

CODECSEP: PROMPT-DRIVEN UNIVERSAL SOUND SEPARATION ON NEURAL AUDIO CODEC LATENTS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Text-guided sound separation supports flexible audio editing across media and
012 assistive applications, but existing models like AudioSep are too compute-heavy
013 for edge deployment. Neural Audio Codec-based models such as CodecFormer
014 and SDCodec are compute efficient but limited to fixed-class separation. We in-
015 troduce CodecSep, the first NAC-based model for on-device universal, text-driven
016 separation. CodecSep combines DAC compression with a transformer masker
017 modulated by CLAP-derived FiLM parameters. Across six open-domain bench-
018 marks under matched training/prompt protocols, CodecSep surpasses AudioSep
019 in separation fidelity (SI-SDR) while remaining competitive in perceptual quality
020 (ViSQOL) and matching or exceeding fixed-stem baselines (TDANet, Sudo rm-rf,
021 CodecFormer, SDCodec). In code-stream deployments, it needs just 1.35 GMACs
022 end-to-end— $\sim 54 \times$ less compute ($25 \times$ architecture-only) than spectrogram domain
023 separators like AudioSep—while remaining fully bitstream-compatible.

1 INTRODUCTION

024 We propose CodecSep, a text-conditioned universal sound separation (USS) framework that marries
025 the interpretability of prompt-driven extraction with the efficiency of neural audio codecs (NACs). To
026 our knowledge, CodecSep is the first system to bridge NACs with USS: it conditions a transformer
027 *masker* on CLAP text embeddings Wu et al. (2023) via Feature-wise Linear Modulation (FiLM)
028 Perez et al. (2018), and performs separation directly in the codec encoder latent space. This design
029 introduces semantic control while preserving the low compute footprint of codec representations,
030 enabling on-device and real-time deployment.

031 Flexible, real-time separation on bandwidth- or compute-constrained platforms remains challenging.
032 Classic models disentangle sources from complex mixtures Vincent et al. (2018) but are often
033 domain-specific (e.g., speech/music) and heavy. Recent text-guided systems like AudioSep Liu
034 et al. (2024) extend encoder–masker–decoder designs (e.g., Conv-TasNet-style Luo & Mesgarani
035 (2019)) by injecting semantics from BERT/CLAP through FiLM layers Devlin et al. (2019); Wu
036 et al. (2023); Perez et al. (2018). However, spectrogram/waveform-domain separators trained with
037 SI-SDR-style losses Luo & Mesgarani (2019); Le Roux et al. (2019) are compute-intensive and
038 sensitive to compression artifacts, often pushing inference to the cloud.

039 NACs such as SoundStream, Encodec, and DAC Zeghidour et al. (2022); Défossez et al. (2022);
040 Kumar et al. (2023) compress audio to discrete tokens with Residual Vector Quantization (RVQ),
041 providing compact, perceptually aligned latents useful for generation and conditioned synthesis
042 Borsos et al. (2023); Wang et al. (2023; 2024); Du et al. (2024). Prior codec–separation hybrids
043 (CodecFormer Yip et al. (2024b), SDCodec Bie et al. (2024)) are lightweight and high-fidelity
044 but target fixed stems (e.g., speech separation or speech vs. music vs. SFX); extending them to
045 open-domain, prompt-conditioned USS is non-trivial (cf. §2, para. 3).

046 CodecSep adopts a frozen DAC encoder–decoder backbone and inserts a FiLM-conditioned trans-
047 formers masker that predicts a soft mask over codec latents. CLAP-derived text embeddings Wu et al.
048 (2023) are mapped to per-layer FiLM parameters, modulating the masker’s intermediate activations to
049 align the selected latent subspace with the query semantics. Operating on compact codec features cuts
050 memory traffic and MACs compared to spectrogram-domain pipelines, while preserving the codec’s
051 inductive biases (periodicity, timbre, transients). In doing so, CodecSep delivers interpretable, prompt-
052 guided separation with markedly lower compute without sacrificing separation fidelity. Crucially,
053 conditioning via text embeddings enables open-vocabulary operation of NAC-based separation.

We evaluate CodecSep across: (i) *in-domain text-guided separation* on dnr-v2 Petermann et al. (2022); (ii) *cross-domain generalization* on five open-domain corpora (AudioCaps Kim et al. (2019), ESC-50 Piczak, Clotho-v2 Drossos et al. (2020), AudioSet-eval Gemmeke et al. (2017), VGGSound Chen et al. (2020a)); (iii) *three prompt granularities* (fixed-stem, generic three-stem, and fine-grained SFX); (iv) *paraphrase robustness*; (v) an *architectural ablation* comparing decoder-style generation to our transformer masker; (vi) a *bandwidth-scaling study* extending CodecSep to higher sampling rates; and (vii) *compute benchmarking* on small GPUs. We benchmark against the SOTA text-guided baseline, AudioSep Liu et al. (2024), under matched data and prompt protocols. Across all benchmarks, CodecSep consistently surpasses AudioSep in SI-SDR while remaining competitive in ViSQOL, and it degrades more gracefully under prompt paraphrasing. In deployment-typical code-stream settings, CodecSep runs at just 1.35 GMACs end-to-end— $\sim 54\times$ less compute (and $\sim 25\times$ architecture-only) than AudioSep—while remaining fully compatible with bitstream interfaces.

2 RELATED WORK

Classical sound separation systems frequently adopt an encoder–masker–decoder design in which an encoder produces STFT-like latents, a masker predicts source-specific masks, and a decoder reconstructs waveforms. Representative models include DPTNet Chen et al. (2020b), SepFormer Subakan et al. (2021), and TDANet Li et al. (2023), the last introducing a top-down attention scheme that blends global and local attention to capture multi-scale acoustic structure. Beyond masking pipelines, several works generate waveforms directly in the time domain (Wave-UNet Stoller et al. (2018), Demucs Défossez et al. (2019); Défossez et al. (2021)) or operate fully in the complex STFT domain with joint magnitude–phase modeling (MM-DenseLSTM Takahashi et al. (2018), DCCRN Hu et al. (2020), Spleeter Hennequin et al. (2020)), underscoring the breadth of design choices.

Moving from domain-specific separation to *universal* sound separation (USS), supervised systems typically rely on Permutation Invariant Training (PIT) Yu et al. (2017); Kavalerov et al. (2019), while unsupervised methods such as MixIT Wisdom et al. (2020) learn directly from mixtures. Both paradigms assume a fixed maximum number of sources and output all estimates indiscriminately, requiring a post-hoc identification step (cf. Appendix A for detailed failure modes). A recent PIT-trained USS model is Sudo rm-rf Tzinis et al. (2022a), a parameter-efficient time-domain separator that is based on ConvTasNet-style encoder–masker–decoder architecture with adaptive encoder/decoder modules. It downsamples input waveform to STFT-like latents before separation and is PIT-trained to separate mixtures with up to four sources. Query-Guided Sound Separation (QSS) addresses this limitation of PIT or MixIT models by conditioning extraction on external queries—visual cues, audio, class labels, or text. Text queries are compact, expressive, and capture high-level semantics without requiring additional reference signals. AudioSep Liu et al. (2024) follows this direction by injecting BERT Devlin et al. (2019) or CLAP Wu et al. (2023) embeddings via FiLM Perez et al. (2018) at intermediate masker layers to steer separation toward the query source. BiModalSS Mahmud et al. (2024) extends AudioSep with attention-based conditioning and more efficient training strategies. FiLM-conditioned variants of Sudo rm-rf Tzinis et al. (2022b; 2023) have also been explored for class-guided separation using one-hot or multi-hot conditioning vectors; however, such label-based conditioning does not extend naturally to open-domain text queries and cannot handle unseen classes.

Neural audio codecs (NACs) have recently been integrated into separation pipelines to improve efficiency. CodecFormer separates directly in DAC Kumar et al. (2023) latent space with a transformer trained using negative SI-SDR, and CodecFormer-EL Yip et al. (2024a) adds an embedding-level objective to align separator outputs with encoder latents. SDCodec Bie et al. (2024) embeds separation inside the codec by assigning dedicated RVQ branches to speech, music, and SFX and summing their codes to form mixture representations. However, neither design trivially extends to open-domain, prompt-conditioned USS: SDCodec’s hardwired, per-stem RVQ branches do not scale to open vocabularies (adding branches explodes parameters, while a mixture-invariant reformulation collapses into “three generic codecs” with no stem-specific RVQ specialization). MixIT-style training of CodecFormer still presupposes a maximum number of sources, conflicting with universal separation.

