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Abstract

Long video understanding has emerged as an increasingly important yet chal-1

lenging task in computer vision. Agent-based approaches are gaining popularity2

for processing long videos, as they can handle extended sequences and integrate3

various tools to capture fine-grained information. However, existing methods still4

face several challenges: (1) they often rely solely on the reasoning ability of large5

language models (LLMs) without dedicated mechanisms to enhance reasoning6

in long video scenarios; and (2) they remain vulnerable to errors or noise from7

external tools. To address these issues, we propose a specialized chain-of-thought8

(CoT) process tailored for long video analysis. Our proposed CoT with plan-adjust9

mode enables the LLM to incrementally plan and adapt its information-gathering10

strategy. We further incorporate heuristic uncertainty estimation of both the LLM11

and external tools to guide the CoT process. This allows the LLM to assess the12

reliability of newly collected information, refine its collection strategy, and make13

more robust decisions when synthesizing final answers. Empirical experiments14

show that our uncertainty-aware CoT effectively mitigates noise from external tools,15

leading to more reliable outputs. We implement our approach in a system called16

VideoAgent2, which also includes additional modules such as general context17

acquisition and specialized tool design. Evaluation on three dedicated long video18

benchmarks (and their subsets) demonstrates that VideoAgent2 outperforms the19

previous state-of-the-art agent-based method, VideoAgent, by an average of 13.1%20

and achieves leading performance among all zero-shot approaches.21

1 Introduction22

Long video understanding has become increasingly important in computer vision due to the23

widespread presence of lengthy video content in domains such as entertainment, surveillance, and24

autonomous driving [6]. Unlike short clips, long videos introduce challenges in modeling extended25

temporal dependencies while maintaining feasible computational costs.26

Multimodal large language models (MLLMs) have achieved promising results on short clips [7, 8, 9,27

10, 11], but still struggle with long videos. This is primarily due to (1) the computational burden of28

processing lengthy sequences using transformer-based architectures [12], and (2) limited granularity in29

spatio-temporal perception constrained by the encoder and training data. While context compression30

strategies have been explored [13, 14, 15], they risk losing crucial information. Furthermore, different31

user queries often require information at varied granularities, making generalization difficult. Efforts32

like fine-grained instruction tuning [16], chain-of-thought (CoT) reasoning [17], and specialized33

modules [10] aim to address this but face challenges in complexity and reasoning latency.34

Recently, agent-based frameworks have emerged as a promising direction [18, 1, 19, 20, 21, 22].35

These methods utilize LLMs to reason over content retrieved via pre-trained video/image tools,36
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Figure 1: Performance of previous SOTA agent-based method VideoAgent [1], previous SOTA
Zero-shot method [2, 3, 4, 1, 5] and our proposed VideoAgent2 on all evaluation datasets. The metric
is accuracy.

leveraging the LLM’s textual reasoning capabilities while maintaining efficiency. For instance,37

VideoAgent [1] emulates human video viewing by first extracting coarse context, then iteratively38

retrieving frames based on user queries until sufficient information is gathered. Agent-based ap-39

proach avoids full video processing and supports the acquisition of information at arbitrary levels of40

granularity by using various tools.41

Despite their promise, agent-based methods face two main issues: (1) overemphasis on architectural42

design while underexploring ways to improve LLM reasoning in long video scenarios [19, 1], and (2)43

susceptibility to noise and hallucination from external tools [23].44

To overcome these limitations, we propose VideoAgent2, a LLM-based agent system designed to45

improve reasoning accuracy and robustness in long video understanding. We introduce a specialized46

CoT process modeled on human cognition, using a plan-adjust mechanism to progressively refine47

retrieved information from coarse to fine detail. Specifically, we introduce a specialized CoT process48

for long-video agent systems that helps improve LLM’s reasoning and decision-making capabilities.49

This process mimics human video understanding, using a plan-adjust mode to incrementally acquire50

information from coarse to fine-grained details. Additionally, we integrate heuristic uncertainty51

estimation from both the LLM and tools into the CoT pipeline. This helps filter unreliable information,52

guiding retrieval and decision-making without introducing extra parameters or inference overhead,53

outperforming previous CoT methods [24, 25] in efficiency. Finally, we propose a new pipeline for54

implementing VideoAgent2, incorporating important components such as general context information55

acquisition and specialized tool design. Our contributions are threefold:56

• We design a specialized CoT process based on the plan-adjust mode to enhance LLM57

reasoning and decision-making in long video understanding.58

• We introduce uncertainty-guided CoT reasoning, which mitigates noise and hallucination in59

the system while requiring no additional parameters.60

• We propose the VideoAgent2 pipeline, which integrates innovative designs such as general61

context acquisition and specialized tools. Videoagent2 achieves superior performance on62

long-form video understanding benchmarks such as Ego-Schema [26], NExT-QA [27], and63

IntentQA [28], as shown in Fig. 1.64

The remainder of this paper is structured as follows: Section 2 reviews related work, Section 365

presents our method, Section 4 details experiments and analysis, and Section 5 concludes with66

limitations and future directions.67

2 Related work68

2.1 MLLM for long-form video understanding69

Substantial progress has been made in developing multimodal large language models (MLLMs) for70

video understanding, focusing on two core challenges: managing the computational load of long71

videos and extracting fine-grained spatio-temporal information. Techniques such as LLaMA-VID72
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Figure 2: Overview of VideoAgent2. VideoAgent2 answers a question Q about a video V through
a pipeline consisting of four phases: general context acquisition, answer assessment, information
retrieval plan creation/adjustment, and information retrieval. Details of each phase are introduced in
Section 3.

and MA-LLM reduce input size by compressing video frames into compact token representations73

[29, 13], while methods like sliding windows [15] and token shuffling [30] further optimize efficiency.74

To enhance fine-grained perception, VTimeLLM introduces boundary-aware training [16], and75

TimeSuite applies temporal adaptive encoding [30]. Other approaches, including VideoLLaMA 276

[31] and Slowfast-LLava [32], leverage specialized spatial-temporal modules. Despite these advances,77

issues such as information loss and high computational cost remain. To address this, we propose78

an LLM-based agent framework that avoids full video processing and using diverse tools to extract79

multi-granular information.80

2.2 LLM-based agent system for video understanding81

LLM-based agent systems have emerged as a key application of large language models [33, 34, 35],82

and the computer vision field is exploring their use in video understanding [36, 37]. VideoINSTA83

