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ABSTRACT

Text-guided sound separation supports flexible audio editing across media and
assistive applications, but existing models like AudioSep are too compute-heavy
for edge deployment. Neural Audio Codec-based models such as CodecFormer
and SDCodec are compute efficient but limited to fixed-class separation. We in-
troduce CodecSep, the first NAC-based model for on-device universal, text-driven
separation. CodecSep combines DAC compression with a transformer masker
modulated by CLAP-derived FiLM parameters. Across six open-domain bench-
marks under matched training/prompt protocols, CodecSep surpasses AudioSep
in separation fidelity (SI-SDR) while remaining competitive in perceptual quality
(ViSQOL) and matching or exceeding fixed-stem baselines (TDANet, Sudo rm-rf,
CodecFormer, SDCodec). In code-stream deployments, it needs just 1.35 GMACs
end-to-end—∼54× less compute (25× architecture-only) than spectrogram domain
separators like AudioSep—while remaining fully bitstream-compatible.

1 INTRODUCTION

We propose CodecSep, a text-conditioned universal sound separation (USS) framework that marries
the interpretability of prompt-driven extraction with the efficiency of neural audio codecs (NACs). To
our knowledge, CodecSep is the first system to bridge NACs with USS: it conditions a transformer
masker on CLAP text embeddings Wu et al. (2023) via Feature-wise Linear Modulation (FiLM)
Perez et al. (2018), and performs separation directly in the codec encoder latent space. This design
introduces semantic control while preserving the low compute footprint of codec representations,
enabling on-device and real-time deployment.
Flexible, real-time separation on bandwidth- or compute-constrained platforms remains challenging.
Classic models disentangle sources from complex mixtures Vincent et al. (2018) but are often
domain-specific (e.g., speech/music) and heavy. Recent text-guided systems like AudioSep Liu
et al. (2024) extend encoder–masker–decoder designs (e.g., Conv-TasNet-style Luo & Mesgarani
(2019)) by injecting semantics from BERT/CLAP through FiLM layers Devlin et al. (2019); Wu
et al. (2023); Perez et al. (2018). However, spectrogram/waveform-domain separators trained with
SI-SDR-style losses Luo & Mesgarani (2019); Le Roux et al. (2019) are compute-intensive and
sensitive to compression artifacts, often pushing inference to the cloud.
NACs such as SoundStream, Encodec, and DAC Zeghidour et al. (2022); Défossez et al. (2022);
Kumar et al. (2023) compress audio to discrete tokens with Residual Vector Quantization (RVQ),
providing compact, perceptually aligned latents useful for generation and conditioned synthesis
Borsos et al. (2023); Wang et al. (2023; 2024); Du et al. (2024). Prior codec–separation hybrids
(CodecFormer Yip et al. (2024b), SDCodec Bie et al. (2024)) are lightweight and high-fidelity
but target fixed stems (e.g., speech separation or speech vs. music vs. SFX); extending them to
open-domain, prompt-conditioned USS is non-trivial (cf. §2, para. 3).
CodecSep adopts a frozen DAC encoder–decoder backbone and inserts a FiLM-conditioned trans-
former masker that predicts a soft mask over codec latents. CLAP-derived text embeddings Wu et al.
(2023) are mapped to per-layer FiLM parameters, modulating the masker’s intermediate activations to
align the selected latent subspace with the query semantics. Operating on compact codec features cuts
memory traffic and MACs compared to spectrogram-domain pipelines, while preserving the codec’s
inductive biases (periodicity, timbre, transients). In doing so, CodecSep delivers interpretable, prompt-
guided separation with markedly lower compute without sacrificing separation fidelity. Crucially,
conditioning via text embeddings enables open-vocabulary operation of NAC-based separation.
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We evaluate CodecSep across: (i) in-domain text-guided separation on dnr-v2 Petermann et al. (2022);
(ii) cross-domain generalization on five open-domain corpora (AudioCaps Kim et al. (2019), ESC-50
Piczak, Clotho-v2 Drossos et al. (2020), AudioSet-eval Gemmeke et al. (2017), VGGSound Chen
et al. (2020a)); (iii) three prompt granularities (fixed-stem, generic three-stem, and fine-grained SFX
); (iv) paraphrase robustness; (v) an architectural ablation comparing decoder-style generation to our
transformer masker; (vi) a bandwidth-scaling study extending CodecSep to higher sampling rates; and
(vii) compute benchmarking on small GPUs. We benchmark against the SOTA text-guided baseline,
AudioSep Liu et al. (2024), under matched data and prompt protocols. Across all benchmarks,
CodecSep consistently surpasses AudioSep in SI-SDR while remaining competitive in ViSQOL, and
it degrades more gracefully under prompt paraphrasing. In deployment-typical code-stream settings,
CodecSep runs at just 1.35 GMACs end-to-end—∼54× less compute (and ∼25× architecture-only)
than AudioSep—while remaining fully compatible with bitstream interfaces.

2 RELATED WORK

Classical sound separation systems frequently adopt an encoder–masker–decoder design in which
an encoder produces STFT-like latents, a masker predicts source-specific masks, and a decoder
reconstructs waveforms. Representative models include DPTNet Chen et al. (2020b), SepFormer
Subakan et al. (2021), and TDANet Li et al. (2023), the last introducing a top-down attention scheme
that blends global and local attention to capture multi-scale acoustic structure. Beyond masking
pipelines, several works generate waveforms directly in the time domain (Wave-UNet Stoller et al.
(2018), Demucs Défossez et al. (2019); Défossez et al. (2021)) or operate fully in the complex STFT
domain with joint magnitude–phase modeling (MM-DenseLSTM Takahashi et al. (2018), DCCRN
Hu et al. (2020), Spleeter Hennequin et al. (2020)), underscoring the breadth of design choices.

Moving from domain-specific separation to universal sound separation (USS), supervised systems
typically rely on Permutation Invariant Training (PIT) Yu et al. (2017); Kavalerov et al. (2019),
while unsupervised methods such as MixIT Wisdom et al. (2020) learn directly from mixtures. Both
paradigms assume a fixed maximum number of sources and output all estimates indiscriminately,
requiring a post-hoc identification step (cf. Appendix A for detailed failure modes). A recent PIT-
trained USS model is Sudo rm-rf Tzinis et al. (2022a), a parameter-efficient time-domain separator that
is based on ConvTasNet-style encoder–masker–decoder architecture with adaptive encoder/decoder
modules. It downsamples input waveform to STFT-like latents before separation and is PIT-trained to
separate mixtures with up to four sources. Query-Guided Sound Separation (QSS) addresses this
limitation of PIT or MixIT models by conditioning extraction on external queries—visual cues, audio,
class labels, or text. Text queries are compact, expressive, and capture high-level semantics without
requiring additional reference signals. AudioSep Liu et al. (2024) follows this direction by injecting
BERT Devlin et al. (2019) or CLAP Wu et al. (2023) embeddings via FiLM Perez et al. (2018) at
intermediate masker layers to steer separation toward the query source. BiModalSS Mahmud et al.
(2024) extends AudioSep with attention-based conditioning and more efficient training strategies.
FiLM-conditioned variants of Sudo rm-rf Tzinis et al. (2022b; 2023) have also been explored for
class-guided separation using one-hot or multi-hot conditioning vectors; however, such label-based
conditioning does not extend naturally to open-domain text queries and cannot handle unseen classes.

Neural audio codecs (NACs) have recently been integrated into separation pipelines to improve
efficiency. CodecFormer separates directly in DAC Kumar et al. (2023) latent space with a transformer
trained using negative SI-SDR, and CodecFormer-EL Yip et al. (2024a) adds an embedding-level
objective to align separator outputs with encoder latents. SDCodec Bie et al. (2024) embeds separation
inside the codec by assigning dedicated RVQ branches to speech, music, and SFX and summing their
codes to form mixture representations. However, neither design trivially extends to open-domain,
prompt-conditioned USS: SDCodec’s hardwired, per-stem RVQ branches do not scale to open
vocabularies (adding branches explodes parameters, while a mixture-invariant reformulation collapses
into “three generic codecs” with no stem-specific RVQ specialization). MixIT-style training of
CodecFormer still presupposes a maximum number of sources, conflicting with universal separation.

3 METHOD

CodecSep adapts the 16 kHz DAC Kumar et al. (2023) codec backbone for text-driven universal
sound separation (USS). We use a transformer masker that estimates soft masks over codec latents
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Figure 1: An overview of CodecSep. (Left) The full pipeline for text-guided USS. (Right) The
integration of text conditioning into intermediate layers of transformer masker via FiLM layers.

and inject text conditioning via Feature-wise Linear Modulation (FiLM) Perez et al. (2018) using
CLAP text embeddings Wu et al. (2023). FiLM is applied to intermediate transformer activations so
the query semantics steer separation. Figure 1 (Left) shows the overall text-guided pipeline; Figure 1
(Right) highlights the FiLM-conditioned masker. Compared to STFT-domain AudioSep, operating in
compact codec latents yields markedly lower compute and is amenable to edge deployment.

3.1 DESIGN RATIONALE: FILM-CONDITIONED MASKING IN NAC LATENT SPACE

Descript Audio Codec (DAC) Backbone. We use DAC Kumar et al. (2023) as encoder–decoder.
Following Encodec/SoundStream, DAC uses fully-convolutional encoder/decoder with the periodic
Snake activation x+ sin2 x (replacing LeakyReLU) to bias periodic audio modeling. Residual vector
quantization (RVQ) compresses encoder outputs with factorized codes and ℓ2-normalized codebooks.
For a 1 s audio x(t) at Fs=24 kHz compressed to R=6000 bps, the encoder Enc(·) downsamples by
M=320 to T=Fs/M=75 frames of latents Z=[zt ∈Rd]Tt=1 (d: channel width) with r=R/T=80
bits/frame. RVQ allocates ri=r/Nq=10 bits across Nq=8 codebooks (size 210=1024). Given Z,
Quant(·) yields discrete codes A=[at∈ [1024]8], which map to embeddings et=

∑8
i=1 e

i
t; Dec(·)

upsamples E=[et] back to waveform y(t).

