨY

2k0−2(−ah)(ϕk+1), ϕ̃k+ 1
3
= ΨY

2k0−2(−bh) ◦ΨY
2k0−2(−ah)(ϕk+1),

and ̂̃ΨY
2k0−2 the projection of the step backward associated to the state-adjoint system and ΨY

2k0−2
method. This completes the induction step and the proof.

In case of k = 2, Theorem B.2 in combination with equation 17 leads to the following expression

Ψ̃Y
4 = W−1

−(ah)2

16

◦ΨALF2
−ah ◦W a2

b2
◦ΨALF2

−bh ◦W b2

a2
◦ΨALF2

−ah ◦W−(ah)2

16

.

The obtained results lead to the Algorithm 4 for the computation of gradients.

C DETAILS OF NUMERICAL EXPERIMENTS

In all the numerical experiments, our implementation of the Yoshida composition method uses the
code of the MALI network (Zhuang et al., 2021). We use the steps forward and backward of the ALF
method as composition steps to compute ALF2 and its Yoshida composition.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 4 Computation of gradients
1. Input: training data z0, initialization of parameters θ, velocity v0 = f(z0, θ0)
2. Propagate through the network using ΨY

2k to get (zN , vN )
3. Set λz

N = ∇L(zN ) and λv
N = 0

for k = N to 1 do
4. Compute ϕk, λk from ϕk+1, λk+1 using equation 17 and equation 22.
5. Compute ∂J(θ)

∂θk
using equation 11

end for
6. Output: gradients ∂J(θ)

∂θk
for k = 1, . . . N − 1.

C.1 KEPLER PROBLEM

The training data for the comparison of the computational time in Table 2 is given by a tra-

jectory x of equation 12 with initial condition x0 = (0.75, 0, 0, 0.9π
4

√
5
3 ) on time interval

[0, T ] = [0, 1], which is an elliptic orbit. The trajectory is obtained by numerical integration using
sci.integrate.odeint with relative and absolute tolerances 10−7 and 10−8 respectively and
maximum step size 10−5. The optimizer used in the training is SGD from PyTorch with initial
learning rate 0.1 and scaled by 0.95 for each epoch. For completeness, we show the evaluation of the
parameter error across the learning displayed as a function of time in Figure 2 and as a function of
epochs in Figure 3. In the plots we show the results obtained with ALF, Y4 and also Runge-Kutta 4(5)
(RK45), the latter is not a reversible method and requires storage of the intermediate states obtained
during the integration forward. This implies additional memory consumption, namely, at each epoch
the algorithm saves 8 additional states obtained during integration forward, making the memory
consumption of the training higher. The four plots in Figures 3 and 2 are obtained for different
initializations of the parameters α0 in the learning, namely, α0 = 1.3, 0.1, 0.7, 0.75.

Figure 2: Error of the learned parameter with respect to the ground truth α as a function of time.

The error landscape in Figure 4 is obtained by considering 81 trajectories obtained using the same
integration method as for the time comparison explained above for 81 different initial conditions
(x0)i in a neighborhood of x0, given by a 4-dimensional box of diameter 0.4 around x0. The points
(x0)i are chosen on a grid with a step size 0.1, which includes x0 as its point. The behaviour of ALF
and Y4 with adaptive stepping can be better understood when looking at fixed step methods, when
the step size hi = h is fixed for all the steps. The loss landscape visualized in Figure 4 for fixed step
ALF and fixed step Y4 shows that the minimum value of the loss is achieved at a better precision

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 3: Error of the learned parameter with respect to the ground truth α as a function of epochs.

of the true parameter for the higher order methods than for the lower order method, which will be
explained in more detail below. The loss visualized in Figure 4 as a function of α is

L(αk) =
1

81

81∑
i=1

5∑
j=1

∑
∥(qNj

(αk))i − q(tj , (x0)i)∥2

with qNj projection of zNj to q-coordinate and αk taking 300 values in [π4 − 10−4, π
4 + 10−4]. Here

(qNj (α))i is obtained by numerical integration of equation 12.

Figure 4: Error landscape of ALF and Y4 methods for Kepler problem showing the loss computed
for the parameters in a neighbourhood of the true value of α displayed by a vertical line.

If (qNj
(α))i was obtained by exact integration of equation 12 and in the absence of noise and

round-off errors, true parameter values constitute minima for L. We interpret the application of a
numerical integrator as a perturbation of size O(hp) to the exact (qNj (α))i, where h is the step size
of the integration and p the order of the numerical method. This yields a perturbation L̃ of L of
size O(h2p) in case of the mean-square loss. Thus, assuming that the local minima of L at the true
parameter value is non-degenerate, L̃ has a local minimum within a ball around the true parameter
of size O(hp). This follows from classical discussions on the numerical conditioning of computing
zeros of a function as, for instance, in (Dahmen & Reusken, 2022, §5.2). This provides a direct
relation of the order of an integration method and the accuracy of identified parameters.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Notice that in the adaptive-step size context the perturbation of L and, thus, the error of its minima
are controlled by the provided error tolerance. However, the discussion shows that in order to be
able to expect the same accuracy in the parameter identification, neural ODEs based on lower-order
methods require more integration steps than neural ODEs based on high-order methods.

