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Abstract

Evaluator-driven discovery systems (e.g., FunSearch) succeed when the target
admits a clear fitness metric (e.g., “find the largest cap set”), but many central
mathematical objects—Vitali sets, the Banach—Tarski paradox, Hamel bases, ultra-
filters, etc.—lack such metrics and often rely on specific nonconstructive axioms,
such as the axiom of choice (AC). We propose a FunSearch variant with a theorem
proposer and a Lean-verified, axiom-aware evaluator that scores candidates by
(i) proof progress, (ii) property coverage, and (iii) an axiom footprint that audits
reliance on Choice (AC), Zorn’s Lemma, the axiom of dependent choice (DC), the
law of excluded middle (EM), and others. A minimal prototype reconstructs proofs
of the existence of a right inverse for an arbitrary surjection (via AC). We claim no
new theorems, but provide early evidence that axiom-aware evaluation broadens
evaluator-driven discovery beyond purely executable code.

1 Introduction

Deep learning—assisted mathematical discovery has accelerated in recent years—from results in knot
and representation theory (e.g., [4]]), algebraic geometry ([3]]), number theory ([[15]), and PDEs ([[19])),
to faster matrix-multiplication schemes ([[7]) and systems that solve Olympiad-style geometry and
proof tasks ([, 2, [11]]). For example, AlphaTensor searches the space of algorithms and, using a
reward that penalizes operation count, discovers matrix-multiplication procedures that improve on
those derived from Strassen’s method. In a similar spirit, FunSearch [6] [16] and AlphaEvolve [12]
generate programs that construct mathematical objects under the guidance of evaluators supplying
task-specific fitness signals.

However, many central objects— Vitali sets, Hamel bases, ultrafilters, and phenomena like the Banach—
Tarski paradox [18]][14]][17]—are non-constructive (there is no algorithm that produces them) and
typically rely on the Axiom of Choice (AC). For these, there is no obvious “run-and-score” objective,
so standard evaluator-driven loops do not readily apply. Meanwhile, LLM-assisted theorem proving
in proof assistants (e.g., Lean) focuses on closing goals while offering little control over which
axioms a proof depends on: a derivation that quietly invokes Classical.choice or Zorn’s Lemma
is treated as equivalent to one that avoids them.

We propose a modification of FunSearch tailored to this setting. An LLM, or human expert, first
proposes candidate premises (theorems/lemmas) and construction strategies for the target object. We
then synthesize Lean proofs from these premises and recombine them in a FunSearch-style loop.
Crucially, candidates are scored on (i) proof progress and adherence to the suggested premises; (ii)
an axiom footprint that audits reliance on classical principles (AC, Zorn’s Lemma, the Boolean Prime
Ideal Theorem (BPI), the axiom of Dependent Choice (DC), etc.); (iii) property coverage for the
object under study; and (iv) parsimony, a diminishing-returns penalty that discourages lemma-stuffing
and repeated use of the same suggested theorems beyond a certain threshold.
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Figure 1: An LLM (or human) proposes candidate theorems—possibly using AC or other ax-
ioms—and another LLM ranks and selects the best. A second LLM evolves Lean code in four
iterations; we keep the version that type-checks (or has the fewest errors). We score it by property
coverage, axiom awareness, theorem usage, and parsimony, assembling theorem components via an
evolutionary algorithm to match the desired object’s properties.

Our position is that a proof-based evaluator with axiom awareness can (a) reconstruct classically
defined, AC-dependent objects and (b) steer search toward weaker or alternative assumptions when
multiple routes exist (e.g., preferring BPI, DC when full AC is unnecessary). We present a minimal
prototype on canonical cases—right inverses for surjections and Hahn-Banach (both using AC). We
claim no new theorems, axiom-minimality certificates, or impossibility results; rather, we offer a
concrete recipe and early evidence that axiom-aware evaluation broadens evaluator-driven discovery
beyond executable code and may help surface alternative proofs under different axiom sets. The latter
is an active research topic in pure mathematics.

The novelty of this work lies in extending evaluator-driven discovery systems, such as FunSearch,
toward non-constructive domains by combining evolutionary algorithms with Lean-based verification.
This integration enables the discovery of mathematical objects that inherently depend on specific
axioms—such as AC—and are therefore not constructible in the traditional sense. Our approach
introduces a scoring mechanism that rewards intermediate proof steps which function as subgoals,
guiding the search toward axiom-dependent existence results.

2 Problem setting and methodology

The problems we aim to solve concern the construction of mathematical objects that, due to their
dependence on the Axiom of Choice (AC) or other abstract axioms, cannot be obtained by plain
evaluator-driven search in the FunSearch/AlphaEvolve style. As an illustrative example of the
problematic, we use the construction of a Vitali set—a non—Lebesgue-measurable subset of R—to
motivate our modification of FunSearch and to justify the scores (i)—(iii) introduced in the[Introduction|
section. For non-mathematical readers, a complete proof of the existence of a Vitali set is provided in
the appendix (Vitali’s Non-measurable Set).

