

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SELECT2REASON: EFFICIENT INSTRUCTION-TUNING DATA SELECTION FOR LONG-CoT REASONING

Anonymous authors

Paper under double-blind review

ABSTRACT

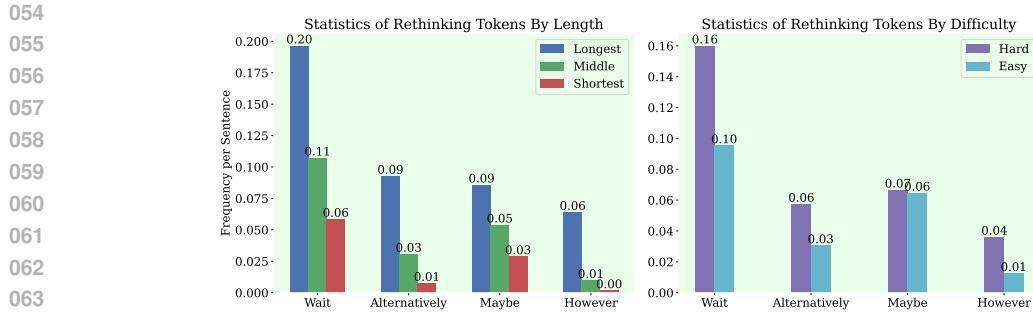
A practical approach to activate long chain-of-thoughts reasoning ability in pre-trained large language models is to perform supervised fine-tuning on instruction datasets synthesized by strong Large Reasoning Models such as DeepSeek-R1, offering a cost-effective alternative to reinforcement learning. However, large-scale instruction sets with more than 100k samples incur significant training overhead, while effective strategies for automatic long-CoT instruction selection still remain unexplored. In this work, we propose SELECT2REASON, a novel and efficient instruction-tuning data selection framework for long-CoT reasoning. From the perspective of emergence of rethinking behaviors like self-correction and backtracking, we investigate common metrics that may determine the quality of long-CoT reasoning instructions. SELECT2REASON leverages a quantifier to estimate difficulty of question and jointly incorporates a reasoning trace length-based heuristic through a weighted scheme for ranking to prioritize high-utility examples. Empirical results on OpenR1-Math-220k demonstrate that fine-tuning LLM on only 10% of the data selected by SELECT2REASON achieves performance competitive with or superior to full-data tuning and open-source baseline OpenR1-Qwen-7B across three competition-level and six comprehensive mathematical benchmarks. Further experiments highlight the scalability in varying data size, efficiency during inference, and its adaptability to other instruction pools with minimal cost.

1 INTRODUCTION

Large reasoning models (LRMs) (OpenAI, 2024; Guo et al., 2025; DeepMind, 2025), mark a significant leap in the complex reasoning abilities of large language models (LLMs). With the emergence of the long chain-of-thoughts (long-CoT) reasoning ability (Chen et al., 2025a), these models exhibit human-like behaviors such as exploration, verification, reflection, and correction, allowing them to autonomously derive multi-branch and multi-step solutions via deliberate planning and backtracking (Huang & Chang, 2022; Li et al., 2025c).

A practical approach to activate long-CoT reasoning ability in pre-trained LLMs is to perform supervised fine-tuning (SFT) on instructions synthesized by strong LRM. Open-source projects (Face, 2025; Team, 2025; Liu et al., 2025) release over 100K such instructions respectively, yet large-scale SFT still entails significant costs. Recent work argues that the *quality* of long-CoT data, rather than *quantity* is more critical. For example, LIMO (Ye et al., 2025) applies multiple rounds of sampling and filtering over tens of millions of problems and employs expert-designed solutions to curate a compact yet high-quality dataset of 817 samples. Similarly, s1 (Muennighoff et al., 2025) depends heavily on API models and intricate data engineering pipelines tailored to optimize for quality, difficulty, and diversity, yielding 1k examples. Unfortunately, their metrics are based on qualitative heuristics without rigorous quantitative validation, and these carefully-curated pipelines are often not publicly available which impedes reproducibility and generalization.

Recently, research on instruction selection (Chen et al., 2023; Liu et al., 2023b; Lu et al., 2023; Zhang et al., 2024c; Yang et al., 2024c; Li et al., 2023a; Liu et al., 2024) has explored various aspects of data quality to automatically extract high-utility subsets from large instruction pools. However, the specific challenge of *instruction selection for long-CoT reasoning* remains largely unaddressed. We investigate the features that may determine the quality of long-CoT instructions. The emergence of rethinking behaviors in long-CoT traces is regarded as an *aha moment* for



065
066
067

Figure 1: Statistics of rethinking tokens in reasoning trace. Longer reasoning traces exhibit a higher frequency of rethinking tokens in each step such as *Wait*, *Alternatively*, *Maybe*, *However*, which also occurs often in instruction with questions that are hard to solve.

068
069
070
071
072
073
074
075

LRMs (Guo et al., 2025), indicating that the model learns to allocate more inference time toward self-correction and backtracking. Previous studies (Xie et al., 2025; Yeo et al., 2025) use the frequency of rethinking-related keywords as a proxy for reasoning quality, serving as a signal of the model’s internal thinking patterns. Similarly, s1 (Muennighoff et al., 2025) implements budget forcing by appending extrapolation strings like *Wait* to extend thinking process. We hypothesize that reasoning traces exhibiting more rethinking behaviors may serve as higher-quality instructions and offer greater training value. However, only qualitative keyword-based metrics cannot fully capture the complexity of reasoning patterns (Zeng et al., 2025), highlighting the need for quantitative evaluation metrics.

076
077
078
079
080
081
082
083
084
085
086

We investigate common metrics that may lead to higher frequency of rethinking tokens in long-CoT reasoning trace, and statistical analysis presented in Figure 1 reveals that **longer** reasoning traces exhibit more rethinking tokens in each step such as *Wait*, *Alternatively*, *Maybe* and *However*, which also occurs often in instruction with questions those are **hard** to solve. According to results in Figure 3, models fine-tuned on subsets prioritized by the longest reasoning traces consistently outperform those trained on the middle or shortest traces across various data scales. It can be concluded that the **length of the reasoning trace** in the response is a simple but tough-to-beat heuristic for selection. Furthermore, models trained on instruction subsets which are hard to solve by base model significantly outperform those trained on subsets with easy questions, aligning with the intuition in (Ye et al., 2025; Muennighoff et al., 2025) that more challenging instructions provide greater learning value. However, the challenge of **automated, difficulty-aware** instruction selection remains largely unaddressed.

087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102

To this end, we propose **SELECT2REASON**, a novel and efficient instruction-tuning data selection framework for Long-CoT reasoning. We leverage a LLM-as-a-Judge (Gu et al., 2024) to quantify instruction difficulty and prioritize more challenging problems. Additionally, we design an instruction-response joint ranker that combines rankings based on difficulty and trace length using a weighting factor. We conduct extensive experiments across three competition-level and six comprehensive mathematical benchmarks to validate the efficacy of our method. Built upon the OpenR1-Math dataset with 196K samples distilled from DeepSeek-R1, **SELECT2REASON** selects the top 10% instructions to fine-tune the Qwen2.5-Math-7B-Instruct model. Our method not only surpasses baselines but also matches or exceeds models trained on much larger datasets, such as the OpenR1-Qwen-7B (Face, 2025) with 94K samples and the DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025) with 800K samples, demonstrating its efficiency and effectiveness. Comprehensive ablation studies highlight the scalability of our approach under varying data sizes. Additionally, model fine-tuned on high-quality data selected by **SELECT2REASON** conducts more efficient exploration using fewer thinking tokens when generating solution with stronger performance. **SELECT2REASON** demonstrates strong generalization by enabling low-cost transfer to other long-CoT reasoning instruction pools like Chinese-DeepSeek-R1-Distill dataset (Liu et al., 2025) with 110K samples. Extensive case studies and visualizations support the effectiveness of our method.

103
104
105
106
107

Our contributions are summarized as follows: 1) We propose **SELECT2REASON**, a novel and efficient data selection framework for long-CoT instruction tuning. 2) We identify and validate key metrics—reasoning trace length and question difficulty—as strong heuristics for high-quality reasoning instruction selection. 3) We demonstrate state-of-the-art performance on multiple mathematical reasoning benchmarks using only a fraction of training data, with extensive experiments verifying scalability, robustness, and generalizability.

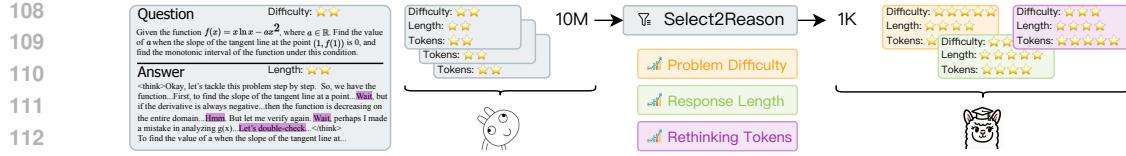


Figure 2: We select those data that can maximize reasoning ability via controlling the problem difficulty, response length, and the frequency of rethinking tokens.