The above O(hp) error relation in the parameter estimation constitutes an asymptotic upper bound.
In Geometric Numerical Integration errors of numerical integrators can enter in highly symmetric
way (Hairer et al., 2013). In symplectic integration of Hamiltonian systems, for instance, energy
errors enter in an unbiased form. If the sought parameter is related to the geometric structure that is
preserved by the geometric numerical integrator, parameters can potentially be estimated to higher
accuracy than expected by the order of the numerical integrator. This, together with backward error
analysis techniques, was used in (Offen & Ober-Blöbaum, 2022), for instance, to accurately identify
a Hamiltonian function of a dynamical system even though a low order method was used to discretize
the dynamical system. These techniques, however, are tailored to the geometric problem at hand,
while the approach of this article considers a more general case.

C.2 NONLINEAR HARMONIC OSCILLATOR

There are two settings considered for the learning of the dynamics equation 13. In the first setting,
the learning problem is the parameter identification as presented in Section 4.1.2. In the second case
we consider the parametrization of the potential by a neural network as described in Section 4.2.1.
Here we give more details on both problems.

C.2.1 IDENTIFICATION OF PARAMETERS

In the experiments for the time comparison shown in Table 3 we consider a set of 200 trajectories in
the training data with the initial conditions generated by the Halton sequence in a 20-dimensional
box around zero vector x0 with diameter 2.0. The trajectories are obtained by numerical inte-
gration using sci.integrate.odeint with relative and absolute tolerances 10−13 and 10−14

respectively. In the training we use AdamW optimizer from PyTorch with learning rate scheduler
ExponentialLR. The results shown in Table 3 are obtained with different learning rates, namely,
the first two with the initial learning rate 10−2 and γ = 0.995, the last three with the initial learning
rate 10−1 and γ = 0.998, 0.997, 0.99 for the tree results respectively. At each epoch we consider
all 200 trajectories, so that the loss is L = 1

200

∑200
i=1 ∥(zN )i − x(T, (x0)i)∥2 with T = 0.5. While

Table 3 compares the training time of ALF and Y4, it is also important to compare their performance
in the learned parameters. In Figure 5 we show the results in the error of the learned parameters as
a function of computational time measured at each epoch of ALF, Y4 and also RK45, which is not
reversible. We can see that Y4 in not only faster than ALF in the training but the same also holds
for the error in the learned parameters. While RK45 is the fastest to get to accurate parameters, it
also requires the storing of 80 additional states during integration at each epoch, which means a
considerable contribution to the memory costs. To better understand the reasons of the faster learning
of Y4 than ALF, we show in Figure 6 the computation time accumulated at each epoch of the training.
The computational time per epoch is smaller for Y4, which contributes to the faster convergence in
the training. In both Figures 5 and6, the four plots correspond to different random initializations of
the parameters in the optimization.

In addition to results obtained for adaptive stepping, we test ALF and Y4 with the step size fixed to
h = 0.1 and the training until either the training accuracy reaches 10−4 or the number of epochs
reaches 500. Figure 7 shows that ALF is stuck at the training accuracy 10−2 and the training stops
because of reaching 500 epochs, while Y4 converges to accuracy 10−4 with 181 epochs. The same
behaviour is observed for different parameter initialization. Decreasing the step size to h = 0.01
permits ALF to reach accuracy 10−4. The results obtained in Figure 7 show that with a fixed step size
the lower order method is unable to achieve an accuracy better than 10−2 in training loss, whereas
Y4 reaches accuracy 10−4. This illustrates what happens in the case of the adaptive time-stepping. A
lower order method needs to reduce the step size to get to better accuracy. This implies more steps in
the integration, and therefore, slower computations.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 5: Error in learned parameters as a function of time.

Figure 6: Time of computation in function of epochs. When the curve is positioned lower, the
corresponding algorithm is faster.

C.2.2 NEURAL NETWORK PARAMETRIZATION

The goal is to find the unknown potential governing equation 14. For this we assume a particular
form of the potential, namely,

V (q) =

s∑
i=1

n∑
j=1

ci,jσi(qj) +

d∑
i=1

n∑
j=1

n∑
k=j+1

Ci,j,kΣi(∥qj − qk∥),

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 7: Training loss is displayed in logarithmic scale for the parameter identification in case of
coupled oscillation for ALF and Y4 with fixed step size h = 0.1.

where σi stand for different single particle potentials and Σi for double particle potentials. In the
case considered above, we have

c1,1 =
a1
2
, c1,2 =

a2
2
, σ1(q) = q2,

c2,1 =
b1
4
, c2,2 =

b2
4
, σ2(q) = q4,

C1,1,2 =
e

2
, Σ1(x) = x2.