3 METHOD

CodecSep adapts the 16 kHz DAC Kumar et al. (2023) codec backbone for text-driven universal sound separation (USS). We use a transformer masker that estimates soft masks over codec latents

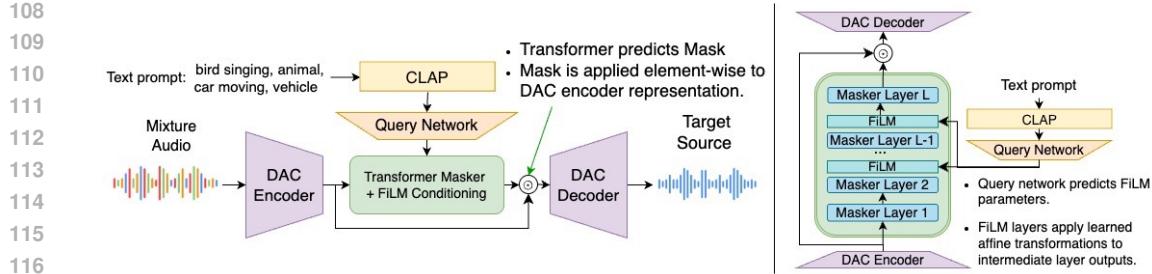


Figure 1: An overview of CodecSep. (Left) The full pipeline for text-guided USS. (Right) The integration of text conditioning into intermediate layers of transformer masker via FiLM layers.

and inject text conditioning via Feature-wise Linear Modulation (FiLM) Perez et al. (2018) using CLAP text embeddings Wu et al. (2023). FiLM is applied to intermediate transformer activations so the query semantics steer separation. Figure 1 (Left) shows the overall text-guided pipeline; Figure 1 (Right) highlights the FiLM-conditioned masker. Compared to STFT-domain AudioSep, operating in compact codec latents yields markedly lower compute and is amenable to edge deployment.

3.1 DESIGN RATIONALE: FiLM-CONDITIONED MASKING IN NAC LATENT SPACE

Descript Audio Codec (DAC) Backbone. We use DAC Kumar et al. (2023) as encoder-decoder. Following Codec/SoundStream, DAC uses fully-convolutional encoder/decoder with the periodic Snake activation $x + \sin^2 x$ (replacing LeakyReLU) to bias periodic audio modeling. Residual vector quantization (RVQ) compresses encoder outputs with factorized codes and ℓ_2 -normalized codebooks. For a 1 s audio $x(t)$ at $F_s=24$ kHz compressed to $R=6000$ bps, the encoder $Enc(\cdot)$ downsamples by $M=320$ to $T=F_s/M=75$ frames of latents $Z=[z_t \in \mathbb{R}^d]_{t=1}^T$ (d : channel width) with $r=R/T=80$ bits/frame. RVQ allocates $r_i=r/N_q=10$ bits across $N_q=8$ codebooks (size $2^{10}=1024$). Given Z , $Quant(\cdot)$ yields discrete codes $A=[a_t \in [1024]^8]$, which map to embeddings $e_t=\sum_{i=1}^8 e_t^i$; $Dec(\cdot)$ upsamples $E=[e_t]$ back to waveform $y(t)$.

Text-guided Sound Separation in Spectrogram-domain (AudioSep):

$$x(t) \xrightarrow{\text{STFT}} X \in \mathbb{C}^{F \times T_{\text{spec}}} \xrightarrow{\text{Spec}(X, e_\tau)} \tilde{Y}_s = |\hat{M}_s| \odot |X| \exp(\angle X + \angle \hat{M}_s) \xrightarrow{\text{ISTFT}} \tilde{y}_s(t),$$

where $\text{Spec}(\cdot, e_\tau)$ is a FiLM-conditioned masker that predicts a magnitude mask $|\hat{M}_s| \in [0, 1]^{F \times T_{\text{spec}}}$ (F : frequency bins, T_{spec} : spectrogram frames) and a phase residual $\angle \hat{M}_s$ given the complex STFT X of audio $x(t)$ and text-embedding e_τ .

Text-guided Sound Separation in NAC latent-domain (CodecSep):

$$x(t) \xrightarrow[\text{DAC}]{Enc(\cdot)} Z \in \mathbb{R}^{d \times T} \xrightarrow{\text{Mask}(Z, e_\tau)} \tilde{Z}_s = M_s \odot Z \xrightarrow[\text{DAC}]{Dec(\cdot)} \tilde{y}_s(t),$$

with frozen DAC backbone $Enc(\cdot)$, $Dec(\cdot)$ and a FiLM-conditioned transformer masker $\text{Mask}(\cdot, e_\tau)$ that estimates mask $M_s \in [0, 1]^{d \times T}$ applied element-wise to DAC latent Z .

Why NAC latents vs. spectrograms. Operating on NAC latents Z slashes dimensionality while preserving perceptual factors. For 1 s audio at 32 kHz, complex STFT with $N=1024$ and hop size $M=320$ samples has $T_{\text{spec}} \approx 100$ frames and $F = 2 \times 1024$ (Re+Im) scalars per frame, so $F \cdot T_{\text{spec}} \approx 204,800$. A 16 kHz DAC with width $d=64$ and the same M yields $T \approx 50$ and $d \cdot T=64 \times 50=3,200$ ($\sim 64 \times$ smaller), shrinking $Q/K/V$ and MLP sizes and easing self-attention. Similarly, for 32 kHz NACs like EnCodec, $T \approx 50$ with $d=128$, so attention/MLPs still operate on $\sim 32 \times$ smaller latents than complex STFTs. Crucially, $Enc(\cdot)$ organizes Z on a discriminative, perceptually aligned manifold, making selection (masking) easier than representation learning from raw X . In spectrogram systems $\text{Spec}(\cdot)$, the separator must first learn a high-level latent from X (via CNN/UNet) and then separate, coupling abstraction and masking and inflating parameters/compute. Waveform separators $Wave(\cdot)$ such as Sudo rm-rf Tzinis et al. (2022a;b; 2023) likewise downsample the waveform into STFT-like intermediate latents via 1D convolutions before encoding, resulting in latents with similar dimensionality and thus inheriting the same challenges as spectrogram systems.

Masking over codec latents (leveraging the codec prior). Because the DAC codec induces a strong semantic prior in its latent space via residual vector quantization (RVQ) and perceptual/adversarial

162 training, we mask the codec latents rather than generate sources from scratch as in CodecFormer.
 163 RVQ creates a coarse-to-fine hierarchy in $Z = Enc(x) \in \mathbb{R}^{d \times T}$: early stages capture coarse structure
 164 (e.g., low-frequency content, timbre), while later stages refine residual detail (e.g., high-frequency
 165 components, transients) Wang et al. (2023). We exploit this organization with a FiLM-conditioned
 166 transformer masker that predicts a soft mask $M_s \in [0, 1]^{d \times T}$ and applies it element-wise, yielding
 167 source latent estimate $\tilde{Z}_s = M_s \odot Z$. In contrast to learning a generator $Gen(Z, e_\tau) : Z \rightarrow \tilde{Z}_s$ as in
 168 CodecFormer, learning a *mask* $Mask(Z, e_\tau) : Z \rightarrow M_s$ on the compact, semantically organized codec
 169 manifold both exploits the codec prior more effectively and yields a more stable optimization that
 170 converges faster. Moreover, masking in the denoised, low-dimensional codec space is fundamentally
 171 easier than masking in the high-dimensional, noisy spectrogram domain. This selection-centric design
 172 (i) constrains learning to modulation of existing latent content, (ii) avoids hallucination and reduces
 173 leakage because no new signals are synthesized, and (iii) preserves long-horizon structure (periodicity,
 174 timbre, transients) already organized by the codec, yielding stable, low-artifact separations.

175 **Why FiLM inside the masker.** Placing FiLM in the masker (not in *Enc/Dec*) targets the selection
 176 step, preserves the codec manifold, and adds negligible overhead (two vectors per layer). Conditioning
 177 is non-iterative (single forward pass), maintaining low latency for edge/server workflows.

178 **Continuous latents Z vs. discrete codes A (and deployment path).** For training and analysis, we
 179 operate on *continuous* latents $Z = Enc(x) \in \mathbb{R}^{d \times T}$: (i) gradients flow cleanly through $Mask(\cdot, e_\tau)$
 180 and $Dec(\cdot)$ with a frozen codec (no straight-through estimators), yielding stable convergence; (ii)
 181 RVQ pretraining *regularizes* Z so pitch, timbre, onsets/transients, and textures are hierarchically
 182 organized, providing a richer, more disentangled signal for FiLM; and (iii) Z avoids run-to-run
 183 variance from codebook utilization (e.g., late RVQ sensitivity, bitrate truncation), reducing the need
 184 for special regularizers. For deployments with compressed bitstreams, we reconstruct embeddings by
 185 codebook lookup and use the same masker:

$$A = [a_t \in [1024]^{N_q} \mid t \in [T]], \quad e_t = \sum_{i=1}^{N_q} \text{lookup}(a_t^{(i)}), \quad (1)$$

$$E = [e_t]_{t=1}^T \approx Z, \quad \tilde{E}_s = M_s \odot E, \quad \tilde{y}_s(t) = Dec(\tilde{E}_s) \quad (2)$$

190 When a codes-out interface is desired, we re-quantize masked embeddings and optionally decode:
 191

$$\hat{A}_s = Quant(\tilde{E}_s), \quad \hat{E}_s = \text{lookup}(\hat{A}_s), \quad \tilde{y}_s(t) = Dec(\hat{E}_s).$$