[38] employs event-based temporal and content-based spatial reasoning to enhance LLMs’ video84

reasoning. In [39], structured spatio-temporal memory is proposed for supporting video agent85

systems. VideoAgent [1] presents a framework for interactive reasoning and planning with long86

visual inputs. While these works mainly focus on agent architecture, our approach emulates human87

video understanding by introducing a dedicated CoT with a plan-adjust mode to strengthen LLM88

reasoning and decision-making in long-video scenarios.89

2.3 Bootstrapping CoT in LLM reasoning90

CoT has been widely applied to enhance LLM reasoning [40, 41, 42], with research often empha-91

sizing reward process design, such as tree search with reinforcement learning [43], Q-value ranking92

optimization [44], advantage verifiers [25], and meta-reward steps [45]. However, these methods93

typically require extra parameters or reasoning steps, complicating their use in video agent systems.94

Instead, our approach leverages uncertainty in both LLMs and tools to guide the CoT process. This95

strategy is easy to implement and mitigates hallucinations frequently observed in agent systems.96

3 Method97

This section introduces VideoAgent2, with the overall framework illustrated in Fig. 2. Compared to98

the previous SOTA method, VideoAgent [1], our approach incorporates two major improvements:99

(1) New information retrieval method based on uncertainty-aware CoT reasoning: VideoAgent100

retrieves key frames by exhaustively comparing CLIP embeddings of all frames with the target,101

resulting in fixed granularity, inefficiency, and limited reasoning capacity. It also heavily relies on102

CLIP, which can introduce bias. In contrast, VideoAgent2 enhances efficiency and maximizes the103

LLM’s reasoning capacity. It allows the LLM to autonomously identify temporal intervals and use104

an uncertainty-aware CoT process to enable iterative, coarse-to-fine reasoning and better adapts105

to diverse user needs and varying levels of granularity. (2) Redesigned pipeline: To address the106

limitations in VideoAgent—where uniform sampling for context retrieval may overlook critical107
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information and cause subsequent retrieval failures—VideoAgent2 adopts a segment-based caption108

and summarization approach, which will be described in detail in the following section. Furthermore,109

we develop a variety of specialized tools tailored for VideoAgent2 to enhance its overall effectiveness.110

VideoAgent2 mimics human video comprehension: given a video and a question, a person first111

watches the video roughly to gain a general context, then retrieves specific segments iteratively until112

sufficient evidence is gathered. Depending on the complexity of the question, this retrieval process113

may involve multiple steps, each of which is an assessment made to determine the adequacy of the114

information obtained so far. We formalize the answering process to a query Q over video V in four115

stages: general context acquisition, answer assessment, retrieval plan formulation/adjustment, and116

targeted information retrieval. At each step t, the system state is Bt, Pt, At, cft | 1 ≤ t ≤ T , where117

Bt is the information memory bank storing all information, Pt is the plan for retrieving additional118

information, At is the answer generated based on Bt, and cft its confidence of the At.119

3.1 Phase 1: General context acquisition120

Inspired by how humans comprehend long videos—first grasping general context, then examining121

segments relevant to the question—we start by acquiring the general context of the target video.122

Two key issues are addressed in this phase: (1) Computational efficiency: Excessive detail increases123

computational load and risks focusing on irrelevant content [13]. (2) Information integrity: The124

general context should contain as much information as possible to avoid failing to identify key125

segments later. To achieve this, we proceed as follows:126

• Step 1. The long video of length L is downsampled to frame rate fpsd and split into127

segments of n seconds using a preprocessor Fvp.128

• Step 2. Captions C = {c1, c2, . . . , ck}, k = L/n, are generated for all segments via a129

lightweight video captioner Fvc.130

• Step 3. C is input to an LLM to produce a summary S for the entire video.131

Computational efficiency is ensured in Step 1 by reducing frame numbers. In Step 2, unlike uniformly132

sampling frames and using an image captioner in VideoAgent, a video captioner preserves temporal133

context and prevents the context information loss. To avoid irrelevant or disconnected captions, and134

following [2], the LLM analyzes all captions and generates a summary via CoT prompting, allowing135

it to reflect on temporal and spatial relationships and better understand the content. By the end of136

Phase 1, the general context B1 = C, S is obtained. As B1 may lack fine-grained details, we first137

attempt to answer the question based on B1, then evaluate if further information retrieval is needed.138

Details of this process are provided in the next section.139

3.2 Phase 2: Answer assessment140

Humans typically evaluate whether their current information suffices to answer a question, a process141

termed answer assessment. Building on [1], we refine the prediction-evaluation procedure by merging142

it into a single step: the LLM generates both an answer At to question Q based on Bt and a confidence143

score cft (ranging from 0 to 5) simultaneously. The subsequent action is determined by comparing144

cft with a manually set threshold cfthr:145

• Action 1: If cft ≥ cf thr, the LLM is deemed to have sufficient information, confirming146

final answer A∗ as At.147

• Action 2: If cft < cf thr, more information retrieval is needed, initiating Phase 3 for plan148

creation or adjustment.149

This phase leverages LLM uncertainty (self-reflection) to judge information adequacy [46]. When150

information is insufficient, the LLM is guided to create or revise the retrieval plan, enabling it to151

iteratively plan tool calls and interpret retrieved information within a coherent chain of thought.152

3.3 Phase 3: Information retrieval plan creation/adjustments153

When humans find their current information insufficient to answer a question, they typically recall154

relevant ranges and scrutinize specific content, first devising an information retrieval plan based on155

the question before examining pertinent segments. For instance, to answer "What is the animal in156

the photo that the man is holding in his hand at the beginning of the video?", one might plan: (1)157

find the man in 0-10s; (2) locate his right hand; (3) closely examine the photo in the hand. As new158
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information is acquired, the plan is adjusted—e.g., if no man is found in 0-10s, shift the search to159

10-20s, or add steps if needed.160

Inspired by this, we propose a plan-adjust CoT mode where the LLM generates an initial retrieval161

plan based on the general context and question, then iteratively adjusts the plan as new information is162

acquired to guide subsequent retrieval. Actions in Phase 3 are as follows:163

• Action 1: If t = 1, the system is in the initial state. The LLM creates an initial information164

retrieval plan P1 based on B1 and Q.165

• Action 2: If t > 1, the system is in the retrieval process. The LLM updates the previous plan166

Pt−1 to produce Pt based on Bt and Q.167

Unlike VideoAgent [1], which uses CLIP-based similarity for retrieval range selection—incurring168

high computational cost—we allow the LLM to directly decide two key parameters per tool invocation169

(for system stability, only one tool is invoked per step): (1) the frame range for retrieval, determined170

from C, and (2) tool-specific parameters. This flexible approach enables progressive localization at171

varying granularities, supporting more precise information retrieval.172

3.4 Phase 4: Information retrieval173

In this phase, the LLM invokes tools to retrieve new information based on the created or adjusted plan174

Pt. However, tools can introduce errors or noise; for example, object detectors may misidentify rare175

objects, and image captioners may inaccurately describe events. Such errors can compound during176

iterative retrieval, affecting the LLM’s plan adjustments. To mitigate this, we introduce uncertainty177

to guide the CoT process: each tool returns a confidence score along with its output, as detailed in178

