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Abstract

Long video understanding has emerged as an increasingly important yet chal-
lenging task in computer vision. Agent-based approaches are gaining popularity
for processing long videos, as they can handle extended sequences and integrate
various tools to capture fine-grained information. However, existing methods still
face several challenges: (1) they often rely solely on the reasoning ability of large
language models (LLMs) without dedicated mechanisms to enhance reasoning
in long video scenarios; and (2) they remain vulnerable to errors or noise from
external tools. To address these issues, we propose a specialized chain-of-thought
(CoT) process tailored for long video analysis. Our proposed CoT with plan-adjust
mode enables the LLM to incrementally plan and adapt its information-gathering
strategy. We further incorporate heuristic uncertainty estimation of both the LLM
and external tools to guide the CoT process. This allows the LLM to assess the
reliability of newly collected information, refine its collection strategy, and make
more robust decisions when synthesizing final answers. Empirical experiments
show that our uncertainty-aware CoT effectively mitigates noise from external tools,
leading to more reliable outputs. We implement our approach in a system called
VideoAgent2, which also includes additional modules such as general context
acquisition and specialized tool design. Evaluation on three dedicated long video
benchmarks (and their subsets) demonstrates that VideoAgent2 outperforms the
previous state-of-the-art agent-based method, VideoAgent, by an average of 13.1%
and achieves leading performance among all zero-shot approaches.

1 Introduction

Long video understanding has become increasingly important in computer vision due to the
widespread presence of lengthy video content in domains such as entertainment, surveillance, and
autonomous driving [[6]. Unlike short clips, long videos introduce challenges in modeling extended
temporal dependencies while maintaining feasible computational costs.

Multimodal large language models (MLLMs) have achieved promising results on short clips [[7} 18} 9,
10, [11]], but still struggle with long videos. This is primarily due to (1) the computational burden of
processing lengthy sequences using transformer-based architectures [[12], and (2) limited granularity in
spatio-temporal perception constrained by the encoder and training data. While context compression
strategies have been explored [[13}[14} [15]], they risk losing crucial information. Furthermore, different
user queries often require information at varied granularities, making generalization difficult. Efforts
like fine-grained instruction tuning [16]], chain-of-thought (CoT) reasoning [17], and specialized
modules [10] aim to address this but face challenges in complexity and reasoning latency.

Recently, agent-based frameworks have emerged as a promising direction [[18] |1} [19, 20} 21} 22]].
These methods utilize LLMs to reason over content retrieved via pre-trained video/image tools,
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Figure 1: Performance of previous SOTA agent-based method VideoAgent [1], previous SOTA
Zero-shot method [2, 3} 14} |1} 5] and our proposed VideoAgent2 on all evaluation datasets. The metric
is accuracy.

leveraging the LLM’s textual reasoning capabilities while maintaining efficiency. For instance,
VideoAgent [[1] emulates human video viewing by first extracting coarse context, then iteratively
retrieving frames based on user queries until sufficient information is gathered. Agent-based ap-
proach avoids full video processing and supports the acquisition of information at arbitrary levels of
granularity by using various tools.

Despite their promise, agent-based methods face two main issues: (1) overemphasis on architectural
design while underexploring ways to improve LLM reasoning in long video scenarios [19, (1], and (2)
susceptibility to noise and hallucination from external tools [23].

To overcome these limitations, we propose VideoAgent2, a LL.M-based agent system designed to
improve reasoning accuracy and robustness in long video understanding. We introduce a specialized
CoT process modeled on human cognition, using a plan-adjust mechanism to progressively refine
retrieved information from coarse to fine detail. Specifically, we introduce a specialized CoT process
for long-video agent systems that helps improve LLM’s reasoning and decision-making capabilities.
This process mimics human video understanding, using a plan-adjust mode to incrementally acquire
information from coarse to fine-grained details. Additionally, we integrate heuristic uncertainty
estimation from both the LLM and tools into the CoT pipeline. This helps filter unreliable information,
guiding retrieval and decision-making without introducing extra parameters or inference overhead,
outperforming previous CoT methods [24} 25| in efficiency. Finally, we propose a new pipeline for
implementing VideoAgent2, incorporating important components such as general context information
acquisition and specialized tool design. Our contributions are threefold:

* We design a specialized CoT process based on the plan-adjust mode to enhance LLM
reasoning and decision-making in long video understanding.

* We introduce uncertainty-guided CoT reasoning, which mitigates noise and hallucination in
the system while requiring no additional parameters.

* We propose the VideoAgent2 pipeline, which integrates innovative designs such as general
context acquisition and specialized tools. Videoagent2 achieves superior performance on
long-form video understanding benchmarks such as Ego-Schema [26]], NExT-QA [27]], and
IntentQA [28]), as shown in Fig. [T}

The remainder of this paper is structured as follows: Section 2 reviews related work, Section 3
presents our method, Section 4 details experiments and analysis, and Section 5 concludes with
limitations and future directions.

2 Related work
2.1 MLLM for long-form video understanding

Substantial progress has been made in developing multimodal large language models (MLLMs) for
video understanding, focusing on two core challenges: managing the computational load of long
videos and extracting fine-grained spatio-temporal information. Techniques such as LLaMA-VID
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Figure 2: Overview of VideoAgent2. VideoAgent2 answers a question ) about a video V' through
a pipeline consisting of four phases: general context acquisition, answer assessment, information
retrieval plan creation/adjustment, and information retrieval. Details of each phase are introduced in
Section 3]

and MA-LLM reduce input size by compressing video frames into compact token representations
[291[13]], while methods like sliding windows [[13] and token shuffling [30] further optimize efficiency.
To enhance fine-grained perception, VTimeLLM introduces boundary-aware training [16]], and
TimeSuite applies temporal adaptive encoding [30]. Other approaches, including VideoLLaMA 2
[31]] and Slowfast-LLava [32], leverage specialized spatial-temporal modules. Despite these advances,
issues such as information loss and high computational cost remain. To address this, we propose
an LLM-based agent framework that avoids full video processing and using diverse tools to extract
multi-granular information.

