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Abstract

This paper proposes S2C2IL: Self-Supervised Curriculum-based Class Incremental Learning
algorithm to prevent catastrophic forgetting in a continual learning setting. In the pro-
posed regularization-based class incremental learning approach, the novel pretext task utilizes
stochastically-augmented labels to learn enriched feature representations without the dependency
on augmented image transforms. To preclude the pretext task-specific knowledge from being trans-
ferred to downstream tasks, we leave out the final section of the pre-trained network in feature trans-
fer. The downstream task is learned through a curriculum where the standard deviation of the filter
fused with the network is varied periodically. The proposed S2C2IL algorithm trained with orthogo-
nal weight modification backbone outperforms the existing state-of-the-art regularization-based, and
memory-based class incremental algorithms on split-CIFAR10, split-CIFAR100, split-SVHN, and
split-TinyImageNet datasets.

1 Introduction

The concept of incremental learning has been an active area of research in the deep learning community Mai et al.
(2022); Delange et al. (2021). Humans have an unparalleled capability to incrementally capture information of new
tasks, domains, or classes without forgetting the knowledge gained from past episodes. As shown in Fig. 1, deep
learning approaches, especially CNNs, show excessive plasticity in learning new tasks though they lack the inher-
ent tendency of incremental/continual learning. The problem of incremental learning is introducing new knowledge
to an existing model calibrated with old knowledge. During the introduction of new knowledge, one of the biggest
challenges is to retain the information from old knowledge as CNNs tend to lose previously acquired information
leading to a phenomenon termed as ‘Catastrophic Forgetting’ McCloskey & Cohen (1989); Ratcliff (1990); McClel-
land et al. (1995); French (1999). To mitigate catastrophic forgetting, researchers have proposed different approaches
to overcome catastrophic forgetting in deep learning models. These approaches include expansion-based models, in
which new parameters are added to the network with the addition of each task which capacitates the model to aggre-
gate the information of new classes subsequently. Other approaches include using memory-based methods, where a
model is trained to continually relearn old information to retain memory stability with external memory banks, and
regularization-based techniques to prevent the model from overwriting previously learned knowledge. Additionally,
some researchers have proposed using a combination of these methods, as well as other techniques, in order to more
effectively address the problem of catastrophic forgetting and enable deep learning models to continue to learn and
adapt over time. Overall, developing effective approaches to overcoming catastrophic forgetting is crucial for advanc-
ing deep learning and the continued development of more intelligent and adaptive models.

This work presents a novel regularization-based continual learning algorithm focusing on class-incremental learning
(CIL). In general, the performance of these approaches is inferior to memory-based. However, they are more efficient
computationally, maintaining learning plasticity without needing additional memory to maintain stability. They are
also easy to deploy as opposed to expansion-based and memory-based approaches where voluminous memory setup
is a requisite. Without such memory reserves, regularization-based approaches depend mostly on utilizing the data
available for the current incremental task. To utilize the limited data available at each incremental task, it is imperative
to acquire a diverse set of features from it. One of the ways to accomplish it is through unsupervised learning.
Unsupervised pre-training aids the model in learning distinct features from limited or unlabelled data, which assists the

1



Under review as submission to TMLR

TASK 1 TEST

CAT CAT

DOG DOG

TASK 2 TEST

CAT

DOG

CAR

TRUCK

CAR

TRUCK

CAT

DOG

?

?

CAR

TRUCK

CAR

TRUCK

CAT

DOG

Figure 1: Humans can easily generalize over a newer set of classes/tasks, whereas neural networks suffer from the
problem of catastrophic forgetting when trained for different tasks over time.

model in better generalization to newer incremental tasks. To this end, we propose a novel Self-Supervised Learning
(SSL) task termed as Stochastic Label Augmentation (SLA), which optimizes the model to extract a diverse set of
features from the limited data for the current task. The task synthesizes information from different parts of an image
using stochastically generated labels in a multi-task fashion, thereby providing rich and diverse feature representations
to the model. Conventionally, the data is augmented in self-supervised learning to generate proxy labels that protract
the training and are computationally inefficient. By fitting the pretext dataset on stochastically generated labels, we
improve the computational efficiency of the model. We employ a novel task-wise weight-regularizer in the pretext
task that prevents information loss from the previous to the next incremental task and keeps the model bound to the
previously acquired knowledge. Further, we mitigate the transfer of pretext task-specific knowledge to the downstream
task through Penultimate Weight Sharing (PWS) between networks.

After pre-training the network for the classification task in the CIL setting, we employ a curriculum-based learning
technique during the downstream training. Curriculum Learning-based algorithms facilitate faster convergence and
enhanced generalizability by ordered training Bengio et al. (2009). A Gaussian kernel is used to smooth the extracted
features, with the smoothing effect increasing periodically. With the reduction in information through smoothing, we
regulate a curriculum for the model to generalize better over incremental tasks. This curriculum is built over Orthogo-
nal Weights Modification (OWM) Zeng et al. (2019) as the backbone in the downstream training. Orthogonal Weights
Modification alleviates catastrophic forgetting by initiating weight updates along the orthogonal direction Zeng et al.
(2019). Further, we employ a novel task-wise weight-regularizer that prevents information loss from the previous to
the next incremental task. Penultimate Weight Sharing (PWS) prevents the transfer of pretext-specific knowledge to
the downstream task. Through successive cycles of pre-training with SLA and downstream classification for each
incremental task, we achieve state-of-the-art performance on the split-CIFAR10, split-CIFAR100, split-SVHN, and
split-TinyImageNet databases.