Section 4.1. This allows the LLM to consider both the content and reliability of retrieved information179

when refining the retrieval plan and integrating results to make the final decision. Together with180

cft, a complete uncertainty-aware CoT process is established in VideoAgent2, where both LLM and181

tool uncertainties inform information acquisition and analysis, thereby improving overall system182

reliability.183

The VideoAgent2 pipeline is summarized in Algorithm 1.184

Algorithm 1 VideoAgent2

Require: long video V , question Q, LLM Fllm, video preprocessor Fvp, video captioner Fvc, video
tools Fvt1, Fvt2, · · · , FvtM , max number of answer assessments T , confidence threshold cfthr

Ensure: information memory bank, information retrieval plan and predicted answer {Bt, Pt, At|1 ≤
t ≤ T}
C = {c1, c2, . . . , ck} ← Fvc(Fvp(V ))
S ← Fllm(C, promptSummary)
B1 = {C, S}
for t = 1 to T do

At, cft ← Fllm(Bt, Q, promptAnswer)
if cft ≥ cf thr then

break
else

if t == 1 then
Pt ← Fllm(Bt, Q, promptCreatePlan)

else
Pt ← Fllm(Bt, Q, Pt−1, promptAdjustPlan)

end if
NewInfo← Fvtm(Pt)
Bt+1 ← Merge(Bt,NewInfo)

end if
end for
return A∗ = At

4 Experiments185

We first introduce the experimental settings and then present the experimental results of our methods186

and baselines, demonstrating the effectiveness of our method.187
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4.1 Experimental Setting188

Datasets. We follow the strong baselines [1, 4] using three well-established datasets to evaluate the189

proposed method:190

• Egoschema [26]. EgoSchema contains over 5,000 human-curated multiple-choice QA191

pairs from more than 250 hours of real video. The subtest set includes 500 questions with192

public labels. We compare VideoAgent2 to leading published methods on the leaderboard,193

following the evaluation protocol in [2].194

• NExT-QA [27]. The NExT-QA dataset features 5,440 natural videos and 4,880 multiple-195

choice questions spanning action reasoning, temporal action reasoning, and scene compre-196

hension. Its validation set contains 570 videos and 5,000 questions. The ATP-hard subset197

comprises the most challenging questions requiring long-term temporal reasoning. We198

mainly compare VideoAgent2 to top zero-shot methods on the NExT-QA validation set and199

ATP-hard subset, following [1, 47], and also report leading supervised results.200

• IntentQA [28]. IntentQA includes 4,303 videos and 16,000 multiple-choice QA pairs201

focused on intent reasoning. The test set comprises 567 videos and 2,134 questions. We202

mainly compare VideoAgent2 to top zero-shot methods on the test set, following [4], and203

also report the leading supervised results.204

Metric. Since the tasks in all datasets are multiple-choice, accuracy is used as the evaluation metric205

by following [4, 1], defined as the number of correct answers divided by the total number.206

System parameters. fpsd is set to 1 (we also compare different fpsd in the ablation study), and n is207

set to 4 to ensure computational efficiency. cfthr is set to 5 to ensure sufficient confidence in the final208

answer. T is set to 5 to prevent dead ends in extreme situations.209

LLM and tools selection. We adopt GPT-4o [48] as the LLM Fllm, following [2]. For video210

captioning, we use the lightweight LaViLa model [49] as recommended in [1, 2]. The selected or211

designed tools, along with confidence score extraction methods, are as follows:212

• Image caption: GPT-4o [48] generates frame captions, automatically assigning a confidence213

score (0–1) to each sentence or clause by using an in-context learning prompt (e.g., “The214

image shows a person sewing fabric (confidence=0.9)...”).215

• Object detection: A designed tool based on SAM2 [50] and Yolov11 [51] detects objects in216

specified frames, using SAM2’s confidence score for each object.217

• Image zoom in + caption: OpenCV [52] zooms into specified image areas, and GPT-4o218

captions the zoomed region with confidence scores as above.219

• Image zoom in + object detection: OpenCV zooms into regions for object detection, with220

confidence scores from the object detection tool.221

• Object tracking: A designed object tracking tool based on SAM2 and Yolov11 tracks objects222

within a given frame range, using SAM2’s confidence in each frame.223

Detailed parameters/descriptions of these tools are provided in the Appendix A.224

Tool parameters. To ensure reproducibility and maintain consistency, we retain the default pa-225

rameters for each tool during our experiments. These settings are listed in Appendix A, Table226

8.227

Baselines. We compare VideoAgent2 with work that performed strongly on each dataset by following228

[1, 4].229

4.2 Main results230

VideoAgent2 achieves the SOTA among zero-shot methods on all datasets (including subsets), which231

are shown in Tables 1, 2 and 3, respectively.232

As shown in Tables 1, 2, and 3, VideoAgent2 achieves the best results on the EgoSchema dataset233

and among zero-shot methods for NExT-QA and IntentQA. Compared to previous SOTA zero-shot234

results, accuracy increases by 0.8% and 8.6% on the EgoSchema full and sub test sets, 6.7% and 9.8%235

on the NExT-QA validation set and ATP-hard subset, and 2.4% on the IntentQA test set. Notably,236

while iLearn performs well on the EgoSchema full set, its accuracy drops on the subset, likely due237
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Table 1: EgoSchema dataset

Method full
test set

sub
test set

LongViViT [53] 33.3 56.8
LLoVi [4] 50.3 57.6
VideoAgent [1] 54.1 60.2
GPT-4V [54] 55.6 63.5
ProViQ [55] 57.1 61.2
InternVideo2 [8] 60.2 -
Gemini1.5 Pro [56] 63.2 -
LifelongMem [3] 64.7 72.0
iLearn [2] 74.6 58.8
VideoAgent2 (ours) 75.4 80.6

Table 2: NExT-QA dataset

Method val
set

ATP
hard set

Supervised
ViLA [20] 74.4 -
VideoChat2 [7] 79.5 68.2
LLaVA-OV [57] 80.2 -
LinVT [58] 85.5 69.1

Zero-shot
ViperGPT [59] 60.0 -
SeViLA [21] 63.6 50.8
VideoAgent [1] 71.3 58.4
LLoVi [4] 73.8 -
VideoAgent2 80.5 68.2

Table 3: IntentQA
dataset

Method test
set

Supervised
IntentQA [28] 57.6
Human [28] 78.5
VideoChat2 [7] 81.9

Zero-shot
LLoVi [4] 67.1
VideoAgent [1] 69.3
LVNet [60] 71.1
ENTER [5] 71.5
VideoAgent2 73.9

to its reliance on video captioner outputs, making it less robust to distribution shifts. In contrast,238

VideoAgent2 maintains strong performance on both sets, demonstrating robustness. On NExT-QA,239