2.2 LLM-based agent system for video understanding

LLM-based agent systems have emerged as a key application of large language models [33] 34, 33]],
and the computer vision field is exploring their use in video understanding [36,[37]]. VideoINSTA
[38] employs event-based temporal and content-based spatial reasoning to enhance LLMs’ video
reasoning. In [39], structured spatio-temporal memory is proposed for supporting video agent
systems. VideoAgent [[1]] presents a framework for interactive reasoning and planning with long
visual inputs. While these works mainly focus on agent architecture, our approach emulates human
video understanding by introducing a dedicated CoT with a plan-adjust mode to strengthen LLM
reasoning and decision-making in long-video scenarios.

2.3 Bootstrapping CoT in LLM reasoning

CoT has been widely applied to enhance LLM reasoning 40, 41}, 42]], with research often empha-
sizing reward process design, such as tree search with reinforcement learning [43]], Q-value ranking
optimization [44]], advantage verifiers [23], and meta-reward steps [43]. However, these methods
typically require extra parameters or reasoning steps, complicating their use in video agent systems.
Instead, our approach leverages uncertainty in both LLMs and tools to guide the CoT process. This
strategy is easy to implement and mitigates hallucinations frequently observed in agent systems.

3 Method

This section introduces VideoAgent2, with the overall framework illustrated in Fig. 2] Compared to
the previous SOTA method, VideoAgent [1]], our approach incorporates two major improvements:
(1) New information retrieval method based on uncertainty-aware CoT reasoning: VideoAgent
retrieves key frames by exhaustively comparing CLIP embeddings of all frames with the target,
resulting in fixed granularity, inefficiency, and limited reasoning capacity. It also heavily relies on
CLIP, which can introduce bias. In contrast, VideoAgent2 enhances efficiency and maximizes the
LLM’s reasoning capacity. It allows the LLM to autonomously identify temporal intervals and use
an uncertainty-aware CoT process to enable iterative, coarse-to-fine reasoning and better adapts
to diverse user needs and varying levels of granularity. (2) Redesigned pipeline: To address the
limitations in VideoAgent—where uniform sampling for context retrieval may overlook critical



108
109
110

111
112
113
114
115
116
117
118
119

120

121
122
123
124
125
126

127
128

129
130

131

132
133
134
135
136
137
138
139

140

141
142
143
144
145

146
147

148
149

151
152

153

154
155
156
157
158

information and cause subsequent retrieval failures—VideoAgent2 adopts a segment-based caption
and summarization approach, which will be described in detail in the following section. Furthermore,
we develop a variety of specialized tools tailored for VideoAgent2 to enhance its overall effectiveness.

VideoAgent2 mimics human video comprehension: given a video and a question, a person first
watches the video roughly to gain a general context, then retrieves specific segments iteratively until
sufficient evidence is gathered. Depending on the complexity of the question, this retrieval process
may involve multiple steps, each of which is an assessment made to determine the adequacy of the
information obtained so far. We formalize the answering process to a query () over video V' in four
stages: general context acquisition, answer assessment, retrieval plan formulation/adjustment, and
targeted information retrieval. At each step ¢, the system state is By, Py, Ay, cf | 1 <t < T, where
B, is the information memory bank storing all information, P; is the plan for retrieving additional
information, A; is the answer generated based on By, and cf; its confidence of the A;.

3.1 Phase 1: General context acquisition

Inspired by how humans comprehend long videos—first grasping general context, then examining
segments relevant to the question—we start by acquiring the general context of the target video.
Two key issues are addressed in this phase: (1) Computational efficiency: Excessive detail increases
computational load and risks focusing on irrelevant content [[13]. (2) Information integrity: The
general context should contain as much information as possible to avoid failing to identify key
segments later. To achieve this, we proceed as follows:

 Step 1. The long video of length L is downsampled to frame rate fps,; and split into
segments of n seconds using a preprocessor F,.

* Step 2. Captions C' = {c1,ca,...,cp}, k = L/n, are generated for all segments via a
lightweight video captioner F..

 Step 3. C is input to an LLM to produce a summary .S for the entire video.

Computational efficiency is ensured in Step I by reducing frame numbers. In Step 2, unlike uniformly
sampling frames and using an image captioner in VideoAgent, a video captioner preserves temporal
context and prevents the context information loss. To avoid irrelevant or disconnected captions, and
following 2], the LLM analyzes all captions and generates a summary via CoT prompting, allowing
it to reflect on temporal and spatial relationships and better understand the content. By the end of
Phase 1, the general context B; = C, S is obtained. As By may lack fine-grained details, we first
attempt to answer the question based on Bj, then evaluate if further information retrieval is needed.
Details of this process are provided in the next section.

3.2 Phase 2: Answer assessment

Humans typically evaluate whether their current information suffices to answer a question, a process
termed answer assessment. Building on [1]], we refine the prediction-evaluation procedure by merging
it into a single step: the LLLM generates both an answer A; to question () based on B, and a confidence
score cf; (ranging from O to 5) simultaneously. The subsequent action is determined by comparing
cf with a manually set threshold c i,

» Action I: If cfy > cf,,,, the LLM is deemed to have sufficient information, confirming
final answer A* as A;.