The key highlights of the paper are summarized below:

• A novel self-supervised pretext task termed as Stochastic Label Augmentation (SLA) for learning rich and
diverse feature representations.

• A curriculum-based learning technique for class-incremental learning through feature level smoothing.

• A novel regularization loss to constrain weight modification and prevent forgetting and Penultimate Weight
Sharing (PWS) to prevent the transfer of pretext task-specific knowledge to the downstream task.
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• We validate the significance of the curriculum algorithm by analyzing the shift-invariance progress and grad-
cam visualizations.

• Evaluation of the proposed algorithm on split-CIFAR10, split-CIFAR 100, split-SVHN, and split-
TinyImageNet dataset.

2 Related Work

The concept of incremental learning (also known as lifelong learning or continual learning) has been an active area of
research in the deep learning community Mai et al. (2022); Delange et al. (2021). Within the literature, three types of
incremental learning scenarios have been explored i.e. domain-incremental learning, task-incremental learning, and
class-incremental learning. The addition of new classes in an existing model (considered as an incremental task for the
model) is referred to as class incremental learning (CIL). In this paper, we predominantly focus on the problem of CIL.
With the addition of new classes, it is imperative that previously learned classes are not forgotten. This ties Incremental
learning closely to the problem of catastrophic forgetting. To mitigate catastrophic forgetting, three popular classes of
techniques exist, namely: (a) expansion based, (b) memory based, and (c) regularization based.

Expansion based algorithms add new neurons (or parameters) that evolve with every task to allow the network to
accumulate information of new classes sequentially. Rusu et al. Rusu et al. (2016) introduced progressive neural
networks in which modules with lateral connections are added with each task while preserving the base network. Dy-
namically Expandable Network Yoon et al. (2017) was proposed to competently calibrate the dynamic capacity of the
network for sequential tasks. Li et al. Li et al. (2019) isolated the neural architecture search framework and parameter
tuning technique to actively identify the optimal structure for incremental tasks. Inspired by transfer learning, Sarwar
et al. Sarwar et al. (2019) presented a clone and branch technique for efficient and dynamical adaptation in the incre-
mental learning network. To alleviate model complexity, Yoon et al. Yoon et al. (2019) introduced additive parameter
decomposition, separating and tuning the network parameters as task-specific or task-shared.

Memory-based models are either based on leveraging the subsets of the data from previous tasks (exemplars) or
iteratively synthesizing the data based on the first task. Rebuffi et al. Rebuffi et al. (2017) proposed iCaRL, which
utilizes the exemplars from memory for rehearsal in continual learning. Deep generative replay framework Shin et al.
(2017) was introduced to sample data from the previous task and fuse it with data for the current task. Lopez et al.
Lopez-Paz & Ranzato (2017) implemented a Gradient Episodic Memory (GEM) model and applied loss gradients
on current tasks to preserve information from previous tasks and prevent interference with memory. Average GEM
(A-GEM) Chaudhry et al. (2018) with altered loss function was presented as a more memory-efficient and better-
performing variant of GEM. Reimer et al. Riemer et al. (2018) addressed the trade-off between information transfer
and interference by introducing a meta-experience replay algorithm to manage the transfer and interference based on
future gradients. Distillation-based techniques which preserve knowledge from old classes through storing exemplars
have also been proposed recently Hou et al. (2019); Wu et al. (2019).

In regularization-based techniques, catastrophic forgetting is tackled by strategic regularization to support controlled
weight updates based on previously learned parameters and the significance of past tasks. Elastic Weight Modifica-
tion Kirkpatrick et al. (2017) computes the importance of previous task weights and distribution of data based on the
diagonal elements of the Fischer information matrix. Some work Zenke et al. (2017); Aljundi et al. (2018) use appro-
priate synapses to efficiently accumulate and utilize relevant information from previous tasks to prevent catastrophic
forgetting while learning new tasks. Ritter et al. Ritter et al. (2018) apply Gaussian Laplace approximation of Hessian
to estimate the task-based posterior. Farajtabar et al. Farajtabar et al. (2020) update the new task weights orthogo-
nally to the gradient direction of previous tasks. Subsequently, distillation methods Hinton et al. (2015); Li & Hoiem
(2017); Hu et al. (2018) have also been helpful in extracting relevant information from previous tasks and imposing
regularization. The stability and plasticity dilemma was addressed by framing two types of residual blocks in Adaptive
Aggregation Networks Liu et al. (2021). Combining knowledge distillation and replay, Boschini et al. Boschini et al.
(2022) et al. introduced eXtended-DER (X-DER), where the model is presented with the ability to revise the replay
memory. CO-transport for class Incremental Learning (COIL) adapts to new tasks by learning the class-wise semantic
relationship across incremental tasks Zhou et al. (2021).
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Figure 2: Block diagram of the proposed pretext and the downstream task for a particular incremental task t.