Text-guided Sound Separation in Spectrogram-domain (AudioSep):

x(t)
STFT−−−−→ X∈CF×Tspec

Spec(X,eτ )−−−−−−−−→ Ỹs = |M̂s|⊙|X| exp
(
∠X + ∠M̂s

) ISTFT−−−−→ ỹs(t),

where Spec(·, eτ ) is a FiLM-conditioned masker that predicts a magnitude mask |M̂s|∈ [0, 1]F×Tspec

(F : frequency bins, Tspec: spectrogram frames) and a phase residual ∠M̂s given the complex STFT
X of audio x(t) and text-embedding eτ .
Text-guided Sound Separation in NAC latent-domain (CodecSep):

x(t)
Enc(·)−−−−−→

DAC
Z∈Rd×T Mask(Z,eτ )−−−−−−−−→ Z̃s = Ms⊙Z

Dec(·)−−−−→
DAC

ỹs(t),

with frozen DAC backbone Enc(·), Dec(·) and a FiLM-conditioned transformer masker Mask(·, eτ )
that estimates mask Ms∈ [0, 1]d×T applied element-wise to DAC latent Z.
Why NAC latents vs. spectrograms. Operating on NAC latents Z slashes dimensionality while
preserving perceptual factors. For 1 s audio at 32 kHz, complex STFT with N=1024 and hop
size M=320 samples has Tspec ≈ 100 frames and F = 2 × 1024 (Re+Im) scalars per frame,
so F · Tspec ≈ 204,800. A 16 kHz DAC with width d=64 and the same M yields T ≈ 50 and
d · T=64× 50=3,200 (∼ 64× smaller), shrinking Q/K/V and MLP sizes and easing self-attention.
Similarly, for 32 kHz NACs like EnCodec, T ≈50 with d=128, so attention/MLPs still operate on
∼ 32× smaller latents than complex STFTs. Crucially, Enc(·) organizes Z on a discriminative,
perceptually aligned manifold , making selection (masking) easier than representation learning from
raw X . In spectrogram systems Spec(.), the separator must first learn a high-level latent from X (via
CNN/UNet) and then separate, coupling abstraction and masking and inflating parameters/compute.
Waveform separators Wave(.) such as Sudo rm-rf Tzinis et al. (2022a;b; 2023) likewise downsample
the waveform into STFT-like intermediate latents via 1D convolutions before encoding, resulting in
latents with similar dimensionality and thus inheriting the same challenges as spectrogram systems.
Masking over codec latents (leveraging the codec prior). Because the DAC codec induces a strong
semantic prior in its latent space via residual vector quantization (RVQ) and perceptual/adversarial
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training, we mask the codec latents rather than generate sources from scratch as in CodecFormer.
RVQ creates a coarse-to-fine hierarchy in Z=Enc(x) ∈ Rd×T : early stages capture coarse structure
(e.g., low-frequency content, timbre), while later stages refine residual detail (e.g., high-frequency
components, transients) Wang et al. (2023). We exploit this organization with a FiLM-conditioned
transformer masker that predicts a soft mask Ms ∈ [0, 1]d×T and applies it element-wise, yielding
source latent estimate Z̃s = Ms ⊙ Z. In contrast to learning a generator Gen(Z, eτ ) : Z→ Z̃s as in
CodecFormer, learning a mask Mask(Z, eτ ) : Z→Ms on the compact, semantically organized codec
manifold both exploits the codec prior more effectively and yields a more stable optimization that
converges faster. Moreover, masking in the denoised, low-dimensional codec space is fundamentally
easier than masking in the high-dimensional, noisy spectrogram domain. This selection-centric design
(i) constrains learning to modulation of existing latent content, (ii) avoids hallucination and reduces
leakage because no new signals are synthesized, and (iii) preserves long-horizon structure (periodicity,
timbre, transients) already organized by the codec, yielding stable, low-artifact separations.
Why FiLM inside the masker. Placing FiLM in the masker (not in Enc/Dec) targets the selection
step, preserves the codec manifold, and adds negligible overhead (two vectors per layer). Conditioning
is non-iterative (single forward pass), maintaining low latency for edge/server workflows.
Continuous latents Z vs. discrete codes A (and deployment path). For training and analysis, we
operate on continuous latents Z=Enc(x) ∈ Rd×T : (i) gradients flow cleanly through Mask(·, eτ )
and Dec(·) with a frozen codec (no straight-through estimators), yielding stable convergence; (ii)
RVQ pretraining regularizes Z so pitch, timbre, onsets/transients, and textures are hierarchically
organized, providing a richer, more disentangled signal for FiLM; and (iii) Z avoids run-to-run
variance from codebook utilization (e.g., late RVQ sensitivity, bitrate truncation), reducing the need
for special regularizers. For deployments with compressed bitstreams, we reconstruct embeddings by
codebook lookup and use the same masker:

A = [at ∈ [1024]Nq | t ∈ [T ]], et =

Nq∑
i=1

lookup
(
a
(i)
t

)
, (1)

E = [et]
T
t=1 ≈ Z, Ẽs = Ms ⊙ E, ỹs(t) = Dec(Ẽs) (2)

When a codes-out interface is desired, we re-quantize masked embeddings and optionally decode:

Âs = Quant(Ẽs), Ês = lookup(Âs), ỹs(t) = Dec(Ês).

By design, E≈Z at the operating bitrate and Dec(E) already yields high-fidelity reconstructions;
because our separator is a masker (selective modulation) rather than a generator, swapping Z→E
preserves the semantics needed for separation with no architectural change. While we report results
on Z to isolate separator performance and maintain stable optimization, we also evaluate the bitstream
path by feeding reconstructed embeddings E (codes-in) to the same trained masker without any
fine-tuning; performance remains competitive relative to the Z path. The residual gap can be
narrowed with light fine-tuning the masker on E or optimizing an embedding-consistency loss (cf.
CodecFormer-EL) in place of, or alongside, SI-SDR: Lemb =

∑
s ∥Ẽs − Zs∥1. In deployment, the

variant simply replaces the masker input with E and optionally re-quantizes for codes-out as,

x(t)
Quant(Enc(·))−−−−−−−−−−→

On Edge
A

lookup(A)−−−−−−−→
Codes In

E ≈ Z
Mask(E,eτ )−−−−−−−−→

On Server
Ẽs = Ms⊙E

Quant(Ẽs)−−−−−−−→
Codes Out

Âs.

Deployment advantages over audio-stream separators. In realistic pipelines, edge devices
already run a codec and transmit code streams rather than raw audio. Traditional spectrogram-based
Spec(.) and waveform-based Wave(.) separators, however, operate on the audio stream: they first
convert audio to STFT or STFT-like representations (often via 1D convolutions), and then must
decode → separate on X → re-encode, incurring additional latency and energy cost. In contrast,
CodecSep performs masking directly in the codec domain and can output code streams without any
decode–re-encode cycle. Concretely, with codec costs CEnc, CDec, spectrogram or audio-stream
separator (AudioSep) cost CSpec, and CodecSep masker cost CMask:

Compute Cost for Code-stream input: AudioSep = CDec+CSpec+CEnc, CodecSep = CMask.

We treat the codebook lookup Clookup and quantization CQuant costs as negligible (≈ 0) and omit the
CLAP text-encoder cost since it is shared across all models. Figure 2 illustrates a typical edge–server
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Figure 2: Typical edge–server deployment comparing compute requirements of conventional audio-
stream separators (audio in → codes out) versus CodecSep discrete inference (codes in → codes out).

deployment and compares compute requirements for conventional audio-stream separators (audio
in → codes out) versus CodecSep’s code-stream separator (codes in → codes out). As shown, the
CodecSep masker operates on Z/E with small (d, T ) where |Z| ≪ |X|, dramatically reducing
attention and MLP activations and enabling tighter batching and lower memory bandwidth. Interface
compatibility is immediate when only codes A are available: perform a lookup to obtain E, apply
the FiLM-conditioned masker, and optionally re-quantize to produce Âs. CodecSep thus eliminates
redundant decode/re-encode cycles in server workflows yielding low-latency, high-fidelity separation
at scale. See Appendix B for a full discussion covering all of the aforementioned rationale in §3.1.

3.2 OUR MODEL

Masking (Not Generating): FiLM-Conditioned Transformer masker over NAC Latents for
text-guided sound separation. We consider a mono mixture as x(t) =

∑
s∈S ys(t), where x(t) is

the observed waveform, S is the (unbounded) set of source classes/instances present, and ys(t) is the
waveform of source s. Passing x(t) through the frozen DAC encoder yields codec latents Z ∈ Rd×T

(d: channel width, T : latent frames). The masker Mask(·) operates in this latent space to predict an
element-wise mask that selects the target source. We adopt a CodecFormer-style transformer with
L=16 layers, width d=256, and Snake activations. Given a natural-language query τ (e.g., “dog
barking”, “speech and music”), we compute a CLAP text embedding eτ ∈ Rd. A lightweight query
network query(.) maps eτ to per-layer FiLM parameters (γl, βl) ∈ Rd for l ∈ {2, . . . , L−1}, applied
channel-wise to intermediate activations H l ∈ Rd×T : H̃ l = FiLM(H l; γl, βl) = γl ⊙H l +βl. The
final transformer output HL is then passed through a single 1D convolutional head to produce the
prompt-conditioned mask Ms ∈ [0, 1]d×T . We obtain source latents Z̃s = Ms ⊙ Z and decode with
the frozen codec decoder to get the waveform estimate ỹs = Dec(Z̃s), bypassing RVQ lookup.

Training Objective We supervise on mixtures with prompts spanning speech, music, and diverse
(possibly compositional) SFX. Besides per-source reconstruction, we encourage mixture consistency
by decoding the summed latent estimates x̃ = g(

∑
s Z̃s). The loss maximizes SI-SDR Luo &

Mesgarani (2019); Le Roux et al. (2019) for both sources and mixture: L = −
∑

s SI-SDR(ys, ỹs) −
SI-SDR(x, x̃). During training, DAC and the CLAP text encoder are frozen; we update only the
FiLM-conditioned masker Mask(·) and the query network query(·).

4 EXPERIMENTS

Datasets. We evaluate across a controlled multi-stem corpus and multiple open-domain benchmarks.
For in-domain experiments, we adapt Divide and Remaster v2 (dnr-v2) Petermann et al. (2022) from
fixed-label three-stem separation to universal, prompt-driven separation by replacing source labels
with natural-language queries. Speech and music are queried with broad category prompts (e.g.,
“speech”, “music”), while SFX stems are queried using long-form, compositional prompts (≥ 2
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Table 1: Results: Separation Performance, Universal Sound Separation (dnr-v2-test)

Model Metric (↑) Music Speech Sfx

AudioSep SI-SDR −2.5±4.06 4.9±4.21 −0.3±5.39

(zero-shot) ViSQOL 2.9±0.63 3.1±0.56 2.6±0.77

Bimodal SI-SDR −6.8±2.73 1.8±2.78 −6.36±3.57

(zero-shot) ViSQOL 2.5±0.57 2.6±0.51 2.3±0.72

AudioSep + dnr-v2 SI-SDR −5.6±2.89 7.7±3.0 −4.7±3.68

ViSQOL 2.6±0.57 2.5±0.37 2.3±0.7

Sudo rm-rf + FiLM + dnr-v2 SI-SDR −6.7±2.62 2.0±2.76 −6.6±3.71

ViSQOL 2.7±0.59 2.9±0.45 2.3±0.72

CodecSep + dnr-v2 SI-SDR 1.2±3.29 10.0±2.92 0.9±4.22

ViSQOL 2.9±0.57 3.2±0.45 2.3±0.73

CodecSep + dnr-v2 SI-SDR −0.2±3.55 8.3±2.60 −1.0±4.20

(codes in : codes out, zero-shot) ViSQOL 2.5±0.52 3.0±0.44 2.3±0.67

CodecSep + dnr-v2 SI-SDR −6.8±2.77 2.0±2.84 −6.8±3.83

(ablate Masker) ViSQOL 2.5±0.58 2.6±0.50 2.1±0.74

overlapping sources) synthesized from FSD50K’s hierarchical annotations Fonseca et al. (2022),
combining fine-grained classes with parent categories (e.g., “dog barking, Animal, engine rumbling,
motor vehicle”). To assess cross-domain generalization, we form three-source mixtures on AudioCaps
Kim et al. (2019) (used for both training and testing in our open-domain setting) and construct test-
only three-source mixtures from ESC-50 Piczak, Clotho-v2 Drossos et al. (2020), AudioSet-eval
Gemmeke et al. (2017), and VGGSound Chen et al. (2020a). Dataset construction details, clip
durations, split statistics, and segmentation rules are provided in the Appendix C.