2 RELATED WORK

Reasoning of Large Language Models. LLMs demonstrate notable chain-of-thought (CoT) (Wei et al., 2022) reasoning capabilities that are critical for addressing complex tasks such as mathematical problem solving, coding, and logical inference (Huang & Chang, 2022; Chen et al., 2025a; Li et al., 2025c). Various efforts aim to enhance LLMs’ reasoning through different training stages. Previous works (Roziere et al., 2023; Shao et al., 2024) reinforce models to memorize reasoning patterns by injecting high-quality knowledge and rationales during pre-training. Furthermore, carefully curated datasets (Yu et al., 2023; Kim et al., 2023; Liu et al., 2023a) significantly boost complex reasoning performance through fine-tuning (Yuan et al., 2023). Some studies focus on scaling inference-time computation (Snell et al., 2024), such as employing self-consistency or reward-based verifiers to validate outcome or process on sampled candidate solutions (Wang et al., 2022; Lightman et al., 2023; Wang et al., 2023). Recently, researchers have observed planning and self-reflection behaviors in long-CoT responses of large reasoning models such as OpenAI-01 (OpenAI, 2024), DeepSeek-R1 (Guo et al., 2025), Kimi-1.5 (Team et al., 2025), QwQ (Qwen Team, 2025) and Gemini Thinking (DeepMind, 2025), symbolizing a major breakthrough in complex reasoning. Open community projects (Face, 2025; Team, 2025) contribute by organizing synthetic datasets and distilling reasoning abilities from DeepSeek-R1 into smaller LLMs.

Instruction-Tuning Data Selection. Instruction-tuning data selection aims to identify high-utility subsets from large instruction pools to improve model performance and alignment. Early efforts emphasized human expert curation (Zhou et al., 2023), while recent work has explored automated selection using various metrics. GPT-based judgments of instruction-response quality are commonly used (Chen et al., 2023; Bukharin & Zhao, 2023; Liu et al., 2024; Zhang et al., 2024c; Li et al., 2025b), often enhanced with diversity signals (Liu et al., 2023b; Lu et al., 2023; Song et al., 2024; Yang et al., 2025; Chen et al., 2025b). Several studies leverage model-internal features such as loss (Li et al., 2023a; Du et al., 2023; Li et al., 2023b; Zhang et al., 2024b), gradients (Xia et al., 2024; Pan et al., 2024; Zhang et al., 2024a), perplexity (Li et al., 2024b; Mekala et al., 2024), and linguistic features (Cao et al., 2023; Zhao et al., 2024) to assess sample utility. Techniques like weak-to-strong supervision (Yang et al., 2024c; Li et al., 2024b; Mekala et al., 2024) and expert preference-aligned scoring (Ge et al., 2024) further enrich the selection space. With the advent of large reasoning models, LIMO (Ye et al., 2025), LIMR (Li et al., 2025a) and s1 (Muennighoff et al., 2025) observe that training with a few carefully crafted reasoning examples can achieve remarkable performance, highlighting the necessity of efficient minimal supervision. However, automatic selection of long-CoT reasoning instructions remains unexplored, where criteria have not been designed and verified.

3 PRELIMINARY EXPLORATION

In this section, we examine several metrics that may influence the frequency of rethinking tokens and conduct preliminary experiments to assess whether the metrics correlate with performance improvements, providing insights for selecting high-quality long-CoT instructions.

Reasoning Traces with Varying Length in Instructions. Prior work (Zhao et al., 2024) has shown that selecting instructions with the longest responses serves as a simple but tough-to-beat baseline. Recently, s1 (Muennighoff et al., 2025) employ an empirical study under 1K data budget to benchmark instruction subsets with longest length of response. We present the first systematic evaluation of how the length of the reasoning trace impacts instruction selection efficacy. Specifically, we sort the full instruction set \mathcal{D}_p by the length of the reasoning trace r , and construct subsets \mathcal{D}_L^k , \mathcal{D}_M^k , and \mathcal{D}_S^k corresponding to the top- $k\%$ longest, middle, and shortest traces, respectively, for $k \in \{2, 5, 10\}$.

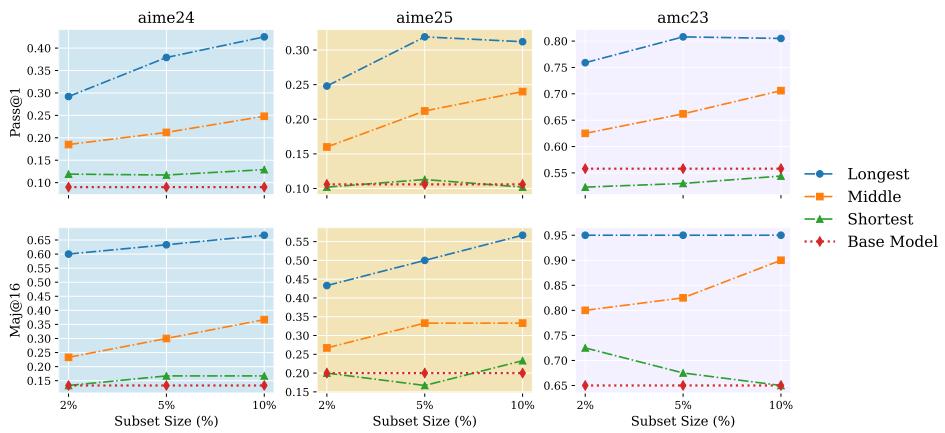


Figure 3: Performance across three expert-level benchmarks, using instruction subsets selected based on the length of reasoning traces: the longest, the shortest, and the middle.

As shown in Figure 3, models fine-tuned on \mathcal{D}_L^k consistently outperform those trained on \mathcal{D}_M^k and \mathcal{D}_S^k across different dataset sizes, measured by metrics such as Pass@1 and Maj@16. Notably, \mathcal{D}_M^k also yields positive gains over \mathcal{D}_S^k , highlighting a strong correlation between trace length and model improvement. While both \mathcal{D}_L^k and \mathcal{D}_M^k demonstrate scalable benefits with increasing subset size, the performance of model trained on \mathcal{D}_S^k remains marginal or even negative—offering little to no improvement over the base model on AIME 24, and causing performance degradation on AIME 25 and AMC 23. This indicates that not only do short reasoning traces fail to activate the model’s long-CoT reasoning capabilities, but they may also degrade its overall performance. Examples with different trace length are illustrated in Figure 4. Long reasoning traces incorporate more rethinking behaviors such as reflection, backtracking, and planning, and serve as higher-quality supervision signals. In contrast, short traces often omit substantive decision-making steps and, in some cases, explicitly bypass reasoning by using empty constructs like `<think>\n</think>`, rendering them ineffective. Statistics from Figure 1 further confirm this point: longer reasoning traces exhibit a higher frequency of reflective steps that begin with patterns such as *Wait*, *Alternatively* or *Maybe*. Motivated by these findings, we adopt the **longest reasoning traces as a simple, effective, and low-cost heuristic for data selection**, thereby avoiding the overhead of the reliance on costly human expert annotations (Zhou et al., 2023; Ye et al., 2025).

Difficulty of Question. Difficulty as a criterion for instruction selection is acknowledged across both alignment (Li et al., 2023a; 2024b; Mekala et al., 2024) and long-CoT reasoning (Muennighoff et al., 2025; Ye et al., 2025), with the prevailing intuition being that more challenging questions offer higher learning value. Same as trace length in Figure 1, instruction with harder question contains more rethinking tokens in reasoning trace. We validate this assumption through a straightforward empirical study. Specifically, we perform short-CoT inference using the base model over a sampled subset of training instructions, and label instances as easy or hard based on whether the model successfully solves the question. This yields two subsets, \mathcal{D}_E^k (easy) and \mathcal{D}_H^k (hard), for $k \in \{5, 10\}$. As shown in Figure 5, models fine-tuned on \mathcal{D}_H^k consistently outperform those trained on \mathcal{D}_E^k across six mathematical benchmarks in two data scales. This aligns with prior findings and our hypothesis that instructions with harder question facilitate stronger supervision with richer training signals. Existing work (Ye et al., 2025; Muennighoff et al., 2025) has not established quantitative criteria for identifying the difficulty of questions, thereby limiting the prioritization of more challenging problems and **leaving the challenge of automated, difficulty-aware instruction selection unaddressed**.

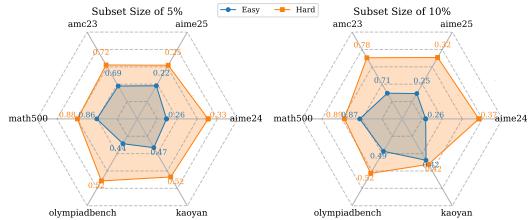


Figure 5: Pass@1 across six benchmarks. Easy and hard examples are selected separately.

Figure 5: Pass@1 across six benchmarks. Easy and hard examples are selected separately.

Figure 5 consists of two radar charts showing Pass@1 across six benchmarks: amc23, aime25, math500, olympiadbench, and kaoyan. The charts are for two subset sizes: 5% (left) and 10% (right). Each chart has six axes representing the benchmarks. Data points are colored blue for easy examples and orange for hard examples. In both charts, the hard examples generally show higher Pass@1 values than the easy examples across all benchmarks. This indicates that models trained on hard examples perform better than those trained on easy examples.