VideoAgent2 notably surpasses previous zero-shot methods and approaches supervised SOTA results240

on the ATP-hard subset, highlighting its strength in causal, temporal, and descriptive reasoning.241

Additionally, VideoAgent2 nearly reaches human-level performance among zero-shot methods on242

IntentQA.243

4.3 Case study244

We present a case study using the video and question from Fig. 2. Due to space constraints, we245

illustrate the full reasoning process in Appendix B, Fig. 5. Ellipses (. . .) indicate omitted content,246

with complete prompt details available in the Appendix C. From this example, we draw the following247

insights:248

• VideoAgent2 completes the task with just three tool calls and four answer assessments,249

primarily focusing on three key frames—demonstrating high frame efficiency. In contrast,250

VideoAgent [1] processes 15 frames and still fails, as does Llava-Onevision-7B.251

• The plan-adjust CoT effectively adapts the retrieval strategy over time. Between t = 1 and252

t = 3, rather than following a fixed retrieval plan, VideoAgent2 dynamically revises its plan253

based on newly retrieved data, progressing from coarse to fine-grained information.254

• The uncertainty-guided CoT effectively addresses tool noise and improves multi-tool integra-255

tion. For instance, while the caption for 12s–16s misdescribes the action and object detection256

at t = 2 fails to recognize key items, the LLM identifies uncertainty, revises the plan, and257

leverages additional tools. By t = 4, it successfully compares frames 19 and 20, using258

confidence scores to reach the correct answer. This demonstrates how uncertainty awareness259

helps suppress noise and hallucination, guiding more accurate and robust decision-making.260

4.4 Analysis of tool call261

The key feature of VideoAgent2 is its uncertainty-aware CoT process, which invokes tools through262

the plan-adjust mode. To better understand this process, we analyze tool calls across different datasets263

and question types.264

Number of tool calls for different datasets. We analyze the number of tool calls per sample on the265

EgoSchema test set, NExT-QA validation set, and IntentQA test set, with results shown in Fig. 3a. A266

count of 0 indicates that VideoAgent2 answers the question using only the initial context B1, without267

further retrieval. The maximum number of tool calls is T − 1 (with T = 5 in our setup). In all268

datasets, samples with zero tool calls represent the largest proportion—over 30%—we attribute this269

to the fact that video clip captions ensure the completeness of the context information, and the model270

also deepens its understanding of the spatio-temporal content of the full video by summarizing clip271

captions. EgoSchema shows a lower percentage of zero-call cases and more samples requiring 3–4272

tool calls, likely due to its longer videos and higher reasoning complexity [26]. In contrast, NExT-QA273

and IntentQA peak at 2 and 3 calls, respectively, with IntentQA exhibiting higher complexity, as it274

includes the most challenging questions from NExT-QA.275
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Figure 3: Analysis of tool call number statistics. (a) Proportion of samples with different numbers of
tool calls in different datasets. A tool call number of 0 means that for this sample, VideoAgent2 has
obtained enough information from the general context information B1 to answer the question without
the need for new information retrieval. The maximum tool call number is equal to T − 1, T is set to
5 in our experiment. (b) The average number of tool calls for each type of question and the average
number of calls for each tool in NExT-QA val set.

Table 4: Average cost and time consumption of each sample on egoschema full test set
Model average cost average time

VideoAgent 0.041 USD 2.7mins
VideoAgent2 (ours) 0.047 USD 2.3mins

Number of tool calls for different question types. The NExT-QA dataset classifies questions as: (1)276

Causal Questions, which investigate observable cause-effect relations; (2) Temporal Questions, which277

assess the sequence of multi-object interactions; and (3) Descriptive Questions, focused on scene278

elements like locations, objects, and key actions. We compute the average number of tool calls per279

sample and per tool for each type in the NExT-QA validation set (Fig. 3b). Descriptive questions have280

the lowest average tool calls (0.8), mostly using object detection, as factual descriptions are generally281

covered in the context and require only basic retrieval. In contrast, temporal questions require the282

most tool calls, especially from the object tracking model, due to their complex spatio-temporal283

reasoning. Both causal and temporal questions also see increased use of image captioning tools, as284

these help visualize event details needed for reasoning, consistent with findings in [1].285

4.5 Ablation study286

We perform comprehensive ablation experiments to demonstrate the effectiveness of the proposed287

approach.288

Different frame rate fpsd. It is worth noting that the modest 0.8% gain on the EgoSchema full set289

results from our use of the commonly adopted 1 fps frame rate [26, 1], unlike the best-performing290

baseline, which uses 30 fps [2]. To compare fairly, we also tested the 30 fps setting and achieved291

78.6, a 4.0% improvement. This confirms that higher frame rates provide richer context but at a much292

higher computational cost.293

Running cost. We employ GPT-4o as the LLM in VideoAgent2 and compare average cost and294

time per sample on the EgoSchema full test set with the original VideoAgent. Results in Table 4295

show that VideoAgent2 delivers higher performance with comparable computational costs and faster296

inference. For details on performance gains, see the Method section of the original paper. The297

efficiency improvement is largely due to VideoAgent2 enabling the LLM to selectively analyze key298

temporal ranges, avoiding the exhaustive CLIP embedding and similarity computation required by299

VideoAgent. Typical GPU memory usage for all tools is reported in Appendix B, Table 9.300

Ablation of uncertainty-aware CoT. We evaluate the impact of uncertainty-aware CoT in VideoA-301

gent2 using four experimental settings: (1) disabling tool-generated confidence scores, (2) disabling302

plan adjustment so the LLM executes a fixed retrieval plan, (3) disabling the entire CoT process303

so the LLM calls tools and answers directly, and (4) disabling all tool calls so the LLM relies only304

on B1. Each setting is incrementally built on the previous one. Experiments are conducted on the305

EgoSchema full test set, NExT-QA validation set, and IntentQA test set, with results in Table 5.306

Settings (1) and (2) show the greatest negative impact, with accuracy dropping by 4.3% and 4.0%,307
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respectively. This underscores the importance of tool uncertainty quantification and iterative plan308

adjustment in the CoT process, enabling the LLM to assess reliability and adapt its retrieval strategy309

for better answers. The further declines in settings (3) and (4) also emphasize the necessity of tool310

calls and effective call planning in VideoAgent2.