192 By design, $E \approx Z$ at the operating bitrate and $Dec(E)$ already yields high-fidelity reconstructions;
 193 because our separator is a masker (selective modulation) rather than a generator, swapping $Z \rightarrow E$
 194 preserves the semantics needed for separation with no architectural change. While we report results
 195 on Z to isolate separator performance and maintain stable optimization, we also evaluate the bitstream
 196 path by feeding reconstructed embeddings E (codes-in) to the same trained masker without any
 197 fine-tuning; performance remains competitive relative to the Z path. The residual gap can be
 198 narrowed with light fine-tuning the masker on E or optimizing an embedding-consistency loss (cf.
 199 CodecFormer-EL) in place of, or alongside, SI-SDR: $\mathcal{L}_{\text{emb}} = \sum_s \|\tilde{E}_s - Z_s\|_1$. In deployment, the
 200 variant simply replaces the masker input with E and optionally re-quantizes for codes-out as,
 201

$$x(t) \xrightarrow[\text{On Edge}]{Quant(Enc(\cdot))} A \xrightarrow[\text{Codes In}]{\text{lookup}(A)} E \approx Z \xrightarrow[\text{On Server}]{Mask(E, e_\tau)} \tilde{E}_s = M_s \odot E \xrightarrow[\text{Codes Out}]{Quant(\tilde{E}_s)} \hat{A}_s.$$

202 **Deployment advantages over audio-stream separators.** In realistic pipelines, edge devices
 203 already run a codec and transmit code streams rather than raw audio. Traditional spectrogram-based
 204 *Spec(.)* and waveform-based *Wave(.)* separators, however, operate on the audio stream: they first
 205 convert audio to STFT or STFT-like representations (often via 1D convolutions), and then must
 206 *decode* \rightarrow *separate* \rightarrow *re-encode*, incurring additional latency and energy cost. In contrast,
 207 CodecSep performs *masking directly in the codec domain* and can output code streams without any
 208 decode-re-encode cycle. Concretely, with codec costs $C_{\text{Enc}}, C_{\text{Dec}}$, spectrogram or audio-stream
 209 separator (AudioSep) cost C_{Spec} , and CodecSep masker cost C_{Mask} :

210 Compute Cost for Code-stream input: $\text{AudioSep} = C_{\text{Dec}} + C_{\text{Spec}} + C_{\text{Enc}}, \quad \text{CodecSep} = C_{\text{Mask}}.$

211 We treat the codebook lookup C_{lookup} and quantization C_{Quant} costs as negligible (≈ 0) and omit the
 212 CLAP text-encoder cost since it is shared across all models. Figure 2 illustrates a typical edge-server

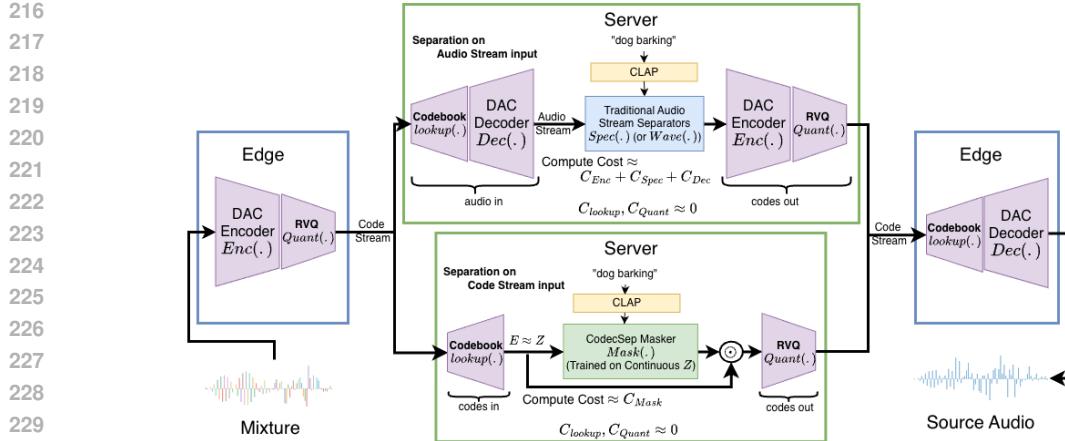


Figure 2: Typical edge–server deployment comparing compute requirements of conventional audio-stream separators (audio in → codes out) versus CodecSep discrete inference (codes in → codes out).

deployment and compares compute requirements for conventional audio-stream separators (audio in → codes out) versus CodecSep’s code-stream separator (codes in → codes out). As shown, the CodecSep masker operates on Z/E with small (d, T) where $|Z| \ll |X|$, dramatically reducing attention and MLP activations and enabling tighter batching and lower memory bandwidth. Interface compatibility is immediate when only codes A are available: perform a lookup to obtain E , apply the FiLM-conditioned masker, and optionally re-quantize to produce \hat{A}_s . CodecSep thus eliminates redundant decode/re-encode cycles in server workflows yielding low-latency, high-fidelity separation at scale. See Appendix B for a full discussion covering all of the aforementioned rationale in §3.1.

3.2 OUR MODEL

Masking (Not Generating): FiLM-Conditioned Transformer masker over NAC Latents for text-guided sound separation. We consider a mono mixture as $x(t) = \sum_{s \in \mathcal{S}} y_s(t)$, where $x(t)$ is the observed waveform, \mathcal{S} is the (unbounded) set of source classes/instances present, and $y_s(t)$ is the waveform of source s . Passing $x(t)$ through the frozen DAC encoder yields codec latents $Z \in \mathbb{R}^{d \times T}$ (d : channel width, T : latent frames). The masker $Mask(\cdot)$ operates in this latent space to predict an element-wise mask that selects the target source. We adopt a CodecFormer-style transformer with $L=16$ layers, width $d=256$, and Snake activations. Given a natural-language query τ (e.g., “dog barking”, “speech and music”), we compute a CLAP text embedding $e_\tau \in \mathbb{R}^d$. A lightweight query network $query(\cdot)$ maps e_τ to per-layer FiLM parameters $(\gamma^l, \beta^l) \in \mathbb{R}^d$ for $l \in \{2, \dots, L-1\}$, applied channel-wise to intermediate activations $H^l \in \mathbb{R}^{d \times T}$: $\tilde{H}^l = \text{FiLM}(H^l; \gamma^l, \beta^l) = \gamma^l \odot H^l + \beta^l$. The final transformer output H^L is then passed through a single 1D convolutional head to produce the prompt-conditioned mask $M_s \in [0, 1]^{d \times T}$. We obtain source latents $\tilde{Z}_s = M_s \odot Z$ and decode with the frozen codec decoder to get the waveform estimate $\tilde{y}_s = Dec(\tilde{Z}_s)$, bypassing RVQ lookup.

Training Objective We supervise on mixtures with prompts spanning *speech*, *music*, and diverse (possibly compositional) *SFX*. Besides per-source reconstruction, we encourage mixture consistency by decoding the summed latent estimates $\tilde{x} = g(\sum_s \tilde{Z}_s)$. The loss maximizes SI-SDR Luo & Mesgarani (2019); Le Roux et al. (2019) for both sources and mixture: $\mathcal{L} = -\sum_s \text{SI-SDR}(y_s, \tilde{y}_s) - \text{SI-SDR}(x, \tilde{x})$. During training, DAC and the CLAP text encoder are frozen; we update only the FiLM-conditioned masker $Mask(\cdot)$ and the query network $query(\cdot)$.

4 EXPERIMENTS

Datasets. We evaluate across a controlled multi-stem corpus and multiple open-domain benchmarks. For in-domain experiments, we adapt Divide and Remaster v2 (dnr-v2) Petermann et al. (2022) from fixed-label three-stem separation to universal, prompt-driven separation by replacing source labels with natural-language queries. Speech and music are queried with broad category prompts (e.g., “speech”, “music”), while SFX stems are queried using long-form, compositional prompts (≥ 2

270 Table 1: Results: Separation Performance, Universal Sound Separation (**dnr-v2-test**)
271

272 Model	273 Metric (\uparrow)	274 Music	275 Speech	276 Sfx
277 AudioSep (zero-shot)	278 SI-SDR	279 -2.5 ± 4.06	280 4.9 ± 4.21	281 -0.3 ± 5.39
	282 ViSQOL	283 2.9 ± 0.63	284 3.1 ± 0.56	285 2.6 ± 0.77
286 Bimodal (zero-shot)	287 SI-SDR	288 -6.8 ± 2.73	289 1.8 ± 2.78	290 -6.36 ± 3.57
	291 ViSQOL	292 2.5 ± 0.57	293 2.6 ± 0.51	294 2.3 ± 0.72
295 AudioSep + dnr-v2	296 SI-SDR	297 -5.6 ± 2.89	298 7.7 ± 3.0	299 -4.7 ± 3.68
	300 ViSQOL	301 2.6 ± 0.57	302 2.5 ± 0.37	303 2.3 ± 0.7
304 Sudo rm-rf + FiLM + dnr-v2	305 SI-SDR	306 -6.7 ± 2.62	307 2.0 ± 2.76	308 -6.6 ± 3.71
	309 ViSQOL	310 2.7 ± 0.59	311 2.9 ± 0.45	312 2.3 ± 0.72
313 CodecSep + dnr-v2	314 SI-SDR	315 1.2 ± 3.29	316 10.0 ± 2.92	317 0.9 ± 4.22
	318 ViSQOL	319 2.9 ± 0.57	320 3.2 ± 0.45	321 2.3 ± 0.73
322 CodecSep + dnr-v2 (codes in : codes out, zero-shot)	323 SI-SDR	324 -0.2 ± 3.55	325 8.3 ± 2.60	326 -1.0 ± 4.20
	327 ViSQOL	328 2.5 ± 0.52	329 3.0 ± 0.44	330 2.3 ± 0.67
331 CodecSep + dnr-v2 (ablate Masker)	332 SI-SDR	333 -6.8 ± 2.77	334 2.0 ± 2.84	335 -6.8 ± 3.83
	336 ViSQOL	337 2.5 ± 0.58	338 2.6 ± 0.50	339 2.1 ± 0.74