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

Length of Reasoning Traces	
<p>Long Reasoning Trace</p> <p>Question: Given the function $f(x) = x \ln x - ax^2$, where $a \in \mathbb{R}$. Find the value of a when the slope of the tangent line at the point $(1, f(1))$ is 0, and find the monotonic interval of the function under this condition.</p> <p>Response:</p> <p><think></p> <p>[Problem Definition.] Okay, let's tackle this problem step by step. So, we have the function $f(x) = x \ln x - ax^2$...</p> <p>[Task Decomposition and Planning.] ...First, to find the slope of the tangent line at a point, we need the derivative of $f(x)$... Then, the derivative of $-ax^2$ is $-2ax$...</p> <p>[Self Reflection.] ...Wait, but if the derivative is always negative except at $x = 1$ where it's zero, then the function is decreasing on the entire domain $(0, \infty)$. Is that possible?...</p> <p>[Backtracking.] ...Hmm. But let me verify again. Wait, perhaps I made a mistake in analyzing $g(x)$. Let's double-check...</p> <p></think></p> <p>[Final Answer.] 1. To find the value of a when the slope of the tangent line at...</p>	<p>Short Reasoning Trace</p> <p>Question: Calculate the sum of the numbers 6 and 4. Add the number 30 to this sum.</p> <p>Response:</p> <p><think></p> <p>[No Self Reflection.] ...Let me do that step by step. 6 plus 4... that should be 10, right? Yeah, 6 plus 4 equals 10.</p> <p>[No Backtracking.] ...So putting it all together: first sum 6 and 4 to get 10, then add 30 to get 40. I don't think I made any mistakes here.</p> <p></think></p> <p>[Final Answer.] The sum of 6 and 4 is calculated first: $6 + 4 = 10$. Next, add 30 to ...</p> <p>No Reasoning Trace</p> <p>Question: $x, y \in \mathbb{R}^+, 3x + 2y = 12$, maximize xy</p> <p>Response:</p> <p><think></p> <p>\n\n</p> <p>[Thinking Terminate.]</p> <p></think></p> <p>[Final Answer.] Given the constraint $3x + 2y = 12$, we aim to maximize...</p>

240 Figure 4: Comparison of Instructions with Varying Reasoning Trace Lengths. Long reasoning
241 trajectories incorporate more human-like cognitive behaviors—such as reflection, backtracking, and
242 planning—and serve as higher-quality supervision signals during fine-tuning. In contrast, short traces
243 often omit substantive decision-making steps and, in some cases, explicitly bypass reasoning by using
244 empty constructs like <think>\n</think>, rendering them ineffective.

245 **Diversity.** Diversity has long been a central theme in instruction selection (Liu et al., 2023b;
246 Lu et al., 2023; Yang et al., 2025; Ge et al., 2024), and its relevance to long-CoT reasoning has
247 also been explored (Zhou et al., 2023; Muennighoff et al., 2025), particularly in the context of
248 covering a broad range of mathematical domains and concepts. However, simple heuristics such as
249 uniformly sampling from each domain offers no clear advantage over random selection for long-CoT
250 reasoning instructions (Muennighoff et al., 2025). To further examine the role of diversity, we
251 leverage **metadata** from the Open-R1-Math instruction set where problems are categorized into
252 topics. We sample a domain-balanced subset \mathcal{D}_D^k and compare it against a randomly sampled baseline
253 subset \mathcal{D}_R^k of the same size. As shown in Figure 11, the model fine-tuned on \mathcal{D}_D^k does not exhibit
254 significant performance gains over the baseline, and in some cases—such as Maj@16 on AMC
255 23, the performance curves nearly overlap. These results suggest that diversity may not contribute
256 meaningfully for instruction selection in long-CoT reasoning, serving as a baseline only.

257 4 PROBLEM DEFINITION

258 **Long-CoT Reasoning.** We focus on the capability of large reasoning models (LRMs) to generate
259 long chain-of-thought (CoT) reasoning traces for solving questions with verifiable answers. Given a
260 question $q \in \mathcal{Q}$ and a model M parameterized by θ , the model is expected to generate a reasoning
261 trace r including steps $\{s_1, s_2, \dots, s_n\}$, typically wrapped with <think> tokens, followed by a
262 final answer $a \in \mathcal{A}$. Formally, the model outputs a pair $(r, a) \in \mathcal{R} \times \mathcal{A}$ such that:

$$263 f_M(q) = (r, a), \quad r = \text{<think>} s_1, s_2, \dots, s_n \text{ </think>}. \quad (1)$$

264 The quality of CoT reasoning trace is often characterized by the emergence of human-like behaviors
265 such as planning, verification, reflection, and backtracking. High-quality reasoning traces exhibit
266 these traits to navigate complex problem spaces and are more likely to converge on correct solutions.

270 **Instruction Selection.** Instruction-tuning data selection aims to identify a optimal subset of reasoning
 271 instructions from a large instruction pool to enhance fine-tuning effectiveness. Given a reasoning
 272 instruction dataset $\mathcal{D}_p = \{I_i\}_{i=1}^N$, where each instruction $I_i = (q_i, r_i \| a_i)$ includes a question, a
 273 reasoning trace, and a final answer, and a proposed evaluation metric suite $\pi = \{\pi_1, \pi_2, \dots, \pi_k\}$
 274 (e.g., quality, difficulty), our objective is to select a subset $\mathcal{D}_s \subseteq \mathcal{D}_p$ of size at most K such that each
 275 selected instruction ranks among the top- K under the metrics:

$$\mathcal{D}_s = \{I \in \text{Top}_{\pi}^K(\mathcal{D}_p)\}. \quad (2)$$

279 The supervised fine-tuning(SFT) objective is performed on \mathcal{D}_s to update the model parameters θ ,
 280 thus minimizing the following negative log likelihood loss:
 281

$$\min_{\theta} \mathcal{L}(\theta, \mathcal{D}_s) = -\frac{1}{|\mathcal{D}_s|} \sum_{(q, r, a) \in \mathcal{D}_s} \log p_{\theta}(r, a | q). \quad (3)$$

286 5 SELECT2REASON

288 We propose SELECT2REASON, an efficient instruction-tuning data selection method for long-CoT
 289 reasoning. Specifically, we leverage LLM-as-a-Judge to quantify question difficulty and propose a
 290 joint ranking strategy to balance difficulty with reasoning trace length.

292 **Quantifying Question Difficulty.** To measure the difficulty of each instruction in the pool \mathcal{D}_p ,
 293 prior methods (Li et al., 2023a; Mekala et al., 2024; Li et al., 2024b) often rely on model-specific
 294 loss or perplexity metrics, which are computationally expensive. We adopt an efficient alternative by
 295 using an LLM-as-a-Judge M_j to quantifying difficulty scores. For each q_i , we prompt the model with
 296 *Please judge the difficulty of this instruction and return 1 if difficult or 0 if not.* The model outputs a
 297 probability distribution over the tokens 1 and 0, from which we derive a scalar difficulty score:
 298

$$\text{difficulty}(q_i) = \frac{e^{\log p(1|q_i)}}{e^{\log p(1|q_i)} + e^{\log p(0|q_i)}}. \quad (4)$$

303 To improve the adaptation of M_j to this classification task, a small set $\mathcal{C}_j = \{(q, y)\}$ is designed
 304 for supervised fine-tuning, where $q \in \mathcal{D}_{\text{Easy}}^k$ is labeled 0 and $q \in \mathcal{D}_{\text{Hard}}^k$ is labeled 1 by model M
 305 through whether the question can be directly solved referring to Section 3, and parameters θ_j are
 306 updated by minimizing the following negative log likelihood loss:
 307

$$\min_{\theta_j} \mathcal{L}(\theta_j, \mathcal{C}_j) = -\frac{1}{|\mathcal{C}_j|} \sum_{(q, y) \in \mathcal{C}_j} \log p_{\theta_j}(y | q) \quad (5)$$

312 **Question-Response Joint Ranker.** While we now have an efficient method to score questions via
 313 difficulty and responses via reasoning trace length, combining them in a principled manner remains a
 314 challenge. Inspired by prior work on multi-criteria ranking (Cao et al., 2023; Bukharin & Zhao, 2023),
 315 we aggregate rankings using a weighted scheme. Let $\text{rank}_d(I_i)$ and $\text{rank}_l(I_i)$ denote the rankings of
 316 instruction I_i by question difficulty and reasoning trace length, we define the joint ranking as:
 317

$$\text{joint_rank}(I_i) = w \cdot \text{rank}_d(I_i) + (1 - w) \cdot \text{rank}_l(I_i), \quad (6)$$

320 where a weighting factor $w \in [0, 1]$ controls the trade-off between rankings by difficulty and trace
 321 length. The final selected subset by out methods for SFT is then:
 322

$$\mathcal{D}_{\text{SELECT2REASON}} = \{I \in \text{Top}_{\text{joint_rank}}^K(\mathcal{D}_p)\}. \quad (7)$$

Table 1: Comparison between SELECT2REASON and baselines on the *OpenR1-Math-220k* pool through evaluation across nine benchmarks using Pass@1 and Maj@16 as metrics. We incorporate two models from open-source community for reference.