Evaluation. We compare CodecSep against representative spectrogram-, waveform- and codec-
domain baselines—TDANet Li et al. (2023); Pons et al. (2024), Sudo rm-rf Tzinis et al. (2022a),
CodecFormer Yip et al. (2024b), SDCodec Bie et al. (2024), and the text-guided audio stream
separators AudioSep Liu et al. (2024), BiModalSS Mahmud et al. (2024) and Sudo rm-rf + FiLM
Tzinis et al. (2022b; 2023). We report objective signal fidelity via scale-invariant signal-to-distortion
ratio (SI-SDR) Luo & Mesgarani (2019); Le Roux et al. (2019) and perceptual quality via ViSQOL
Chinen et al. (2020), which measures spectro–temporal similarity between the estimate x̃ and
reference x and maps it to a 1–5 MOS-LQO scale. Following prior work (e.g., SDCodec Bie et al.
(2024)), we use ViSQOL as a proxy MOS score for perceptual listening quality and complement it
with a human MOS-LQS study comparing real-world outputs from CodecSep (trained on dnr-v2) and
the publicly released AudioSep. To quantify efficiency, we report multiply–accumulate operations
(MACs), inference time, memory footprint using torchinfo1 under matched input durations (2 s)
and batching (batch size 2) on a 24GB NVIDIA A30 GPU. Details on evaluation workflow for each
benchmark are deferred to Appendix D.

Training. Unless otherwise stated, the DAC codec Kumar et al. (2023) and CLAP text encoder Wu
et al. (2023) remain frozen; we train the FiLM-conditioned transformer masker and the lightweight
query network end-to-end with an Adam optimizer Kingma & Ba (2017) and a plateau-based learning-
rate schedule Mukherjee et al. (2019). We produce two variants of CodecSep, trained separately
on dnr-v2 and on AudioCaps, to study distributional effects; we denote them with the suffixes
“+dnr-v2” and “+AudioCaps”. For fair comparison, the 3-stem versions of TDANet, Sudo rm-rf, and
CodecFormer are re-trained from scratch on dnr-v2 using our setup. AudioSep is evaluated both as
the publicly released checkpoint and when re-trained under matched protocols. We similarly re-train
Sudo rm-rf+FiLM under the same matched settings. Pretrained checkpoints of BiModalSS and
SDCodec are used as released by the authors. To reflect realistic deployments where signals traverse
compression pipelines, inputs to non-codec baselines are passed through a full-band stereo-capable
48 kHz EnCodec during both training and inference. Full hyper-parameters, iteration schedules, batch
configurations, and hardware details are deferred to the Appendix E.

1https://github.com/tyleryep/torchinfo
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4.1 RESULTS AND DISCUSSIONS

Tables 1–6 present universal sound separation results, prompt–granularity analyses, architectural
ablations, cross-dataset generalization, paraphrase robustness, and full inference complexity under
matched training/evaluation protocols. Table 1 reports dnr-v2 test results for speech, music, and
SFX: text-guided models use generic prompts for speech/music and ground-truth compositional
captions for SFX; we also include a masker ablation to isolate the role of the Transformer masker.
Table 2 studies SFX prompt granularity across three regimes—(i) fixed-stem, non-text baselines
(TDANet, CodecFormer, SDCodec), (ii) generic 3-stem prompts ({music, speech, sfx}), and (iii) a
universal setup with fine-grained, compositional SFX prompts—thereby aligning input conditions
for fair comparison with fixed-head systems. Table 3 isolates architecture: decoder-style generation
(CodecFormer) vs. an unguided 3-stem masker variant and its text-guided counterpart, all operating in
the codec latent space. To assess out-of-domain generalization, Table 4 benchmarks on five additional
open-domain corpora (ESC-50, Clotho-v2, AudioSet, VGGSound, AudioCaps) with mixtures of
three randomly sampled sources and prompts drawn from captions (not tied to fixed labels).. Table 6
probes prompt paraphrasing robustness by replacing the generic speech/music prompts with unseen
synonymic variants at inference (zero-shot paraphrase test). Finally, Table 5 compares end-to-end and
architecture-only GMACs for spectrogram-domain separation versus codec-latent masking, including
the practical code-stream case. All models are evaluated against the original (uncompressed) ground
truth; our methods are highlighted in bold; and we report mean and standard deviation (1σ).

Sound Separation Performance on dnr-v2 (cf. Table 1). CodecSep+dnr-v2 outperforms both
pretrained AudioSep (zero-shot) and retrained AudioSep+dnr-v2 across all categories, with sizable
SI-SDR gains in speech (10.0 vs. 4.9/7.7 dB), music (1.2 vs. −2.5/−5.6 dB), and SFX (0.9 vs.
−0.3/−4.7 dB). In ViSQOL, CodecSep matches or exceeds AudioSep in speech and music while
slightly trailing on SFX, likely reflecting differences in SFX prompt distributions (AudioSep’s diverse
training vs. CodecSep’s compositional SFX prompts from dnr-v2). Importantly, our bitstream-native
variant—CodecSep+dnr-v2 (codes in: codes out, zero-shot)—evaluates the CodecSep+dnr-v2 masker
directly on reconstructed embeddings E from code streams (§3.1, para. 6–7) without any fine-tuning:
it incurs a modest drop relative to the continuous-latent path (about 1–2 dB SI-SDR across sources;
small ViSQOL deltas for music/speech and parity on SFX), yet still surpasses AudioSep+dnr-v2
on SI-SDR for all sources (e.g., music: −0.2 vs. −5.6 dB; speech: 8.3 vs. 7.7 dB; SFX: −1.0 vs.
−4.7 dB). Compared to pretrained AudioSep (zero-shot), the codes-in:codes-out variant improves
SI-SDR on speech/music but lags on SFX SI-SDR and ViSQOL. These results indicate that a
deployment-friendly, no-finetuning bitstream path is already competitive; as discussed in §3.1, para.
6 , light fine-tuning on E or an embedding-consistency loss can close the residual gap. As part of
our ablation, the lightweight CodecSep+dnr-v2 (ablate Masker) removes the transformer masker
and applies FiLM directly to the encoder; it attains SI-SDR comparable to AudioSep+dnr-v2 with
better perceptual speech quality, but overall separation quality drops due to FiLM perturbing the
mixture latents held by the encoder. Beyond AudioSep, CodecSep also outperforms the USS-
pretrained BiModalSS model and the retrained text-conditioned Sudo rm-rf + FiLM baseline. The
heavier attention-based conditioning used in BiModalSS does not generalize well to the open-domain
mixtures in dnr-v2, leading to degraded performance. CodecSep also outperforms the Sudo rm-rf +
FiLM model trained under the same universal setting. This gap is likely due to two factors. First,
continuous CLAP embeddings provide far richer semantic conditioning than the fixed one-hot or
multi-hot vectors that Sudo rm-rf + FiLM was designed for, causing the model to struggle with
open-domain prompts. Second, applying FiLM across all U-Conv blocks while using only a single
Conv1d layer for audio encoding can destabilize internal representations, especially when conditioned
with high-dimensional continuous embeddings. Since AudioSep also outperforms both by a large
margin, we use AudioSep as the primary baseline in our further experiments.

Effect of SFX Prompt Granularity during training. We evaluate three regimes: (i) fixed-stem
baselines without text guidance (TDANet, Sudo rm-rf, CodecFormer, SDCodec) (cf. Table 2), (ii)
generic 3-stem prompts (“music/speech/sfx”) (cf. Table 2), and (iii) universal prompting that retains
generic cues for speech/music but uses fine-grained, compositional SFX descriptions (cf. Table 1).
For (ii) and (iii), we train and evaluate separate versions of both CodecSep and AudioSep on each
prompt setting. Across settings, CodecSep matches or exceeds fixed-stem baselines on SFX while
maintaining comparable speech and music quality, and its USS variant outperforms Sudo rm-rf across
all stems with modest margins (cf. Table 2). Under matched generic-prompt training/evaluation,
CodecSep remains robust and surpasses spectrogram-domain AudioSep, indicating that effective
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Table 2: Results: Impact of SFX Prompt Granularity on Universal Sound Separation (dnr-v2-test)

Model Metric (↑) Music Speech Sfx

3-Stem: Fixed stem baselines (no text-guidance)

TDANet SI-SDR 1.8±3.55 10.2±2.91 1.4±4.90

ViSQOL 2.9±0.58 3.1±0.43 2.4±0.72

Sudo rm-rf SI-SDR −0.9±4.01 9.0±2.60 0.6±4.74

ViSQOL 2.7±0.59 2.9±0.45 2.3±0.72

CodecFormer SI-SDR −5.7±3.44 2.3±2.32 −6.5±4.36

ViSQOL 2.2±0.47 2.5±0.49 2.1±0.67

SDCodec SI-SDR 1.9±3.68 11.3±2.98 1.8±4.08

ViSQOL 3.0±0.56 3.5±0.40 2.6±0.73

3-Stem: {“music”,“speech”,“sfx”} as generic prompt

AudioSep SI-SDR −2.5±4.06 4.9±4.21 −6.7±4.73

(zero-shot) ViSQOL 2.9±0.63 3.1±0.56 2.1±0.68

AudioSep + dnr-v2 SI-SDR −6.2±2.77 7.7±3.11 −2.1±3.90

ViSQOL 2.6±0.57 2.5±0.37 2.4±0.74

CodecSep + dnr-v2 SI-SDR −7.7±2.84 4.6±2.48 0.6±4.15

ViSQOL 2.5±0.55 2.7±0.49 2.4±0.70

Table 3: Results: Architectural advantages in using CodecFormer decoder as masker (dnr-v2-test)

Model Metric (↑) Music Speech Sfx

CodecFormer SI-SDR −5.8±3.44 2.3±2.32 −6.5±4.36

ViSQOL 2.2±0.47 2.5±0.49 2.1±0.67

CodecSep + dnr-v2 SI-SDR 1.2±3.35 10.0±2.91 0.9±4.18

(unguided, 3-stem) ViSQOL 2.8±0.55 3.1±0.45 2.5±0.72

CodecSep + dnr-v2 SI-SDR 1.2±3.29 10.0±2.92 0.9±4.22

(text-guided) ViSQOL 2.9±0.57 3.2±0.45 2.3±0.73

separation does not hinge on carefully crafted prompts (cf. Table 1– 2). Moreover, replacing the “sfx”
label with detailed SFX prompts consistently sharpens SFX extraction and, importantly, improves
speech and music stems as well—suggesting that richer SFX supervision enhances overall scene
disentanglement (cf. Table 1). While these controlled studies cover multiple prompt granularities,
we expect additional gains from training on larger, more diverse corpora with a spectrum of prompt
specificities, which we leave for future work.