Table 5: Results of VideoAgent2 under different settings

Method EgoSchema
fullset

NExT-QA
val set

IntentQA
test set average

VideoAgent2 75.4 80.5 73.9 76.6
setting 1 71.3 76.0 69.5 72.3
setting 2 67.1 71.5 66.3 68.3
setting 3 65.6 69.8 65.6 67.0
setting 4 60.2 68.9 63.1 64.1

311

Ablation of different LLM. We evaluate the impact of different LLMs in VideoAgent2 across the312

EgoSchema full test set, NExT-QA validation set, and IntentQA test set (Table 6). Commercial models313

like GPT-4o [48] and GPT-4 [61] are compared with open-source alternatives such as Deepseek-V3314

[62] and Llama3.3-70B [63]. GPT-4o achieves the best overall performance, while Deepseek-V3315

performs competitively, offering a flexible open-source option.316

Table 6: Results of VideoAgent2 with different LLM

LLM EgoSchema
full test set

NExT-QA
val set

IntentQA
test set

GPT-4o 75.4 80.5 73.9
GPT-4 74.1 78.2 72.6
Deepseek-V3 74.7 79.5 73.4
Llama3.3-70B 70.5 75.3 68.6

Failure analysis. We analyze the failure cases in VideoAgent2 and summarize two main issues (1)317

Omission of general context information and (2) Limitations of current tools in capturing spatiotem-318

poral information. We show a more detailed analysis in Appendix D.319

Comparison with advanced MLLMs. We compare the performance of VideoAgent2 with four320

leading MLLMs on the EgoSchema full test set and the Next-QA validation set, as shown in Table 7.321

We observe that VideoAgent2 significantly outperforms the 32B and 38B models, and even surpasses322

InternVL2.5-78B. Its performance is slightly below that of Qwen2.5-VL-72B, which we believe may323

be attributed to Qwen2.5-VL’s use of advanced pre-training strategies and large-scale video data.324

Table 7: Performance comparison with advanced MLLMs
Model EgoSchema NExT-QA

Qwen2.5-VL-32B 71.1 77.2
Qwen2.5-VL-72B 76.8 83.3
InternVL2.5-38B 68.5 75.8
InternVL2.5-78B 73.7 80.1

VideoAgent2 (ours) 75.4 80.5

5 Conclusion325

In this paper, we introduce VideoAgent2, an enhanced LLM-based agent system designed for ef-326

fective long-form video understanding through a novel uncertainty-aware Chain-of-Thought (CoT)327

mechanism. VideoAgent2 addresses critical challenges faced by existing video agent systems, in-328

cluding limited reasoning capabilities and susceptibility to errors introduced by external tools. The329

proposed uncertainty-aware CoT mechanism enables adaptive and robust reasoning by incrementally330

refining information retrieval plans, guided by the uncertainty estimation derived from both internal331

assessments by the LLM and external tool outputs. Extensive experiments conducted on prominent332

benchmarks—including EgoSchema, NExT-QA, and IntentQA—demonstrate that VideoAgent2333

achieves state-of-the-art performance, significantly outperforming existing zero-shot methods. Future334

work will focus on further refining uncertainty estimation methods and exploring additional multi-335

modal integration strategies to continuously improve the generalization and efficiency of LLM-based336

video understanding systems.337
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Appendix for VideoAgent2: Enhancing the LLM-based agent524

system for long-form video understanding by uncertainty-aware525

CoT526

This document provides more details of our approach, organized as follows:527

• A. Details of used/designed tools in VideoAgent2528

• B. More experiment results529

• C. Prompts for VideoAgent2530

• D. Failure analysis531

A Details of used/designed tools in VideoAgent2532

We show more details of used/designed tools in VideoAgent2.533

A.1 Image caption534

We use GPT-4o to generate captions for specified frame images. We ask GPT-4o to automatically535

generate a confidence score ranging from 0 to 1 after each sentence or clause in the caption by the536

prompt:537

"You a r e an a s s i s t a n t t h a t g e n e r a t e s d e s c r i p t i v e c a p t i o n s f o r538

↪→ images .539

For each s e n t e n c e o r c l a u s e i n t h e c a p t i o n , i n c l u d e a c o n f i d e n c e540

↪→ s c o r e i n t h e f o r m a t ( c o n f i d e n c e =0 . xx ) a f t e r t h e d e s c r i p t i o n .541

Thi s c o n f i d e n c e i s from 0 t o 1 , r e f l e c t i n g your c o n f i d e n c e o f t h e542

↪→ c a p t i o n .543

Here i s an example :544

’ The image shows a s m a l l k i t c h e n c o u n t e r w i th a k e t t l e ( c o n f i d e n c e545

↪→ = 0 . 9 4 ) , a round b l a c k e l e c t r o n i c d e v i c e ( c o n f i d e n c e = 0 . 8 5 ) ,546

↪→ a l o a f o f b r e a d ( c o n f i d e n c e = 0 . 7 3 ) , and some c l e a n i n g547

↪→ s u p p l i e s ( c o n f i d e n c e = 0 . 9 5 ) . There i s a t r a s h can on t h e548

↪→ f l o o r ( c o n f i d e n c e = 0 . 8 5 ) and a b l u e t i l e d b a c k s p l a s h (549

↪→ c o n f i d e n c e = 0 . 6 2 ) . ’ "550
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Figure 4: An example of miss detection in object detection result. In (a)(2), the target detection model
correctly identifies the mobile phone with high confidence. However, in (b)(2), due to a change in the
phone’s orientation, the model fails to detect it. By contrast, leveraging SAM2 to track the mobile
phone across these two frames effectively addresses this issue, as demonstrated in (a)(1) and (b)(1).

A.2 Object detection551

Object detection models such as the Yolo series offer strong performance and speed but still encounter552

challenges such as missed detections, as illustrated in Fig. 4. To address this issue, we incorporate553

1



Table 8: Parameter setting of all tools
tool name parameter
LaViLa max_text_length=77, top_p=0.95, num_return_sequences=4, temperature=0.7
GPT-4o temperature=1, top_p=1,
Yolov11 iou=0.7, imgsz=640, weight=yolo11x.pt
SAM2 weight=sam2_l.pt, iou=0.45, imgsz=640

Table 9: GPU memory consumption of all tools
Tool name GPU memory consumption

Video Clip Captioner 11.4 GB
Object detection 12.9 GB
Image caption None (API)
Image zoom in None (CPU operation)
Object tracking 12.9 GB

LLM None (API)

SAM2 to construct a multi-round target detection framework that significantly reduces target loss554

by tracking the specified target across frames. Taking the object detection for the m-th frame as an555

example, the overall process is summarized as follows:556

1. The frame range is extended to [m − α, m + α], and all frames within this range are557

processed using Yolov11. To maintain computational efficiency, α is set to a small value,558

typically 5.559

2. For each target, the frame with the highest confidence score provided by Yolov11, exceeding560

a predefined threshold, is selected. The bounding box from this frame is then used to561

initialize SAM2, which performs bi-directional tracking to retrieve the target’s information562

in the m-th frame. We calculate the bounding box as the final detection result based on the563

mask provided by SAM2 in the m-th frame.564

A.3 Object tracking565

SAM2 demonstrates strong performance in target tracking. However, it requires manual specification566

of the target’s initial position before starting. To enable object tracking in VideoAgent2 by simply567

specifying the name of the item, we use Yolov11 to automatically initialize SAM2. Taking the task of568

tracking the target “mobile phone” within the frame range [m, n] as an example, the overall process569

is as follows:570

1. Apply Yolov11 to detect the target “mobile phone” in frames [m, n].571

2. If the detection confidence exceeds a predefined threshold, use the detected bounding box to572

initialize SAM2. Bi-directional tracking is then performed to obtain the complete trajectory573

of the target across the frame range [m, n].574

A.4 Tool parameters.575

To ensure reproducibility and maintain consistency, we retain the default parameters for each tool576

during our experiments. These settings are listed in Table 8.577

B More experiment results578

B.1 GPU memory consumption of all tools.579

We record the typical GPU memory consumption of all tools involved, which is summarized in Table580