In the learning problem, we assume that functions σ1, σ2 and Σ1 are unknown as well as parameters
a1, a2, b1, b2, e. We parameterize the derivatives a1

2 σ′
1,

a2

2 σ′
1,

b1
4 σ

′
2,

b2
4 σ

′
2 and e

2Σ
′
1 by neural networks

each and use them to model the dynamics in equation 14. We use 5 neural networks, which we
denote by ξ1, ξ2, ξ3, ξ4, ξ5. All of them have the same architecture q 7→ W1 tanh (W2 tanh (W3q)),
where W1 is a matrix of parameters of size 1× 100, matrix W2 is of size 100× 100 and W3 is of
size 100× 1. The resulting dynamics is defined by

q̇1 = v1, v̇1 = −ξ1(q1)− ξ3(q1)− ξ5(q1 − q2),

q̇2 = v2, v̇2 = −ξ2(q2)− ξ4(q2)− ξ5(q2 − q1).

The equations parameterized by neural networks are then integrated using ALF or Yoshida com-
position of ALF2 at each epoch in the training. The training data is set to be a set of 1000 trajec-
tories with the initial conditions generated by the Halton sequence in a 4-dimensional box around
x0 = (0.8,−0.4, 0.0, 0.0) with diameter 2.0. The optimizer is AdamW with initial learning rate
10−3 and scheduler ExponentialLR with γ = 0.995. In addition, we consider batches of 300
trajectories at each epoch with the resulting loss function of the same form as in the case of the
parameter identification problem.

C.3 DISCRETIZED WAVE EQUATIONS

For generation of the training data, we consider the wave equation with potential V (u) = 1
2u

2. The
true motions can be expressed in the time-dependent Fourier series as

u(t, x) =

∞∑
m=−∞

ûm(t)e2πimx/L, L = 1

where the Fourier coefficients evolve as

ûm(t) = γ−1
m v̂m,0 sin(γmt) + ûm,0 cos(γmt), γm =

√
1 +

4π2

L2
m2.

Here ûm,0, v̂m,0 are the Fourier coefficients of an initial wave u(0, x) and velocity ut(0, x), re-
spectively. Notice that a Fourier coefficient ûm(t) remains exactly zero over time if and only if
ûm,0 = 0 = v̂m,0. Training data to initial data with only finitely many nonzero Fourier coefficients
can, therefore, be obtained to machine precision by a spectral method. Alternatively, solutions can
be computed by an application of the 5-point stencil as described in Example 7 (16) in (Offen &
Ober-Blöbaum, 2024) on a fine mesh with discretization parameters ∆t = 1/160, ∆x = 1/80 and
then subsampled to a mesh with ∆t = 1/40, ∆x = 1/20. In our case both methods yield the same

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 8: Two samples of the training data used in section C.3.

Figure 9: Time of computation in function of epochs. Lower curve means faster computations.

training data up to a maximum error of order 1e− 4. In the training data creation, we sample initial
ûm,0, v̂m,0 from a standard normal distribution. It is then weighted by e−4m8

such that effectively
only the first two Fourier modes are active. See figure 8 for a plot of two of the solutions to the wave
equation that were used to create the training data set. In the training, we consider initial and final
points of 50 trajectories on time interval [0, 0.3] and 30 unseen trajectories in the testing. We use the
optimiser LBFGS with the default values of the parameters. In the numerical tests, we compare the
behaviour of ALF, Y4 and Runge-Kutta 4(5). It can be seen in Figure 9 that Y4 reaches the lowest
values in the training loss faster than ALF. While RK45 is fastest, it also consumes more memory,
which can make a crucial difference in high dimensional systems. We also report a lower time of
computations per epoch for Y4 with respect to the results by ALF in Figure 10.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 10: Time of computation in function of epochs. When the curve is positioned lower, the
corresponding algorithm is faster.

25


	Introduction
	Background
	Neural ODE
	Methods of gradient computations
	Reversible neural network

	New reversible architectures
	Experiments
	Parameter identification in dynamical systems
	Kepler problem
	Nonlinear harmonic oscillator

	Learning of dynamical systems parameterized by neural network
	Nonlinear harmonic oscillator
	Discretized wave equation


	Conclusion
	Error analysis of ALF2
	Proof of Theorem 3.1

	Numerical method for the adjoint
	Details of numerical experiments
	Kepler problem
	Nonlinear harmonic oscillator
	Identification of parameters
	Neural network parametrization

	Discretized wave equations