Why use a Transformer masker instead of a decoder?(cf. Table 3). We compare (i) CodecFormer
(decoder-style source generation), (ii) CodecSep (unguided, 3-stem) which uses the CodecFormer
Transformer as a masker over codec latents, and (iii) CodecSep (text-guided). The results on dnr-
v2-test exhibit two clear trends. First, replacing decoder-style generation with masking consistently
strengthens separation across music, speech, and SFX. This aligns with our design rationale: in
the DAC latent domain, the masker modulates existing, semantically structured content instead of
synthesizing new signals, which (a) reduces artifacts and cross-talk leakage, (b) preserves long-
range periodicity/timbre and transient organization already encoded by the codec, and (c) stabilizes
optimization compared to end-to-end generation. Second, adding text guidance yields a further
uniform improvement. The masker formulation concentrates Transformer capacity on selection
(“where/how much” to pass) rather than generation (“what” to produce).

Further benchmarking on ESC-50, Clotho-v2, AudioSet, VGGSound, & AudioCaps (cf. Table 4).
Extending beyond dnr-v2, we evaluate both systems on five additional open-domain benchmarks span-
ning environmental sounds (ESC-50), audio captioning-style corpora (Clotho-v2, AudioCaps), weakly
labeled web-scale audio (AudioSet), and visually grounded audio (VGGSound). Under matched
training data and prompt protocols, CodecSep+dnr-v2 consistently outperforms AudioSep+dnr-v2
across all five datasets in both separation fidelity and perceptual quality.
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Full inference complexity (cf. Table 5). Across all six dimensions of computational analy-
sis—GMACs, inference time, parameter count, forward/backward memory, and full memory foot-
print—CodecSep demonstrates a substantial efficiency advantage over spectrogram-domain baselines,
especially in the deployment-realistic code-stream mode. In terms of hardware-agnostic compute
(cf. Table 5a ), CodecSep requires only 1.35 GMACs when operating on codec bitstreams, compared
to 73.6 GMACs for AudioSep and 56.5 GMACs for Sudo rm-rf, yielding roughly 54× and 40×
reductions, respectively (and 25×/12× under the architecture-only comparison). These savings trans-
late directly to latency (cf. Table 5b): CodecSep achieves 0.19 s inference in code-stream mode—8×
faster than AudioSep and approximately 10× faster than Sudo rm-rf—despite having a moderately
larger parameter count. Parameter efficiency mirrors this trend (cf. Table 5d): when fed code streams,
CodecSep uses only 16.3M parameters, markedly smaller than AudioSep (112.8M) and Sudo rm-rf
(78.8M), reflecting its lightweight, masker-only design. Memory usage shows the most pronounced
differences. For forward/backward activations (cf. Table 5e), CodecSep requires just 28 MB in
code-stream mode, compared to 1.58 GB for AudioSep and 2.84 GB for Sudo rm-rf—over 50× to
100× reductions. The overall footprint follows suit (cf. Table 5f): full memory usage for CodecSep
is only 76.5 MB, versus 2.03 GB (AudioSep) and 3.15 GB (Sudo rm-rf), yielding roughly 27× and
41× reductions, respectively. waveforms (audio-stream input), where CodecSep must additionally
run the codec encoder/decoder, it still consumes less memory than Sudo rm-rf (1.14 GB vs. 2.05
GB), demonstrating that codec compute, while non-trivial, is not the dominant bottleneck. These
results collectively indicate that code-stream processing—already standard in real systems—is where
CodecSep is maximally efficient, achieving extreme reductions in compute, memory, and latency.
This makes CodecSep uniquely suited for scalable deployment on edge–server pipelines, where audio
is almost always exchanged as codec bitstreams rather than raw waveforms.
Additional experiments (cf. Appendix F–J) . For readability, five extended studies are deferred
to the Appendix, which also details data construction, prompt protocols (generic vs. universal and
paraphrased variants), training/evaluation splits, and metrics. (i) Robustness to prompt paraphrasing
(cf. Appendix F): We test lexical robustness by replacing the generic speech and music prompts
with three unseen paraphrases each (e.g., “spoken voice,” “people talking”; “instrumental music,”
“band playing”). This zero-shot paraphrase test requires models trained on generic labels to handle
synonymic descriptors at inference. While both CodecSep+dnr-v2 and AudioSep+dnr-v2 degrade
under paraphrasing, CodecSep remains consistently stronger (Table 6). This experiment focuses on
lexical variants; paraphrases involving temporal structure (e.g., “applause follows a song”) are left
for future work. (ii) Generalization across open-domain datasets (cf. Appendix G): On AudioCaps
(derived from AudioSet), the spectrogram baseline AudioSep benefits from distributional alignment
and attains the strongest absolute scores, yet CodecSep+dnr-v2 generalizes competitively—surpassing
AudioSep+dnr-v2 in SI-SDR at comparable ViSQOL (cf. Table 7). When both are retrained on
AudioCaps, CodecSep+AudioCaps again outperforms AudioSep+AudioCaps in separation quality.
The same trend holds on the more challenging dnr-v2 test set, where mixtures often contain speech,
music, and multiple overlapping SFX; both models drop in absolute performance, but CodecSep
retains its advantage in SI-SDR. (iii) Relative–gain summaries (cf. Appendix H): We report percent
improvements of CodecSep over AudioSep under matched training data and prompt settings; Codec-
Sep shows large SI-SDR gains on dnr-v2 with positive (though smaller) gains under paraphrased
prompts, and consistent improvements across ESC-50, Clotho-v2, AudioSet, VGGSound, and Audio-
Caps, with modest ViSQOL deltas (cf. Table 8). (iv) Higher bandwidth (cf. Appendix I): Replacing
the frozen 16 kHz DAC with a 48 kHz, stereo-capable EnCodec leaves the masking architecture
unchanged but increases latent-frame count and high-frequency detail, making separation harder and
reducing SI-SDR/ViSQOL (Table 9). At higher Fs, gains depend mainly on backbone capacity and
data rather than architectural modifications. Evaluations of 24 kHz and 44.1 kHz DAC variants show
the same pattern: with fixed masker capacity, performance declines monotonically as sampling rate
increases, reflecting the difficulty of wide-bandwidth separation, while DAC consistently outperforms
EnCodec at matched bandwidths. (v) Reconstruction study: We probe source leakage with a single-
source reconstruction diagnostic on dnr-v2 : each input contains one target source and models are
either prompted with the matching caption (text-guided) or routed to the corresponding fixed head
(non–text-guided). We also report mixture reconstruction by summing predicted source stems for a
mixture and comparing to the original. This is a leakage/consistency check—not a primary separation
metric; full setup/results are in Appendix J (cf. Table 10).
Subjective evaluation (MOS–LQS). We ran a human evaluation test with n=20 participants on
20 dnr-v2 3-stem test mixtures, comparing paired outputs from CodecSep+dnr-v2 and the official
AudioSep model using fixed speech/music prompts and per-clip sfx prompts. Raters scored each
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Table 4: Results: Benchmarking on ESC-50, Clotho-v2, AudioSet, VGGSound, AudioCaps

Model Metric (↑) ESC-50 Clotho-v2 AudioSet VGGSound AudioCaps

AudioSep SI-SDR −7.8±14.46 −8.6±17.0 −7.6±11.42 −7.0±12.65 −6.4±11.48

+ dnr-v2 ViSQOL 2.3±1.12 2.1±1.08 2.1±1.00 2.2 ± 1.10 2.3±1.08

CodecSep SI-SDR −5.9±11.55 −6.0±11.10 −6.4±10.53 −6.1±12.12 −6.1±11.62

+ dnr-v2 ViSQOL 2.3±1.13 2.3±1.09 2.2±1.0 2.3±1.11 2.2±1.16

Table 5: Full Inference Compute Benchmarking Across Six Settings on 24GB NVIDIA A-30 GPU

(a) Inference GMACs (↓)

Model Audio Stream I/O Code Stream I/O Architecture-only
AudioSep 33.5 73.6 33.5
Sudo rm-rf 16.44 56.54 16.44
CodecSep 41.45 1.35 1.35

Codec GMACs: Enc=12.28, Dec=27.82

(b) Inference Time (s) (↓)

Model Audio Stream I/O Code Stream I/O Architecture-only
AudioSep 0.33 1.63 0.33
Sudo rm-rf 0.51 1.81 0.51
CodecSep 1.49 0.19 0.19

Codec Inference Times (s): Enc=1.16, Dec=0.14

(c) Parameter count (in million) (↓)

Model Audio Stream I/O Code Stream I/O Architecture-only
AudioSep 39 112.8 39
Sudo rm-rf 5 78.8 5
CodecSep 90.1 16.3 16.3

Codec Parameter Count (in million): Enc=21.5, Dec=52.3

(d) Parameter-only Memory Footprint (MB) (↓)

Model Audio Stream I/O Code Stream I/O Architecture-only
AudioSep 156.13 447.62 156.13
Sudo rm-rf 20.07 311.25 20.07
CodecSep 339.89 48.4 48.4

Codec Parameter-only Memory Footprint (MB): Enc=85.1, Dec=206.39

(e) Forward/Backward Pass Memory Footprint (MB) (↓)

Model Audio Stream I/O Code Stream I/O Architecture-only
AudioSep 804.3 1580.6 804.3
Sudo rm-rf 2032.13 2836.43 2032.13
CodecSep 804.4 28.06 28.06

Codec Forward/Backward Pass Memory Footprint (MB): Enc=310.48, Dec=465.82

(f) Full Memory Footprint (MB) (↓)

Model Audio Stream I/O Code Stream I/O Architecture-only
AudioSep 960.43 2028.22 960.43
Sudo rm-rf 2052.2 3147.68 2052.2
CodecSep 1144.25 76.46 76.46

Codec Full Memory Footprint (MB): Enc=395.58., Dec=672.21

stem independently in randomized order on the MOS–LQS scale (1=bad, 5=excellent); we report
mean ± 1σ. Overall, CodecSep scored 3.34±1.00 vs. AudioSep 2.61±1.04. By source, CodecSep
achieved 3.17±1.01 (music), 3.37±0.97 (sfx), and 3.49±1.00 (speech), while AudioSep obtained
2.49±0.95, 2.84±1.16, and 2.50±1.02, respectively. These outcomes align with objective trends
(SI-SDR/ViSQOL) and indicate consistent perceptual gains for CodecSep. Paired model outputs and
reference stems are included in the supplementary materials for side-by-side listening.
Extension to multi-modal prompting. Because conditioning enters only via a fixed-dimensional
query embedding eτ that drives FiLM in the masker, the architecture is agnostic to the prompt
modality. Concretely, one can replace the text encoder with (i) an audio encoder to accept audio
prompts

(
eaud
τ

)
, (ii) an image/vision–language encoder (e.g., CLIP) to accept image prompts

(
evis
τ

)
,

or (iii) a lightweight fusion (e.g., gated additive or attention pooling) of
(
etext
τ , eaud

τ , evis
τ

)
to support

mixed prompts—all without modifying the masker or the codec.