3 Methodology

Let D = {Dt}Tt=1 be the dataset organized for continual learning. Here Dt consists of a set of N t images for
the incremental task t ∈ [1, T ]. Each incremental task t corresponds to the addition of a new set of classes. The
dataset D constitutes (xti, yti)t where xti ∈ Xt represents the set of images per task and yti ∈ Y t as the corresponding
ground truth-label for task t. During each incremental task, we define a model f with parameters θt and ϕt where θ
denotes the parameters in the convolution layers and ϕ denotes the parameters in the fully-connected (FC) layers. The
model is trained incrementally per task t on Dt thus culminating the final model as f(θT , ϕT ). Fig. 2 illustrates the
block diagram describing the framework for the pretext and downstream training for a single incremental task t. The
proposed algorithm consists of:

1. Unsupervised Pre-Training by Stochastic Label Augmentation: In this step, we propose a novel pretext task
for feature extraction. The pretext task augments labels instead of images for learning feature-rich represen-
tations.

2. Downstream Training in Class-Incremental Setting: For the downstream task, we employ a curriculum-based
smoothing mechanism in combination with Orthogonal Weight Modification (OWM).

3. Self-Supervised CIL with Task Regularization: The model is trained iteratively for the pretext and downstream
tasks with the proposed task regularization term to prevent catastrophic forgetting.

4. Penultimate Weight Sharing: The weights obtained after training the pretext model is transferred to the down-
stream model with the exception of weights from the last layer.

4



Under review as submission to TMLR

Algorithm 1: Pretext training using SLA for task t

Input: Images Xt, Downstream model conv-layer parameters θt−1
d from previous task t− 1

Initialize: θ0
d is zero-initialized.

Parameters: Number of epochs E, Number of stochastic tasks M , Number of classes per stochastic task N ,
Pretext model conv-layer parameters θtp, Pretext model FC parameters ψtp, hyperparameters a and b

Function train_pretext_model(Xt, θt−1
d )

Initialize model f(θtp, υtp, ψtp)
Rt = generate_stochastic_labels(Xt,m, n)
for e=1 to E do

R̂t = f(Xt; θtp, υtp, ψtp)
Calculate loss terms:
L1 =

∑M
i=1(

∑N
j=1 −Rtlog(R̂t))

L2 = (a/2)
∥∥θtp − θt−1

d

∥∥2
2 + (b/2)

∥∥θtp∥∥2
2

L = L1 + L2
Backpropagate loss L and update θtp and ψtp

end
return θtp

end

3.1 Unsupervised Pre-Training by Stochastic Label Augmentation

For unsupervised pre-training, we employ self-supervised learning where the training of model f is initiated by first
training it for a novel pretext task termed as Stochastic Label Augmentation (SLA). In Self-Supervised Learning (SSL),
we generally augment the input images during pretext tasks, which is computationally inefficient. Consequently, we
propose SLA, which is based on augmenting the makeshift labels instead of images. These labels are stochastically
generated for M tasks, with each task having C classes. The training is performed in a multi-task fashion with
different fully-connected layers for each of the M tasks (Fig. 2). The major advantage of the proposed pretext task
over the existing approaches (for instance, rotation pretext) is that the training time and resource usage do not increase
significantly due to an increase in data (4× in the case of rotation pretext Komodakis & Gidaris (2018)).

We integrate self-supervised pre-training in CIL setting by training the network for a pretext task p at each incremental
task t. f(θtp, υtp, ψtp) represents the network for the pretext task p where θtp denotes the convolution parameters except
the last block, υtp denotes the last convolution block, and ψtp denotes the weights of the fully-connected layers for
pretext task p which gives the softmax of logits as output. The convolution weights θtp (excluding υtp) are transferred
to the downstream task d for incremental task t. The model f(θtp, υtp, ψtp) utilizes only the images Xt ∈ Dt for pre-
training. Subsequently, M branches of fully-connected layers (ψp) are added to the CNN corresponding to each of the
M tasks. This model is trained in through multi-task learning where the features are extracted from the convolutional
layers and then, for each of the M tasks (not to be confused with the incremental task t), and fully-connected layers
are trained with the cumulative loss incurred from all the tasks. The loss function used for training the network in
pretext task is:

min
θt

p,υ
t
p,ψ

t
p

E(xt,yt)∼DtL(f(θtp, υtp, ψtp;xt), yt) = min
θt

p,υ
t
p,ψ

t
p

E(xt,yt)∼Dt

1
N t

Nt∑
i=1

M∑
j=1

C∑
k=1

−yti,j,klogf(θtp, υtp, ψtp;xti,j) (1)

where each yi,j,k is the stochastic label assigned to data point xi,j . The model takes each image as input and predicts
vectorized probabilities corresponding to each task. L(.) is the cross-entropy loss minimized between the target vector
of stochastically generated labels and the predicted vector. The pretext training is described in Algorithm 1.

In a regularization-based class-incremental setting, the model only learns discriminative features from images that are
required for a single-incremental task. These features are not discriminative enough as more tasks are introduced to
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Algorithm 2: Downstream learning algorithm for task t
Input: Images Xt, Labels Y t, Pretext model conv-layer parameters θtp for current task t
Initialize: θtd is initialized with θtp.
Parameters: Number of epochs E, Downstream model FC parameters ϕtd, Gaussian filter G with standard
deviation σ, constant c

Function train_downstream_model(Xt, Y t, θtd)
Initialize model f(θtd, ϕtd)
Set σe = 1
for e=1 to E do

ân = f(Xt; θtd, ϕtd)
σe = σe.c
zn+1 = pool(G(σe) ∗ ân)
Ŷ t = argmax(zn+1)
Calculate loss terms:
L =

∑M
i=1(

∑N
j=1 −Y tlog(Ŷ t))

Backpropagate loss L and update θtd and ϕtd using OWM algorithm.
end
return θtd, ϕtd

end

the model. Pre-training the model with unlabeled data drives the model to extract more and more information from
each input image as the model will be forced to minimize the loss for each of the tasks. After pre-training the model
f(θtp, υtp, ψtp) for the incremental task t through the pretext task, Penultimate layer Weight Sharing (PWS) is adopted to
transfer the convolution weights θtp to the downstream model f(θtd, ϕtd). The proposed pretext task learns generalized,
unnoticed, and discreet features from the limited data and thus, save training time and computation resources.