Target Model	Data	AIME 24		AIME 25		AMC 23		MATH		Olympiad	Kaoyan	GK 23	GK-Math	GK 24
QWEN2.5-MATH-7B	Size	P@1	M@16	P@1	M@16	P@1	M@16	P@1	P@1	P@1	P@1	P@1	P@1	P@1
BASE MODEL	-	0.090	0.133	0.106	0.200	0.558	0.650	0.842	0.394	0.472	0.649	0.781	0.637	
R1-DISTILL-QWEN	800k	0.544	0.833	0.417	0.600	0.895	0.950	0.896	0.551	0.618	0.810	0.880	0.692	
OPENR1-QWEN	94k	0.460	0.700	0.317	0.467	0.823	0.950	0.906	0.526	0.492	0.795	0.843	0.714	
FULL-POOL	196k	0.465	0.700	0.352	0.600	0.816	0.950	0.894	0.560	0.382	0.800	0.783	0.615	
RANDOM		0.331	0.600	0.267	0.367	0.753	0.950	0.878	0.510	0.467	0.740	0.789	0.626	
DIVERSE		0.327	0.667	0.267	0.433	0.750	0.950	0.846	0.493	0.467	0.745	0.809	0.659	
LONGEST	10%	0.425	0.667	0.312	0.567	0.805	0.950	0.898	0.535	0.548	0.795	0.892	0.747	
DIFFICULT		0.410	0.633	0.312	0.433	0.787	0.925	0.886	0.530	0.533	0.787	0.866	0.703	
SELECT2REASON		0.433	0.667	0.335	0.567	0.808	0.950	0.914	0.548	0.573	0.800	0.892	0.736	

6 EXPERIMENT RESULTS AND ANALYSIS

Datasets and Experiment Settings. We adopt **OpenR1-Math-220k** (Face, 2025) as the data pool, which is a large-scale instruction set for long-CoT reasoning distilled from DeepSeek-R1 (Guo et al., 2025). We retain part of them that lead to a correct answer about **196k**. We employ **Qwen2.5-Math-7B-Instruct** (Yang et al., 2024b) as the backbone model. We adopt nine mathematics benchmark spanning multiple dimensions for evaluation, including three competition-level benchmarks which are AIME in 2024 & 2025, and AMC in 2023, and six comprehensive benchmarks such as MATH-500 (Hendrycks et al., 2021) and OlympiadBench (He et al., 2024) for math reasoning, and GAOKAO in 2023 & 2024 (Yang et al., 2024b), GAOKAO MATH Yang et al. (2024b) and KAOYAN (Ye et al., 2025) in Chinese math. More details are provided in Appendix A.1 and A.2.

Main Results. Table 1 presents the performance of SELECT2REASON across three competition-level and six comprehensive mathematics benchmarks, using Pass@1 (P@1) and Maj@16 (M@16) as evaluation metrics. We compare against DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025), which is trained on an unreleased set of 800k instructions, and OpenR1-Qwen-7B (Face, 2025), which uses 94k instructions from the OpenR1-Math dataset. We evaluate four baseline selection strategies: *Random*, which samples instructions uniformly from the pool; *Diverse*, which performs clustering and balanced sampling based on category metadata from OpenR1-Math; *Longest*, which selects instructions with the longest reasoning traces; and *Difficult*, which chooses top-ranked samples according to a difficulty quantifier. SELECT2REASON outperforms all baselines on most datasets, consistently achieving higher Pass@1 scores on competition-level benchmarks and matching the strongest baselines on the Maj@16 metric. Furthermore, the model trained on the subset filtered by SELECT2REASON surpasses both *Full-pool* models and open-source models on MATH-500. Notably, our method also maintains a strong lead over *Full-pool* training on nearly all comprehensive math benchmarks, with only a slight performance drop against the *Full-pool* on OlympiadBench. This may reflect a limitation in the generalization ability of *Full-pool*, whereas fine-tuning with a smaller, high-quality subset yields superior performance on Chinese benchmarks.

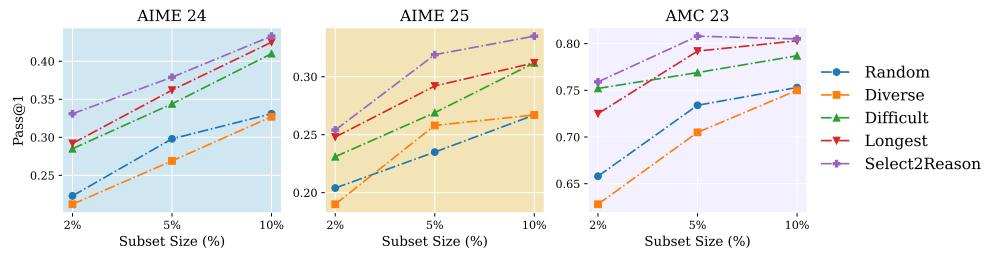


Figure 6: Performance across three benchmarks of baselines and our method in varying subset size.

378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
Performance of SELECT2REASON under different hyperparameter settings. Figure 6 presents a statistical analysis of performance variation for both the baselines and SELECT2REASON across different subset sizes (2%, 5%, and 10%) on three datasets using Pass@1. SELECT2REASON consistently maintains a leading advantage. Moreover, as the subset size increases, the performance of SELECT2REASON generally improves in a stable manner. Another critical hyperparameter is the weighted factor $w \in [0, 1]$ used in the joint ranker. Figure 7 shows this sensitivity analysis. When $w = 0$, the joint ranker degenerates to the length-based ranker; when $w = 1$, it becomes equivalent to the difficulty-based ranker. The best performance is achieved at $w = 0.25$, where the model fine-tuned on the top 10% subset reaches highest accuracy, as reported in Table 1. This indicates that the joint ranker achieves an effective balance in controlling the trade-off.

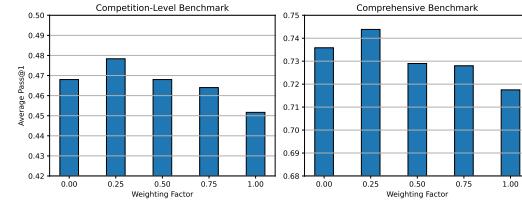


Figure 7: Average Pass@1 by adjusting the weighting factor of joint ranker in SELECT2REASON.

SELECT2REASON improves long-CoT reasoning efficiency by sampling high-quality data. The relationship between performance and output tokens on AIME 25 is illustrated in Figure 8. In contrast to the increasing response lengths observed during conducting pure RL on pre-trained models (Guo et al., 2025), SFT exhibits a different distribution: models with stronger performance tend to generate shorter outputs.

This suggests that when long-CoT reasoning is effectively activated via SFT, models can produce more efficient exploratory solutions. Further statistical analysis is presented in Figure 12, which shows the frequency of rethinking tokens used by fine-tuned models on AIME 25. The model trained on subsets selected by SELECT2REASON consistently uses fewer rethinking tokens across all data sizes, supporting our hypothesis that it enables more efficient reasoning. A case study is provided in Figure 10, where an LRM fine-tuned on limited and low-quality instructions attempts to use a large number of rethinking tokens during inference, but exhibits limited effective reflection. In comparison, a model trained on higher-quality instructions corrects its reasoning path and reaches the correct solution with fewer rethinking steps.

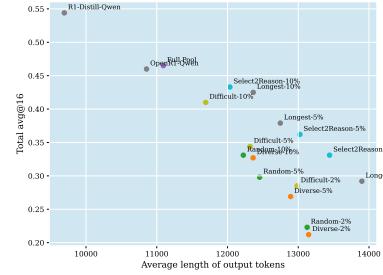


Figure 8: Relationship between performance on AIME 25 and output length.

SELECT2REASON demonstrates strong generalization capabilities by enabling low-cost transfer to other Long-CoT reasoning instruction pools. To assess the generalizability of SELECT2REASON on *Chinese-DeepSeek-RI-Distill-data*, we directly apply the joint ranker trained on OpenR1-Math-220k. Results in Table 2 show that fine-tuning model on only the top 10% subset selected by SELECT2REASON outperforms baselines. Notably, since this data pool contains a large proportion of generic, non-reasoning instructions, we conclude that this dilutes the model’s ability to acquire strong reasoning capabilities. Case studies of joint ranking are presented in Appendix A.5, despite not being trained on this specific instruction pool, the joint ranker still successfully identifies high-quality reasoning instructions, demonstrating the notable generalizability of SELECT2REASON.

Table 2: Generalizability of SELECT2REASON on the *Chinese-DeepSeek-RI-Distill-data* pool.