5 CONCLUSION

CodecSep advances text-guided universal sound separation by operating directly in NAC latents with
a FiLM-conditioned Transformer masker (not a decoder), outperforming audio stream separators like
AudioSep across dnr-v2 and five open-domain datasets (AudioCaps, ESC–50, Clotho–v2, AudioSet,
VGGSound) under matched training/prompt protocols. In code-stream deployments, it needs just
1.35 GMACs end-to-end—∼54× less compute (25× architecture-only) than spectrogram domain
separators like AudioSep—while remaining fully bitstream-compatible. Ablations indicate that
DAC latents are sufficiently structured that masking over them yields stronger separation than
decoding/generating sources from the latents; a MOS–LQS study corroborates perceptual gains. We
also demonstrate a codes in: codes out route that operates on reconstructed embeddings without
fine-tuning, highlighting deployment readiness. Looking ahead,we will broaden prompt coverage
with temporal/relational and referring-expression cues, extend separation to higher bandwidths and
stereo/spatial audio (e.g., 48 kHz stereo Encodec; HO–DirAC Hold et al. (2024), SpatialCodec Xu
et al. (2024)), and support audio/image or mixed prompts. The predicted masks and FiLM responses
also reveal how CodecSep selectively activates latent components, offering a natural avenue for future
interpretability work via mask visualization and reconstruction-consistency checks. We discuss the
limitations of our work in Appendix K. We provide supplementary code to facilitate reproducibility.
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A FAILURE MODES OF PIT AND MIXIT FOR UNIVERSAL SOUND
SEPARATION

Permutation-Invariant Training (PIT) and Mixture-Invariant Training (MixIT) have historically been
effective for closed-domain separation tasks where the number of underlying sources is known,
fixed, or varies within a narrow, well-defined range. However, their underlying assumptions lead
to structural limitations when applied to open-domain universal source separation (USS), where
mixtures may contain an arbitrary and potentially large number of heterogeneous sound events. In
this section, we summarize the key failure modes observed when training with PIT/MixIT to extend
fixed-stem models to open-domain mixtures.

A core limitation of PIT/MixIT is the requirement to specify a maximum number of output sources,
denoted by N . During training, the model produces exactly N outputs for every mixture, and the
PIT or MixIT objective establishes a correspondence between these outputs and the underlying
reference sources (or intermediate MixIT partitions). This design is brittle in scenarios where the
true number of sources varies widely. When the mixture contains more than N sources—a frequent
occurrence in open-domain audio—the model has no mechanism to create additional outputs. Instead,
it suffers source collision and collapses multiple sources into a single output stem, resulting in
unavoidable leakage, loss of fine structure, and a sharp degradation in separation quality. The post-
hoc identification step cannot recover the missing sources, because the model never produced separate
representations for them in the first place; those sources simply do not exist within the model’s output
space.

Conversely, when the mixture contains fewer than N sources, the model is still obligated to return N
outputs. This mismatch introduces new problems: several outputs correspond to no actual source
and become “inactive” stems, while others may capture residual background energy or hallucinated
content. These false positives degrade metrics such as SI-SDR and create ambiguity during evaluation
because the model does not encode which stems are meant to be meaningful. Such outputs also make
deployment difficult, as downstream systems must decide which stems to trust and which to ignore.

The reliance on a fixed maximum number of sources N also places a heavy burden on both training
stability and computational cost. As N increases, the permutation space in PIT expands combinatori-
ally, and MixIT assignments become increasingly complex, making training slow, unstable, and in
many cases prone to divergence. In open-domain datasets such as dnr-v2, mixtures may contain eight
or more concurrent sound events, forcing PIT/MixIT baselines to adopt impractically large values of
N to avoid source collisions. In practice, such configurations are computationally prohibitive and
empirically unreliable.

These limitations collectively illustrate why PIT and MixIT, despite their historical success in speech
separation and other closed-set tasks, are poorly suited for open-domain universal separation. Their
fixed-output architecture is fundamentally mismatched to real-world mixtures that contain highly
variable and unpredictable numbers of sources. In contrast, CodecSep bypasses this bottleneck
entirely through free-form text-guided inference: the model extracts only the requested source
category, emits no unused stems, and scales naturally to mixtures with arbitrary levels of overlap.
This flexibility enables CodecSep to support both closed-set and open-domain use cases, while also
providing a foundation for future extensions to fine-grained extraction of individual speaker stems,
instrument stems, or sound-effect stems.
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B DESIGN RATIONALE: FILM-CONDITIONED MASKING IN NAC LATENT
SPACE

Problem setup and pipeline contrast. Let x(t) ∈ R be a mono mixture with sources {ys(t)|s ∈
S}, where x(t) is expressed as x(t) =

∑
s∈S ys(t).

Spectrogram-domain (AudioSep):

x
STFT−−−→ X∈CF×Tspec

g(X,eτ )−−−−−→ Ỹs = |M̂s| ⊙ |X| exp(∠X + ∠M̂s)
ISTFT−−−→ ỹs(t),

where g(·, eτ ) denotes a FiLM-conditioned, complex-domain spectrogram separator that predicts a
magnitude mask |M̂s| ∈ [0, 1]F×Tspec and a phase residual ∠M̂s, conditioned jointly on the mixture
spectrogram X (obtained by the STFT of x) and the text embedding eτ . The predicted magnitude
mask and phase residual are then applied element-wise to form the source spectrogram Ỹs which is
subsequently transformed back to the time domain via ISTFT to obtain ỹs(t).

CodecSep (NAC latent-domain):

x
Enc(·)−−−−−→ Z∈Rd×T Mask(Z,eτ )−−−−−−−−→ Z̃s = Ms ⊙ Z

Dec(·)−−−−→ ỹs(t),

with a frozen DAC backbone Enc(·), Dec(·), and a FiLM-conditioned transformer masker
Mask(·, eτ ) that estimates a soft mask Ms ∈ [0, 1]d×T conditioned on both the codec latents
Z = Enc(x) and the text embedding eτ . The predicted mask Ms is applied element-wise to Z to
produce source-specific latents Z̃s = Ms ⊙ Z, which are subsequently decoded by Dec(·) to obtain
the separated waveform ỹs(t).

Dimensionality reduction and compression. Operating on NAC latents Z slashes dimensionality
while preserving perceptual factors. For 1 s audio at 32 kHz, complex STFT with N=1024 and
hop size M=320 samples has Tspec ≈ 100 frames and F = 2 × 1024 (Re+Im) scalars per frame,
so F · Tspec ≈ 204,800. A 16 kHz DAC with width d=64 and the same M yields T ≈ 50 and
d · T=64× 50=3,200 (∼ 64× smaller), shrinking Q/K/V and MLP sizes and easing self-attention.
Similarly, for 32 kHz NACs like EnCodec, T ≈50 with d=128, so attention/MLPs still operate on
∼ 32× smaller latents than complex STFTs.

B.1 WHY NAC LATENTS (VS. SPECTROGRAMS) AND HOW THE CODEC PRIOR ENABLES
SEPARATION?

STFT vs. NAC encoding. The STFT is a linear projection from x(t) to X ∈ CF×T and
does not explicitly preserve or organize the intrinsic semantic structure of audio. Consequently,
spectrogram-based separators (e.g., AudioSep) require an additional learned encoder–decoder (typ-
ically CNN/ResUNet) to first compress X into high-dimensional latent features and then decode
spectrogram masks that are discriminatively trained for separation. This couples semantic abstraction
and separation into one network, increasing parameters and MACs and forcing the model to learn
structure “from scratch” in a redundant, noisy representation.

NAC encoder as a semantic prior. Neural audio codecs (DAC) are trained with perceptual, adver-
sarial, and codebook objectives that encourage the encoder Enc(·) to map x into compact, structured
latents:

Enc(.) : x 7→ Z ∈ Rd×T .

These latents lie on a discriminative compressed manifold Mlatent in which semantically meaningful
factors (e.g., pitch, timbre, transients) are disentangled and aligned for downstream use. In our system,
we operate directly on the continuous latents Z (from Enc), use a FiLM-conditioned transformer
masker to predict a separation mask Mk from a textual query τk, and form the estimate

Z̃k = Mk ⊙ Z, ỹk = Dec(Z̃k),

thereby leveraging the codec’s structured manifold for masking instead of learning a new representa-
tion.

Separation mapping in latent vs. spectrogram space. In CodecSep, the separator learns

Mask(., .) : Z ∈ Mlatent → Ẑk,
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which is easier to optimize because the input is denoised, compressed, and semantically organized by
the codec. In contrast, spectrogram models must learn

g(., .) : X ∈ CF×T → Ŷk,

over a noisier, higher-dimensional space without semantic compression.

Hierarchical (RVQ) structure that benefits separation. The codec applies Residual Vector
Quantization (RVQ) to Z, producing discrete codes A = [at ∈ [K]Nq ]Tt=1 with K = 1024 and Nq

quantizers. Codebook lookup yields embeddings

et =

Nq∑
i=1

lookup(a
(i)
t ), E = [et|t ∈ [T ]] ≈ Z,

and Dec(E) reconstructs the waveform. The RVQ cascade induces a natural coarse-to-fine hierarchy:
the first quantizer captures coarse structure (e.g., low-frequency content, speaker/instrument timbre,
global acoustic traits), while later quantizers refine residual details (e.g., high-frequency components,
onsets/transients, background textures). This hierarchy mirrors the discriminative cues needed for
separation and is directly exploitable by a mask-based transformer.

Loss-induced organization of the latent space. The DAC objective shapes Z using complementary
terms:

• Multi-scale spectral loss Lmel to preserve perceptually relevant frequency content at multiple
time scales;

• Time-domain reconstruction loss Lfeat = ∥x(t)− ỹ(t)∥1 for fidelity and stability;
• Multi-resolution adversarial loss Ladv with (i) multi-period waveform discriminators

(pitch/periodicity) and (ii) multi-band STFT discriminators (fine spectral detail), plus a
feature-matching term LG

feat;
• Codebook loss Lcode to ensure compact, diverse, well-utilized codes and reinforce RVQ’s

coarse-to-fine disentanglement.
• Quantizer dropout (RVQ stage dropout): randomly disabling a subset of RVQ stages during

training to discourage over-reliance on late codebooks and encourage smoother coarse-to-fine
residual allocation, yielding more bitrate-robust and well-structured RVQ representations.

The overall loss is

LDAC = λmelLmel + λfeatLfeat + λadvLadv + λcodeLcode,

yielding latents that are (i) denoised (robust to low-level artifacts), (ii) semantic (preserve pitch,
timbre, temporal structure), (iii) disentangled (coarse-to-fine RVQ), and (iv) efficient (bitrate-aware
constraints).

Separation benefits from the codec prior (and contrast to spectrogram baselines). Because
Z is already semantically organized, the FiLM-conditioned masker operates on a representation
that encodes the right factors for selection, not generation. This (i) reduces compute and memory
(the separator acts on compact Z instead of X), (ii) accelerates convergence and improves stability
(masking over a clean manifold), and (iii) improves robustness to prompt variation (text FiLM
modulates semantically aligned channels). In contrast, spectrogram systems must learn a task-specific
latent from X and perform separation jointly, which increases parameter count and MACs, slows
convergence, and can lead to overfitting in the absence of the codec’s inductive bias.

B.2 TRANSFORMER-BASED MASKER VS. DECODER-STYLE GENERATION (SPECIFIC DESIGN
CHOICE).