9.581
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B.2 Case study.582

We use the video and question in Fig. 2 as a case study. Fig. 5 illustrates how VideoAgent2 answers583

this question, providing a clear example of the proposed approach. Due to space limitations, some584

information is omitted using ..., and more prompt details are shown in Appendix C. Based on Fig. 5,585

we make the following observations:586

• VideoAgent2 answers the question through three tool calls, four answer assessments and587

primarily focuses on three frames, demonstrating high frame efficiency. In comparison,588

VideoAgent [1] uses information from 15 frames and still fails to provide the correct answer.589

The MLLM Llava-Onevision-7B also gives the wrong answer.590

• The proposed plan-adjust CoT excels in handling this complex problem. From t = 1 to t = 3,591

rather than following a fixed retrieval plan, VideoAgent2 adjusts the information retrieval592

scheme based on newly acquired data, progressing from coarse-grained to fine-grained593

information acquisition.594

• The uncertainty-guided CoT process effectively addresses the noise introduced by the tools595

and enables seamless integration of different tools within the agent system to yield more596

reliable answers. A notable issue is that Caption 12s-16s in the general context incorrectly597

describes the man’s action as placing the mobile phone on the bed. This mistake is avoided598

by implementing the retrieval plan. In NewInfo (t=2), the object detection model fails to599

detect the phone and the laptop, leading the LLM to incorrectly interpret that the phone is600

covered by the chair. However, the uncertainty in both the LLM’s answer and the tool’s601

return value successfully guides the LLM to adjust the retrieval plan and incorporate new602

tools. Similarly, when integrating information from different tools to make the final judgment603

at t = 4, the LLM correctly compares the content of frame19 and frame20, as well as their604

associated confidence scores, to give an accurate final answer. In summary, the proposed605

uncertainty-aware CoT effectively mitigates noise and hallucination in both the LLM and606

tools, allowing the LLM to refine its information retrieval strategy and make more reliable607

decisions when synthesizing final answers.608

C Details of prompt in VideoAgent2609

We show all the prompts in VideoAgent2.610

• promptSummary611

"A long v i d e o i s segmented i n t o c o n s e c u t i v e 4− second c l i p s .612

Given t h e c a p t i o n s f o r a l l t h e c l i p s , {C} , p l e a s e summarize613

↪→ them i n t o a c o h e r e n t d e s c r i p t i o n o f t h e e n t i r e v i d e o .614

P l e a s e a p p r o a c h t h i s t a s k s t e p by s t e p , c a r e f u l l y615

↪→ c o n s i d e r i n g t h e t e m p o r a l and s p a t i a l r e l a t i o n s h i p s616

↪→ between t h e c o n t e n t i n each c l i p d u r i n g t h e617

↪→ s u m m a r i z a t i o n p r o c e s s .618

Note f o r c a p t i o n s :619

− ’#C’ i n d i c a t e s a c t i o n s pe r fo rmed by t h e camera w e a r e r (620

↪→ t h e p e r s o n who r e c o r d e d t h e v i d e o w h i l e wea r ing t h e621

↪→ camera ) .622

− ’#O’ i n d i c a t e s a c t i o n s pe r fo rmed by someone o t h e r t h a n623

↪→ t h e camera w e a r e r . "624

• promptAnswer625

"Now we have a memory bank {B} which s t o r e s a l l t h e626

↪→ i n f o r m a t i o n o f a v i d e o .627

In t h i s bank :628

− ’ Capt ion ’ i s t h e c a p t i o n o f a l l c o n s e c u t i v e sub − segmen t s629

↪→ of t h e v i d e o .630

− ’Summary ’ i s t h e summarized d e s c r i p t i o n o f t h e v i d e o .631

− ’ Too l s r e t u r n va lue ’ i s t h e r e t r i e v e d i n f o r m a t i o n by some632

↪→ t o o l s .633
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Video and Question: See Fig. 2.
Answer by Llava-Onevision-7B: The phone ended up on a chair. There‘s no evidence of loss. (×)
Answer by VideoAgent: The phone was left on the bed, probably covered by a man. (×)
Answer by VideoAgent2 (ours): The phone was obscured by the laptop. ( √ )
General context: Caption: … 8s-12s: #O man X operates the phone, 12s-16s: #O man X puts the phone on the bed, 16s-20s: #O man X
picks the laptop, … Summary: … the man initially walks, then moves around the room and interacts with a phone, … (B is updated.)
PromptAnswer: …, please think step by step, are you able to answer the question {Q}? Please generate a confidence score scale from 1-5.
LLM: No, I do not have enough information to answer the question. (confidence score = 0).
PromptCreatePlan: Here are some tools: … Please think step by step and produce an information retrieval plan by considering the relationship
between the information you need and the tool function. Please output the next action in json format: {‘Action’: tool call command}.
LLM: The following information retrieval plan has been developed:
 Step1: Identify the precise moment and location of the phone's last visible appearance.
 Step2: Analyze the phone's movement prior to its disappearance to determine if it was removed from the view, obscured, or other ways.
 Step3: Detect and examine objects in the vicinity of the phone's final appearance to investigate potential causes for its disappearance.
Action: {'tool_name': 'Object Tracking Tool’, 'object_name': ‘phone’, 'frame_range’: ’12-28’}
NewInfo: … {"frame_id": 19, "object_name": "phone", "object_bbox": [617, 878, 807, 949], "confidence": 0.80}{"frame_id": 20, "object_name": "phone", "object_bbox":
[611, 913, 812, 958], "confidence": 0.62}{"frame_id": 21, "object_name": "phone", "object_bbox": null, "confidence": null}… (B is updated.)
PromptAnswer: Please consider all existing information in {B} and think step by step to answer the question again.
LLM: No, I do not have enough information to answer the question (confidence score = 0).
PromptAdjustPlan: …, please think step by step to adjust your information retrieval plan based on the new information and the uncertainty in it.
LLM: The mobile phone remained in a stable position prior to its disappearance, suggesting that it was not removed from the camera’s field
of view. The cause of its loss can be deduced by analyzing the final location of the phone and the surrounding objects at that moment.
 Step1: Detect objects in the vicinity of the phone’s last visible frame.
 Step2: Consider zooming in to focus on the area where the phone is located for further analysis if objects are concentrated.
Action: { 'tool_name’: 'Object Detection Tool ‘, 'frame_range’: ’20-21' }.
NewInfo: {"frame_id": 20, "detections": [{"object_name": "chair1", "bbox": [579, 436, 1048, 894], "confidence": 0.54}, {"object_name": "person1", "bbox": [995, 2, 1709,
1065], "confidence": 0.97}, {"object_name": "bed1", "bbox": [190, 167, 1065, 679], "confidence": 0.54}]} {"frame_id": 21, … (B is updated.)
PromptAnswer: Please consider all existing information in {B} and think step by step to answer the question again.
LLM: Yes, the answer is the phone is covered by the chair (confidence score = 3).
PromptAdjustPlan: …, please think step by step to adjust your information retrieval plan based on the new information and the uncertainty in it.
LLM: In the results from the object detection and tracking tool, the positions of the mobile phone and the chair in frame 20 overlap;
however, both of them have low confidence scores. To resolve this, it is advisable to use alternative tools to gather additional information for
these moments. The image caption tool can be employed to complement the data for these specific frames.
 Step1: Utilize the image captioning tool to extract relevant events occurring during this period.
 Step2: If uncertainty remains high, consider extending the frame to capture more contextual information.
Action: {'tool_name': 'Image Caption Tool', 'frame_range': ‘19-21’ }
NewInfo: {“ frame_id " : 19, " caption " : " A person is placing a laptop on a black chair that already has a smartphone on its seat (confidence score = 0.85), with a neatly
made bed in the background (confidence score = 0.90)."} {" frame_id " : 20, " caption " : " A person is placing a laptop onto a black perforated chair that already has a
smartphone on it (confidence score = 0.62), in a tidy bedroom with a neatly made bed in the background (confidence score = 0.95). "} {"frame_id": 21, "caption": "A person is
moving a black perforated-back chair with a closed white laptop placed on it in a bedroom (confidence score = 0.95). "} (B is updated.)
PromptAnswer: Please consider all existing information in {B} and think step by step to answer the question again.
LLM: Although the confidence level for the computer being placed on the chair with the mobile phone on frame 20 is relatively low, the
caption for frame 19 demonstrates high confidence and provides similar content. By integrating this information with data from other tools, it
can be concluded that the reason is that the phone was obscured by the laptop (confidence score = 5).