* Action 2: If cfy < cf,,,, more information retrieval is needed, initiating Phase 3 for plan
creation or adjustment.

This phase leverages LLM uncertainty (self-reflection) to judge information adequacy [46]. When
information is insufficient, the LLM is guided to create or revise the retrieval plan, enabling it to
iteratively plan tool calls and interpret retrieved information within a coherent chain of thought.

3.3 Phase 3: Information retrieval plan creation/adjustments

When humans find their current information insufficient to answer a question, they typically recall
relevant ranges and scrutinize specific content, first devising an information retrieval plan based on
the question before examining pertinent segments. For instance, to answer "What is the animal in
the photo that the man is holding in his hand at the beginning of the video?", one might plan: (1)
find the man in 0-10s; (2) locate his right hand; (3) closely examine the photo in the hand. As new
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information is acquired, the plan is adjusted—e.g., if no man is found in 0-10s, shift the search to
10-20s, or add steps if needed.

Inspired by this, we propose a plan-adjust CoT mode where the LLM generates an initial retrieval
plan based on the general context and question, then iteratively adjusts the plan as new information is
acquired to guide subsequent retrieval. Actions in Phase 3 are as follows:

e Action I: If t = 1, the system is in the initial state. The LLM creates an initial information
retrieval plan P, based on B; and Q.

* Action 2: If t > 1, the system is in the retrieval process. The LLM updates the previous plan
P;_; to produce P, based on B; and Q.

Unlike VideoAgent [[1], which uses CLIP-based similarity for retrieval range selection—incurring
high computational cost—we allow the LLM to directly decide two key parameters per tool invocation
(for system stability, only one tool is invoked per step): (1) the frame range for retrieval, determined
from C, and (2) tool-specific parameters. This flexible approach enables progressive localization at
varying granularities, supporting more precise information retrieval.

3.4 Phase 4: Information retrieval

In this phase, the LLM invokes tools to retrieve new information based on the created or adjusted plan
P,. However, tools can introduce errors or noise; for example, object detectors may misidentify rare
objects, and image captioners may inaccurately describe events. Such errors can compound during
iterative retrieval, affecting the LLM’s plan adjustments. To mitigate this, we introduce uncertainty
to guide the CoT process: each tool returns a confidence score along with its output, as detailed in
Section4.1] This allows the LLM to consider both the content and reliability of retrieved information
when refining the retrieval plan and integrating results to make the final decision. Together with
cft, a complete uncertainty-aware CoT process is established in VideoAgent2, where both LLM and
tool uncertainties inform information acquisition and analysis, thereby improving overall system
reliability.

The VideoAgent2 pipeline is summarized in Algorithm 1.

Algorithm 1 VideoAgent2

Require: long video V, question @), LLM Fy;,,,, video preprocessor Fy,,, video captioner Fy,, video
tools Fiy1, Futo, - -+, Fytar, max number of answer assessments 77, confidence threshold ¢y,
Ensure: information memory bank, information retrieval plan and predicted answer { B, P;, A;|1 <

t<T}
C={ci,ca,....cp}  Foe(Fpp(V))
S Elm(ca promptSummary)
B, ={C,S}
fort =1toT do
Ata cft — -Fllm (Bt7 Qa promptAnswer)
if cf: > cf,,, then
break
else
if t == 1 then
Py Fym(By, Q, promptcreateplan)
else
P, < Fym (B, Q, Pi—1, promptgjustpian)
end if
NewlInfo < Ft., (Ps)
Biy1 + Merge(B;, Newlnfo)
end if
end for
return A* = A,

4 Experiments

We first introduce the experimental settings and then present the experimental results of our methods
and baselines, demonstrating the effectiveness of our method.
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4.1 Experimental Setting

Datasets. We follow the strong baselines [1} 4] using three well-established datasets to evaluate the
proposed method:

* Egoschema [26]. EgoSchema contains over 5,000 human-curated multiple-choice QA
pairs from more than 250 hours of real video. The subtest set includes 500 questions with
public labels. We compare VideoAgent2 to leading published methods on the leaderboard,
following the evaluation protocol in [2].

o NExT-QA [27]. The NEXT-QA dataset features 5,440 natural videos and 4,880 multiple-
choice questions spanning action reasoning, temporal action reasoning, and scene compre-
hension. Its validation set contains 570 videos and 5,000 questions. The ATP-hard subset
comprises the most challenging questions requiring long-term temporal reasoning. We
mainly compare VideoAgent2 to top zero-shot methods on the NExT-QA validation set and
ATP-hard subset, following [1 47]], and also report leading supervised results.

* IntentQA [28]]. IntentQA includes 4,303 videos and 16,000 multiple-choice QA pairs
focused on intent reasoning. The test set comprises 567 videos and 2,134 questions. We
mainly compare VideoAgent2 to top zero-shot methods on the test set, following [4], and
also report the leading supervised results.

Metric. Since the tasks in all datasets are multiple-choice, accuracy is used as the evaluation metric
by following [4] [1]], defined as the number of correct answers divided by the total number.

System parameters. fpsg is setto 1 (we also compare different fpsg in the ablation study), and n is
set to 4 to ensure computational efficiency. cfp, is set to 5 to ensure sufficient confidence in the final
answer. 7' is set to 5 to prevent dead ends in extreme situations.

LLM and tools selection. We adopt GPT-40 [48] as the LLM Fj;,,, following [2]. For video
captioning, we use the lightweight LaViLa model [49]] as recommended in [1} 2l]. The selected or
designed tools, along with confidence score extraction methods, are as follows:

* Image caption: GPT-4o [48]] generates frame captions, automatically assigning a confidence
score (0-1) to each sentence or clause by using an in-context learning prompt (e.g., “The
image shows a person sewing fabric (confidence=0.9)...”).