In CodecSep, we replace decoder-style source generation (as in CodecFormer, which directly predicts
the target waveform/spectrogram) with a Transformer-based, FiLM-conditioned masker that outputs
a soft mask over the codec latents. Concretely,

Ms = Mask(Z, eτ ) ∈ [0, 1]d×T , Z̃s = Ms ⊙ Z, ỹs(t) = Dec(Z̃s).

This choice has the following concrete advantages (all in the NAC latent domain):
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• Efficient and stable training. Predicting Ms to modulate existing latent content is a
simpler, more constrained learning problem than end-to-end generation of Z̃s or ỹs(t)
with a decoder head. Working in Z avoids the instability commonly observed in direct
waveform/spectrogram prediction, leading to faster convergence and lower training variance
under the same optimization settings.

• Direct leverage of codec-disentangled latents. DAC/RVQ pretraining organizes Z into
a coarse-to-fine, semantically disentangled manifold (periodicity, timbre, transients). The
masker exploits this structure by gating along these axes to isolate sources, rather than
using Z merely as input to a decoder that generates new latents/waveforms. This turns
separation into selection on a well-structured space, improving identifiability while reducing
parameters and data demands.

• Minimal distortion through modulation (no hallucination). The separator does not
synthesize new content; it rescales and selects what is already encoded in Z. Forming
Z̃s = Ms ⊙ Z preserves the mixture’s latent structure and reduces artifacts relative to
encoder–decoder separation pipelines that generate source signals from scratch, thereby
limiting hallucinations and leakage.

• Preservation of long-term temporal/spectral structure. The NAC encoder has already
organized periodicity, timbre, and transient structure in Z. Masking retains this organization
across long contexts, whereas fully convolutional decoders trained to generate sources
often exhibit long-term inconsistencies (e.g., drift over time or loss of periodic cues) when
reconstructing from scratch.

• Efficient use of Transformer capacity. Instead of synthesizing source signals, the masker
learns to gate semantically organized channels in Z, which is a substantially lighter opti-
mization problem than decoder-style generation. FiLM conditioning steers the transformer
to decide where/how much information to pass—not what to generate—so parameters and
compute in the Q/K/V and MLP projections are concentrated on selection and attenuation.

B.3 WHY WE INTEGRATED FILM CONDITIONING INTO NAC-BASED SEPARATION

We deliberately integrate Feature-wise Linear Modulation (FiLM) Perez et al. (2018) inside the
transformer masker to inject text semantics while preserving the codec manifold and keeping
Enc(·)/Dec(·) frozen.

Targeted placement (masker, mid-layers). Given a CLAP text embedding eτ , a lightweight query
network query(·) produces per-layer affine parameters

(γl, βl)Ll=1 = query(eτ ), γl, βl ∈ Rd,

which modulate intermediate activations H l ∈ Rd×T for l ∈ {2, . . . , L− 1}:

H̃ l
s = FiLM

(
H l; γl, βl

)
= γl ⊙H l + βl.

Placing FiLM in the masker (not in Enc or Dec) keeps the codec latent distribution intact and
confines conditioning to the selection step.

Lightweight computation (overhead and parameterization). FiLM adds only small per-layer
vectors (γl, βl) and a compact query(·) MLP; it does not increase sequence length, attention heads,
or the quadratic attention cost. The extra FLOPs/params are negligible relative to multi-head attention
and MLP blocks, aligning with CodecSep’s efficiency goals.

Non-iterative inference (single forward pass). FiLM applies in a single pass through the masker.
Unlike iterative conditioning mechanisms (e.g., flow-matching-based sampling), there are no sampling
steps, thus preserving low latency for edge and hybrid deployments.

Manifold preservation and stability. Because FiLM scales/shifts existing channels of H l rather
than rewriting Z or generating Z̃s from scratch, the NAC manifold structure (periodicity, timbre,
transients) is preserved. Empirically this reduces training variance and mitigates long-horizon
inconsistencies common with generator-style heads.
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B.4 WHY REPORT RESULTS ON Z (CONTINUOUS LATENTS) AND HOW TO EXTEND TO CODE
STREAMS A→E

Why we evaluate on continuous latents Z. We choose to perform—and therefore re-
port—separation on the continuous DAC encoder latents Z = Enc(x) ∈ Rd×T for the following
concrete reasons:

1. End-to-end gradient flow for separation. Our training updates only the masker and query
networks while keeping the codec frozen. Using Z allows straightforward backpropagation through
Mask(·, eτ ) and Dec(·) without dealing with discrete indices or straight-through estimators;
gradients are well-behaved and convergence is consistently stable.

2. Representational fidelity and disentanglement. During codec pretraining, the RVQ cascade
regularizes Z so that pitch, timbre, onsets/transients, and background textures are cleanly and
hierarchically organized. Z therefore provides a richer, more disentangled signal for FiLM-
conditioned masking than hard code indices, which are subject to quantization coarsening.

3. Training stability and variance. In our setting (frozen codec), operating on Z avoids variability
from codebook utilization dynamics (e.g., late-stage RVQ sensitivity, bitrate truncation). Empir-
ically, this reduces run-to-run variance and removes the need for specialized regularizers when
training the separator.

How to extend the same model to discrete code streams. For deployment scenarios where the
input is a compressed bitstream, we operate on the reconstructed embeddings E obtained from the
codes A via codebook lookup, and train the masker on E instead of Z:

A = [at ∈ [1024]Nq | t ∈ [T ]], et =

Nq∑
i=1

lookup
(
a
(i)
t

)
, (3)

E = [et]
T
t=1 ≈ Z, Ẽs = Ms ⊙ E, ỹs(t) = Dec(Ẽs) (4)

Compressed bitstream path (codes-in, codes-out). Given E ≈ Z and the element-wise masking
operation, the estimated source embeddings satisfy

Ẽs = Ms ⊙ E ≈ Ms ⊙ Z = Zs

When a uniform codec pathway (or codes-out interface) is required, we re-quantize the masked
embeddings and optionally decode via the codec:

Âs = Quant(Ẽs), Ês = lookup(Âs), ỹs(t) = Dec
(
Ês

)
In deployments that only need to return a bitstream, the server can emit Âs directly and defer decoding
to the client; otherwise, decoding Dec(Ẽs) or Dec(Ês) yields the waveform on-device or server-side,
respectively.

Embedding alignment (CodecFormer-EL Yip et al. (2024a)). To tighten Ẽs ≈ Zs, we can optimize
an embedding-level consistency loss as in CodecFormer-EL Yip et al. (2024a)instead of our SI-SDR
objective:

Lemb =
∑
s

∥Ẽs − Zs∥1

Why this works. By design of the codec, E approximates Z at the operating bitrate; the decoder
already reconstructs x̂(t) = Dec(E) with high fidelity. Since our separator is a masker (selective
modulation) rather than a generator, replacing Z with E preserves the semantics needed for separation
while enabling direct operation on bitstreams. In practice, the extension amounts to training (or
fine-tuning) the same FiLM-conditioned transformer on E with unchanged objectives.

Summary of scope. We present results on Z to (i) isolate separator performance without discrete-
index training complications, (ii) leverage continuous gradient flow and stable optimization, and
(iii) align FiLM conditioning with a smooth latent manifold. The deployment-ready path to discrete
code streams is immediate: switch the masker input to E via lookup from A and train/fine-tune
accordingly, with optional distribution alignment and bitrate-robustness augmentation.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.5 DEPLOYMENT ADVANTAGES OF CODECSEP OVER SPECTROGRAM-DOMAIN SEPARATORS
(AUDIOSEP)

Central motivation. In realistic deployments, edge devices already run a neural audio codec; they
transmit code streams rather than raw waveforms. CodecSep treats the codec backbone as part of
the separation stack and operates directly on codec representations, thereby eliminating redundant
decode → separate → re-encode cycles required by spectrogram-domain systems.

Pipeline comparison (server-side separation). Traditional (spectrogram) pipeline:
Edge: Enc(.)︸ ︷︷ ︸

codec

⇒ Code ⇒ Server: Dec(.) + g(·, eτ ) + Enc(.)︸ ︷︷ ︸
decode + separate + re-encode

⇒ Code ⇒ Edge: Dec(.)

CodecSep pipeline:
Edge: Enc(.)︸ ︷︷ ︸

codec

⇒ Code ⇒ Server: Mask(·, eτ )︸ ︷︷ ︸
mask on E≈Z

⇒ Code ⇒ Edge: Dec(.)

CodecSep performs FiLM-modulated masking in the codec latent domain and returns separated code
streams for edge-side decoding; spectrogram systems must decode to waveform (or magnitude/phase),
separate in X , and re-encode.

Complexity accounting. Let Cenc and Cdec be codec encode/decode costs, Cspec the spectrogram
separator cost, and Cmask the CodecSep masker cost.

Code-stream input (typical): AudioSep: Cdec + Cspec + Cenc, CodecSep: Cmask.

Audio-stream input (edge-only): AudioSep: Cspec, CodecSep: Cenc + Cmask + Cdec.

In the common (code-stream) case, CodecSep removes both decode and re-encode on the server.
Moreover, within the separator, CodecSep operates on Z/E with |Z| ≪ |X| (cf. Sec. B), reducing
activation memory and bandwidth throughout attention and MLP blocks.

Interface compatibility with codec bitstreams. When only quantized codes A = [at|t ∈ [T ]]
are available, we reconstruct embeddings by codebook lookup E = [et|t ∈ [T ]] with et =∑Nq

i=1 lookup(a(i)t ) ≈ Z and apply the same masker:

A ⇒ E ≈ Z
Mask(·,eτ )−−−−−−−−→ Ẽs ⇒ Code stream out.

No architectural change is required; separation remains in the codec latent domain and stays fully
compatible with streaming/edge ecosystems.

Why spectrogram-domain systems incur extra overhead. Spectrogram separators (e.g., Au-
dioSep) are defined on X = STFT(x). Given code-stream inputs, they must first run Dec(.) to
obtain a waveform, compute X , perform separation, and then run Enc(.) to return codes. This
decode + separate + re-encode loop adds latency, memory traffic, and energy cost on the server path
and scales poorly with concurrent streams.

Operational advantages of CodecSep.

• Eliminates redundant codec cycles in server workflows: With code streams, we recon-
struct embeddings E ≈ Z by codebook lookup (Sec. B.4), avoiding server-side decode/re-
encode; only the edge decodes the final stems.

• Smaller working representation during separation: masking in Z/E (e.g., d=64) reduces
intermediate activations, lowering memory bandwidth and enabling tighter batching.

• Non-iterative, single-pass conditioning: FiLM-conditioning within the masker adds negli-
gible overhead and preserves low latency (no iterative sampling).

• Seamless edge/server hybrid and edge-only modes: identical separator logic serves both
modalities; with code-stream inputs, the server path remains separator-only.