3.2 Downstream Training in Class-Incremental Setting

The downstream task for classification in a class-incremental setting involves learning of the downstream model
f(θtd, ϕtd) for each incremental task t. For this learning, we propose a curriculum-based learning approach with an
OWM backbone Zeng et al. (2019). The downstream training of the model using these components is described in
Algorithm 2.

3.2.1 Orthogonal Weight Modification (OWM)

The OWM technique has been shown to address the problem of catastrophic forgetting commonly observed in contin-
ual learning problems Zeng et al. (2019). In the OWM technique, an orthogonal projection matrix Pl is considered on
the input space of layer l. This projector is defined as

Pl = I −Al(ATl Al + αI)−1ATl (2)

where α is a constant to enable the calculation of the inverse of the matrix and I is a unit matrix. For each incremental
task t, the weights ϕtl and projector Pl are updated for each layer l in the network, such that the information learned in
the previous tasks is retained. The weights ϕtl are updated as:

∆ϕtl = λP t−1
l ∆ϕt (BP )

l (3)

where λ is the learning rate, ∆ϕ(BP ) is the standard weight update using the backpropagation algorithm. The projector
P may be updated using an iterative or a recursive method to obtain a correlation-inverse matrix Shah et al. (1992);
Haykin (2008). We use OWM as the backbone technique to address the problem of catastrophic forgetting in the
proposed algorithm.
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Figure 3: Block diagram to demonstrate the complete training procedure of the proposed algorithm for M incremental
tasks.

3.2.2 Smoothing-based Curriculum Learning

We design a curriculum-based learning technique for training the downstream model. Recent work has shown the
effectiveness of Gaussian smoothing in the context of curriculum learning Chen et al. (2019); Sinha et al. (2020).
Convolution of a conventional smoothing kernel with an input signal results in a blurring effect. This means that some
information in the input is lost. In other words, the smoothing kernel regulates the information that is propagated after
each convolution operation.

A Gaussian filter G, parameterized with σe is applied to the extracted feature maps from the last convolution layers of
the model. While training over e epochs, we increase the strength of the smoothing filterG simply by increasing σe. In
a standard CNN model with weights, θl the following operations are performed at layer l. The activations at each layer
is obtained as âl = ReLU(θl ∗ zl) followed by pooling, described as zl+1 = pool(âl). Here âl denotes the activated
output using the rectified linear unit ReLU , input zl denotes the input at layer l, ∗ is the convolution operation and
pool is the max-pooling layer. For an n-layer CNN with weights θl at each layer l, we integrate a smoothing filter after
the nth convolution layer of the CNN. This can be expressed as follows:

zn+1 = pool(G(σe) ∗ ân) (4)

where zn+1 becomes the input to the first fully-connected layer.

The curriculum defined above is built over the observation that for each incremental task t, the feature maps obtained
at the last convolutional layer have an abundance of information from which a model can learn. Plenty of information
in the maps allows the model to focus on the features that are easy to extract and lead to the best optimization of the
objective. This makes it an easy sample in the curriculum. Over the epochs, the difficulty of the curriculum is increased
by repressing the high-frequency information from the feature maps. This is achieved by increasing the standard devi-
ation of the smoothing kernel. The model is then forced to extract discriminative, inconspicuous, or obscured features
from the smoothened feature map. This provides a curriculum-based training where the model learns to classify with
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Algorithm 3: S2C2IL algorithm
Input: Total tasks T , Images X , Labels Y
Parameters: Pretext model conv-layer parameters θp, Pretext model FC parameters ψp, Downstream model
conv-layer parameters θd, Downstream model FC parameters ϕd

for t = 1 to T do
θtp = train_pretext_model(Xt, θ

t−1
d ) //Algorithm 1

θtd, ϕtd = train_downstream_model(Xt, Yt, θ
t
p) //Algorithm 2

end
Evaluate model f(θTd , ϕTd ) trained for T tasks.

a lesser and lesser amount of information. Furthermore, Gaussian smoothing filters have traditionally been used for
anti-aliasing in image processing Gonzalez (2009). Anti-aliasing, when integrated correctly, has been shown to en-
hance the shift-invariance tendency of CNNs Zhang (2019). The fusion of smoothing (blur) filters with pooling/strided
convolution softens the feature maps and alleviates the variance introduced by operations that predominantly ignore
the Nyquist sampling theorem. Recently, the fusion of these filters has shown a boost in the performance and general-
ization capacity of the CNN models Zhang (2019); Zou et al. (2020). By incorporating a Gaussian smoothing-based
curriculum for training, we expect improved robustness of the model towards a shift in input.