Target Model	Data	AIME 24	AIME 25	AMC 23	MATH	Olympiad	Kaoyan	GK 23	GK-Math	GK 24
QWEN2.5-MATH-7B	Size	P@1	M@16	P@1	M@16	P@1	P@1	P@1	P@1	P@1
BASE MODEL	-	0.090	0.133	0.106	0.200	0.558	0.650	0.842	0.394	0.472
FULL-POOL	110K	0.181	0.267	0.158	0.300	0.633	0.800	0.798	0.367	0.412
RANDOM		0.181	0.200	0.140	0.167	0.620	0.725	0.840	0.431	0.372
DIVERSE		0.176	0.233	0.144	0.233	0.618	0.750	0.822	0.416	0.377
LONGEST	10%	0.221	0.367	0.173	0.233	0.656	0.850	0.846	0.459	0.457
DIFFICULT		0.258	0.400	0.194	0.267	0.627	0.800	0.848	0.412	0.462
SELECT2REASON		0.242	0.400	0.206	0.367	0.689	0.825	0.860	0.450	0.462
								0.699		0.840
										0.703

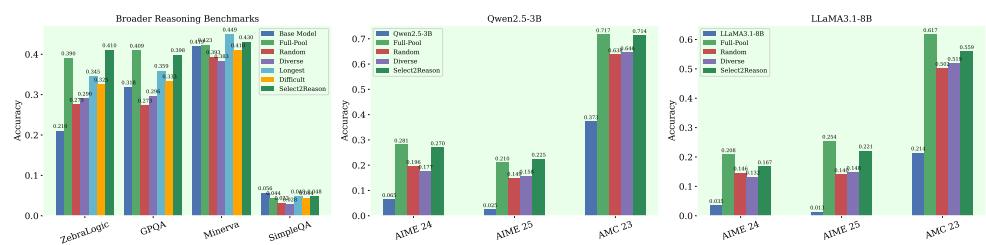
432
433
434
435
436
437
438
439
440

Figure 9: (a) Generalization in broader reasoning tasks. (b)(c) Generalization across various LLMs.

SELECT2REASON demonstrates robust generalization across domains and model scales. Beyond the mathematical domain, we extend our evaluation to broader reasoning tasks, including logical inference, scientific QA, and commonsense reasoning. As summarized in Figure 9 (a), SELECT2REASON consistently achieves superior performance compared to baseline strategies, particularly on benchmarks such as ZebraLogic and GPQA, where long-CoT reasoning is essential. Furthermore, to assess robustness across model families and scales, we fine-tune two additional open-source models, Qwen2.5-3B-Instruct (Yang et al., 2024a) and LLaMA-3.1-8B-Instruct (Dubey et al., 2024). The results in Figure 9 (b)(c) confirm that SELECT2REASON maintains its advantage across both smaller-scale models and different architectures. Specifically, while absolute performance decreases with model size, the relative improvements over baselines remain consistent, validating that the effectiveness of our method is not confined to a single model family or scale.

The data picked by SELECT2REASON yields higher quality comparing with datasets in prior methods. We conduct a comparative analysis with LIMO (Ye et al., 2025) and S1 (Muennighoff et al., 2025) in data quality. Specifically, we select approximately 1k long-CoT instructions from each synthesized data pool to evaluate performance across five benchmarks. As shown in Table 3, the model trained on instructions selected by SELECT2REASON consistently outperforms those trained on data selected by LIMO and S1.1. Furthermore, we apply SELECT2REASON to the full instruction pool used by S1.0, which comprises 59k examples with Gemini Flash Thinking responses (the full pool used by LIMO is not publicly available) to select a 1k subset, and again observe improved performance over the original selected 1k subset of S1.0.

SELECT2REASON achieves significant training efficiency with minimal selection overhead. We conduct a detailed cost-benefit analysis of SELECT2REASON to assess its computational efficiency. As shown in Table 4, the total overhead introduced by the selection process is minimal compared to the cost of training on the full instruction pool. Notably, this results in a 75% reduction in training time without compromising performance. Additionally, when applied to a new data pool, the judge model generalizes effectively without retraining, and the inference stage completes within 3 minutes. This demonstrates the transferability and amortized cost of the pipeline.

7 CONCLUSION

In summary, while recent large reasoning models exhibit remarkable long-CoT reasoning abilities, effective instruction selection remains an underexplored challenge. Our study identifies reasoning trace length and problem difficulty as strong, quantifiable heuristics for high-quality data selection. Building on these insights, we introduce SELECT2REASON, an novel and efficient instruction-tuning data selection framework for long-CoT reasoning. Extensive empirical validation demonstrates that models trained on our selected subsets achieve superior reasoning performance using significantly less data, paving the way for cost-effective and high-quality instruction tuning in long-CoT tasks.

486 ETHICS STATEMENT
487488 We conduct our experiments on publicly available, open-source datasets that are curated and main-
489 tained by community contributors. While we have made best efforts to perform manual inspection
490 and filtering, it is possible that a small fraction of the data may still contain issues such as fairness
491 concerns, biases, or inadvertent privacy leaks. Furthermore, once our proposed SELECT2REASON
492 framework is released as open source, we cannot fully prevent its application on datasets that may
493 involve ethical risks. To mitigate these concerns, we will strive to provide clear documentation and
494 usage guidelines with the release, encourage responsible adoption within the community, and actively
495 call for further research on automated auditing techniques to detect and address ethical issues in
496 large-scale instruction datasets.
497498 REPRODUCIBILITY STATEMENT
499500 We have provided detailed descriptions of our implementation in the **Experiment Settings** section,
501 including preprocessing procedures, dataset and model selection, experimental hyperparameters, and
502 the computing environment. Due to the large scale of the datasets and the need to preserve anonymity
503 during the double-blind review process, we do not release code or processed datasets at this stage.
504 However, we commit to releasing executable code and the processed datasets after the review process
505 is completed, ensuring full reproducibility of our results.
506507 REFERENCES
508509 Alexander Bukharin and Tuo Zhao. Data diversity matters for robust instruction tuning. *arXiv*
510 *preprint arXiv:2311.14736*, 2023.511 Yihan Cao, Yanbin Kang, Chi Wang, and Lichao Sun. Instruction mining: Instruction data selection
512 for tuning large language models. *arXiv preprint arXiv:2307.06290*, 2023.513 Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
514 Srinivasan, Tianyi Zhou, Heng Huang, et al. Alpagasus: Training a better alpaca with fewer data.
515 *arXiv preprint arXiv:2307.08701*, 2023.516 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
517 Yuhang Zhou, Te Gao, and Wangxiang Che. Towards reasoning era: A survey of long chain-of-
518 thought for reasoning large language models. *arXiv preprint arXiv:2503.09567*, 2025a.519 Yicheng Chen, Yining Li, Kai Hu, Zerun Ma, Haochen Ye, and Kai Chen. Mig: Automatic data
520 selection for instruction tuning by maximizing information gain in semantic space. *arXiv preprint*
521 *arXiv:2504.13835*, 2025b.522 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *arXiv*
523 *preprint arXiv:2307.08691*, 2023.524 Google DeepMind. Gemini thinking - use thinking models. <https://ai.google.dev/gemini-api/docs/thinking#python>, 2025. URL <https://ai.google.dev/gemini-api/docs/thinking#python>. Accessed: 2025-05-08.525 Qianlong Du, Chengqing Zong, and Jiajun Zhang. Mods: Model-oriented data selection for instruction
526 tuning. *arXiv preprint arXiv:2311.15653*, 2023.527 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
528 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
529 *arXiv e-prints*, pp. arXiv–2407, 2024.530 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.531 Yuan Ge, Yilun Liu, Chi Hu, Weibin Meng, Shimin Tao, Xiaofeng Zhao, Hongxia Ma, Li Zhang,
532 Boxing Chen, Hao Yang, et al. Clustering and ranking: Diversity-preserved instruction selection
533 through expert-aligned quality estimation. *arXiv preprint arXiv:2402.18191*, 2024.

540 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
 541 Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. *arXiv preprint arXiv:2411.15594*,
 542 2024.

543 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 544 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 545 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

546 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 547 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
 548 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint*
 549 *arXiv:2402.14008*, 2024.

550 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 551 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 552 *preprint arXiv:2103.03874*, 2021.

553 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 554 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

555 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
 556 *arXiv preprint arXiv:2212.10403*, 2022.

557 Seungone Kim, Se June Joo, Doyoung Kim, Joel Jang, Seonghyeon Ye, Jamin Shin, and Minjoon
 558 Seo. The cot collection: Improving zero-shot and few-shot learning of language models via
 559 chain-of-thought fine-tuning. *arXiv preprint arXiv:2305.14045*, 2023.

560 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 561 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 562 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating*
 563 *Systems Principles*, 2023.

564 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 565 masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 566 reasoning problems with language models. *Advances in Neural Information Processing Systems*,
 567 35:3843–3857, 2022.

568 Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
 569 Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
 570 ai4maths with 860k pairs of competition math problems and solutions. *Hugging Face repository*,
 571 13:9, 2024a.

572 Ming Li, Yong Zhang, Zhitao Li, Juhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi
 573 Zhou, and Jing Xiao. From quantity to quality: Boosting llm performance with self-guided data
 574 selection for instruction tuning. *arXiv preprint arXiv:2308.12032*, 2023a.

575 Ming Li, Yong Zhang, Shuai He, Zhitao Li, Hongyu Zhao, Jianzong Wang, Ning Cheng, and Tianyi
 576 Zhou. Superfiltering: Weak-to-strong data filtering for fast instruction-tuning. *arXiv preprint*
 577 *arXiv:2402.00530*, 2024b.