A Vitali set is non-measurable. To prove the existence of such an object—which relies on specific
mathematical tools like AC—mathematicians typically use a proof by contradiction and isolate
theorems that trigger the contradiction. In the Vitali case, these include countable additivity and
translation invariance. This motivates using an LLM to suggest approaches and theorems, and
incentivizing coverage of target theorem in (i). In practice, one first proposes an object that may
not yet satisfy the full property checklist, which in this specific example is just non measurability;
through a series of self-feedback steps and refinements, we obtain an initial set and then iteratively
modify it to maximize property coverage and align axiom usage with the policy—corresponding to
(ii) and (iii).

Setup. Given the statement of the existence result we wish to establish, we present it to a human or
an LLM (the suggester) for theorem suggestion; call this existence result the goal G. The suggester
proposes theorems to use and possible approaches, which are then scored on a 1-5 scale. We let
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the LLM select the best approach and the set of suggested theorems 7 = {¢1,..., ¢, }, together
with the properties we want to cover P = {p1, ..., pn}, and a set of weights W = {wy, ..., wy} for
the axioms A = {aq,...,as} (e.g., AC, DC etc.) that we wish to use. We then pass this to another
series of LLMs in a FunSearch-style scaffold. These LLMs generate Lean proofs, which are checked
by the Lean compiler. Each attempt is run four times to mitigate brittleness and smooth stochastic
variation across generations. We empirically found four iterations sufficient to balance stability and
computational cost. The resulting proofs are stored in a database and scored according to the scheme
below. We then recombine the part of the proofs that are responsible to select the features of an object
that best satisfy the target properties.

Scoring criteria.

(a1) Coverage of suggested theorems used (score C1).

Tlnzm: 1i¢; used

where ¢; is one of the m theorems in 7.

(o) Axiom coverage (score A). For some questions it is useful to find an object using some
axioms while avoiding others. For example we can be interested in finding a proof which
uses AC instead of DC. With a weight vector W = {w1,...,w;} (with w; € R) and
associated axioms A = {aq, ..., as}, define

¢
A= Zw 1[a; used].

(a3) Property coverage (score P).

n

P = Z 1 Di covered
=1

In the Vitali-set case we may have a single property—non-Lebesgue-measurability—but for
other objects multiple properties p; may be required.

(cq) Parsimony (score Par). We add a negative penalty each time a theorem is used more than &
times, where k is a hyperparameter.

Overall score.
S = MCy + NP + X\3A + M\ Par

where the \; are user-set hyperparameters.

3 Model and Preliminary Results

Implementation. We reimplemented a FunSearch-style architecture in Node.js with Lean 4 as the
proof checker. Repository link provided upon requested for review anonymity.

Suggester and islands. A suggester (LLM or human) proposes up to five high-level approaches,
each with up to five candidate premises/lemmas. We select one approach (or take the human-proposed
route) and launch an island-based evolutionary loop: multiple LLMs operate independently per island,
proposing Lean fragments (tactics or term mode) that are checked by Lean 4.

Generation attempts. For each new program—including recombinations of prior candidates—we
allow up to four attempts to produce a compiling Lean 4 artifact. We then introduce in the evolutionary
database the program with the least amount of syntatic errors. Candidates are then scored by the
evaluator described in Section 2.

Models. We tested several LLMs for both the suggestion and evolution phases, including Gemini
2.5 Flash, Gemini 2.5 Pro, DeepSeekV3.1 and GPT-5 [13]], (S, (9], [8l]
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Setting Success rate (%) Model Num runs

Even + Even 100 DeepSeek 3.1 20

Right-inverse (Choice allowed) 85 DeepSeek 3.1 20

Right-inverse (Choice forbidden) 0 DeepSeek 3.1 20

Hahn-Banach (Choice allowed) 0 DeepSeek 3.1 20

f continuous on compact = f uniformly continuous 0 DeepSeek 3.1 20

f Lipschitz on compact = f uniformly continuous 80 DeepSeek 3.1 20
Tasks.

 Sanity (constructive). Re-derive elementary results (e.g., “the sum of two even numbers is

99 <

even,” “every n € N satisfiesn =0 or 1 (mod 4)”) to validate the pipeline.

* AC unit test. Right inverse of a surjection. Given f : a — [ with Surjective f,
synthesize g : § — « and prove Function.RightInverse g f.

¢ AC-heavy objects. Existence theorems such as the Hahn—Banach theorem.