3.3 S2C2IL: Self-Supervised Curriculum-based Incremental Learning

Since the model is being trained in a class-incremental fashion, we only have limited data corresponding to the classes
that are introduced. To make maximum use of the limited amount of data, we begin with the pretext task of self-
supervision using the data at hand. This ensures that the model is able to learn good feature representations from the
provided data. In the next step, the model learns to perform classification between the given set of classes using OWM
combined with curriculum learning.

The cycle of pre-training and downstream classification is repeated every time a new set of classes arrive (Fig. 3).
In practical instances, it is highly likely that the dataset associated with the new incremental task may belong to an
entirely different distribution. Training the existing model on this new, out-of-distribution dataset may lead to excessive
modification of convolution weights, and the final model may fail to generalize on the old incremental tasks. To prevent
forgetting for convolutional layers at each incremental step, we incorporate a regularization term in the calculated loss
Xuhong et al. (2018). The regularization term ensures that the weights are not drastically modified after each pre-
training and classification cycle. The complete S2C2IL algorithm is presented in Algorithm 3. Mathematically put,
while training the model for the pretext task of incremental task t − 1 on dataset Dt−1, we transfer the convolution
weights θt−1

p from pretext model f(θt−1
p , ψt−1

p ) to downstream model f(θt−1
d , ϕt−1

d ). After this, on the introduction
of the next incremental task t, the model is first trained for the pretext task. For this, the weights from the previous
downstream task θt−1

d are transferred. We add a weight regularization term between the convolution weights between
θt−1
d of the previous task and θtp of the current task to mitigate forgetting at this step. In other words, we incur a

regularization loss term R between the model trained on the downstream task of incremental task t− 1 and the pretext
task for the model being trained on the next incremental task i.e. incremental task t. The proposed regularization loss
incurred on two consecutive incremental tasks is:

R(θtp, θt−1
d ) = a

2
∥∥θtp − θt−1

d

∥∥2
2 + b

2
∥∥θtp∥∥2

2 (5)

where a and b are hyperparameters, and R(.) is the regularization loss optimized with the standard multi-task cross-
entropy loss. The hyperparameter a is a constant that aggravates the loss, forcing the model not to deviate much from
the model trained on the previous task. The hyperparameter b handles the induced sparsity on the model being trained
on the current incremental task t.
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4 Experimental Setup

The proposed algorithm is evaluated on four datasets: split-CIFAR10, split-CIFAR100, split-SVHN and split-
TinyImageNet. We report the average test accuracy, which is defined as the average of test accuracies achieved
across all tasks. All experiments are performed using five fixed random seeds. The proposed algorithm is evaluated
under two settings- (i) OWM + CL, and (ii) S2C2IL. In the first setting, only the curriculum-based downstream model
is trained without any self-supervision. In the S2C2IL setting, we follow the methodology as explained in Section 3.3,
and perform pre-training using the proposed SLA technique.

Datasets and Protocol: Since the focus of this work is class-incremental setting, we train and test the proposed
algorithm according to the protocols defined in the works of Zeng et al. Zeng et al. (2019) and Hu et al. Hu et al.
(2018). For experiments, we have used four datasets:

(i) Split-CIFAR 10 Krizhevsky (2009) contains 60,000 32 × 32 color images of 10 different classes with 50,000
images in the training set and 10,000 images in the testing set. The training and evaluation is performed for 2 classes
per task.

(ii) Split-CIFAR 100 Krizhevsky (2009) contains 60,000 32 × 32 color images of 10 different classes with 50,000
images in the training set and 10,000 images in the testing set. The training and evaluation are done for 10, 20, and 50
classes per task.

(iii) Split-SVHN Netzer et al. (2011) contains 60,000 32×32 color images of 10 different classes with 50,000 images
in the training set and 10,000 images in the testing set. The training and evaluation are performed for 2 classes per
task.

(iv) Split-TinyImageNet Le & Yang (2015) contains 120,000 color images of size 64 × 64 from 200 different classes
with 100,000 images in the training set, 10,000 in the validation set and 10,000 images in the testing set. The training
and evaluation of the model are done for 5, 10, and 20 classes per task.

Comparison Algorithms: The results of the proposed framework are compared with various benchmark algorithms
in the domain of regularization-based CIL with the exception of iCaRL. The following algorithms are used for
comparison: (1) EWC Kirkpatrick et al. (2017), (2) iCaRL Rebuffi et al. (2017) with 2000 exemplars; (3) PGMA Hu
et al. (2018); (4) DGM Ostapenko et al. (2019), (5) OWM Zeng et al. (2019), (6) MUC Liu et al. (2020), (7) IL2A
Zhu et al. (2021a), (8) PASS Zhu et al. (2021b), (9) SSRE Zhu et al. (2022), and FeTrIL Petit et al. (2023). The
EWC1, iCaRL1, DGM2, OWM3, MUC4, IL2A5, PASS6, SSRE7, and FeTrIL8 baselines are run using open-source
codes with the same network architecture as the one used in S2C2IL. The details of this network are described in
Section 4. Further, S2C2IL is compared with various memory-based approaches on the Split-TinyImageNet dataset. It
should be noted that the proposed S2C2IL algorithm uses no exemplars from classes of previous tasks.