578 Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less is more for rl scaling. *arXiv preprint*
 579 *arXiv:2502.11886*, 2025a.

580 Yisen Li, Lingfeng Yang, Wenxuan Shen, Pan Zhou, Yao Wan, Weiwei Lin, and Dongping
 581 Chen. Crowdselect: Synthetic instruction data selection with multi-llm wisdom. *arXiv preprint*
 582 *arXiv:2503.01836*, 2025b.

583 Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang, Min Yang, Lei Zhang, Shuzheng Si, Ling-Hao
 584 Chen, Junhao Liu, Tongliang Liu, et al. One-shot learning as instruction data prospector for large
 585 language models. *arXiv preprint arXiv:2312.10302*, 2023b.

586 Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
 587 Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
 588 reasoning large language models. *arXiv preprint arXiv:2502.17419*, 2025c.

594 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 595 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth*
 596 *International Conference on Learning Representations*, 2023.

597 Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
 598 Clark, and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning. *arXiv*
 599 *preprint arXiv:2502.01100*, 2025.

600 Cong Liu, Zhong Wang, Sheng Yu Shen, Jiali Peng, Xiaoli Zhang, ZhenDong Du, and YaFang
 601 Wang. The chinese dataset distilled from deepseek-r1-671b. <https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k>, 2025.

602 Hanmeng Liu, Zhiyang Teng, Leyang Cui, Chaoli Zhang, Qiji Zhou, and Yue Zhang. Logicot:
 603 Logical chain-of-thought instruction-tuning. *arXiv preprint arXiv:2305.12147*, 2023a.

604 Liangxin Liu, Xuebo Liu, Derek F Wong, Dongfang Li, Ziyi Wang, Baotian Hu, and Min Zhang.
 605 Selectit: Selective instruction tuning for llms via uncertainty-aware self-reflection. *Advances in*
 606 *Neural Information Processing Systems*, 37:97800–97825, 2024.

607 Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for
 608 alignment? a comprehensive study of automatic data selection in instruction tuning. *arXiv preprint*
 609 *arXiv:2312.15685*, 2023b.

610 Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Junyang Lin, Chuanqi Tan, Chang Zhou, and
 611 Jingren Zhou. # instag: Instruction tagging for analyzing supervised fine-tuning of large language
 612 models. *arXiv preprint arXiv:2308.07074*, 2023.

613 Dheeraj Mekala, Alex Nguyen, and Jingbo Shang. Smaller language models are capable of selecting
 614 instruction-tuning training data for larger language models. *arXiv preprint arXiv:2402.10430*,
 615 2024.

616 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 617 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 618 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

619 OpenAI. Learning to reason with llms, 2024. URL <https://openai.com/index/learning-to-reason-with-llms/>. Accessed: 2025-04-24.

620 Xingyuan Pan, Luyang Huang, Liyan Kang, Zhicheng Liu, Yu Lu, and Shanbo Cheng. G-dig:
 621 Towards gradient-based diverse and high-quality instruction data selection for machine translation.
 622 *arXiv preprint arXiv:2405.12915*, 2024.

623 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
 624 <https://qwenlm.github.io/blog/qwq-32b/>. Accessed: 2025-04-24.

625 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
 626 toward training trillion parameter models. In *SC20: International Conference for High Performance*
 627 *Computing, Networking, Storage and Analysis*, pp. 1–16. IEEE, 2020.

628 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 629 Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
 630 *First Conference on Language Modeling*, 2024.

631 Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
 632 Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
 633 code. *arXiv preprint arXiv:2308.12950*, 2023.

634 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 635 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 636 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

637 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 638 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.

648 Jielin Song, Siyu Liu, Bin Zhu, and Yanghui Rao. Iterselecttune: An iterative training framework for
 649 efficient instruction-tuning data selection. *arXiv preprint arXiv:2410.13464*, 2024.
 650

651 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
 652 transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

653 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 654 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
 655 llms. *arXiv preprint arXiv:2501.12599*, 2025.

656

657 Open Thoughts Team. Open Thoughts, January 2025.

658 Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
 659 Math-shepherd: Verify and reinforce llms step-by-step without human annotations. *arXiv preprint
 660 arXiv:2312.08935*, 2023.

661

662 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 663 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 664 *arXiv preprint arXiv:2203.11171*, 2022.

665 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 666 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 667 neural information processing systems*, 35:24824–24837, 2022.

668

669 Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
 670 John Schulman, and William Fedus. Measuring short-form factuality in large language models.
 671 *arXiv preprint arXiv:2411.04368*, 2024.

672 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
 673 Selecting influential data for targeted instruction tuning. *arXiv preprint arXiv:2402.04333*, 2024.

674

675 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
 676 Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
 677 learning. *arXiv preprint arXiv:2502.14768*, 2025.

678

679 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 680 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 681 arXiv:2412.15115*, 2024a.

682

683 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 684 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
 685 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024b.

686

687 Xianjun Yang, Shaoliang Nie, Lijuan Liu, Suchin Gururangan, Ujjwal Karn, Rui Hou, Madian
 688 Khabsa, and Yuning Mao. Diversity-driven data selection for language model tuning through
 689 sparse autoencoder. *arXiv preprint arXiv:2502.14050*, 2025.

690

691 Yu Yang, Siddhartha Mishra, Jeffrey Chiang, and Baharan Mirzasoleiman. Smalltolarge (s2l):
 692 Scalable data selection for fine-tuning large language models by summarizing training trajectories
 693 of small models. *Advances in Neural Information Processing Systems*, 37:83465–83496, 2024c.

694

695 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
 696 reasoning. *arXiv preprint arXiv:2502.03387*, 2025.

697

698 Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
 699 chain-of-thought reasoning in llms. *arXiv preprint arXiv:2502.03373*, 2025.

700

701 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
 702 Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
 703 large language models. *arXiv preprint arXiv:2309.12284*, 2023.

704

705 Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
 706 and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
 707 models. *arXiv preprint arXiv:2308.01825*, 2023.

702 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
703 zoo: Investigating and taming zero reinforcement learning for open base models in the wild. *arXiv*
704 *preprint arXiv:2503.18892*, 2025.

705 Jipeng Zhang, Yaxuan Qin, Renjie Pi, Weizhong Zhang, Rui Pan, and Tong Zhang. Tagcos:
706 Task-agnostic gradient clustered coresnet selection for instruction tuning data. *arXiv preprint*
707 *arXiv:2407.15235*, 2024a.

708 Qi Zhang, Yiming Zhang, Haobo Wang, and Junbo Zhao. Recost: External knowledge guided
709 data-efficient instruction tuning. *arXiv preprint arXiv:2402.17355*, 2024b.

710 Yifan Zhang, Yifan Luo, Yang Yuan, and Andrew C Yao. Autonomous data selection with language
711 models for mathematical texts. In *ICLR 2024 Workshop on Navigating and Addressing Data*
712 *Problems for Foundation Models*, 2024c.

713 Hao Zhao, Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion. Long is more
714 for alignment: A simple but tough-to-beat baseline for instruction fine-tuning. *arXiv preprint*
715 *arXiv:2402.04833*, 2024.

716 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
717 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. *arXiv*
718 *preprint arXiv:2403.13372*, 2024.

719 Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
720 Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. *Advances in Neural Information*
721 *Processing Systems*, 36:55006–55021, 2023.

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A APPENDIX
757758 A.1 EXPERIMENTAL SETTINGS
759

760 We adopt **OpenR1-Math-220k** (Face, 2025) as the data pool, which is a large-scale instruction
761 set for long-CoT reasoning distilled from DeepSeek-R1 (Guo et al., 2025) using math problems
762 from NuminaMath (Li et al., 2024a). We retain part of them that lead to a correct answer about
763 **196k**. We also adopt **Chinese-DeepSeek-R1-Distill-data** (Liu et al., 2025), a open-source dataset
764 containing 110k Chinese instructions spanning mathematics, STEM, and general domains, with
765 Long-CoT responses generated by DeepSeek-R1 for validating generalization. We employ **Qwen2.5-
766 Math-7B-Instruct** (Yang et al., 2024b) as the backbone model to perform full parameters supervised
767 fine-tuning on selected instruction subsets. We extend the model’s context length from 4,096 to
768 16,384 via RoPE (Su et al., 2024) scaling, increasing the RoPE frequency from 10k to 300k. We
769 conduct experiments on a Linux server equipped with 8 A100-SXM4-40GB GPUs. Utilizing the
770 LLaMA-Factory framework (Zheng et al., 2024), we set the sequence limit of 16,384, batch size to
771 1, gradient accumulation steps to 4, and learning rate to 5e-5 with a warmup ratio of 0.1, followed
772 by a cosine decay schedule towards zero. The training epochs is 3 for any size of subset. For the
773 judge model, we apply the LoRA technique (Hu et al., 2022), with the rank of 16, alpha of 32, and
774 dropout rate of 0.1, training for 1 epoch. We utilize DeepSpeed ZeRO-3 (Rajbhandari et al., 2020)
775 and FlashAttention2 (Dao, 2023) to accelerate computations on GPUs.