290 overlapping sources) synthesized from FSD50K’s hierarchical annotations Fonseca et al. (2022),
291 combining fine-grained classes with parent categories (e.g., “dog barking, *Animal*, engine rumbling,
292 *motor vehicle*”). To assess cross-domain generalization, we form three-source mixtures on AudioCaps
293 Kim et al. (2019) (used for both training and testing in our open-domain setting) and construct test-
294 only three-source mixtures from ESC-50 Piczak, Clotho-v2 Drossos et al. (2020), AudioSet-eval
295 Gemmeke et al. (2017), and VGGSound Chen et al. (2020a). Dataset construction details, clip
296 durations, split statistics, and segmentation rules are provided in the Appendix C.

297 **Evaluation.** We compare CodecSep against representative spectrogram-, waveform- and codec-
298 domain baselines—TDANet Li et al. (2023); Pons et al. (2024), Sudo rm-rf Tzinis et al. (2022a),
299 CodecFormer Yip et al. (2024b), SDCCodec Bie et al. (2024), and the text-guided audio stream
300 separators AudioSep Liu et al. (2024), BiModalSS Mahmud et al. (2024) and Sudo rm-rf + FiLM
301 Tzinis et al. (2022b; 2023). We report objective signal fidelity via scale-invariant signal-to-distortion
302 ratio (SI-SDR) Luo & Mesgarani (2019); Le Roux et al. (2019) and perceptual quality via ViSQOL
303 Chinen et al. (2020), which measures spectro-temporal similarity between the estimate \tilde{x} and
304 reference x and maps it to a 1–5 MOS-LQO scale. Following prior work (e.g., SDCCodec Bie et al.
305 (2024)), we use ViSQOL as a proxy MOS score for perceptual listening quality and complement it
306 with a human MOS-LQS study comparing real-world outputs from CodecSep (trained on dnr-v2) and
307 the publicly released AudioSep. To quantify efficiency, we report multiply-accumulate operations
308 (MACs), inference time, memory footprint using `torchinfo`¹ under matched input durations (2 s)
309 and batching (batch size 2) on a 24GB NVIDIA A30 GPU. Details on evaluation workflow for each
310 benchmark are deferred to Appendix D.

311 **Training.** Unless otherwise stated, the DAC codec Kumar et al. (2023) and CLAP text encoder Wu
312 et al. (2023) remain frozen; we train the FiLM-conditioned transformer masker and the lightweight
313 query network end-to-end with an Adam optimizer Kingma & Ba (2017) and a plateau-based learning-
314 rate schedule Mukherjee et al. (2019). We produce two variants of CodecSep, trained separately
315 on dnr-v2 and on AudioCaps, to study distributional effects; we denote them with the suffixes
316 “+dnr-v2” and “+AudioCaps”. For fair comparison, the 3-stem versions of TDANet, Sudo rm-rf, and
317 CodecFormer are re-trained from scratch on dnr-v2 using our setup. AudioSep is evaluated both as
318 the publicly released checkpoint and when re-trained under matched protocols. We similarly re-train
319 Sudo rm-rf+FiLM under the same matched settings. Pretrained checkpoints of BiModalSS and
320 SDCCodec are used as released by the authors. To reflect realistic deployments where signals traverse
321 compression pipelines, inputs to non-codec baselines are passed through a full-band stereo-capable
322 48 kHz EnCodec during both training and inference. Full hyper-parameters, iteration schedules, batch
323 configurations, and hardware details are deferred to the Appendix E.

¹<https://github.com/tyleryep/torchinfo>

324
325

4.1 RESULTS AND DISCUSSIONS

326

Tables 1–6 present universal sound separation results, prompt–granularity analyses, architectural ablations, cross-dataset generalization, paraphrase robustness, and full inference complexity under matched training/evaluation protocols. Table 1 reports dnr-v2 test results for speech, music, and SFX: text-guided models use generic prompts for speech/music and ground-truth compositional captions for SFX; we also include a masker ablation to isolate the role of the Transformer masker. Table 2 studies SFX prompt granularity across three regimes—(i) fixed-stem, non-text baselines (TDANet, CodecFormer, SDCodec), (ii) generic 3-stem prompts ($\{\text{music, speech, sfx}\}$), and (iii) a universal setup with fine-grained, compositional SFX prompts—thereby aligning input conditions for fair comparison with fixed-head systems. Table 3 isolates architecture: decoder-style generation (CodecFormer) vs. an unguided 3-stem masker variant and its text-guided counterpart, all operating in the codec latent space. To assess out-of-domain generalization, Table 4 benchmarks on five additional open-domain corpora (ESC-50, Clotho-v2, AudioSet, VGGSound, AudioCaps) with mixtures of three randomly sampled sources and prompts drawn from captions (not tied to fixed labels).. Table 6 probes prompt paraphrasing robustness by replacing the generic speech/music prompts with unseen synonymous variants at inference (zero-shot paraphrase test). Finally, Table 5 compares end-to-end and architecture-only GMACs for spectrogram-domain separation versus codec-latent masking, including the practical code-stream case. All models are evaluated against the original (uncompressed) ground truth; our methods are highlighted in **bold**; and we report mean and standard deviation (1σ).

343

Sound Separation Performance on dnr-v2 (cf. Table 1). CodecSep+dnr-v2 outperforms both pretrained AudioSep (zero-shot) and retrained AudioSep+dnr-v2 across all categories, with sizable SI-SDR gains in speech (10.0 vs. 4.9/7.7 dB), music (1.2 vs. $-2.5/-5.6$ dB), and SFX (0.9 vs. $-0.3/-4.7$ dB). In ViSQOL, CodecSep matches or exceeds AudioSep in speech and music while slightly trailing on SFX, likely reflecting differences in SFX prompt distributions (AudioSep’s diverse training vs. CodecSep’s compositional SFX prompts from dnr-v2). Importantly, our *bitstream-native* variant—CodecSep+dnr-v2 (codes in: codes out, zero-shot)—evaluates the CodecSep+dnr-v2 masker directly on reconstructed embeddings E from code streams (§3.1, para. 6–7) *without* any fine-tuning: it incurs a modest drop relative to the continuous-latent path (about 1–2 dB SI-SDR across sources; small ViSQOL deltas for music/speech and parity on SFX), yet still surpasses AudioSep+dnr-v2 on SI-SDR for all sources (e.g., music: -0.2 vs. -5.6 dB; speech: 8.3 vs. 7.7 dB; SFX: -1.0 vs. -4.7 dB). Compared to pretrained AudioSep (zero-shot), the codes-in:codes-out variant improves SI-SDR on speech/music but lags on SFX SI-SDR and ViSQOL. These results indicate that a deployment-friendly, *no-finetuning* bitstream path is already competitive; as discussed in §3.1, para. 6, light fine-tuning on E or an embedding-consistency loss can close the residual gap. As part of our ablation, the lightweight CodecSep+dnr-v2 (ablate Masker) removes the transformer masker and applies FiLM directly to the encoder; it attains SI-SDR comparable to AudioSep+dnr-v2 with better perceptual speech quality, but overall separation quality drops due to FiLM perturbing the mixture latents held by the encoder. Beyond AudioSep, CodecSep also outperforms the USS-pretrained BiModalSS model and the retrained text-conditioned Sudo rm-rf + FiLM baseline. The heavier attention-based conditioning used in BiModalSS does not generalize well to the open-domain mixtures in dnr-v2, leading to degraded performance. CodecSep also outperforms the Sudo rm-rf + FiLM model trained under the same universal setting. This gap is likely due to two factors. First, continuous CLAP embeddings provide far richer semantic conditioning than the fixed one-hot or multi-hot vectors that Sudo rm-rf + FiLM was designed for, causing the model to struggle with open-domain prompts. Second, applying FiLM across all U-Conv blocks while using only a single Conv1d layer for audio encoding can destabilize internal representations, especially when conditioned with high-dimensional continuous embeddings. Since AudioSep also outperforms both by a large margin, we use AudioSep as the primary baseline in our further experiments.