• Maintains codec manifold structure: by modulating Z/E rather than rebuilding X ,
CodecSep preserves periodicity/timbre/transients already organized by the codec, supporting
stable, high-fidelity stems at deployment.
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C DATASET DETAILS

C.1 DIVIDE AND REMASTER V 2.0 (DNR-V2)

dnr-v2 Petermann et al. (2022) dataset consists of 60s-duration artificial mixtures of speech, music,
and SFX sampled from LibriSpeech Panayotov et al. (2015), Free Music Archive (FMA) Defferrard
et al. (2017), and Freesound Dataset 50K (FSD50K) Fonseca et al. (2022), respectively. It includes
3, 406 (56.7hrs) training, 487 (8.13hrs) validation, and 973 (16.22hrs) test mixtures, each provided
with its three individual source audios. The mixtures are generated by normalizing each source to
fixed Loudness Units Full-Scale (LUFS) levels: −17 dB (speech), −24 dB (music), and −21 dB
(SFX), with ±2 dB random perturbations. Any source exceeding a peak threshold is normalized to 0.5
dB. The sources are mixed and normalized to −27 dB LUFS with additional random perturbations.
The validation and test sets are trimmed for silence and split into 5s or 10s segments. Segments where
sources are present for less than 50% of the duration are removed, resulting in 2, 852 (≈ 3.96hrs)
validation and 1, 840 (≈ 5.11hrs) test mixtures.

While originally developed for 3-stem separation, we adapt dnr-v2 to the USS setting by replacing
fixed source labels with natural language descriptions. For speech or music stem, we use broad,
category-level prompts (e.g., “speech,” “music”), reflecting realistic usage in production workflows.
In contrast, SFX sources are more complex—often containing three or more overlapping events.
We generate prompts to query the SFX stem using FSD50K’s hierarchical annotations, combining
fine-grained class labels with their parent categories. This results in long-form, compositional queries
that reflect the structure of the mixture (e.g., “dog barking, Animal, engine rumbling, motor vehicle”).

C.2 OPEN-DOMAIN BENCHMARKS

We benchmark on five open-domain datasets spanning captioned audio, environmental sounds, and
large multi-event corpora: AudioCaps Kim et al. (2019), an AudioSet-derived collection of > 46k
10 s YouTube clips paired with human-written captions describing the dominant sound events (used by
us to synthesize training and test mixtures); ESC-50 Piczak, a curated environmental sound dataset of
2,000 clips (5 s each) organized into 50 classes with 40 examples per class across five meta-categories
(animals, natural, human non-speech, domestic, exterior/urban); Clotho-v2 Drossos et al. (2020),
6,974 audio samples (15–30 s) each annotated with five human captions (8–20 words) covering
open-domain events; AudioSet Gemmeke et al. (2017), the evaluation split of AudioSet comprising
human-labeled 10 s YouTube clips over an ontology of 632 audio event classes in a multi-label setting;
and VGGSound Chen et al. (2020a), an AudioSet-derived audio–visual corpus with 550+ hours of
10 s segments covering a wide variety of everyday sound categories. For AudioCaps we form both
training and testing mixtures (same scale of test data as dnr-v2) by summing three clips (validation
segmented into 5 s, test preserves clips up to 20 s), while for ESC-50, Clotho-v2, AudioSet-eval, and
VGGSound we construct test-only mixtures using the same three-clip protocol.
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Figure 3: Evaluation workflow for dnr-v2. Each mixture contains multi-source stems: speech (often
multi-speaker), music (multi-instrument), and SFX (≥ 3 overlapping events). Fixed-stem baselines
predict a fixed set of outputs (e.g., 3 stems), whereas CodecSep and other text-guided models generate
only the prompted source. Speech and music are evaluated using generic prompts, while SFX uses
long-form compositional prompts listing all SFX events in each mixture. Extracted signals are
compared with ground-truth category stems using SI-SDR and ViSQOL.

D EVALUATION DETAILS

D.1 DIVIDE AND REMASTER V 2.0 (DNR-V2)

The dnr-v2 benchmark presents a challenging open-domain separation setting: although the dataset
provides three category labels—speech, music, and sound effects—each category represents a multi-
source stem. A single mixture frequently contains five to ten underlying acoustic sources, including
overlapping speakers, multiple musical instruments, and several sound-effect events occurring either
concurrently or in sequence. The three reported stems are therefore semantic groupings that support
interpretability and reproducibility, rather than an indication that the mixture contains only three
sources. Any evaluation methodology must respect this structure. Figure 3 provides an overview
of our dnr-v2 evaluation workflow and highlights how these multi-source stems are handled across
fixed-stem un-guided and text-guided models.

For fixed-stem unguided architectures, evaluation is performed by mapping each predicted output
stem to one of the three ground-truth stems and computing SI-SDR and ViSQOL on a per-category
basis. Importantly, we do not employ PIT or MixIT training objectives for these baselines; instead,
we train dedicated three-stem models that directly predict speech, music, and SFX stems.

Text-guided models, including CodecSep, follow a fundamentally different inference and evaluation
paradigm. Speech and music stems are recovered using generic prompts (“speech,” “music”), which
reliably capture their multi-source content. In contrast, SFX stems require mixture-specific prompts
because sound effects span a wide and open-domain label space. For each mixture, we use a long-form
compositional prompt enumerating all SFX events present in the ground truth. This ensures that the
model has sufficient semantic context to extract the full SFX stem. The number of sfx events present
in a mixture varies considerably. We additionally perform an ambiguous-prompt evaluation, where
deliberately underspecified prompts for speech and music are used to assess robustness to vague or
incomplete semantic queries. After inference, the extracted waveform for each category is directly
compared with the corresponding ground-truth stem using SI-SDR and ViSQOL. This evaluation
design ensures fairness between fixed-stem and text-guided systems while faithfully reflecting the
multi-source structure of dnr-v2 mixtures
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Figure 4: Evaluation workflow for the standardized three-source benchmarks (AudioCaps, ESC-50,
Clotho, VGGSound, and AudioSet-eval). Following prior USS protocols, each mixture is constructed
by combining three isolated events drawn from distinct classes. For each class, the corresponding
textual prompt is supplied to the separator (e.g., “dog barking,” “gun shot,” “motor vehicle”), and the
extracted signal is compared with the ground-truth isolated source using SI-SDR and ViSQOL.

D.2 OPEN-DOMAIN BENCHMARKS

For AudioCaps, ESC-50, Clotho, VGGSound, and AudioSet-eval, we adopt the standardized three-
source mixture protocol. Following established practice, each mixture is constructed by combining
three isolated events drawn from different classes. Each source is then extracted by the text-guided
models using its corresponding textual caption as prompt, and evaluation metrics are computed
against the ground-truth isolated audio. Figure 4 illustrates the evaluation workflow used for these
benchmarks, highlighting how class-specific prompts are applied and how the resulting predictions are
matched against the ground-truth isolated sources. Although these datasets do not reflect the complex
multi-source structure of dnr-v2, the standardized 3-way protocol enables direct benchmarking against
prior work (AudioSep) under consistent conditions.
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E TRAINING DETAILS

The complete model, including the query module query(.), is trained for 400K iterations with DAC
Kumar et al. (2023) and CLAP Wu et al. (2023) modules frozen. Validation is conducted every 5K
iterations and test every 10K iterations. We use ADAM Kingma & Ba (2017) as our optimizer and
train with a batch size of 4 examples, each 2 seconds in duration, and a learning rate of 1.5e−4 on
a single 24GB NVIDIA A-30 GPU. Training employs a ReduceLRonP lateau Mukherjee et al.
(2019) scheduler, which reduces the learning rate by a factor of 0.5 if the validation loss does not
improve for two consecutive validation checks. We train two versions of CodecSep, one using the
dnr-v2 dataset and the other using AudioCaps, to evaluate performance across different training
distributions. We refer to these models using the suffixes +dnr-v2 and +AudioCaps, respectively, to
indicate which dataset each model was trained on.

Since TDANet and CodecFormer were originally designed for speech separation, we re-train newly
initialized 3-stem versions on the dnr-v2 training set using the same configuration as CodecSep. We
also train a 3-stem Sudo rm-rf model to compare against compute-efficient separators. For AudioSep,
we evaluate both the publicly available pretrained model—trained on diverse datasets—and versions
re-trained on dnr-v2 and AudioCaps for consistency. We include SDCodec using the official pretrained
checkpoints released by the authors. Finally, we incorporate the USS-pretrained variant of BiModalSS
and re-train SudoRmRf+FiLM on dnr-v2 with CLAP text conditioning. To ensure a fair comparison,
all inputs to TDANet, Sudo rm-rf, AudioSep, BiModalSS, and Sudo rm-rf+FiLM undergo codec
processing with a full-band stereo-capable 48 kHz EnCodec during training and inference. This
accounts for codec-induced distortions and artifacts, reflecting realistic deployment scenarios where
audio is typically processed through compression pipelines in cloud-based systems.
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Table 6: Results: Using ambiguous prompts for Speech and Music (dnr-v2-test)

Model Metric (↑) Music Speech

AudioSep + dnr-v2 SI-SDR −6.4±3.29 4.1±3.77

ViSQOL 2.5±0.57 2.6±0.47

CodecSep + dnr-v2 SI-SDR −5.6±3.61 4.2±4.18

ViSQOL 2.6±0.58 2.7±0.51

F ROBUSTNESS TO PROMPT PARAPHRASING.

To probe lexical sensitivity, we re-evaluated both CodecSep + dnr-v2 and AudioSep + dnr-v2 on the
dnr-v2 test split by replacing the generic training-time prompts for speech and music with three unseen
paraphrases per class—speech: {“spoken voice”, “human conversation”, “people talking”}; music:
{“instrumental music”, “band playing”, “melody with instruments”}. This constitutes a zero-shot
paraphrase generalization test: models are trained with generic category cues but must respond
to synonymic, potentially broader descriptors at inference. We observe a consistent qualitative
pattern (cf. Table 6): (i) both systems exhibit the expected degradation when moving from generic
to paraphrased prompts, confirming that lexical ambiguity weakens query–audio alignment; (ii)
CodecSep degrades more gracefully overall, maintaining stronger separation and perceptual quality
for speech, and retaining a small but persistent advantage for music; and (iii) the gap between models
narrows under paraphrasing, yet the relative ranking is preserved, suggesting that FiLM-conditioned
masking over structured codec latents confers robustness to synonym-level shifts. Notably, this study
isolates lexical paraphrases; we did not incorporate paraphrases with explicit temporal qualifiers (e.g.,
“applause follows a song”), which we leave to future work.
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Table 7: Generalization and transfer results for universal sound separation.

(a) Generalization on AudioCaps-test.

Model Separation

SI-SDR (↑) ViSQOL (↑)

AudioSep −2.5±12.14 2.4±1.08

AudioSep + dnr-v2 (zero-shot) −6.4±11.48 2.3±1.08

CodecSep + dnr-v2 (zero-shot) −6.1±11.62 2.2±1.16

AudioSep + AudioCaps −9.2±18.71 2.3±1.11

CodecSep + AudioCaps −6.2±10.58 2.1±1.00

(b) Transfer to dnr-v2-test when trained on AudioCaps (zero-shot on dnr-v2).

Model Metric (↑) Music Speech Sfx

AudioSep + AudioCaps SI-SDR −14.9±23.08 −7.1±25.80 −14.6±23.26

(zero-shot) ViSQOL 2.4±0.71 2.4±0.70 2.2±0.79

CodecSep + AudioCaps SI-SDR −8.5±2.78 2.5±2.91 −5.9±4.33

(zero-shot) ViSQOL 2.3±0.53 2.6±0.47 2.1±0.72

G CROSS-BENCHMARK PERFORMANCE: AUDIOCAPS AND DNR-V2.