776 A.2 EVALUATIONS SETTINGS
777

778 We adopt nine mathematics benchmark spanning multiple dimensions for evaluation, including three
779 competition-level benchmarks which are AIME in 2024 & 2025, and AMC in 2023, and six com-
780 prehensive benchmarks such as MATH-500 (Hendrycks et al., 2021) and OlympiadBench (He et al.,
781 2024) for math reasoning, and GAOKAO in 2023 & 2024 (Yang et al., 2024b), GAOKAO MATH Yang
782 et al. (2024b) and KAOYAN (Ye et al., 2025) to validate the generalization capability in Chinese
783 math. For broader reasoning tasks, we include GPQA (Rein et al., 2024), Minerva (Lewkowycz
784 et al., 2022), ZebraLogic (Lin et al., 2025) and SimpleQA (Wei et al., 2024). Following (Yang et al.,
785 2024b; Guo et al., 2025), the system prompt for evaluation is *Please reason step by step, and put your
786 final answer within \boxed{}*. For three competition-level mathematical benchmarks, 16 solutions
787 per problem are sampled to mitigate fluctuations due to the limited number of questions, setting
788 temperature to 0.6 and top_p to 0.95. For benchmarks like challenging mathematics and Chinese
789 mathematics, we employ greedy decoding by setting temperature to 0 and top_p to 1, sampling only
790 one solution per problem to compute accuracy. Correctness is verified using a rule-based evaluation
791 framework (Ye et al., 2025), assessing numerical and formulaic accuracy. Scores are calculated
792 referring to (Yang et al., 2024b), yielding metrics including pass rate (Pass@1) and majority voting
793 accuracy (Maj@16). We use the vLLM inference engine (Kwon et al., 2023) to achieve inference
794 acceleration, where sequence is limited to 16,384.

810 A.3 CASE STUDY OF EFFICIENT EXPLORATION IN REASONING
811812 Case Study of Efficient Exploration in Reasoning
813814 **Question:**

815 Suppose $\triangle ABC$ has angles $\angle BAC = 84^\circ$, $\angle ABC = 60^\circ$, and $\angle ACB = 36^\circ$. Let D, E, F be the midpoints of sides \overline{BC} , \overline{AC} , and \overline{AB} , respectively. The circumcircle of $\triangle DEF$ intersects \overline{BD} , \overline{AE} , and \overline{AF} at points G, H, J , respectively. The points G, D, E, H, J, F divide the circumcircle of $\triangle DEF$ into six minor arcs, as shown. Find $\widehat{DE} + 2\widehat{HJ} + 3\widehat{FG}$, where the arcs are measured in degrees.

816 **Long-CoT Reasoning with Low-Efficiency:**

<think>

817 Okay, so I need to find the sum of some arcs on the circumcircle of triangle DEF. Let me start by understanding the
818 problem step by step.
819

820 ...
821 Alternatively, consider that $84^\circ + 60^\circ + 36^\circ = 180^\circ$, but the combination $DE + 2*HJ + 3*FG$ equals 312° , which is $84^\circ*4 - 12^\circ$, **not helpful**.

822 Alternatively, maybe the answer is $3*(84^\circ + 60^\circ + 36^\circ) - 120^\circ$, but that's $432 - 120 = 312$, **again not helpful**.

823 Alternatively, perhaps the answer is $2*(180^\circ) - 180^\circ + 36^\circ$, which is 36° , **but that doesn't align**.
824

...

825 Alternatively, maybe I made a miscalculation. Let's check:
826

827 $DE = 84^\circ, HJ = 60^\circ, FG = 36^\circ$.
828

829 $DE + 2*HJ + 3*FG = 84 + 2*60 + 3*36 = 84 + 120 + 108 = 312^\circ$.
830

831 Yes, that's correct. However, 312° is equal to $360^\circ - 48^\circ$, which might relate to the orthic triangle or something else, **but I
832 don't see the connection**.
833

834 Alternatively, maybe the answer is 180° , considering that in some configurations, the sum of arcs can be 180° , **but I
835 can't see how**.
836

...

837 Given that, after careful consideration and multiple approaches, I think the answer is 312° , but since this is a
838 competition problem, it's likely that the answer is a nice number related to the original angles. However, given the
839 combination $84 + 2*60 + 3*36$, which yields 312 , I think that's the correct answer. </think>

840 **Long-CoT Reasoning with High-Efficiency:**

841 <think>Okay, so I'm trying to solve this geometry problem about triangle ABC with given angles, midpoints, and
842 intersections on its circumcircle.
843

...

844 Alternatively, perhaps recognizing that in triangle ABC, the centroid G divides the median in ratio 2:1, so the power of
845 point G with respect to the nine-point circle might be useful.
846

847 Alternatively, perhaps using spiral similarity.
848

849 But perhaps stepping back, given the approximate measures, the total is around 334.5° , which is close to 360° .
850

851 But the problem expects an exact value, likely an integer degree measure.
852

853 Given the initial angles are multiples of 6° , the answer is likely multiple of 6° , perhaps $360^\circ - \text{something}$.
854

855 But wait, 334.5° is approximately 334.5° , which is $360 - 25.5^\circ$, but not particularly meaningful.
856

857 Alternatively, maybe the exact values are $72^\circ, 24^\circ, 72^\circ$, leading to $72+48+216=336^\circ$, which is 336° , close to our
858 approximate 334.5° , but not exact.
859

860 Alternatively, perhaps there's a miscalculation in the approximate measures.
861

862 Wait, let me re-examine the central angles.
863 For arc DE, between D and E.
864

865 Vectors $v_D = (0.2498, 0.3445)$, $v_E = (-0.2502, 0.3445)$.
866

...

867 If that's the case, then:
868

869 measure(arc DE)=2*angle at C=72°
870

871 measure(arc HJ)=angle at B - angle at C=24°
872

873 measure(arc FG)=2*angle at C=72°
874

875 Thus, the expression: measure(arc DE) + 2*measure(arc HJ) + 3*measure(arc FG)=72° + 2*24° + 3*72°=72 + 48 + 216=336°
876

877 So, 336° , which is $360^\circ - 24^\circ$, which is angle at B.
878

879 So, maybe that's the exact value.
880

881 Thus, boxed, it's $\boxed{336}$
882

883
884
885 Figure 10: A case study of efficient exploration in reasoning on AIME 25. The emergence of more
886 rethinking tokens in long-CoT reasoning does not lead to improved efficiency. In contrast, stronger
887 LMRs reach the correct reasoning trace more efficiently.
888

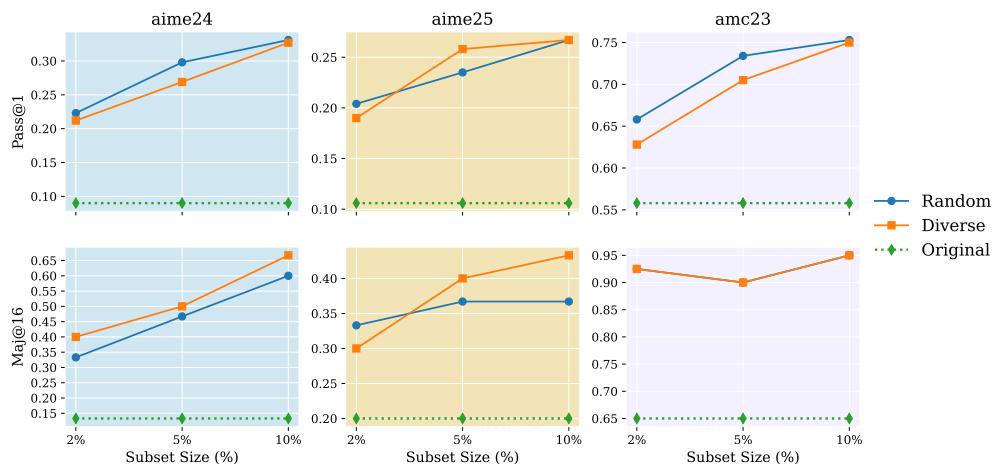
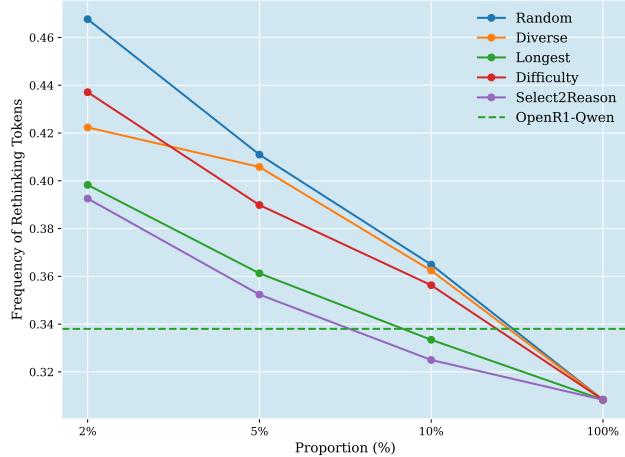
889

890

891

892

893

864 A.4 DIVERSITY OF INSTRUCTION
865882 Figure 11: Performance across three expert-level benchmarks. Subset size refers to the proportion
883 selected from data pool by length reasoning trace, either diverse or random.