370

Effect of SFX Prompt Granularity during training. We evaluate three regimes: (i) *fixed-stem* baselines without text guidance (TDANet, Sudo rm-rf, CodecFormer, SDCodec) (cf. Table 2), (ii) *generic 3-stem* prompts (“music/speech/sfx”) (cf. Table 2), and (iii) *universal* prompting that retains generic cues for speech/music but uses fine-grained, compositional SFX descriptions (cf. Table 1). For (ii) and (iii), we train and evaluate separate versions of both CodecSep and AudioSep on each prompt setting. Across settings, CodecSep matches or exceeds fixed-stem baselines on SFX while maintaining comparable speech and music quality, and its USS variant outperforms Sudo rm-rf across all stems with modest margins (cf. Table 2). Under matched generic-prompt training/evaluation, CodecSep remains robust and surpasses spectrogram-domain AudioSep, indicating that effective

378 Table 2: Results: Impact of SFX Prompt Granularity on Universal Sound Separation (**dnr-v2-test**)
379

380 Model	381 Metric (\uparrow)	382 Music	383 Speech	384 Sfx
3-Step: Fixed stem baselines (no text-guidance)				
385 TDANet	386 SI-SDR	387 1.8 ± 3.55	388 10.2 ± 2.91	389 1.4 ± 4.90
	390 ViSQOL	391 2.9 ± 0.58	392 3.1 ± 0.43	393 2.4 ± 0.72
394 Sudo rm-rf	395 SI-SDR	396 -0.9 ± 4.01	397 9.0 ± 2.60	398 0.6 ± 4.74
	399 ViSQOL	400 2.7 ± 0.59	401 2.9 ± 0.45	402 2.3 ± 0.72
403 CodecFormer	404 SI-SDR	405 -5.7 ± 3.44	406 2.3 ± 2.32	407 -6.5 ± 4.36
	408 ViSQOL	409 2.2 ± 0.47	410 2.5 ± 0.49	411 2.1 ± 0.67
412 SDCodec	413 SI-SDR	414 1.9 ± 3.68	415 11.3 ± 2.98	416 1.8 ± 4.08
	417 ViSQOL	418 3.0 ± 0.56	419 3.5 ± 0.40	420 2.6 ± 0.73
3-Step: {"music", "speech", "sfx"} as generic prompt				
421 AudioSep	422 SI-SDR	423 -2.5 ± 4.06	424 4.9 ± 4.21	425 -6.7 ± 4.73
	426 (zero-shot)	427 2.9 ± 0.63	428 3.1 ± 0.56	429 2.1 ± 0.68
430 AudioSep + dnr-v2	431 SI-SDR	432 -6.2 ± 2.77	433 7.7 ± 3.11	434 -2.1 ± 3.90
	435 ViSQOL	436 2.6 ± 0.57	437 2.5 ± 0.37	438 2.4 ± 0.74
439 CodecSep + dnr-v2	440 SI-SDR	441 -7.7 ± 2.84	442 4.6 ± 2.48	443 0.6 ± 4.15
	444 ViSQOL	445 2.5 ± 0.55	446 2.7 ± 0.49	447 2.4 ± 0.70

400 Table 3: Results: Architectural advantages in using CodecFormer decoder as masker (**dnr-v2-test**)
401

402 Model	403 Metric (\uparrow)	404 Music	405 Speech	406 Sfx
407 CodecFormer	408 SI-SDR	409 -5.8 ± 3.44	410 2.3 ± 2.32	411 -6.5 ± 4.36
	412 ViSQOL	413 2.2 ± 0.47	414 2.5 ± 0.49	415 2.1 ± 0.67
416 CodecSep + dnr-v2	417 SI-SDR	418 1.2 ± 3.35	419 10.0 ± 2.91	420 0.9 ± 4.18
	421 (unguided, 3-stem)	422 ViSQOL	423 2.8 ± 0.55	424 3.1 ± 0.45
425 CodecSep + dnr-v2	426 SI-SDR	427 1.2 ± 3.29	428 10.0 ± 2.92	429 0.9 ± 4.22
	430 (text-guided)	431 ViSQOL	432 2.9 ± 0.57	433 3.2 ± 0.45

416 separation does not hinge on carefully crafted prompts (cf. Table 1–2). Moreover, replacing the “sfx”
417 label with detailed SFX prompts consistently sharpens SFX extraction and, importantly, improves
418 speech and music stems as well—suggesting that richer SFX supervision enhances overall scene
419 disentanglement (cf. Table 1). While these controlled studies cover multiple prompt granularities,
420 we expect additional gains from training on larger, more diverse corpora with a spectrum of prompt
421 specificities, which we leave for future work.

422 **Why use a Transformer masker instead of a decoder? (cf. Table 3).** We compare (i) CodecFormer
423 (decoder-style source generation), (ii) CodecSep (unguided, 3-stem) which uses the CodecFormer
424 Transformer as a masker over codec latents, and (iii) CodecSep (text-guided). The results on dnr-
425 v2-test exhibit two clear trends. First, replacing decoder-style generation with masking consistently
426 strengthens separation across music, speech, and SFX. This aligns with our design rationale: in
427 the DAC latent domain, the masker modulates existing, semantically structured content instead of
428 synthesizing new signals, which (a) reduces artifacts and cross-talk leakage, (b) preserves long-
429 range periodicity/timbre and transient organization already encoded by the codec, and (c) stabilizes
430 optimization compared to end-to-end generation. Second, adding text guidance yields a further
431 uniform improvement. The masker formulation concentrates Transformer capacity on selection
432 (“where/how much” to pass) rather than generation (“what” to produce).

433 **Further benchmarking on ESC-50, Clotho-v2, AudioSet, VGGSound, & AudioCaps (cf. Table 4).**
434 Extending beyond dnr-v2, we evaluate both systems on five additional open-domain benchmarks spanning
435 environmental sounds (ESC-50), audio captioning-style corpora (Clotho-v2, AudioCaps), weakly
436 labeled web-scale audio (AudioSet), and visually grounded audio (VGGSound). Under matched
437 training data and prompt protocols, CodecSep+dnr-v2 consistently outperforms AudioSep+dnr-v2
438 across all five datasets in both separation fidelity and perceptual quality.

Full inference complexity (cf. Table 5). Across all six dimensions of computational analysis—GMACs, inference time, parameter count, forward/backward memory, and full memory footprint—CodecSep demonstrates a substantial efficiency advantage over spectrogram-domain baselines, especially in the deployment-realistic code-stream mode. In terms of hardware-agnostic compute (cf. Table 5a), CodecSep requires only 1.35 GMACs when operating on codec bitstreams, compared to 73.6 GMACs for AudioSep and 56.5 GMACs for Sudo rm-rf, yielding roughly 54 \times and 40 \times reductions, respectively (and 25 \times /12 \times under the architecture-only comparison). These savings translate directly to latency (cf. Table 5b): CodecSep achieves 0.19 s inference in code-stream mode—8 \times faster than AudioSep and approximately 10 \times faster than Sudo rm-rf—despite having a moderately larger parameter count. Parameter efficiency mirrors this trend (cf. Table 5d): when fed code streams, CodecSep uses only 16.3M parameters, markedly smaller than AudioSep (112.8M) and Sudo rm-rf (78.8M), reflecting its lightweight, masker-only design. Memory usage shows the most pronounced differences. For forward/backward activations (cf. Table 5e), CodecSep requires just 28 MB in code-stream mode, compared to 1.58 GB for AudioSep and 2.84 GB for Sudo rm-rf—over 50 \times to 100 \times reductions. The overall footprint follows suit (cf. Table 5f): full memory usage for CodecSep is only 76.5 MB, versus 2.03 GB (AudioSep) and 3.15 GB (Sudo rm-rf), yielding roughly 27 \times and 41 \times reductions, respectively. waveforms (audio-stream input), where CodecSep must additionally run the codec encoder/decoder, it still consumes less memory than Sudo rm-rf (1.14 GB vs. 2.05 GB), demonstrating that codec compute, while non-trivial, is not the dominant bottleneck. These results collectively indicate that code-stream processing—already standard in real systems—is where CodecSep is maximally efficient, achieving extreme reductions in compute, memory, and latency. This makes CodecSep uniquely suited for scalable deployment on edge-server pipelines, where audio is almost always exchanged as codec bitstreams rather than raw waveforms.