Implementation Details: For all the experiments, we use a 3-layer CNN network with three fully-connected layers.
The same network architecture is used by Zeng et al. Zeng et al. (2019). For each incremental task, we start the
model training on the pretext task. Here, we use the 3-layer CNN architecture for feature extraction and utilize these
features in multitask fashion. For our experiments, we train the model for three tasks with two classes each, i.e.,
the extracted features are utilized by three separate heads of fully-connected layers with two layers each. For the
downstream task, the same weights from the pretext task are transferred. However, here the features are utilized by
a single fully-connected layer to learn the current incremental task. The mentioned architectures used in the pretext
and downstream can be better visualized in Fig. 2. We train all the models with stochastic gradient descent (SGD).
For the pretext task, the multitask network is trained on stochastically generated labels for three tasks with two classes

1https://github.com/mmasana/FACIL
2https://github.com/SAP-archive/machine-learning-dgm
3https://github.com/beijixiong3510/OWM
4https://github.com/liuyudut/MUC
5https://github.com/Impression2805/IL2A
6https://github.com/Impression2805/CVPR21P ASS
7https://github.com/zhukaii/SSRE/tree/5475c9803b0143cab849b62edb7d5db76433c388
8https://github.com/G-U-N/PyCIL
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Methods Split-CIFAR10 Split-CIFAR100 Split-SVHN
5 tasks 2 tasks 5 tasks 10 tasks 5 tasks

EWC∗ Kirkpatrick et al. (2017) 31.40 ± 2.21 27.58 ± 1.64 18.42 ± 1.53 13.28 ± 0.91 34.22 ± 3.83
iCaRL∗ Rebuffi et al. (2017) 50.02 ± 2.04 24.20 ± 1.60 22.16 ± 0.86 19.00 ± 0.36 71.25 ± 0.67
PGMA Hu et al. (2018) 40.47 - - - -
DGM∗ Ostapenko et al. (2019) 50.53 ± 0.46 28.23 ± 0.75 25.43 ± 0.14 24.09 ± 0.19 73.01 ± 0.77
OWM Zeng et al. (2019) 55.71 ± 0.49 40.30 ± 0.65 33.17 ± 0.79 29.86 ± 0.33 73.50 ± 0.81
MUC∗ Liu et al. (2020) - 33.86 ± 0.72 28.05 ± 1.22 22.07 ± 0.9 -
IL2A∗ Zhu et al. (2021a) - 43.29 ± 0.43 32.63 ± 0.86 21.45 ± 0.67 -
PASS∗ Zhu et al. (2021b) - 43.15 ± 0.31 34.89 ± 0.75 24.03 ± 0.74 -
SSRE∗ Zhu et al. (2022) - 41.06 ± 0.87 36.82 ± 0.7 31.35 ± 1.0 -
FeTrIL∗ Petit et al. (2023) - 40.88 ± 1.18 35.47 ± 1.15 32.50 ± 1.03 -
OWM + CL (Ours) 58.68 ± 0.37 43.10 ± 0.66 35.40 ± 0.36 31.37 ± 0.61 75.34 ± 0.64
S2C2IL (Ours) 61.64 ± 0.57 43.98 ± 0.65 35.59 ± 0.49 31.93 ± 0.54 77.53 ± 0.53

Table 1: Average test accuracy for proposed method on Split-CIFAR10, Split-CIFAR100, and Split-SVHN dataset.
The best performance is depicted by bold and the second best by underline. All results are cited from Kirkpatrick
et al. (2017); Rebuffi et al. (2017); Ostapenko et al. (2019); Hu et al. (2018); Zeng et al. (2019); Liu et al. (2020); Zhu
et al. (2021a;b; 2022); Petit et al. (2023) or reproduced from their official repository for a fair comparison (∗ means
re-run with protocols described in this paper)

Methods 5 tasks 10 tasks 20 tasks
OWM Zeng et al. (2019) 19.00 ± 0.28 16.05 ± 0.27 14.30 ± 0.32
SLA + OWM 20.59 ± 0.32 17.05 ± 0.58 15.08 ± 0.65
OWM + CL 21.12 ± 0.42 17.56 ± 0.33 15.54 ± 0.12
S2C2IL 21.39 ± 0.15 19.00 ± 0.35 19.52 ± 1.56

Table 2: Average accuracy (%) reported for the ablation experiments performed on the split-TinyImageNet dataset for
5, 10, and 20 tasks.

each. We set the learning rate to 0.001 to train it for 50 epochs. The hyperparameters a and b are fixed to 10 and 18
for split-CIFAR10 and split-CIFAR100 datasets and 5 and 12 for split-SVHN datasets, respectively. As described in
section 3, the model is trained for a curriculum where the training starts with σ set to 0.9 with a decay rate of 0.95
for every 10 epochs for split-CIFAR100 and split-SVHN datasets. For the split-CIFAR10 dataset, σ is set to 1 with
a decay rate of 0.9 for every ten epochs. All experiments are performed for five random seeds and the performance
is reported as the average over all the seeds. The algorithm is implemented in Pytorch, and all the experiments are
performed on a DGX station with 256 GB RAM and four 32 GB Nvidia V100 GPUs. For reproducibility, the source
code will be released in the camera-ready version.