901 Figure 12: Relationship between performance on AIME 25 and output length.

902 Table 4: Computational overhead of data selection.

Type	Data Size	Strategy	Time Cost	GPU Usage
Open-R1-Math				
Full Pool	196k	Full-SFT	40 hours	8x40GB
Judge Model	4k	LoRA-SFT	10 mins	8x40GB
Difficulty Scoring	196k	Inference	11 mins	2x40GB
Length Ranking	196k	-	-	-
Select2Reason	19.6k	Full-SFT	10 hours	8x40GB
Chinese-R1-Distill				
Full Pool	110k	Full-SFT	10 hours	8x40GB
Difficulty Scoring	110k	Inference	3 mins	2x40GB
Length Ranking	110k	-	-	-
Select2Reason	11k	Full-SFT	3 hours	8x40GB

918 **A.5 CASE STUDY OF DATA SELECTION BY JOINT RANKER IN**
 919 **CHINESE-DEEPEEK-R1-DISTILL-DATA.**
 920

921 **Case study of joint ranking in Chinese-DeepSeek-R1-Distill-data**

923 **Instruction: (Difficulty Score: 0.7549)**

924 已知数列 $\{a_n\}$ 和 $\{b_n\}$ 均为各项都不相等的数列, $S_n = \sum_{i=1}^n a_i$ 为 $\{a_i\}$ 的前 n 项和, $a_{n+1} = S_n + 1$

925 $b_n = S_{n-1} + 1$. (1) 若 $a_1 = 1$, $b_2 = \frac{1}{2}$, 求 a_4 的值; (2)...(3)...

926 Given two sequences $\{a_n\}$ and $\{b_n\}$ where all terms are distinct, and S_n is the sum of the first n terms of $\{a_n\}$, with the relationship $a_{n+1} = S_n + 1$ for all $n \in \mathbb{N}^*$. (1) If $a_1 = 1$ and $b_2 = \frac{1}{2}$, find the value of a_4 ; (2)...(3)...

927 **Response: (Length of Reasoning Trace: 6427)**

928 <think> 好, 我现在要解决这三个题目, 先从第一题开始吧。

929 Alright, I'll start solving these three problems, beginning with the first one.

930 ... $n=3$ 时, $S_3 = 1+4+6=11$, 右边 $11+1=12$, 左边 $a_4 \cdot 3/2 = 12 \rightarrow a_4 = 8$, 正确。没问题。所以 (1) 的结果是 $a_4 = 8$ 。接下来是题目 (2)。

931 ... $n=3$ 时, $S_3 = 1+4+6=11$, 右边 $11+1=12$, 左边 $a_4 \cdot 3/2 = 12 \rightarrow a_4 = 8$, 正确。没问题。所以 (1) 的结果是 $a_4 = 8$ 。接下来是题目 (2)。

932 ... $n=3$ 时, $S_3 = 1+4+6=11$, 右边 $11+1=12$, 左边 $a_4 \cdot 3/2 = 12 \rightarrow a_4 = 8$, 正确。没问题。所以 (1) 的结果是 $a_4 = 8$ 。接下来是题目 (2)。

933 ... $n=3$ 时, $S_3 = 1+4+6=11$, 右边 $11+1=12$, 左边 $a_4 \cdot 3/2 = 12 \rightarrow a_4 = 8$, 正确。没问题。所以 (1) 的结果是 $a_4 = 8$ 。接下来是题目 (2)。

934 ... $n=3$ 时, $S_3 = 1+4+6=11$, 右边 $11+1=12$, 左边 $a_4 \cdot 3/2 = 12 \rightarrow a_4 = 8$, 正确。没问题。所以 (1) 的结果是 $a_4 = 8$ 。接下来是题目 (2)。

935 ... $n=3$ 时, $S_3 = 1+4+6=11$, 右边 $11+1=12$, 左边 $a_4 \cdot 3/2 = 12 \rightarrow a_4 = 8$, 正确。没问题。所以 (1) 的结果是 $a_4 = 8$ 。接下来是题目 (2)。

936 ... $n=3$ 时, $S_3 = 1+4+6=11$, 右边 $11+1=12$, 左边 $a_4 \cdot 3/2 = 12 \rightarrow a_4 = 8$, 正确。没问题。所以 (1) 的结果是 $a_4 = 8$ 。接下来是题目 (2)。

937 ... $n=3$ 时, $S_3 = 1+4+6=11$, 右边 $11+1=12$, 左边 $a_4 \cdot 3/2 = 12 \rightarrow a_4 = 8$, 正确。没问题。所以 (1) 的结果是 $a_4 = 8$ 。接下来是题目 (2)。

938 **Instruction: (Difficulty Score: 0.1824)**

939 Nina想用她的零用钱买一个新的视频游戏。游戏的价格是50美元。Nina还了解到有10%的销售税。她每周收到10美元的零用钱, 并认为她可以存一半。Nina需要多少周才能用她的储蓄买到新的视频游戏?

940 Nina wants to buy a new video game with her allowance. The game costs \$50. She also found out there's a 10% sales tax. She receives \$10 per week and plans to save half of it. How many weeks will it take for Nina to save enough to buy the game?

941 **Response: (Length of Reasoning Trace: 340)**

942 <think> 嗯, 好的, 我现在得帮Nina算算她需要存多少周才能买到那个视频游戏。

943 Alright, let's calculate how many weeks Nina needs to save to buy that video game.

944 ...接下来, 她每周存多少钱。零用钱是10美元, 存一半的话, 就是10除以2, 等于5美元每周。她每周存5美元, 总需要的钱是55美元, 所以需要多少周呢?

945 ...Then, how much does she save weekly? She gets \$10 and saves half, so $\$10 / 2 = \5 per week. The total needed is \$55, how many weeks is that?

946 ...不过我得再检查一下步骤有没有错。首先计算总成本是否正确。

947 ...But I should double-check the steps. First, let's verify if the total cost is calculated correctly. </think>

948 Nina需要计算购买含税后的游戏总成本, 并确定需要多少周的储蓄才能达到这个金额。...最终, Nina需要\$11周的储蓄才能购买游戏。

949 Nina needs to calculate the total cost including tax and determine how many weeks of savings are required to reach that amount. ... In the end, Nina needs \$11 weeks of saving to buy the game.

950 **Instruction: (Difficulty Score: 0.0420)**

951 绿豆稀饭的颜色是怎样的?

952 What is the color of mung bean porridge?

953 **Response: (Length of Reasoning Trace: 501)**

954 <think> 嗯, 用户问的是绿豆稀饭的颜色是怎样的。首先, 我需要确认自己对绿豆稀饭的了解。

955 The user is asking what color mung bean porridge is. First, I need to confirm my understanding of it.

956 ...还有可能加入其他食材, 比如冰糖或百合, 但用户的问题没有提到这些, 所以暂时不考虑。

957 ...It may also include other ingredients like rock sugar or lily bulbs, but since the user didn't mention them, we'll set them aside for now.

958 ...总结一下, 绿豆稀饭的颜色通常是浅黄绿色或浅褐色, 具体取决于绿豆的烹饪程度、水质和烹饪方法。

959 ...To summarize, the color of mung bean porridge is usually light yellow-green or light brown, depending on how it's cooked, the water quality, and the method used. </think>

960 绿豆稀饭的颜色通常呈现为**浅黄绿色或浅褐色**。具体取决于以下几个因素: ...若追求颜色鲜绿, 可缩短熬煮时间或调节水的酸碱度。

961 The color of mung bean porridge is typically **light yellow-green or light brown**, depending on several factors: ... 4. **Additives**: Sugar or dried

962 fruits can affect the final color. To retain a green hue, shorten cooking time or slightly acidify the water

963 Figure 13: Case study of data selection by joint ranker in Chinese-DeepSeek-R1-Distill-data.

964

965

966

967

968

969

970

971

972 B LIMITATIONS

973
974 Despite the promising results of SELECT2REASON in enhancing long-CoT reasoning capabilities,
975 several limitations remain. First, due to constraints in computational resources and training costs, our
976 experiments are primarily conducted on medium-scale models, and the scalability of our method to
977 larger models remains to be explored. Second, the current study relies on existing instruction datasets,
978 while automated instruction evolution strategies to improve data quality are yet to be developed.
979 Finally, although our analysis reveals correlations between reasoning trace length, problem difficulty,
980 and rethinking behaviors, the interpretability of how long-CoT capabilities are activated and how
981 reflective reasoning emerges during SFT remains an open question for future work.

982 C BROADER IMPACT

983
984 Our work aims to improve the efficiency of instruction tuning for long-CoT reasoning by selecting
985 high-quality data subsets. This approach significantly reduces the need for large-scale supervised fine-
986 tuning on massive instruction datasets, thereby lowering computational cost, energy consumption, and
987 dependency on high-end hardware. By enabling stronger performance using only a fraction of training
988 data, SELECT2REASON contributes to the development of more sustainable and environmentally
989 friendly AI systems.

990 D THE USE OF LARGE LANGUAGE MODELS (LLMs)

991
992 During the completion of this thesis, the scenarios involving the use of LLMs included: using
993 code-completion tools to assist with experiments, and using ChatGPT to polish the draft after the
994 initial writing was completed. LLMs were not involved in any aspects such as the development of
995 research ideas, literature review, and so on.

996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025