Table 7a reports generalization results on the AudioCaps-test set derived from AudioSet. AudioSep
benefits from distributional alignment, having been trained on diverse datasets, including AudioSet,
and consequently achieves the strongest separation performance. CodecSep+dnr-v2 generalizes well
to AudioCaps and outperforms AudioSep+dnr-v2 in SI-SDR while maintaining competitive ViSQOL
scores. When retrained on AudioCaps, CodecSep again outperforms AudioSep in separation quality,
demonstrating strong cross-domain robustness. Table 7b further supports this trend on the more
challenging dnr-v2 test set, where CodecSep+AudioCaps outperforms AudioSep+AudioCaps in
SI-SDR across all sources while maintaining comparable perceptual quality. However, both models
experience a performance drop on dnr-v2 due to its increased mixture complexity, often containing
speech, music, and three or more overlapping SFX sources—making it significantly more challenging
than the simpler mixtures seen during AudioCaps training.
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Table 8: Relative gains (%) of CodecSep over AudioSep under matched training/prompt settings.
Each sub-table reports percent improvements for a specific evaluation setup.

(a) DnR-v2 test set

Metric Relative Gain (%)

Speech Music SFX

SI-SDR +29.8 +120.7 +119.1
ViSQOL +26.1 +10.5 +0.5

(b) Ambiguous prompts (speech & music paraphrases)

Metric Relative Gain (%)

Speech Music

SI-SDR +1.2 +13.0
ViSQOL +3.8 +1.2

(c) Additional open-domain benchmarks

Metric AudioCaps ESC-50 Clotho-v2 AudioSet VGGSound

SI-SDR +5.5 +24.3 +30.0 +16.4 +13.0
ViSQOL −4.3 +2.2 +2.4 +2.9 +2.9

(d) Training on AudioCaps

Metric AudioCaps-test dnr-v2

Music Speech SFX

SI-SDR +32.5 +43.1 +134.7 +59.5
ViSQOL −6.5 −3.8 +5.4 -4.2

H DISCUSSION OF RELATIVE–GAIN SUMMARIES.

Tables 8a–8d consolidate relative improvements of CodecSep over AudioSep under matched training
data and prompt protocols, complementing the absolute results in the main text. On dnr-v2 (cf.
Table 8a), CodecSep delivers large SI-SDR gains—especially for music and SFX—together with
a clear perceptual lift. Under paraphrased prompts (cf. Table 8b), gains are smaller but remain
positive, indicating robustness to lexical variation. Across additional open-domain benchmarks (cf.
Table 8c), SI-SDR gains are consistent while ViSQOL deltas are modest, aligning with cross-domain
trends reported earlier. Finally, when trained on AudioCaps (cf. Table 8d), CodecSep maintains an
advantage on AudioCaps-test and yields strong improvements on dnr-v2, supporting the claim that
codec-latent masking generalizes well across datasets and prompt regimes.
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Table 9: Results: Extending CodecSep to 48 kHz full-band (dnr-v2-test)

Model Sampling Rate Metric (↑) Music Speech Sfx

AudioSep
32 kHz SI-SDR −2.5±4.06 4.9±4.21 −0.3±5.39

(zero-shot) ViSQOL 2.9±0.63 3.1±0.56 2.6±0.77

AudioSep + dnr-v2 32 kHz SI-SDR −5.6±2.89 7.7±3.0 −4.5±3.68

ViSQOL 2.6±0.57 2.5±0.37 2.3±0.7

CodecSep + dnr-v2
16 kHz SI-SDR 1.2±3.29 10.0±2.92 0.9±4.22

(DAC Backbone) ViSQOL 2.9±0.57 3.1±0.45 2.3±0.73

CodecSep + dnr-v2
24 kHz SI-SDR 0.2±3.3 8.8±2.9 0.6±4.2

(DAC Backbone) ViSQOL 2.7±0.56 3.0±0.44 2.3±0.72

CodecSep + dnr-v2
44.1 kHz SI-SDR −2.3±3.27 5.9±2.48 −0.3±3.79

(DAC Backbone) ViSQOL 2.5±0.46 2.7±0.42 2.4±0.68

CodecSep + dnr-v2 48 kHz SI-SDR −2.8±3.5 5.4±2.36 −0.5±3.83

(EnCodec Backbone) ViSQOL 2.4±0.5 2.6±0.41 2.4±0.65

I BANDWIDTH SCALING: EXTENDING CODECSEP TO FULL-BAND AUDIO

Table 9 studies bandwidth scaling by swapping the frozen codec backbone from a 16 kHz DAC
to a 48 kHz EnCodec (stereo–capable), while keeping the FiLM–conditioned masker and training
objective unchanged. Although our paper targets mono separation, we evaluate the 48 kHz backbone
in the same mono setting for apples–to–apples comparison. As expected, increasing the sampling
rate Fs makes separation harder: higher bandwidth introduces more high–frequency structure and
lengthens the latent sequence (T ↑), which raises modeling difficulty and compute, and tends to reduce
absolute SI-SDR/ViSQOL compared to the 16 kHz setting. Nevertheless, the codec–latent formulation
remains intact—Z̃s = Ms ⊙ Z, ỹs = Dec(Z̃s)—and the system continues to operate in a compact,
perceptually aligned representation, preserving the same deployment pathway. Practically, complexity
scales with bandwidth due to longer latent timelines and richer spectral content, but in code–stream
regimes the masker–only path is unchanged; improving high–bandwidth performance is thus a
matter of codec/backbone choice, capacity tuning, and data scale rather than architectural redesign.
Extending this study, we additionally evaluate 24 kHz and 44.1 kHz DAC variants. The results reveal
a consistent trend: for a fixed masker capacity, performance decreases monotonically as sampling
rate increases—reflecting the rising difficulty of full-band, wide-bandwidth separation—yet DAC
reliably outperforms EnCodec at comparable bandwidths. We attribute this to DAC’s architectural
advantages (factorized RVQ codes, ℓ2-normalized codebooks, and Snake activations), which yield
more structured and perceptually aligned latents, enabling the FiLM-conditioned masker to operate
more effectively even as bandwidth increases. We view these results as an initial step toward full–band
(and stereo/spatial) operation within the same masking interface.
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Table 10: Results: Reconstruction Performance, Universal Sound Separation (dnr-v2-test)

Model Metric (↑) Reconstruction

Mixture Music Speech Sfx

3-Stem: Fixed Stem, Non Text-guided

TDANet SI-SDR −3.3±7.78 8.0±5.29 11.1±3.32 4.7±5.11

ViSQOL 3.9±0.35 4.2±0.46 4.5±0.32 4.1±0.39

CodecFormer SI-SDR −47.6±9.51 −47.1±10.97 −47.8±9.65 −48.2±9.87

ViSQOL 1.0±0.07 1.0±0.12 1.0±0.06 1.2±0.47

CodecSep + dnr-v2 SI-SDR 3.4±1.85 4.1±3.97 6.2±2.87 0.8±5.16

(unguided, 3-stem) ViSQOL 3.2±0.20 3.0±0.33 3.5±0.24 3.2±0.46

SDCodec SI-SDR 7.0±2.49 7.7±4.60 8.3±3.26 2.5±5.65

ViSQOL 4.3±0.15 4.0±0.28 4.4±0.15 4.0±0.34

Text-guided

AudioSep SI-SDR 5.5±1.96 4.7±5.36 11.0±2.99 −2.0±5.68

(zero-shot) ViSQOL 4.1±0.38 3.8±0.65 4.6±0.13 3.2±0.77

AudioSep + dnr-v2 SI-SDR 6.5±2.26 8.0±4.55 8.1±3.35 2.3±5.95

ViSQOL 4.2±0.18 4.1±0.21 3.0±0.29 3.8±0.47

CodecSep + dnr-v2 SI-SDR 4.1±2.06 3.9±3.93 6.1±2.86 0.7±5.29

ViSQOL 3.7±0.22 3.4±0.33 3.8±0.24 3.5±0.44

CodecSep + dnr-v2 SI-SDR 12.2±2.42 12.6±3.81 13.6±2.59 8.7±4.17

(ablate Masker) ViSQOL 4.4±0.14 4.1±0.31 3.9±0.34 3.8±0.54

AudioSep + AudioCaps SI-SDR 6.7±2.52 8.1±4.63 8.4±3.21 2.4±6.12

(zero-shot) ViSQOL 4.2±0.19 4.1±0.21 4.2±0.21 3.8±0.46

CodecSep + AudioCaps SI-SDR 0.6±1.89 −0.2±5.15 −11.±5.21 1.2±4.84

(zero-shot) ViSQOL 3.3±0.23 2.9±0.64 1.7±0.48 3.4±0.41

J FURTHER STUDIES: RECONSTRUCTION PERFORMANCE.

Table 10 assesses performance under a single-source reconstruction setting on the dnr-v2-test set,
where each model is prompted to reproduce the input source. In addition, we report mixture
reconstruction scores obtained by summing the separated sources and comparing them to the original
mixture.

Among non-text-guided models, TDANet yields the best single-source reconstruction, while SDCodec
performs better on mixture reconstruction. Replacing decoder-style generation in CodecFormer
with a Transformer masker over codec latents in CodecSep+ dnr-v2, (unguided 3-stem) markedly
improves both per-stem and mixture reconstruction fidelity and perceptual quality. Masking modulates
information already organized in the codec manifold (Z) rather than re-synthesizing it from scratch,
avoiding collapse/artifacts and yielding tighter mixture consistency.

Among the text-guided models, CodecSep achieves reconstruction performance comparable to
the pre-trained and retrained AudioSep variants across all source types. AudioSep consistently
excels in reconstruction due to its STFT-based masking pipeline, which enables more controlled
and artifact-free waveform synthesis. However, CodecSep surpasses the pretrained AudioSep in
SFX reconstruction—across both SI-SDR and ViSQOL on dnr-v2. Notably, the masker ablated
CodecSep variant delivers the best reconstruction performance on dnr-v2. With isolated single-source
input and matching prompts, direct conditioning minimally disturbs the NAC latent space, allowing
high-fidelity reconstruction in this variant. However, strong mixture reconstruction despite poor
separation suggests source leakage across separated outputs.
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K LIMITATIONS AND CLARIFICATIONS.

We discuss the limitations of our work as follows–

(1) Data and prompts. Training data scale and prompt diversity are modest relative to open-domain
audio. As shown in Table 2, finer SFX supervision sharpens SFX extraction and improves
speech/music stems; larger, more heterogeneous corpora spanning multiple prompt granulari-
ties—including temporal/relational cues—should yield further gains.

(2) Temporal prompting. While CodecSep is robust to synonymic paraphrases, we did not evaluate
prompts with explicit temporal structure (e.g., causal ordering), which remains an open direction.

(3) Perceptual SFX quality. In some settings, SFX perceptual quality trails the best competing scores
despite superior SI-SDR; improving SFX naturalness without sacrificing separation is future
work.

L DECLARATION OF LLM USAGE.

LLM is used only to aid or polish writing and does not impact the core methodology, scientific
rigorousness, or originality of the research.
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