Additional experiments (cf. Appendix F–J). For readability, five extended studies are deferred to the Appendix, which also details data construction, prompt protocols (generic vs. universal and paraphrased variants), training/evaluation splits, and metrics. (i) *Robustness to prompt paraphrasing* (cf. Appendix F): We test lexical robustness by replacing the generic *speech* and *music* prompts with three unseen paraphrases each (e.g., “spoken voice,” “people talking”; “instrumental music,” “band playing”). This zero-shot paraphrase test requires models trained on generic labels to handle synonymous descriptors at inference. While both CodecSep+dnr-v2 and AudioSep+dnr-v2 degrade under paraphrasing, CodecSep remains consistently stronger (Table 6). This experiment focuses on lexical variants; paraphrases involving temporal structure (e.g., “applause follows a song”) are left for future work. (ii) *Generalization across open-domain datasets* (cf. Appendix G): On AudioCaps (derived from AudioSet), the spectrogram baseline AudioSep benefits from distributional alignment and attains the strongest absolute scores, yet CodecSep+dnr-v2 generalizes competitively—surpassing AudioSep+dnr-v2 in SI-SDR at comparable ViSQOL (cf. Table 7). When both are retrained on AudioCaps, CodecSep+AudioCaps again outperforms AudioSep+AudioCaps in separation quality. The same trend holds on the more challenging dnr-v2 test set, where mixtures often contain speech, music, and multiple overlapping SFX; both models drop in absolute performance, but CodecSep retains its advantage in SI-SDR. (iii) *Relative-gain summaries* (cf. Appendix H): We report percent improvements of CodecSep over AudioSep under matched training data and prompt settings; CodecSep shows large SI-SDR gains on dnr-v2 with positive (though smaller) gains under paraphrased prompts, and consistent improvements across ESC-50, Clotho-v2, AudioSet, VGGSound, and AudioCaps, with modest ViSQOL deltas (cf. Table 8). (iv) *Higher bandwidth* (cf. Appendix I): Replacing the frozen 16 kHz DAC with a 48 kHz, stereo-capable EnCodec leaves the masking architecture unchanged but increases latent-frame count and high-frequency detail, making separation harder and reducing SI-SDR/ViSQOL (Table 9). At higher F_s , gains depend mainly on backbone capacity and data rather than architectural modifications. Evaluations of 24 kHz and 44.1 kHz DAC variants show the same pattern: with fixed masker capacity, performance declines monotonically as sampling rate increases, reflecting the difficulty of wide-bandwidth separation, while DAC consistently outperforms EnCodec at matched bandwidths. (v) *Reconstruction study*: We probe *source leakage* with a *single-source reconstruction* diagnostic on dnr-v2: each input contains one target source and models are either prompted with the matching caption (text-guided) or routed to the corresponding fixed head (non-text-guided). We also report *mixture reconstruction* by summing predicted source stems for a mixture and comparing to the original. This is a leakage/consistency check—not a primary separation metric; full setup/results are in Appendix J (cf. Table 10).

Subjective evaluation (MOS–LQS). We ran a human evaluation test with $n=20$ participants on 20 dnr-v2 3-stem test mixtures, comparing paired outputs from CodecSep+dnr-v2 and the official AudioSep model using fixed *speech/music* prompts and per-clip *sfx* prompts. Raters scored each

486 Table 4: Results: Benchmarking on **ESC-50**, **Clotho-v2**, **AudioSet**, **VGGSound**, **AudioCaps**
487

Model	Metric (\uparrow)	ESC-50	Clotho-v2	AudioSet	VGGSound	AudioCaps
AudioSep	SI-SDR	-7.8 ± 14.46	-8.6 ± 17.0	-7.6 ± 11.42	-7.0 ± 12.65	-6.4 ± 11.48
+ dnr-v2	ViSQOL	2.3 ± 1.12	2.1 ± 1.08	2.1 ± 1.00	2.2 ± 1.10	2.3 ± 1.08
CodecSep	SI-SDR	-5.9 ± 11.55	-6.0 ± 11.10	-6.4 ± 10.53	-6.1 ± 12.12	-6.1 ± 11.62
+ dnr-v2	ViSQOL	2.3 ± 1.13	2.3 ± 1.09	2.2 ± 1.0	2.3 ± 1.11	2.2 ± 1.16

494 Table 5: Full Inference Compute Benchmarking Across Six Settings on 24GB NVIDIA A-30 GPU
495

(a) Inference GMACs (\downarrow)				(b) Inference Time (s) (\downarrow)			
Model	Audio Stream I/O	Code Stream I/O	Architecture-only	Model	Audio Stream I/O	Code Stream I/O	Architecture-only
AudioSep	33.5	73.6	33.5	AudioSep	0.33	1.63	0.33
Sudo rm-rf	16.44	56.54	16.44	Sudo rm-rf	0.51	1.81	0.51
CodecSep	41.45	1.35	1.35	CodecSep	1.49	0.19	0.19

<i>Codec GMACs: Enc=12.28, Dec=27.82</i>				<i>Codec Inference Times (s): Enc=1.16, Dec=0.14</i>			
Model	Audio Stream I/O	Code Stream I/O	Architecture-only	Model	Audio Stream I/O	Code Stream I/O	Architecture-only
AudioSep	39	112.8	39	AudioSep	156.13	447.62	156.13
Sudo rm-rf	5	78.8	5	Sudo rm-rf	20.07	311.25	20.07
CodecSep	90.1	16.3	16.3	CodecSep	339.89	48.4	48.4

<i>Codec Parameter Count (in million): Enc=21.5, Dec=52.3</i>				<i>Codec Parameter-only Memory Footprint (MB): Enc=85.1, Dec=206.39</i>			
Model	Audio Stream I/O	Code Stream I/O	Architecture-only	Model	Audio Stream I/O	Code Stream I/O	Architecture-only
AudioSep	804.3	1580.6	804.3	AudioSep	960.43	2028.22	960.43
Sudo rm-rf	2032.13	2836.43	2032.13	Sudo rm-rf	2052.2	3147.68	2052.2
CodecSep	804.4	28.06	28.06	CodecSep	1144.25	76.46	76.46

<i>Codec Forward/Backward Pass Memory Footprint (MB): Enc=310.48, Dec=465.82</i>				<i>Codec Full Memory Footprint (MB): Enc=395.58, Dec=672.21</i>			
Model	Audio Stream I/O	Code Stream I/O	Architecture-only	Model	Audio Stream I/O	Code Stream I/O	Architecture-only
AudioSep	804.3	1580.6	804.3	AudioSep	960.43	2028.22	960.43
Sudo rm-rf	2032.13	2836.43	2032.13	Sudo rm-rf	2052.2	3147.68	2052.2
CodecSep	804.4	28.06	28.06	CodecSep	1144.25	76.46	76.46

511 stem independently in randomized order on the MOS-LQS scale (1=bad, 5=excellent); we report
512 mean $\pm 1\sigma$. Overall, CodecSep scored 3.34 ± 1.00 vs. AudioSep 2.61 ± 1.04 . By source, CodecSep
513 achieved 3.17 ± 1.01 (music), 3.37 ± 0.97 (sfx), and 3.49 ± 1.00 (speech), while AudioSep obtained
514 2.49 ± 0.95 , 2.84 ± 1.16 , and 2.50 ± 1.02 , respectively. These outcomes align with objective trends
515 (SI-SDR/ViSQOL) and indicate consistent perceptual gains for CodecSep. Paired model outputs and
516 reference stems are included in the supplementary materials for side-by-side listening.

517 **Extension to multi-modal prompting.** Because conditioning enters only via a fixed-dimensional
518 query embedding e_τ that drives FiLM in the masker, the architecture is agnostic to the prompt
519 modality. Concretely, one can replace the text encoder with (i) an *audio* encoder to accept audio
520 prompts (e_τ^{aud}), (ii) an *image/vision-language* encoder (e.g., CLIP) to accept image prompts (e_τ^{vis}),
521 or (iii) a lightweight fusion (e.g., gated additive or attention pooling) of $(e_\tau^{\text{text}}, e_\tau^{\text{aud}}, e_\tau^{\text{vis}})$ to support
522 mixed prompts—all without modifying the masker or the codec.

5 CONCLUSION

524 CodecSep advances text-guided universal sound separation by operating directly in NAC latents with
525 a FiLM-conditioned Transformer masker (not a decoder), outperforming audio stream separators like
526 AudioSep across dnr-v2 and five open-domain datasets (AudioCaps, ESC-50, Clotho-v2, AudioSet,
527 VGGSound) under matched training/prompt protocols. In code-stream deployments, it needs just
528 1.35 GMACs end-to-end— $\sim 54 \times$ less compute ($25 \times$ architecture-only) than spectrogram domain
529 separators like AudioSep—while remaining fully bitstream-compatible. Ablations indicate that
530 DAC latents are sufficiently structured that masking over them yields stronger separation than
531 decoding/generating sources from the latents; a MOS-LQS study corroborates perceptual gains. We
532 also demonstrate a codes in: codes out route that operates on reconstructed embeddings without
533 fine-tuning, highlighting deployment readiness. Looking ahead, we will broaden prompt coverage
534 with temporal/relational and referring-expression cues, extend separation to higher bandwidths and
535 stereo/spatial audio (e.g., 48 kHz stereo Encodec; HO-DirAC Hold et al. (2024), SpatialCodec Xu
536 et al. (2024)), and support audio/image or mixed prompts. The predicted masks and FiLM responses
537 also reveal how CodecSep selectively activates latent components, offering a natural avenue for future
538 interpretability work via mask visualization and reconstruction-consistency checks. We discuss the
539 limitations of our work in Appendix K. We provide supplementary code to facilitate reproducibility.

540 REFERENCES
541

542 Xiaoyu Bie, Xubo Liu, and Gaël Richard. Learning source disentanglement in neural audio codec.
543 *arXiv preprint arXiv:2409.11228*, 2024.

544 Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt
545 Sharifi, Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, and Neil Zeghidour.
546 Audiolm: a language modeling approach to audio generation, 2023. URL <https://arxiv.org/abs/2209.03143>.

