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Abstract

Evaluator-driven discovery systems (e.g., FunSearch) succeed when the target1

admits a clear fitness metric (e.g., “find the largest cap set”), but many central2

mathematical objects—Vitali sets, the Banach–Tarski paradox, Hamel bases, ultra-3

filters, etc.—lack such metrics and often rely on specific nonconstructive axioms,4

such as the axiom of choice (AC). We propose a FunSearch variant with a theorem5

proposer and a Lean-verified, axiom-aware evaluator that scores candidates by6

(i) proof progress, (ii) property coverage, and (iii) an axiom footprint that audits7

reliance on Choice (AC), Zorn’s Lemma, the axiom of dependent choice (DC), the8

law of excluded middle (EM), and others. A minimal prototype reconstructs proofs9

of the existence of a right inverse for an arbitrary surjection (via AC). We claim no10

new theorems, but provide early evidence that axiom-aware evaluation broadens11

evaluator-driven discovery beyond purely executable code.12

1 Introduction13

Deep learning–assisted mathematical discovery has accelerated in recent years—from results in knot14

and representation theory (e.g., [4]), algebraic geometry ([3]), number theory ([15]), and PDEs ([19]),15

to faster matrix-multiplication schemes ([7]) and systems that solve Olympiad-style geometry and16

proof tasks ([1, 2, 11]). For example, AlphaTensor searches the space of algorithms and, using a17

reward that penalizes operation count, discovers matrix-multiplication procedures that improve on18

those derived from Strassen’s method. In a similar spirit, FunSearch [6] [16] and AlphaEvolve [12]19

generate programs that construct mathematical objects under the guidance of evaluators supplying20

task-specific fitness signals.21

However, many central objects—Vitali sets, Hamel bases, ultrafilters, and phenomena like the Banach–22

Tarski paradox [18][14][17]—are non-constructive (there is no algorithm that produces them) and23

typically rely on the Axiom of Choice (AC). For these, there is no obvious “run-and-score” objective,24

so standard evaluator-driven loops do not readily apply. Meanwhile, LLM-assisted theorem proving25

in proof assistants (e.g., Lean) focuses on closing goals while offering little control over which26

axioms a proof depends on: a derivation that quietly invokes Classical.choice or Zorn’s Lemma27

is treated as equivalent to one that avoids them.28

We propose a modification of FunSearch tailored to this setting. An LLM, or human expert, first29

proposes candidate premises (theorems/lemmas) and construction strategies for the target object. We30

then synthesize Lean proofs from these premises and recombine them in a FunSearch-style loop.31

Crucially, candidates are scored on (i) proof progress and adherence to the suggested premises; (ii)32

an axiom footprint that audits reliance on classical principles (AC, Zorn’s Lemma, the Boolean Prime33

Ideal Theorem (BPI), the axiom of Dependent Choice (DC), etc.); (iii) property coverage for the34

object under study; and (iv) parsimony, a diminishing-returns penalty that discourages lemma-stuffing35

and repeated use of the same suggested theorems beyond a certain threshold.36
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Figure 1: An LLM (or human) proposes candidate theorems—possibly using AC or other ax-
ioms—and another LLM ranks and selects the best. A second LLM evolves Lean code in four
iterations; we keep the version that type-checks (or has the fewest errors). We score it by property
coverage, axiom awareness, theorem usage, and parsimony, assembling theorem components via an
evolutionary algorithm to match the desired object’s properties.

Our position is that a proof-based evaluator with axiom awareness can (a) reconstruct classically37

defined, AC-dependent objects and (b) steer search toward weaker or alternative assumptions when38

multiple routes exist (e.g., preferring BPI, DC when full AC is unnecessary). We present a minimal39

prototype on canonical cases—right inverses for surjections and Hahn-Banach (both using AC). We40

claim no new theorems, axiom-minimality certificates, or impossibility results; rather, we offer a41

concrete recipe and early evidence that axiom-aware evaluation broadens evaluator-driven discovery42

beyond executable code and may help surface alternative proofs under different axiom sets. The latter43

is an active research topic in pure mathematics.44

The novelty of this work lies in extending evaluator-driven discovery systems, such as FunSearch,45

toward non-constructive domains by combining evolutionary algorithms with Lean-based verification.46

This integration enables the discovery of mathematical objects that inherently depend on specific47

axioms—such as AC—and are therefore not constructible in the traditional sense. Our approach48

introduces a scoring mechanism that rewards intermediate proof steps which function as subgoals,49

guiding the search toward axiom-dependent existence results.50

2 Problem setting and methodology51

The problems we aim to solve concern the construction of mathematical objects that, due to their52

dependence on the Axiom of Choice (AC) or other abstract axioms, cannot be obtained by plain53

evaluator-driven search in the FunSearch/AlphaEvolve style. As an illustrative example of the54

problematic, we use the construction of a Vitali set—a non–Lebesgue-measurable subset of R—to55

motivate our modification of FunSearch and to justify the scores (i)–(iii) introduced in the Introduction56

section. For non-mathematical readers, a complete proof of the existence of a Vitali set is provided in57

the appendix (Vitali’s Non-measurable Set).58

A Vitali set is non-measurable. To prove the existence of such an object—which relies on specific59

mathematical tools like AC—mathematicians typically use a proof by contradiction and isolate60

theorems that trigger the contradiction. In the Vitali case, these include countable additivity and61

translation invariance. This motivates using an LLM to suggest approaches and theorems, and62

incentivizing coverage of target theorem in (i). In practice, one first proposes an object that may63

not yet satisfy the full property checklist, which in this specific example is just non measurability;64

through a series of self-feedback steps and refinements, we obtain an initial set and then iteratively65

modify it to maximize property coverage and align axiom usage with the policy—corresponding to66