frame19 frame20 frame21

t=1

t=2

t=3

t=4

… …

Figure 5: Case study of VideoAgent2. The video and associated question are presented in Fig. 2.
Both the popular MLLM Llava-OneVision and the SOTA agent baseline, VideoAgent, fail to provide
the correct answer. In contrast, our proposed VideoAgent2 correctly answers the question through
three tool calls and four answer assessments. VideoAgent2 leverages the information and uncertainty
provided by the tools, enabling the LLM to continuously adjust its information retrieval plan, and
make more reliable decisions when synthesizing the final answer.

P l e a s e t h i n k s t e p by s t e p . Are you a b l e t o answer t h e634

↪→ q u e s t i o n {Q}?635

I f you don ’ t t h i n k t h e r e i s enough i n f o r m a t i o n t o answer t h e636

↪→ q u e s t i o n , p l e a s e r e p l y as ’No , I do n o t have enough637

↪→ i n f o r m a t i o n t o answer t h e q u e s t i o n . ( c o n f i d e n c e s c o r e638

↪→ = 0) ’ .639

I f you can answer t h e q u e s t i o n , p l e a s e r e p l y as ’ Yes , t h e640

↪→ answer i s xx , ( c o n f i d e n c e s c o r e = xx ) ’ , n o t e t h a t you641

↪→ need t o g e n e r a t e a c o n f i d e n c e s c o r e f o r your answer ,642

↪→ s c a l e d from 1 −5."643

• promptCreatePlan644

" To a s s i s t you i n a n s w e r i n g t h e q u e s t i o n more645

↪→ e f f e c t i v e l y , I have p r o v i d e d some t o o l s .646

Below a r e t o o l d e s c r i p t i o n s , n o t e s on u s i n g t o o l s , and647

↪→ t h e c a l l command f o r m a t :648

649

1 . Image C a p t i o n Tool650

− F u n c t i o n : G e n e r a t e s c a p t i o n s f o r s p e c i f i c image f r a me s .651
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− Usage : S p e c i f y a s i n g l e f rame i n d e x or a r a n g e of652

↪→ f r a me s .653

− R e t u r n Values : A l i s t o f d i c t i o n a r i e s , each c o n t a i n i n g654

↪→ t h e f r a m e _ i d and t h e c a p t i o n ( e . g . , { ’ f r ame_ id ’ : ’655

↪→ xx ’ , ’ c a p t i o n ’ : ’ xx ’ } ) . A c o n f i d e n c e s c o r e i s656

↪→ p r o v i d e d f o r each s e n t e n c e o r c l a u s e i n t h e c a p t i o n657

↪→ .658

659

2 . O b j e c t D e t e c t i o n Tool660

− F u n c t i o n : I d e n t i f i e s a l l o b j e c t s w i t h i n s p e c i f i c image661

↪→ f r a me s and p r o v i d e s t h e i r bounding boxes .662

− Usage : S p e c i f y a s i n g l e f rame i n d e x or a r a n g e of663

↪→ f r a me s .664

− R e t u r n Values : A l i s t o f d i c t i o n a r i e s , each c o n t a i n i n g665

↪→ t h e f r a m e _ i d and t h e d e t e c t i o n r e s u l t s ( e . g . , { ’666

↪→ f r ame_ id ’ : ’ xx ’ , ’ d e t _ i n f o ’ : { ’ id ’ : ’ xx ’ , ’ name ’ : ’667

↪→ xx ’ , ’ bbox ’ : ’ [ xmin , ymin , xmax , ymax ] ’ , ’668

↪→ c o n f i d e n c e ’ : ’ xx ’ } } ) .669

670

3 . Image Zoom i n and C a p t i o n Tool671

− F u n c t i o n : F i r s t zoom i n on an a r e a o f an image f rame672

↪→ and t h e n g e n e r a t e a c a p t i o n .673

− Usage : S p e c i f y a s i n g l e f rame i n d e x and t h e bbox of t h e674

↪→ a r e a you a r e i n t e r e s t e d i n .675

− R e t u r n Values : A l i s t o f d i c t i o n a r i e s , each c o n t a i n i n g676

↪→ t h e f rame_ id , t h e bbox of t h e i n t e r e s t e d a rea , and677

↪→ t h e c a p t i o n ( e . g . , { ’ f r ame_ id ’ : ’ xx ’ , ’ bbox ’ : ’ xx ’ ,678

↪→ ’ c a p t i o n ’ : ’ xx ’ } ) . A c o n f i d e n c e s c o r e i s p r o v i d e d679