547

548 Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-scale audio-
549 visual dataset. In *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and
550 Signal Processing (ICASSP)*, pp. 721–725. IEEE, 2020a.

551

552 Jingjing Chen, Qirong Mao, and Dong Liu. Dual-path transformer network: Direct context-aware
553 modeling for end-to-end monaural speech separation. *arXiv preprint arXiv:2007.13975*, 2020b.

554

555 Michael Chinen, Felicia S. C. Lim, Jan Skoglund, Nikita Gureev, Feargus O’Gorman, and Andrew
556 Hines. Visqol v3: An open source production ready objective speech and audio metric, 2020. URL
557 <https://arxiv.org/abs/2004.09584>.

558

559 Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, and Xavier Bresson. Fma: A dataset for
560 music analysis, 2017. URL <https://arxiv.org/abs/1612.01840>.

561

562 Alexandre Défossez, Nicolas Usunier, Léon Bottou, and Francis R. Bach. Music source separation in
563 the waveform domain. *CoRR*, abs/1911.13254, 2019. URL <http://arxiv.org/abs/1911.13254>.

564

565 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
566 bidirectional transformers for language understanding, 2019. URL <https://arxiv.org/abs/1810.04805>.

567

568 Konstantinos Drossos, Samuel Lipping, and Tuomas Virtanen. Clotho: An audio captioning dataset.
569 In *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
570 (ICASSP)*, pp. 736–740. IEEE, 2020.

571

572 Zhihao Du, Jiaming Wang, Qian Chen, Yunfei Chu, Zhifu Gao, Zerui Li, Kai Hu, Xiaohuan Zhou, Jin
573 Xu, Ziyang Ma, Wen Wang, Siqi Zheng, Chang Zhou, Zhijie Yan, and Shiliang Zhang. Lauragpt:
574 Listen, attend, understand, and regenerate audio with gpt, 2024. URL <https://arxiv.org/abs/2310.04673>.

575

576 Alexandre Défossez, Nicolas Usunier, Léon Bottou, and Francis Bach. Music source separation in
577 the waveform domain, 2021. URL <https://arxiv.org/abs/1911.13254>.

578

579 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio
580 compression, 2022. URL <https://arxiv.org/abs/2210.13438>.

581

582 Eduardo Fonseca, Xavier Favory, Jordi Pons, Frederic Font, and Xavier Serra. Fsd50k: An
583 open dataset of human-labeled sound events, 2022. URL <https://arxiv.org/abs/2010.00475>.

584

585 Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing
586 Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for
587 audio events. In *Proc. IEEE ICASSP 2017*, New Orleans, LA, 2017.

588

589 Romain Hennequin, Anis Khelif, Felix Voituret, and Manuel Moussallam. Spleeter: a fast and efficient
590 music source separation tool with pre-trained models. *Journal of Open Source Software*, 5(50):
591 2154, 2020.

592

593 Christoph Hold, Leo McCormack, Archontis Politis, and Ville Pulkki. Perceptually-motivated spatial
594 audio codec for higher-order ambisonics compression, 2024. URL <https://arxiv.org/abs/2401.13401>.

594 Yanxin Hu, Yun Liu, Shubo Lv, Mengtao Xing, Shimin Zhang, Yihui Fu, Jian Wu, Bihong Zhang, and
 595 Lei Xie. Dccrn: Deep complex convolution recurrent network for phase-aware speech enhancement.
 596 *arXiv preprint arXiv:2008.00264*, 2020.

597

598 Ilya Kavalerov, Scott Wisdom, Hakan Erdogan, Brian Patton, Kevin Wilson, Jonathan Le Roux, and
 599 John R. Hershey. Universal sound separation. In *2019 IEEE Workshop on Applications of Signal
 600 Processing to Audio and Acoustics (WASPAA)*, pp. 175–179, 2019. doi: 10.1109/WASPAA.2019.
 601 8937253.

602 Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee Kim. Audiocaps: Generating
 603 captions for audios in the wild. In *NAACL-HLT*, 2019.

604

605 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
 606 <https://arxiv.org/abs/1412.6980>.

607 Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, and Kundan Ku-
 608 mar. High-fidelity audio compression with improved rvqgan. In A. Oh, T. Nau-
 609 mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural
 610 Information Processing Systems*, volume 36, pp. 27980–27993. Curran Associates, Inc.,
 611 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/58d0e78cf042af5876e12661087bea12-Paper-Conference.pdf.

612

613 Jonathan Le Roux, Scott Wisdom, Hakan Erdogan, and John R Hershey. Sdr-half-baked or well
 614 done? In *ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal
 615 Processing (ICASSP)*, pp. 626–630. IEEE, 2019.

616

617 Kai Li, Runxuan Yang, and Xiaolin Hu. An efficient encoder-decoder architecture with top-down
 618 attention for speech separation, 2023. URL <https://arxiv.org/abs/2209.15200>.

619

620 Xubo Liu, Qiuqiang Kong, Yan Zhao, Haohe Liu, Yi Yuan, Yuzhuo Liu, Rui Xia, Yuxuan Wang,
 621 Mark D. Plumbley, and Wenwu Wang. Separate anything you describe, 2024. URL <https://arxiv.org/abs/2308.05037>.

622

623 Yi Luo and Nima Mesgarani. Conv-tasnet: Surpassing ideal time–frequency magnitude masking
 624 for speech separation. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*,
 625 27(8):1256–1266, August 2019. ISSN 2329-9304. doi: 10.1109/taslp.2019.2915167. URL
 626 <http://dx.doi.org/10.1109/TASLP.2019.2915167>.

627

628 Tanvir Mahmud, Saeed Amizadeh, Kazuhito Koishida, and Diana Marculescu. Weakly-supervised
 629 audio separation via bi-modal semantic similarity. *arXiv preprint arXiv:2404.01740*, 2024.

630

631 Koyel Mukherjee, Alind Khare, and Ashish Verma. A simple dynamic learning rate tuning algorithm
 632 for automated training of dnns, 2019. URL <https://arxiv.org/abs/1910.11605>.

633

634 Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An asr corpus
 635 based on public domain audio books. In *2015 IEEE International Conference on Acoustics, Speech
 and Signal Processing (ICASSP)*, pp. 5206–5210, 2015. doi: 10.1109/ICASSP.2015.7178964.

636

637 Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
 638 reasoning with a general conditioning layer. *Proceedings of the AAAI Conference on Artificial
 639 Intelligence*, 32(1), Apr. 2018. doi: 10.1609/aaai.v32i1.11671. URL <https://ojs.aaai.org/index.php/AAAI/article/view/11671>.

640

641 Darius Petermann, Gordon Wichern, Zhong-Qiu Wang, and Jonathan Le Roux. The cocktail fork
 642 problem: Three-stem audio separation for real-world soundtracks. In *ICASSP 2022 - 2022 IEEE
 643 International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 526–530,
 644 2022. doi: 10.1109/ICASSP43922.2022.9746005.

645

646 Karol J. Piczak. ESC: Dataset for Environmental Sound Classification. In *Proceedings of the 23rd
 647 Annual ACM Conference on Multimedia*, pp. 1015–1018. ACM Press. ISBN 978-1-4503-3459-
 648 4. doi: 10.1145/2733373.2806390. URL <http://dl.acm.org/citation.cfm?doid=2733373.2806390>.

648 Jordi Pons, Xiaoyu Liu, Santiago Pascual, and Joan Serrà. Gass: Generalizing audio source separation
 649 with large-scale data. In *ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech
 650 and Signal Processing (ICASSP)*, pp. 546–550, 2024. doi: 10.1109/ICASSP48485.2024.10446601.
 651

652 Daniel Stoller, Sebastian Ewert, and Simon Dixon. Wave-u-net: A multi-scale neural network for
 653 end-to-end audio source separation. *arXiv preprint arXiv:1806.03185*, 2018.

654 Cem Subakan, Mirco Ravanelli, Samuele Cornell, Mirko Bronzi, and Jianyuan Zhong. Attention
 655 is all you need in speech separation. In *ICASSP 2021-2021 IEEE International Conference on
 656 Acoustics, Speech and Signal Processing (ICASSP)*, pp. 21–25. IEEE, 2021.

657

658 Naoya Takahashi, Nabarun Goswami, and Yuki Mitsufuji. Mmdenselstm: An efficient combination of
 659 convolutional and recurrent neural networks for audio source separation. In *2018 16th International
 660 workshop on acoustic signal enhancement (IWAENC)*, pp. 106–110. IEEE, 2018.

661 Efthymios Tzinis, Zhepei Wang, Xilin Jiang, and Paris Smaragdis. Compute and memory efficient
 662 universal sound source separation. *Journal of Signal Processing Systems*, 94(2):245–259, 2022a.

663

664 Efthymios Tzinis, Gordon Wichern, Aswin Subramanian, Paris Smaragdis, and Jonathan Le Roux.
 665 Heterogeneous target speech separation. *arXiv preprint arXiv:2204.03594*, 2022b.

666

667 Efthymios Tzinis, Gordon Wichern, Paris Smaragdis, and Jonathan Le Roux. Optimal condition
 668 training for target source separation. In *ICASSP 2023-2023 IEEE International Conference on
 669 Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023.