5 Results and Analysis

The performance of the proposed S2C2IL algorithm on the split-CIFAR10, split-CIFAR100, and split-SVHN datasets
are reported in Table 1. From Table 1, it is observed that the proposed algorithm achieves state-of-the-art performance

Pretext Task Average Accuracy (%)
split-CIFAR-10 split-SVHN

Rotation Komodakis & Gidaris (2018) 57.59 ± 0.43 76.22 ± 0.23
Colorization Larsson et al. (2017) 56.66 ± 0.92 76.10 ± 0.69
SLA (proposed) 61.64 ± 0.57 77.53 ± 0.53

Table 3: Performance of the proposed algorithm by replacing the proposed Stochastic Label Augmentation (SLA)
with Rotation and Image Colorization pretext tasks on the split-CIFAR10 and split-SVHN datasets for 5 tasks.
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(b)(a)

Figure 4: (a) Comparison of the proposed S2C2IL algorithm with memory-based continual learning algorithms Riemer
et al. (2018); Chaudhry et al. (2019); Rebuffi et al. (2017); Benjamin et al. (2018); Buzzega et al. (2020); Pham et al.
(2021); Cha et al. (2021); Ji et al. (2022). The accuracy achieved by each algorithm on the split-TinyImageNet dataset
(for 10 incremental tasks) is plotted against the number of convolution parameters (in log scale). The size of each
bubble corresponds to the network size used by the algorithm. The results obtained are summarized in Table 4.
(b) Bar plot demonstrating the incremental accuracies for OWM and Gaussian-based OWM model when trained on
split-CIFAR10 dataset for 5 tasks. The line graph summarizes the subsequent drop in the accuracy caused by pixel
translations. Gaussian network displays far less performance drop for translated dataset than base OWM model.

on the split-CIFAR10 dataset and split-SVHN dataset when compared to the existing algorithms. When compared to
the backbone algorithm (Zeng et al. (2019)), S2C2IL improves the average accuracy with up to 4% and 6% performance
gain for the split-SVHN and split-CIFAR10 datasets, respectively. Further, we observe that training without self-
supervision in S2C2IL (OWM + CL) also outperforms existing algorithms on both datasets. For the split-CIFAT100
dataset, our proposed algorithm achieves state-of-the-art performance closely followed by IL2A Zhu et al. (2021a)
by a difference of 0.69% for 2 incremental tasks. S2C2IL closely follows SSRE Zhu et al. (2022) by 1.13% for 5
incremental tasks, and FeTrIL Petit et al. (2023) by 0.57% for 10 incremental tasks.

In Table 2, we perform the ablation experiments and report the performance on the split-TinyImageNet dataset. The
evaluation is performed for 5, 10, and 20 tasks. From 2, it can be observed how each component contributes towards
mitigating catastrophic forgetting. We perform an additional experiment comparing the proposed regularization-based
S2C2IL algorithm with a recent and state-of-the-art memory-based algorithm. In Fig. 4 (a) the accuracy achieved by
each algorithm is plotted against the number of parameters in convolution layers (in log scale of thousands). It can

Algorithm Accuracy (%) Network Used Parameters
(in million)

iCaRL Rebuffi et al. (2017) 7.53 ± 0.79 ResNet32 60
ER Riemer et al. (2018) 8.49 ± 0.16 Four-layerd CNN 0.08

A-GEM Chaudhry et al. (2018) 8.07 ± 0.08 ResNet18 8.98
DER Buzzega et al. (2020) 11.87 ± 0.78 ResNet18 8.98

DER++ Buzzega et al. (2020) 10.96 ± 1.17 ResNet18 8.98
DualNet Pham et al. (2021) 9.53 ± 0.53 ResNet18 8.98

Co2L Cha et al. (2021) 13.88 ± 0.42 ResNet18 8.98
CoCa Ji et al. (2022) 12.78 ± 0.0 ResNet18 8.98
S²C²IL (Proposed) 19.00 ± 0.35 Four-layerd CNN 0.37

Table 4: The accuracy achieved by different memory-based algorithms with backbone architecture used by each
algorithm on the split-TinyImageNet dataset for 10 tasks. The best performance is depicted by bold and the second
best by underline. The proposed S²C²IL achieves the highest performance with no memory and with significantly
smaller backbone architectures.
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Figure 5: Task-wise GradCAM visualization (step in the figure stands for an incremental task) for the split-SVHN
dataset using the OWM (row 1 and row 3) and proposed S2C2IL algorithm (row 2 and row 4).

be clearly visualized that the proposed S2C2IL algorithm outperforms existing memory-based algorithms by a large
margin on the split-TinyImageNet dataset for ten tasks. Further, the S2C2IL framework exceeds the performance of
memory-based algorithms even with a smaller backbone and without using any memory. The results obtained are
summarized in Table 4. The results from Table 1 and Table 2 show the generalizability of the proposed S2C2IL on
various datasets showcasing the efficacy of the proposed algorithm.

To qualitatively evaluate the performance of the proposed algorithm, we employ GradCAMs. In Fig. 5, the GradCAM
visualization obtained after each incremental task using OWM algorithm and the proposed S2C2IL algorithm is
presented. We use the images from the first incremental task of the split-SVHN dataset. From the generated maps, it
is observed that after each incremental task/step, the focus of the model diverges in the case of the OWM algorithm.
However, the maps generated through S2C2IL are better at retaining focus even after multiple incremental training
steps. This highlights the stability of the proposed S2C2IL algorithm and its effectiveness at delaying forgetting in the
network.