* Object detection: A designed tool based on SAM2 [50] and Yolov11 [51]] detects objects in
specified frames, using SAM2’s confidence score for each object.

* Image zoom in + caption: OpenCV [52]] zooms into specified image areas, and GPT-40
captions the zoomed region with confidence scores as above.

* Image zoom in + object detection: OpenCV zooms into regions for object detection, with
confidence scores from the object detection tool.

* Object tracking: A designed object tracking tool based on SAM?2 and Yolov11 tracks objects
within a given frame range, using SAM2’s confidence in each frame.

Detailed parameters/descriptions of these tools are provided in the Appendix A.
Tool parameters. To ensure reproducibility and maintain consistency, we retain the default pa-
rameters for each tool during our experiments. These settings are listed in Appendix A, Table

Bl

Baselines. We compare VideoAgent2 with work that performed strongly on each dataset by following
(L 4.

4.2 Main results

VideoAgent2 achieves the SOTA among zero-shot methods on all datasets (including subsets), which
are shown in Tables I] 2]and 3] respectively.

As shown in Tables and [3] VideoAgent2 achieves the best results on the EgoSchema dataset
and among zero-shot methods for NExT-QA and IntentQA. Compared to previous SOTA zero-shot
results, accuracy increases by 0.8% and 8.6% on the EgoSchema full and sub test sets, 6.7% and 9.8%
on the NEXT-QA validation set and ATP-hard subset, and 2.4% on the IntentQA test set. Notably,
while iLearn performs well on the EgoSchema full set, its accuracy drops on the subset, likely due
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Table 1: EgoSchema dataset Table 2: NExT-QA dataset Table 3: IntentQA

dataset
full sub val ATP
Method test set test set Method set hard set test
Method
LongViViT [53] 333 568  Supervised set
LLoVi [4] 50.3 57.6 ViLA [20] 744 - Supervised
VideoAgent [[1] 54.1 60.2 VideoChat2 [[7] 79.5 68.2 IntentQA [28] 57.6
GPT-4V [54] 55.6 63.5 LLaVA-OV [57]80.2 - Human [28] 78.5
ProViQ [55]] 57.1 612 LinVT [58] 85.5 69.1 VideoChat2 [7]] 81.9

InternVideo?2 [8]] 60.2 -
Geminil.5 Pro [56] 63.2 -
LifelongMem [3] 64.7 72.0
iLearn [2] 74.6 588
VideoAgent2 (ours) 754 80.6

Zero-shot Zero-shot

ViperGPT [59] 60.0 - LLoVi [4] 67.1
SeViLA [21] 63.6 50.8 VideoAgent [[1]] 69.3
VideoAgent [1] 71.3 584 LVNet [60] 71.1
LLoVi [4] 73.8 - ENTER [5] 71.5
VideoAgent2 80.5 68.2 VideoAgent2 73.9

to its reliance on video captioner outputs, making it less robust to distribution shifts. In contrast,
VideoAgent2 maintains strong performance on both sets, demonstrating robustness. On NExT-QA,
VideoAgent2 notably surpasses previous zero-shot methods and approaches supervised SOTA results
on the ATP-hard subset, highlighting its strength in causal, temporal, and descriptive reasoning.
Additionally, VideoAgent2 nearly reaches human-level performance among zero-shot methods on
IntentQA.

4.3 Case study

We present a case study using the video and question from Fig. [2] Due to space constraints, we
illustrate the full reasoning process in Appendix B, Fig. [5] Ellipses (.. .) indicate omitted content,
with complete prompt details available in the Appendix C. From this example, we draw the following
insights:

* VideoAgent2 completes the task with just three tool calls and four answer assessments,
primarily focusing on three key frames—demonstrating high frame efficiency. In contrast,
VideoAgent [[1] processes 15 frames and still fails, as does Llava-Onevision-7B.

* The plan-adjust CoT effectively adapts the retrieval strategy over time. Between ¢ = 1 and
t = 3, rather than following a fixed retrieval plan, VideoAgent2 dynamically revises its plan
based on newly retrieved data, progressing from coarse to fine-grained information.

* The uncertainty-guided CoT effectively addresses tool noise and improves multi-tool integra-
tion. For instance, while the caption for 12s—16s misdescribes the action and object detection
at t = 2 fails to recognize key items, the LLM identifies uncertainty, revises the plan, and
leverages additional tools. By ¢ = 4, it successfully compares frames 19 and 20, using
confidence scores to reach the correct answer. This demonstrates how uncertainty awareness
helps suppress noise and hallucination, guiding more accurate and robust decision-making.

4.4 Analysis of tool call

The key feature of VideoAgent?2 is its uncertainty-aware CoT process, which invokes tools through
the plan-adjust mode. To better understand this process, we analyze tool calls across different datasets
and question types.

Number of tool calls for different datasets. We analyze the number of tool calls per sample on the
EgoSchema test set, NExT-QA validation set, and IntentQA test set, with results shown in Fig. @ A
count of 0 indicates that VideoAgent2 answers the question using only the initial context By, without
further retrieval. The maximum number of tool calls is 7" — 1 (with T" = 5 in our setup). In all
datasets, samples with zero tool calls represent the largest proportion—over 30%—we attribute this
to the fact that video clip captions ensure the completeness of the context information, and the model
also deepens its understanding of the spatio-temporal content of the full video by summarizing clip
captions. EgoSchema shows a lower percentage of zero-call cases and more samples requiring 3—4
tool calls, likely due to its longer videos and higher reasoning complexity [26]. In contrast, NExT-QA
and IntentQA peak at 2 and 3 calls, respectively, with IntentQA exhibiting higher complexity, as it
includes the most challenging questions from NExT-QA.
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Figure 3: Analysis of tool call number statistics. (a) Proportion of samples with different numbers of
tool calls in different datasets. A tool call number of 0 means that for this sample, VideoAgent2 has
obtained enough information from the general context information B; to answer the question without
the need for new information retrieval. The maximum tool call number is equal to 7" — 1, T is set to
5 in our experiment. (b) The average number of tool calls for each type of question and the average
number of calls for each tool in NExT-QA val set.