(ii) and (iii).67

Setup. Given the statement of the existence result we wish to establish, we present it to a human or68

an LLM (the suggester) for theorem suggestion; call this existence result the goal G. The suggester69

proposes theorems to use and possible approaches, which are then scored on a 1–5 scale. We let70
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the LLM select the best approach and the set of suggested theorems T = {t1, . . . , tm}, together71

with the properties we want to cover P = {p1, . . . , pn}, and a set of weights W = {w1, . . . , wℓ} for72

the axioms A = {a1, . . . , aℓ} (e.g., AC, DC etc.) that we wish to use. We then pass this to another73

series of LLMs in a FunSearch-style scaffold. These LLMs generate Lean proofs, which are checked74

by the Lean compiler. Each attempt is run four times to mitigate brittleness and smooth stochastic75

variation across generations. We empirically found four iterations sufficient to balance stability and76

computational cost. The resulting proofs are stored in a database and scored according to the scheme77

below. We then recombine the part of the proofs that are responsible to select the features of an object78

that best satisfy the target properties.79

Scoring criteria.80

(α1) Coverage of suggested theorems used (score C1).81

C1 =
1

m

m∑
i=1

1
[
ti used

]
,

where ti is one of the m theorems in T .82

(α2) Axiom coverage (score A). For some questions it is useful to find an object using some83

axioms while avoiding others. For example we can be interested in finding a proof which84

uses AC instead of DC. With a weight vector W = {w1, . . . , wℓ} (with wi ∈ R) and85

associated axioms A = {a1, . . . , aℓ}, define86

A =

ℓ∑
i=1

wi 1
[
ai used

]
.

(α3) Property coverage (score P ).87

P =

n∑
i=1

1
[
pi covered

]
.

In the Vitali-set case we may have a single property—non–Lebesgue-measurability—but for88

other objects multiple properties pi may be required.89

(α4) Parsimony (score Par). We add a negative penalty each time a theorem is used more than k90

times, where k is a hyperparameter.91

Overall score.
S = λ1 C1 + λ2 P + λ3 A + λ4 Par

where the λi are user-set hyperparameters.92

3 Model and Preliminary Results93

Implementation. We reimplemented a FunSearch-style architecture in Node.js with Lean 4 as the94

proof checker. Repository link provided upon requested for review anonymity.95

Suggester and islands. A suggester (LLM or human) proposes up to five high-level approaches,96

each with up to five candidate premises/lemmas. We select one approach (or take the human-proposed97

route) and launch an island-based evolutionary loop: multiple LLMs operate independently per island,98

proposing Lean fragments (tactics or term mode) that are checked by Lean 4.99

Generation attempts. For each new program—including recombinations of prior candidates—we100

allow up to four attempts to produce a compiling Lean 4 artifact. We then introduce in the evolutionary101

database the program with the least amount of syntatic errors. Candidates are then scored by the102

evaluator described in Section 2.103

Models. We tested several LLMs for both the suggestion and evolution phases, including Gemini104

2.5 Flash, Gemini 2.5 Pro, DeepSeekV3.1 and GPT-5 [13], [5], [9], [8]105
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Setting Success rate (%) Model Num runs
Even + Even 100 DeepSeek 3.1 20
Right-inverse (Choice allowed) 85 DeepSeek 3.1 20
Right-inverse (Choice forbidden) 0 DeepSeek 3.1 20
Hahn–Banach (Choice allowed) 0 DeepSeek 3.1 20
f continuous on compact ⇒ f uniformly continuous 0 DeepSeek 3.1 20
f Lipschitz on compact ⇒ f uniformly continuous 80 DeepSeek 3.1 20

Tasks.106

• Sanity (constructive). Re-derive elementary results (e.g., “the sum of two even numbers is107

even,” “every n ∈ N satisfies n ≡ 0 or 1 (mod 4)”) to validate the pipeline.108

• AC unit test. Right inverse of a surjection. Given f : α → β with Surjective f,109

synthesize g : β → α and prove Function.RightInverse g f.110

• AC-heavy objects. Existence theorems such as the Hahn–Banach theorem.111

• Steering toward weaker assumptions. Re-derive the uniform continuity of a function112

on a compact set from (i) continuity alone and (ii) the stronger assumption of Lipschitz113

continuity.114

Preliminary outcomes (feasibility & control). On the sanity tasks, the pipeline consistently115

produced compiling proofs. For the AC unit test (right inverse of a surjection), the system produced116

a correct Lean proof using Classical.choose and closed the checklist; the axiom audit flagged117