* Steering toward weaker assumptions. Re-derive the uniform continuity of a function
on a compact set from (i) continuity alone and (ii) the stronger assumption of Lipschitz
continuity.

Preliminary outcomes (feasibility & control). On the sanity tasks, the pipeline consistently
produced compiling proofs. For the AC unit test (right inverse of a surjection), the system produced
a correct Lean proof using Classical.choose and closed the checklist; the axiom audit flagged
Choice. When AC was forbidden, the system correctly failed (0% success), with candidates rejected
by the policy filter. For the AC-heavy task, the system failed to produce a proof. Upon inspecting
the failures, we found that the Lean 4 proofs were substantively correct, but the LLMs could not
synthesize long, syntactically correct Lean code. For the “steering toward weaker assumptions” task,
we obtained correct Lean proofs when the function was Lipschitz, but again encountered difficulties
synthesizing syntactically correct Lean code when assuming only continuity. Nonetheless, manual
inspection indicates that the candidate proofs are semantically correct. Given the scope of a position
paper, we keep budgets small and focus on feasibility and policy control rather than scale.

Tiny quantitative summary. We report in the table above synthatic success rate of the Lean Code
of the problem we asked to be solved. We report success rate for the problem against number of runs.
For brevity, we report only the DeepSeek-V3 results in the main text, as other tested models (Gemini
2.5 Flash, Gemini 2.5 Pro, GPT-5) exhibited qualitatively similar behavior.

Conclusion and Outlook

We presented a proof-of-concept reimplementation of a FunSearch-style system whose evaluator
operates on Lean artifacts and is axiom-aware. On canonical Axiom-of-Choice (AC) targets, the
system reconstructs a right inverse for a surjection but does not synthesize a correct proof of the Hahn—
Banach theorem. A manual inspection of failing runs suggests that the obstacle is not mathematical
correctness but the difficulty LLMs have in producing long, syntactically correct Lean 4 proofs.

We also ran experiments in which AC was forbidden as a hard constraint. As expected, the right-
inverse task then failed (candidates were rejected by the policy filter), indicating that the evaluator
enforces the axiom policy rather than silently accepting classical shortcuts. In further tests, we
attempted to derive uniform continuity on a compact set from (i) continuity alone and (ii) the stronger
assumption of Lipschitz continuity. We again failed in the continuity-only case, which we attribute to
proof length and brittleness rather than substance. We note the usual caveat that LLMs may reproduce
library or training content; our aim here is feasibility and control, not mathematical novelty.

Looking ahead, we see four priorities:

» Stronger evaluator signals. Improve axiom and theorem auditing via AST-level analysis
and subgoal-coverage checks.

* Tooling integration. Couple the evolutionary loop with theorem-prover generators
(e.g., AlphaProof-style deciders) and Lean-controlled tools (e.g., LeanDojo-style re-
trieval/mutation [20], [LO]) so that longer proofs become attainable.
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* Extended benchmarking. Broaden the suite of existence theorems and conduct a systematic
study of failure modes using quantitative metrics (proof length, number and type of lemmas,
axiom footprint, etc.).

* Control. Develop better mechanisms for suggesting and re-selecting theorems.

Our view is that axiom-aware evaluation is a viable path toward automating non-constructive existence
results. This work is a first step intended to spark discussion; to our knowledge, this class of mathe-
matical problems has not yet been a central focus of the community. Some of these problems—for
example, re-deriving the Hahn—Banach theorem in ZF+DC—remain open.
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A Vitali’s Non-measurable Set

Theorem 1 (Vitali’s non-measurable set). There exists a subset V. C [0, 1] that is not Lebesgue
measurable.

Proof. Define x ~ y iff x — y € Q. This partitions R into classes « + Q. By the Axiom of Choice
choose V' C [0, 1] with exactly one representative of each class meeting [0, 1]. For ¢ € QN [—1, 1]
set V, :=V +¢q.

Disjointness. If x € Vg, N'Vy,,thenz = v1 +q1 = va + g2 withv; € V,s0v1 —v2 = g2 — q1 € Q.
Since V' has at most one representative per class, v; = vo, hence ¢; = gs.

Coverage. For any € [0,1], let v € V be the representative of 2’s class. Thenx —v € QN [—1,1],
sox € Vy_,. Also V, C [—1,2] forall ¢ € [-1,1].

If V were Lebesgue measurable with measure m, translation invariance gives m(V,) = m(V'). The
V, are disjoint and cover [0, 1], hence

t=m@.<m( J V)= X m)= XY m)<m(-12)=3.
q€QN[-1,1] q€QN[-1,1] q€QN[-1,1]

If m(V') = 0 the middle sum is 0 (contradiction). If m (V") > 0 the sum diverges to +oo (contradic-
tion). Thus V is not Lebesgue measurable. O
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