Table 4: Average cost and time consumption of each sample on egoschema full test set
Model average cost average time
VideoAgent 0.041 USD 2.7mins
VideoAgent2 (ours)  0.047 USD 2.3mins

Number of tool calls for different question types. The NExT-QA dataset classifies questions as: (1)
Causal Questions, which investigate observable cause-effect relations; (2) Temporal Questions, which
assess the sequence of multi-object interactions; and (3) Descriptive Questions, focused on scene
elements like locations, objects, and key actions. We compute the average number of tool calls per
sample and per tool for each type in the NExT-QA validation set (Fig. [3b). Descriptive questions have
the lowest average tool calls (0.8), mostly using object detection, as factual descriptions are generally
covered in the context and require only basic retrieval. In contrast, temporal questions require the
most tool calls, especially from the object tracking model, due to their complex spatio-temporal
reasoning. Both causal and temporal questions also see increased use of image captioning tools, as
these help visualize event details needed for reasoning, consistent with findings in [].

4.5 Ablation study

We perform comprehensive ablation experiments to demonstrate the effectiveness of the proposed
approach.

Different frame rate fpsg. It is worth noting that the modest 0.8% gain on the EgoSchema full set
results from our use of the commonly adopted 1 fps frame rate [26) [T]], unlike the best-performing
baseline, which uses 30 fps [2]]. To compare fairly, we also tested the 30 fps setting and achieved
78.6, a 4.0% improvement. This confirms that higher frame rates provide richer context but at a much
higher computational cost.

Running cost. We employ GPT-40 as the LLM in VideoAgent2 and compare average cost and
time per sample on the EgoSchema full test set with the original VideoAgent. Results in Table 4]
show that VideoAgent2 delivers higher performance with comparable computational costs and faster
inference. For details on performance gains, see the Method section of the original paper. The
efficiency improvement is largely due to VideoAgent2 enabling the LLM to selectively analyze key
temporal ranges, avoiding the exhaustive CLIP embedding and similarity computation required by
VideoAgent. Typical GPU memory usage for all tools is reported in Appendix B, Table[9]

Ablation of uncertainty-aware CoT. We evaluate the impact of uncertainty-aware CoT in VideoA-
gent2 using four experimental settings: (1) disabling tool-generated confidence scores, (2) disabling
plan adjustment so the LLM executes a fixed retrieval plan, (3) disabling the entire CoT process
so the LLM calls tools and answers directly, and (4) disabling all tool calls so the LLM relies only
on B;. Each setting is incrementally built on the previous one. Experiments are conducted on the
EgoSchema full test set, NExT-QA validation set, and IntentQA test set, with results in Table |§l
Settings (1) and (2) show the greatest negative impact, with accuracy dropping by 4.3% and 4.0%,
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respectively. This underscores the importance of tool uncertainty quantification and iterative plan
adjustment in the CoT process, enabling the LLM to assess reliability and adapt its retrieval strategy
for better answers. The further declines in settings (3) and (4) also emphasize the necessity of tool
calls and effective call planning in VideoAgent2.

Table 5: Results of VideoAgent2 under different settings
EgoSchema NEXT-QA IntentQA

Method fullset val set test set 2Verage
VideoAgent2 75.4 80.5 73.9 76.6
setting 1 71.3 76.0 69.5 72.3
setting 2 67.1 71.5 66.3 68.3
setting 3 65.6 69.8 65.6 67.0
setting 4 60.2 68.9 63.1 64.1

Ablation of different LLM. We evaluate the impact of different LLMs in VideoAgent2 across the
EgoSchema full test set, NExT-QA validation set, and IntentQA test set (Table[6). Commercial models
like GPT-40 [48] and GPT-4 [[61]] are compared with open-source alternatives such as Deepseek-V3
[62] and Llama3.3-70B [63]. GPT-40 achieves the best overall performance, while Deepseek-V3
performs competitively, offering a flexible open-source option.

Table 6: Results of VideoAgent2 with different LLM
EgoSchema NExT-QA IntentQA

LLM full test set val set test set
GPT-4o0 75.4 80.5 73.9
GPT-4 74.1 78.2 72.6
Deepseek-V3 74.7 79.5 73.4
Llama3.3-70B 70.5 75.3 68.6

Failure analysis. We analyze the failure cases in VideoAgent2 and summarize two main issues (1)
Omission of general context information and (2) Limitations of current tools in capturing spatiotem-
poral information. We show a more detailed analysis in Appendix D.

Comparison with advanced MLLMs. We compare the performance of VideoAgent2 with four
leading MLLMs on the EgoSchema full test set and the Next-QA validation set, as shown in Table
We observe that VideoAgent2 significantly outperforms the 32B and 38B models, and even surpasses
InternVL2.5-78B. Its performance is slightly below that of Qwen2.5-VL-72B, which we believe may
be attributed to Qwen2.5-VL’s use of advanced pre-training strategies and large-scale video data.