Choice. When AC was forbidden, the system correctly failed (0% success), with candidates rejected118

by the policy filter. For the AC-heavy task, the system failed to produce a proof. Upon inspecting119

the failures, we found that the Lean 4 proofs were substantively correct, but the LLMs could not120

synthesize long, syntactically correct Lean code. For the “steering toward weaker assumptions” task,121

we obtained correct Lean proofs when the function was Lipschitz, but again encountered difficulties122

synthesizing syntactically correct Lean code when assuming only continuity. Nonetheless, manual123

inspection indicates that the candidate proofs are semantically correct. Given the scope of a position124

paper, we keep budgets small and focus on feasibility and policy control rather than scale.125

Tiny quantitative summary. We report in the table above synthatic success rate of the Lean Code126

of the problem we asked to be solved. We report success rate for the problem against number of runs.127

For brevity, we report only the DeepSeek-V3 results in the main text, as other tested models (Gemini128

2.5 Flash, Gemini 2.5 Pro, GPT-5) exhibited qualitatively similar behavior.129

Conclusion and Outlook130

We presented a proof-of-concept reimplementation of a FunSearch-style system whose evaluator131

operates on Lean artifacts and is axiom-aware. On canonical Axiom-of-Choice (AC) targets, the132

system reconstructs a right inverse for a surjection but does not synthesize a correct proof of the Hahn–133

Banach theorem. A manual inspection of failing runs suggests that the obstacle is not mathematical134

correctness but the difficulty LLMs have in producing long, syntactically correct Lean 4 proofs.135

We also ran experiments in which AC was forbidden as a hard constraint. As expected, the right-136

inverse task then failed (candidates were rejected by the policy filter), indicating that the evaluator137

enforces the axiom policy rather than silently accepting classical shortcuts. In further tests, we138

attempted to derive uniform continuity on a compact set from (i) continuity alone and (ii) the stronger139

assumption of Lipschitz continuity. We again failed in the continuity-only case, which we attribute to140

proof length and brittleness rather than substance. We note the usual caveat that LLMs may reproduce141

library or training content; our aim here is feasibility and control, not mathematical novelty.142

Looking ahead, we see four priorities:143

• Stronger evaluator signals. Improve axiom and theorem auditing via AST-level analysis144

and subgoal-coverage checks.145

• Tooling integration. Couple the evolutionary loop with theorem-prover generators146

(e.g., AlphaProof-style deciders) and Lean-controlled tools (e.g., LeanDojo-style re-147

trieval/mutation [20], [10]) so that longer proofs become attainable.148
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• Extended benchmarking. Broaden the suite of existence theorems and conduct a systematic149

study of failure modes using quantitative metrics (proof length, number and type of lemmas,150

axiom footprint, etc.).151

• Control. Develop better mechanisms for suggesting and re-selecting theorems.152

Our view is that axiom-aware evaluation is a viable path toward automating non-constructive existence153

results. This work is a first step intended to spark discussion; to our knowledge, this class of mathe-154

matical problems has not yet been a central focus of the community. Some of these problems—for155

example, re-deriving the Hahn–Banach theorem in ZF+DC—remain open.156
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A Vitali’s Non-measurable Set226

Theorem 1 (Vitali’s non-measurable set). There exists a subset V ⊂ [0, 1] that is not Lebesgue227

measurable.228

Proof. Define x ∼ y iff x− y ∈ Q. This partitions R into classes x+Q. By the Axiom of Choice229

choose V ⊂ [0, 1] with exactly one representative of each class meeting [0, 1]. For q ∈ Q ∩ [−1, 1]230

set Vq := V + q.231

Disjointness. If x ∈ Vq1 ∩ Vq2 , then x = v1 + q1 = v2 + q2 with vi ∈ V , so v1 − v2 = q2 − q1 ∈ Q.232

Since V has at most one representative per class, v1 = v2, hence q1 = q2.233

Coverage. For any x ∈ [0, 1], let v ∈ V be the representative of x’s class. Then x− v ∈ Q ∩ [−1, 1],234

so x ∈ Vx−v . Also Vq ⊂ [−1, 2] for all q ∈ [−1, 1].235

If V were Lebesgue measurable with measure m, translation invariance gives m(Vq) = m(V ). The236

Vq are disjoint and cover [0, 1], hence237

1 = m([0, 1]) ≤ m
( ⋃

q∈Q∩[−1,1]

Vq

)
=

∑
q∈Q∩[−1,1]

m(Vq) =
∑

q∈Q∩[−1,1]

m(V ) ≤ m([−1, 2]) = 3.

If m(V ) = 0 the middle sum is 0 (contradiction). If m(V ) > 0 the sum diverges to +∞ (contradic-238

tion). Thus V is not Lebesgue measurable.239
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