↪→ f o r each s e n t e n c e o r c l a u s e i n t h e c a p t i o n .680

681

4 . Image Zoom i n and O b j e c t D e t e c t i o n Tool682

− F u n c t i o n : F i r s t zoom i n on an a r e a o f an image f rame683

↪→ and t h e n d e t e c t a l l o b j e c t s i n t h e a r e a .684

− Usage : S p e c i f y a s i n g l e f rame i n d e x and t h e bbox of t h e685

↪→ a r e a you a r e i n t e r e s t e d i n .686

− R e t u r n Values : A l i s t o f d i c t i o n a r i e s , each c o n t a i n i n g687

↪→ t h e f rame_ id , t h e bbox of t h e i n t e r e s t e d a rea , and688

↪→ t h e d e t e c t i o n r e s u l t s ( e . g . , { ’ f r ame_ id ’ : ’ xx ’ , ’689

↪→ bbox ’ : ’ xx ’ , ’ d e t _ i n f o ’ : { ’ id ’ : ’ xx ’ , ’ name ’ : ’ xx ’ ,690

↪→ ’ bbox ’ : ’ [ xmin , ymin , xmax , ymax ] ’ , ’ c o n f i d e n c e ’ :691

↪→ ’ xx ’ } } ) .692

693

5 . O b j e c t T r a c k i n g Tool694

− F u n c t i o n : P r o v i d e s t h e bounding box ( bbox ) o f an o b j e c t695

↪→ i n each f rame of a v i d e o c l i p .696

− Usage : S p e c i f y t h e o b j e c t name and t h e f rame r a n g e .697

− R e t u r n Values : A l i s t o f d i c t i o n a r i e s , where each698

↪→ d i c t i o n a r y c o n t a i n s t h e f rame id , o b j e c t name , bbox699

↪→ and c o n f i d e n c e ( e . g . , { ’ f r ame_ id ’ : ’ xx ’ , ’700

↪→ objec t_name ’ : ’ xx ’ , ’ bbox ’ : ’ [ xmin , ymin , xmax ,701

↪→ ymax ] ’ , ’ c o n f i d e n c e ’ : ’ xx ’ } ) .702

703

The c a l l command f o r t h e Image C a p t i o n Tool i s :704

{ ’ tool_name ’ : ’ Image C a p t i o n Tool ’ , ’ f r ame_range ’ : ’ f r ame_ id705

↪→ ’ # o r ’ s t a r t frame −end frame ’ } .706

707

The c a l l command f o r t h e O b j e c t D e t e c t i o n Tool i s :708

{ ’ tool_name ’ : ’ O b j e c t D e t e c t i o n Tool ’ , ’ f r ame_range ’ : ’709

↪→ f r ame_ id ’ # o r ’ s t a r t frame −end frame ’ } .710
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711

The c a l l command f o r t h e Image Zoom i n and C a p t i o n Tool i s :712

{ ’ tool_name ’ : ’ Image Zoom i n and C a p t i o n Tool ’ , ’ f r ame_range713

↪→ ’ : ’ f r ame_ id ’ , ’ bbox ’ : ’ [ xmin , ymin , xmax , ymax ] ’ } .714

715

The c a l l command f o r t h e Image Zoom i n and O b j e c t D e t e c t i o n716

↪→ Tool i s :717

{ ’ tool_name ’ : ’ Image Zoom i n and O b j e c t D e t e c t i o n Tool ’ , ’718

↪→ f r ame_range ’ : ’ f r ame_ id ’ , ’ bbox ’ : ’ [ xmin , ymin , xmax ,719

↪→ ymax ] ’ } .720

721

The c a l l command f o r t h e O b j e c t T r a c k i n g Tool i s :722

{ ’ tool_name ’ : ’ O b j e c t T r a c k i n g Tool ’ , ’ ob jec t_name ’ : ’ xx ’ , ’723

↪→ f r ame_range ’ : ’ f r ame_ id ’ # o r ’ s t a r t frame −end frame724

↪→ ’ } .725

726

You a r e a l l o w e d t o c a l l t h e t o o l m u l t i p l e t i m e s t o r e t r i e v e727

↪→ t h e i n f o r m a t i o n you need , b u t on ly one t o o l can be728

↪→ c a l l e d a t a t ime .729

P l e a s e t h i n k s t e p by s t e p and f i r s t make an i n f o r m a t i o n730

↪→ r e t r i e v a l p l a n t o h e l p you g a t h e r t h e u s e f u l731

↪→ i n f o r m a t i o n .732

C o n s i d e r t h e r e l a t i o n s h i p between t h e i n f o r m a t i o n you need733

↪→ and t h e t o o l f u n c t i o n .734

Then p l e a s e o u t p u t t h e f i r s t a c t i o n i n t h e f o l l o w i n g JSON735

↪→ f o r m a t : { ’ Act ion ’ : ’ t o o l c a l l command ’ } . "736

• promptAdjustPlan737

" Your answer i s n o t c o n f i d e n t enough .738

P l e a s e t h i n k s t e p by s t e p t o a d j u s t your i n f o r m a t i o n739

↪→ r e t r i e v a l p l a n based on t h e new i n f o r m a t i o n and t h e740

↪→ u n c e r t a i n t y i n i t and o u t p u t t h e f i r s t a c t i o n i n t h e741

↪→ f o l l o w i n g JSON f o r m a t :742

{ ’ Act ion ’ : ’ t o o l c a l l command ’ } . "743

D Failure analysis744

We have analyzed the failure cases in VideoAgent2 and summarize two main issues (1) Omission745

of general context information and (2) Limitations of current tools in capturing spatiotemporal746

information.747

1. Omission of general context information: As highlighted in the paper, acquiring context748

information is a key component of VideoAgent2. This stage must balance performance with749

computational cost. There are two main challenges:750

• Computational efficiency: Over-focusing on detailed video segments can reduce ef-751

ficiency, especially for long videos, and may lead to processing irrelevant content752

without regard to the question.753

• Information integrity: The general context must capture enough information to ensure754

that critical segments are not missed in subsequent steps.755

Our analysis of failure cases shows that missing important events in the context stage can756

hinder the LLM’s ability to identify relevant intervals. This may lead to retrieval failure757

or an excessive number of retrieval attempts, eventually exceeding the allowed retrieval758

limit. To address this, we are exploring improvements such as integrating a variety of759

context-capturing tools (e.g., object detection-based methods) to enhance coverage.760

2. Limitations of current tools in capturing spatiotemporal information: We observed that some761

spatiotemporal events are difficult to express in text or detect in static frames. For instance,762

whether someone is picking up or putting down a laptop may depend on subtle motion763
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details. To address this, we are trying the solution such as extracting features directly at764

the visual (rather than textual) level, and incorporating tools that analyze video clips for765

spatiotemporal features.766
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