Table 7: Performance comparison with advanced MLLMs

Model EgoSchema NExT-QA
Qwen2.5-VL-32B 71.1 77.2
Qwen2.5-VL-72B 76.8 83.3
InternVL2.5-38B 68.5 75.8
InternVL2.5-78B 73.7 80.1

VideoAgent2 (ours) 75.4 80.5

5 Conclusion

In this paper, we introduce VideoAgent2, an enhanced LLM-based agent system designed for ef-
fective long-form video understanding through a novel uncertainty-aware Chain-of-Thought (CoT)
mechanism. VideoAgent2 addresses critical challenges faced by existing video agent systems, in-
cluding limited reasoning capabilities and susceptibility to errors introduced by external tools. The
proposed uncertainty-aware CoT mechanism enables adaptive and robust reasoning by incrementally
refining information retrieval plans, guided by the uncertainty estimation derived from both internal
assessments by the LLM and external tool outputs. Extensive experiments conducted on prominent
benchmarks—including EgoSchema, NExT-QA, and IntentQA—demonstrate that VideoAgent2
achieves state-of-the-art performance, significantly outperforming existing zero-shot methods. Future
work will focus on further refining uncertainty estimation methods and exploring additional multi-
modal integration strategies to continuously improve the generalization and efficiency of LLM-based
video understanding systems.
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Appendix for VideoAgent2: Enhancing the LLM-based agent

system for long-form video understanding by uncertainty-aware
CoT

This document provides more details of our approach, organized as follows:

* A. Details of used/designed tools in VideoAgent2
* B. More experiment results

* C. Prompts for VideoAgent2

* D. Failure analysis

A Details of used/designed tools in VideoAgent2
We show more details of used/designed tools in VideoAgent2.

A.1 TImage caption

We use GPT-40 to generate captions for specified frame images. We ask GPT-4o to automatically
generate a confidence score ranging from O to 1 after each sentence or clause in the caption by the
prompt:

"You are an assistant that generates descriptive captions for
— images.
For each sentence or clause in the caption, include a confidence
— score in the format (confidence=0.xx) after the description.
This confidence is from 0 to 1, reflecting your confidence of the
— caption.
Here is an example:
"The image shows a small kitchen counter with a kettle (confidence
=0.94), a round black electronic device (confidence=0.85),
a loaf of bread (confidence=0.73), and some cleaning
supplies (confidence=0.95). There is a trash can on the
floor (confidence=0.85) and a blue tiled backsplash (
confidence=0.62).""

U

(2) Detection by Yolov1l

(1) Tracking by SAM2

(a) Frame n (b) Frame n+1

Figure 4: An example of miss detection in object detection result. In (a)(2), the target detection model
correctly identifies the mobile phone with high confidence. However, in (b)(2), due to a change in the
phone’s orientation, the model fails to detect it. By contrast, leveraging SAM2 to track the mobile
phone across these two frames effectively addresses this issue, as demonstrated in (a)(1) and (b)(1).

A.2 Object detection

Object detection models such as the Yolo series offer strong performance and speed but still encounter
challenges such as missed detections, as illustrated in Fig. ] To address this issue, we incorporate
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Table 8: Parameter setting of all tools

tool name parameter
LaViLa  max_text_length=77, top_p=0.95, num_return_sequences=4, temperature=0.7
GPT-40 temperature=1, top_p=1,
Yolov11 iou=0.7, imgsz=640, weight=yolo11x.pt
SAM2 weight=sam2_l.pt, iou=0.45, imgsz=640

Table 9: GPU memory consumption of all tools

Tool name GPU memory consumption
Video Clip Captioner 11.4 GB
Object detection 129 GB
Image caption None (API)
Image zoom in None (CPU operation)
Object tracking 12.9 GB
LLM None (API)

SAM?2 to construct a multi-round target detection framework that significantly reduces target loss
by tracking the specified target across frames. Taking the object detection for the m-th frame as an
example, the overall process is summarized as follows:

1. The frame range is extended to [m — o, m + «], and all frames within this range are
processed using Yolov11. To maintain computational efficiency, « is set to a small value,
typically 5.

2. For each target, the frame with the highest confidence score provided by Yolov11, exceeding
a predefined threshold, is selected. The bounding box from this frame is then used to
initialize SAM?2, which performs bi-directional tracking to retrieve the target’s information
in the m-th frame. We calculate the bounding box as the final detection result based on the
mask provided by SAM2 in the m-th frame.

A.3 Object tracking

SAM2 demonstrates strong performance in target tracking. However, it requires manual specification
of the target’s initial position before starting. To enable object tracking in VideoAgent2 by simply
specifying the name of the item, we use Yolov11 to automatically initialize SAM2. Taking the task of
tracking the target “mobile phone” within the frame range [m, n] as an example, the overall process
is as follows:

1. Apply Yolov1l to detect the target “mobile phone” in frames [m, n].

2. If the detection confidence exceeds a predefined threshold, use the detected bounding box to
initialize SAM2. Bi-directional tracking is then performed to obtain the complete trajectory
of the target across the frame range [m, n].

A.4 Tool parameters.
To ensure reproducibility and maintain consistency, we retain the default parameters for each tool

during our experiments. These settings are listed in Table [§]

B More experiment results

B.1 GPU memory consumption of all tools.

We record the typical GPU memory consumption of all tools involved, which is summarized in Table

ol
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B.2 Case study.

We use the video and question in Fig. [J]as a case study. Fig. []illustrates how VideoAgent2 answers
this question, providing a clear example of the proposed approach. Due to space limitations, some
information is omitted using ..., and more prompt details are shown in Appendix C. Based on Fig. [5}
we make the following observations:

* VideoAgent2 answers the question through three tool calls, four answer assessments and
primarily focuses on three frames, demonstrating high frame efficiency. In comparison,
VideoAgent [1] uses information from 15 frames and still fails to provide the correct answer.
The MLLM Llava-Onevision-7B also gives the wrong answer.