Efficacy of Stochastic Label Augmentation (SLA): In order to understand the effectiveness of the proposed pretext
task, we perform additional experiments on the split-CIFAR10 and split-SVHN datasets for five incremental tasks
each. The proposed framework is tested after replacing the SLA pretext task with two existing pretext tasks, namely
Rotation Komodakis & Gidaris (2018) and Image Colorization Larsson et al. (2017). From Table 3, we observe that in
comparison to Image Colorization and Rotation, SLA leads to a higher performance gain. In addition to performance
gain through SLA, it should be noted that augmenting the labels instead of data leads to faster pre-training, lesser
computational cycles as well as low memory usage. The reason behind successful learning through augmented labels
instead of data is due to the fact that a multi-task network learns from the synergy of multiple tasks that it has to
learn. Since the network is bound to minimize the loss, it will excerpt all the discriminating features to minimize it.
Moreover, since the deep learning models are highly non-linear, they can reasonably achieve near-perfect accuracy on

Dataset Tasks S2C2IL (w/o PWS) S2C2IL
split-SVHN 5 75.88 ± 0.45 77.53 ± 0.53
split-CIFAR10 5 60.75 ± 0.53 61.64 ± 0.57

2 43.38 ± 0.20 43.98 ± 0.65
split-CIFAR100 5 35.52 ± 0.48 35.59 ± 0.49

10 31.85 ± 0.45 31.93 ± 0.54

Table 5: Performance comparison of the proposed algorithm without and with Penultimate Weight Sharing (PWS).
The proposed Stochastic Label Augmentation (SLA) task is used for unsupervised pre-training.
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Average Incremental Accuracy
OWM δowm Gauss δGauss

Original 56.2 0 59.23 0
Horizontal Shift 47.67 8.53 51.92 7.31−1.22

Vertical Shift 44.29 11.91 50.11 9.12−2.79
2D Shift 37.64 18.56 44.12 15.11−3.45

Table 6: Average accuracy (in %) response of the network to the original and shifted datasets. δowm and δGauss
represent the accuracy drop in the OWM and Gaussian-based OWM models. A higher value of δ implies a more
adverse effect of shift on the model performance.

the training dataset Zhang et al. (2017). The combination of these prospects leads to performance gain, which makes
learning without the availability of true annotated labels possible.

Impact of Penultimate Weight Sharing (PWS): Conventionally, the optimized weights of the pretext task are utilized
for training the model on the downstream task. The quality of the pre-trained features consistently improves with the
position and depth of layers. Further, the task accuracy is influenced by pre-training a network only up to k-layers
Misra & Maaten (2020). We hypothesize that the deeper layers of the pretext task are calibrated toward the pretext
task. To alleviate the bias towards the pretext task, we transfer weights from all layers except those of the last layer
for fine-tuning on the downstream task. This weight transfer algorithm is termed Penultimate Weight Sharing (PWS).
PWS incorporates layers weight (θtp) sharing for downstream fine-tuning (dropping out υtp) and empowers the network
to learn generalized feature representations for task t. The benefit of sharing weights only up till the penultimate layer
prevents sharing of pretext-specific weights to the downstream model.

To evaluate the model’s performance in the absence of PWS, we remove the υtp convolution block from the
pretext model, rendering it equivalent to the downstream model’s architecture. After pre-training the model and
transferring the weights to the downstream model, the performance is evaluated on different datasets. The results pre-
sented in Table 5 highlight the performance improvements obtained by transferring weights up to the penultimate layer.

Anti-aliasing Filters and Shift-Invariance: In this work, we employ a Gaussian filter for smoothing the feature maps
during the downstream classification task. Since the fusion of these filters has shown improved generalization capa-
bilities in CNNs Zhang (2019); Zou et al. (2020), we study the impact of the filtering integrated with a downstream
model by evaluating the performance of S2C2IL using these filters. We highlight the relevance of primitive integration
of the filter by stacking it after a convolution block and studying shift-invariance properties through related perfor-
mance metrics. Fig. 4 (b) depicts the comparison of the incremental accuracy when a shifted/translated image is given
as input to the OWM and Gaussian-based OWM network. We modify the split-CIFAR10 dataset by incorporating
the random affine translation of 1% to ensure horizontal, vertical, and diagonal pixel shifts. The accuracies obtained
corresponding to the shift in datasets are reported in Table 6. Attributed to the non-robustness of CNNs to shift, there
is a decrease in the overall accuracy for class-incremental tasks. However, we observe the decrease in incremental
accuracy to be less for Gaussian-based OWM than OWM, with an average decrease of about 2% less. This illustrates a
steady response to translation in the dataset and highlights the shift-invariant tendency of the Gaussian-based network.

6 Conclusion

In this research, we focus on the problem of regularization-based class-incremental learning. We address it through
unsupervised pre-training and propose a novel pretext task that augments labels instead of the data. During down-
stream training, we transfer the convolution weights till the penultimate layers from the pre-training and design a
smoothing-based curriculum. We find that through the incorporation of self-supervised learning and curriculum learn-
ing, we are able to improve the generalizability of the model in the continual learning paradigm. The augmentation
of labels instead of data in the pretext task further improves the learning for the current task and decreases the re-
source requirements for training the model. The utilization of the smoothing-based curriculum further enhances the
model’s performance. The proposed S2C2IL algorithm with the Orthogonal Weight Modification (OWM) backbone
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achieves state-of-the-art results on split-CIFAR-10, split-CIFAR-100, split-SVHN and split-TinyImageNet datasets.
The proposed algorithm can be appended with a memory component for future performance gains.
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