* The proposed plan-adjust CoT excels in handling this complex problem. From¢ = 1tot = 3,
rather than following a fixed retrieval plan, VideoAgent2 adjusts the information retrieval
scheme based on newly acquired data, progressing from coarse-grained to fine-grained
information acquisition.

* The uncertainty-guided CoT process effectively addresses the noise introduced by the tools
and enables seamless integration of different tools within the agent system to yield more
reliable answers. A notable issue is that Caption 12s-16s in the general context incorrectly
describes the man’s action as placing the mobile phone on the bed. This mistake is avoided
by implementing the retrieval plan. In NewInfo (t=2), the object detection model fails to
detect the phone and the laptop, leading the LLM to incorrectly interpret that the phone is
covered by the chair. However, the uncertainty in both the LLM’s answer and the tool’s
return value successfully guides the LLM to adjust the retrieval plan and incorporate new
tools. Similarly, when integrating information from different tools to make the final judgment
att = 4, the LLM correctly compares the content of frame19 and frame20, as well as their
associated confidence scores, to give an accurate final answer. In summary, the proposed
uncertainty-aware CoT effectively mitigates noise and hallucination in both the LLM and
tools, allowing the LLM to refine its information retrieval strategy and make more reliable
decisions when synthesizing final answers.

C Details of prompt in VideoAgent2

We show all the prompts in VideoAgent2.

* pr OmptSummary

"A long video is segmented into consecutive 4-second clips.
Given the captions for all the clips, {C}, please summarize
— them into a coherent description of the entire video.

Please approach this task step by step, carefully
— considering the temporal and spatial relationships
— between the content in each clip during the
— summarization process.

Note for captions:

— ’#C’ indicates actions performed by the camera wearer (
— the person who recorded the video while wearing the
<~ camera).

— ’#0° indicates actions performed by someone other than
— the camera wearer."

* pr OmptAnswer

"Now we have a memory bank {B} which stores all the

— information of a video.
In this bank:
— ’Caption’ 1is the caption of all consecutive sub-segments
— of the video.
’Summary’ is the summarized description of the video.
"Tools return value’ is the retrieved information by some
— tools.
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Video and Question: See Fig. 2.

Answer by Llava-Onevision-7B: The phone ended up on a chair. There‘s no evidence of loss. (X)

Answer by VideoAgent: The phone was left on the bed, probably covered by a man. (X)

Answer by VideoAgent2 (ours): The phone was obscured by the laptop. (V)

General context: Caption: ... 8s-12s: #0 man X operates the phone, 12s-16s: #0 man X puts the phone on the bed, 16s-20s: #O man X
picks the laptop, ... Summary: ... the man initially walks, then moves around the room and interacts with a phone, ... (2 is updated.)

Promptanswer: ..., please think step by step, are you able to answer the question {Q}? Please generate a confidence score scale from 1-5.

Promptcreatepian: Here are some tools: ... Please think step by step and produce an information retrieval plan by considering the relationship
between the information you need and the tool function. Please output the next action in json format: {‘Action’: tool call command}.

=1

NewlInfo: {"frame_id": 19, "object_name": "phone", "objec

611,913,812, 958], "confidence": 0.62} {"frame_id": 21, "object_n

ox": [617, 878, 807, 949], "confidence": 0.80} {"frame_id": 20, "object_name": "phone”, "object_bbox'

=": "phone”, "object_bbox": null, "confidence": null}... (B is updated.)

Promptanswer: Please consider all existing information in {B} and think step by step to answer the question again.

Promptadjusteian: ..., please think step by step to adjust your information retrieval plan based on the new information and the uncertainty in it.

=2
NewlInfo: {"frame id": 20, "detections": [{"object name": "chairl 048, 894], "confidence": 0.54}, {"object name": "person1", "bbox": [995, 2, 1709
1065], "confidence": 0.97}, {"object_name": "bed1", "bbox": [190, 167, 1065 c ence™: 0.54}]} {"frame_id": 21, ... (B is updated.)
Promptanswer: Please consider all existing information in {B} and think step by step to answer the question again.
Promptadjusteian: ..., please think step by step to adjust your information retrieval plan based on the new information and the uncertainty in it.

=3
NewlInfo: {* frame id " : 19, " caption A person i g a laptop on a black chair that already has a smartphone on its seat (confi re = 0.85), with a neatly
made bed in the back d (confidence score = 0.90)." frame_id " " caption " : " A person is placing a laptop onto a black ed chair that already has a
smartphone on it (con 0.62), in a tidy bedroom with a neatly made bed in the und (confide ore = 0.95). "} {"frame_id": 21, "caption”: "A person is
moving a black perforated-back chair with a closed white laptop placed on it in a bedroom (confide re = 0.95). "} (B is updated.)
Promptanswer: Please consider all existing information in {B} and think step by step to answer the question again.

=4

frame20 frame21

Figure 5: Case study of VideoAgent2. The video and associated question are presented in Fig.
Both the popular MLLM Llava-OneVision and the SOTA agent baseline, VideoAgent, fail to provide
the correct answer. In contrast, our proposed VideoAgent2 correctly answers the question through
three tool calls and four answer assessments. VideoAgent2 leverages the information and uncertainty
provided by the tools, enabling the LLM to continuously adjust its information retrieval plan, and
make more reliable decisions when synthesizing the final answer.

Please think step by step. Are you able to answer the
— question {Q}?

If you don’t think there is enough information to answer the
— question, please reply as ’No, I do not have enough
— information to answer the question. (confidence score

— = 0)".
If you can answer the question, please reply as ’Yes, the
— answer is xx, (confidence score = xx)’, note that you

— need to generate a confidence score for your answer,
— scaled from 1-5."

* pr OmptCreatePlan

"To assist you in answering the question more
— effectively , I have provided some tools.

Below are tool descriptions , notes on using tools, and
— the call command format:

1. Image Caption Tool
— Function: Generates captions for specific image frames.
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— Usage: Specify a single frame index or a range of
— frames.
— Return Values: A list of dictionaries , each containing

— the frame_id and the caption (e.g., {’ frame_id : ~’
— xx’, ’caption’: ’xx’}). A confidence score is

— provided for each sentence or clause in the caption
(N

2. Object Detection Tool
— Function: Identifies all objects within specific image
< frames and provides their bounding boxes.
— Usage: Specify a single frame index or a range of
— frames.
— Return Values: A list of dictionaries , each containing

— the frame_id and the detection results (e.g., {’
— frame_id ’: ’xx’, ’det_info ’: {’id’: ’xx’, ’'name’: °’
— xx’, ’bbox’: ’[Xmin, ymin, xmax, ymax]’, ’

— confidence ’: 'xx’}}).

3. Image Zoom in and Caption Tool

— Function: First zoom in on an area of an image frame
— and then generate a caption.

— Usage: Specify a single frame index and the bbox of the
— area you are interested in.

— Return Values: A list of dictionaries , each containing
< the frame _id, the bbox of the interested area, and
— the caption (e.g., {’frame_id’: ’xx’, ’bbox’: ’xx’,
<~ ’caption’: ’xx’}). A confidence score is provided
— for each sentence or clause in the caption.

4. Image Zoom in and Object Detection Tool
— Function: First zoom in on an area of an image frame
— and then detect all objects in the area.
— Usage: Specify a single frame index and the bbox of the
— area you are interested in.
— Return Values: A list of dictionaries , each containing
< the frame _id, the bbox of the interested area, and

b}

— the detection results (e.g., {’ frame_id : ’'xx’,
— bbox’: ’xx’, ’det_info ’: {’id’: ’xx’, ’name’: ’'Xx’,
— ’bbox’: ’[xmin, ymin, xmax, ymax]’, ’confidence’

— 'xx’}}).

5. Object Tracking Tool
— Function: Provides the bounding box (bbox) of an object
— in each frame of a video clip.
— Usage: Specify the object name and the frame range.
— Return Values: A list of dictionaries , where each
< dictionary contains the frame id, object name, bbox

— and confidence (e.g., {’ frame_id’: ’xx’, ~’
< object_name ’: ’xx’, ’bbox’: ’[xmin, ymin, xmax,
— ymax]’, ’confidence ’: ’xx’}).

The call command for the Image Caption Tool is:
{’tool_name ’: ’Image Caption Tool’, ’frame_range ’: ’frame_id
— > # or ’start frame—-end frame’}.

The call command for the Object Detection Tool is:
{’tool_name ’: *Object Detection Tool’, ’frame_range
— frame_id’ # or ’start frame-—-end frame ’}.

s, ’
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The call command for the Image Zoom in and Caption Tool is:
{ tool_name ’: ’Image Zoom in and Caption Tool’, ’frame_range
<~ ’: ’frame_id’, ’bbox’: ’[xmin, ymin, xmax, ymax]’}.

The call command for the Image Zoom in and Object Detection
— Tool is:

{’tool_name ’: ’Image Zoom in and Object Detection Tool’,
— frame_range ’: ’frame_id’, ’bbox’: ’[xmin, ymin, xmax,
— ymax]’}.

>

The call command for the Object Tracking Tool is:

{’tool_name ’: ’Object Tracking Tool’, ’object_name ’: ’xx’, °’
— frame_range ’: ’frame_id’ # or ’start frame-end frame
— }.

You are allowed to call the tool multiple times to retrieve
— the information you need, but only one tool can be
— called at a time.

Please think step by step and first make an information
— retrieval plan to help you gather the useful
— information .

Consider the relationship between the information you need
— and the tool function.

Then please output the first action in the following JSON
— format: {’Action’: ’tool call command’}."

* promptadjustPlan

"Your answer is not confident enough.

Please think step by step to adjust your information
— retrieval plan based on the new information and the
— uncertainty in it and output the first action in the
— following JSON format:

{>Action’: ’tool call command’}."

D Failure analysis

We have analyzed the failure cases in VideoAgent2 and summarize two main issues (1) Omission
of general context information and (2) Limitations of current tools in capturing spatiotemporal
information.

1. Omission of general context information: As highlighted in the paper, acquiring context
information is a key component of VideoAgent2. This stage must balance performance with
computational cost. There are two main challenges:

» Computational efficiency: Over-focusing on detailed video segments can reduce ef-
ficiency, especially for long videos, and may lead to processing irrelevant content
without regard to the question.

* Information integrity: The general context must capture enough information to ensure
that critical segments are not missed in subsequent steps.

Our analysis of failure cases shows that missing important events in the context stage can
hinder the LLM’s ability to identify relevant intervals. This may lead to retrieval failure
or an excessive number of retrieval attempts, eventually exceeding the allowed retrieval
limit. To address this, we are exploring improvements such as integrating a variety of
context-capturing tools (e.g., object detection-based methods) to enhance coverage.

2. Limitations of current tools in capturing spatiotemporal information: We observed that some
spatiotemporal events are difficult to express in text or detect in static frames. For instance,
whether someone is picking up or putting down a laptop may depend on subtle motion



764 details. To address this, we are trying the solution such as extracting features directly at
765 the visual (rather than textual) level, and incorporating tools that analyze video clips for
766 spatiotemporal features.
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