670

Emmanuel Vincent, Tuomas Virtanen, and Sharon Gannot. *Audio source separation and speech
 671 enhancement*. John Wiley & Sons, 2018.

672

Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, Long Zhou, Shujie Liu, Zhuo Chen, Yanqing
 673 Liu, Huaming Wang, Jinyu Li, Lei He, Sheng Zhao, and Furu Wei. Neural codec language
 674 models are zero-shot text to speech synthesizers, 2023. URL <https://arxiv.org/abs/2301.02111>.

675

676 Xiaofei Wang, Manthan Thakker, Zhuo Chen, Naoyuki Kanda, Sefik Emre Eskimez, Sanyuan Chen,
 677 Min Tang, Shujie Liu, Jinyu Li, and Takuya Yoshioka. Speechx: Neural codec language model as
 678 a versatile speech transformer, 2024. URL <https://arxiv.org/abs/2308.06873>.

679

680 Scott Wisdom, Efthymios Tzinis, Hakan Erdogan, Ron Weiss, Kevin Wilson, and John Hershey.
 681 Unsupervised sound separation using mixture invariant training. *Advances in neural information
 682 processing systems*, 33:3846–3857, 2020.

683

Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dubnov.
 684 Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption
 685 augmentation. In *ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and
 686 Signal Processing (ICASSP)*, pp. 1–5, 2023. doi: 10.1109/ICASSP49357.2023.10095969.

687

Zhongweiyang Xu, Yong Xu, Vinay Kothapally, Heming Wang, Muqiao Yang, and Dong Yu.
 688 Spatialcodec: Neural spatial speech coding, 2024. URL <https://arxiv.org/abs/2309.07432>.

689

690 Jia Qi Yip, Chin Yuen Kwok, Bin Ma, and Eng Siong Chng. Speech separation using neural audio
 691 codecs with embedding loss, 2024a. URL <https://arxiv.org/abs/2411.17998>.

692

Jia Qi Yip, Shengkui Zhao, Dianwen Ng, Eng Siong Chng, and Bin Ma. Towards audio codec-based
 693 speech separation, 2024b. URL <https://arxiv.org/abs/2406.12434>.

694

Dong Yu, Morten Kolbæk, Zheng-Hua Tan, and Jesper Jensen. Permutation invariant training of
 695 deep models for speaker-independent multi-talker speech separation. In *2017 IEEE International
 696 Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 241–245. IEEE, 2017.

697

698 Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Sound-
 699 stream: An end-to-end neural audio codec. *IEEE/ACM Transactions on Audio, Speech, and
 700 Language Processing*, 30:495–507, 2022. doi: 10.1109/TASLP.2021.3129994.

701

702 **A FAILURE MODES OF PIT AND MIXIT FOR UNIVERSAL SOUND**
 703 **SEPARATION**
 704

705 Permutation-Invariant Training (PIT) and Mixture-Invariant Training (MixIT) have historically been
 706 effective for closed-domain separation tasks where the number of underlying sources is known,
 707 fixed, or varies within a narrow, well-defined range. However, their underlying assumptions lead
 708 to structural limitations when applied to open-domain universal source separation (USS), where
 709 mixtures may contain an arbitrary and potentially large number of heterogeneous sound events. In
 710 this section, we summarize the key failure modes observed when training with PIT/MixIT to extend
 711 fixed-stem models to open-domain mixtures.

712 A core limitation of PIT/MixIT is the requirement to specify a maximum number of output sources,
 713 denoted by N . During training, the model produces exactly N outputs for every mixture, and the
 714 PIT or MixIT objective establishes a correspondence between these outputs and the underlying
 715 reference sources (or intermediate MixIT partitions). This design is brittle in scenarios where the
 716 true number of sources varies widely. When the mixture contains more than N sources—a frequent
 717 occurrence in open-domain audio—the model has no mechanism to create additional outputs. Instead,
 718 it suffers source collision and collapses multiple sources into a single output stem, resulting in
 719 unavoidable leakage, loss of fine structure, and a sharp degradation in separation quality. The post-
 720 hoc identification step cannot recover the missing sources, because the model never produced separate
 721 representations for them in the first place; those sources simply do not exist within the model’s output
 722 space.

723 Conversely, when the mixture contains fewer than N sources, the model is still obligated to return N
 724 outputs. This mismatch introduces new problems: several outputs correspond to no actual source
 725 and become “inactive” stems, while others may capture residual background energy or hallucinated
 726 content. These false positives degrade metrics such as SI-SDR and create ambiguity during evaluation
 727 because the model does not encode which stems are meant to be meaningful. Such outputs also make
 728 deployment difficult, as downstream systems must decide which stems to trust and which to ignore.

729 The reliance on a fixed maximum number of sources N also places a heavy burden on both training
 730 stability and computational cost. As N increases, the permutation space in PIT expands combinatorially,
 731 and MixIT assignments become increasingly complex, making training slow, unstable, and in
 732 many cases prone to divergence. In open-domain datasets such as dnr-v2, mixtures may contain eight
 733 or more concurrent sound events, forcing PIT/MixIT baselines to adopt impractically large values of
 734 N to avoid source collisions. In practice, such configurations are computationally prohibitive and
 735 empirically unreliable.

736 These limitations collectively illustrate why PIT and MixIT, despite their historical success in speech
 737 separation and other closed-set tasks, are poorly suited for open-domain universal separation. Their
 738 fixed-output architecture is fundamentally mismatched to real-world mixtures that contain highly
 739 variable and unpredictable numbers of sources. In contrast, CodecSep bypasses this bottleneck
 740 entirely through free-form text-guided inference: the model extracts only the requested source
 741 category, emits no unused stems, and scales naturally to mixtures with arbitrary levels of overlap.
 742 This flexibility enables CodecSep to support both closed-set and open-domain use cases, while also
 743 providing a foundation for future extensions to fine-grained extraction of individual speaker stems,
 744 instrument stems, or sound-effect stems.

745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756 **B DESIGN RATIONALE: FiLM-CONDITIONED MASKING IN NAC LATENT
757 SPACE**
758

759 **Problem setup and pipeline contrast.** Let $x(t) \in \mathbb{R}$ be a mono mixture with sources $\{y_s(t) | s \in \mathcal{S}\}$, where $x(t)$ is expressed as $x(t) = \sum_{s \in \mathcal{S}} y_s(t)$.

762 **Spectrogram-domain (AudioSep):**

$$763 \quad x \xrightarrow{\text{STFT}} X \in \mathbb{C}^{F \times T_{\text{spec}}} \xrightarrow{g(X, e_\tau)} \tilde{Y}_s = |\hat{M}_s| \odot |X| \exp(\angle X + \angle \hat{M}_s) \xrightarrow{\text{ISTFT}} \tilde{y}_s(t),$$

765 where $g(\cdot, e_\tau)$ denotes a FiLM-conditioned, complex-domain spectrogram separator that predicts a
766 magnitude mask $|\hat{M}_s| \in [0, 1]^{F \times T_{\text{spec}}}$ and a phase residual $\angle \hat{M}_s$, conditioned jointly on the mixture
767 spectrogram X (obtained by the STFT of x) and the text embedding e_τ . The predicted magnitude
768 mask and phase residual are then applied element-wise to form the source spectrogram \tilde{Y}_s which is
769 subsequently transformed back to the time domain via ISTFT to obtain $\tilde{y}_s(t)$.

770 **CodecSep (NAC latent-domain):**
771

$$772 \quad x \xrightarrow{\text{Enc}(\cdot)} Z \in \mathbb{R}^{d \times T} \xrightarrow{\text{Mask}(Z, e_\tau)} \tilde{Z}_s = M_s \odot Z \xrightarrow{\text{Dec}(\cdot)} \tilde{y}_s(t),$$

774 with a frozen DAC backbone $\text{Enc}(\cdot), \text{Dec}(\cdot)$, and a FiLM-conditioned transformer masker
775 $\text{Mask}(\cdot, e_\tau)$ that estimates a soft mask $M_s \in [0, 1]^{d \times T}$ conditioned on both the codec latents
776 $Z = \text{Enc}(x)$ and the text embedding e_τ . The predicted mask M_s is applied element-wise to Z to
777 produce source-specific latents $\tilde{Z}_s = M_s \odot Z$, which are subsequently decoded by $\text{Dec}(\cdot)$ to obtain
778 the separated waveform $\tilde{y}_s(t)$.

779 **Dimensionality reduction and compression.** Operating on NAC latents Z slashes dimensionality
780 while preserving perceptual factors. For 1s audio at 32 kHz, complex STFT with $N=1024$ and
781 hop size $M=320$ samples has $T_{\text{spec}} \approx 100$ frames and $F = 2 \times 1024$ (Re+Im) scalars per frame,
782 so $F \cdot T_{\text{spec}} \approx 204,800$. A 16 kHz DAC with width $d=64$ and the same M yields $T \approx 50$ and
783 $d \cdot T = 64 \times 50 = 3,200$ ($\sim 64 \times$ smaller), shrinking $Q/K/V$ and MLP sizes and easing self-attention.
784 Similarly, for 32 kHz NACs like EnCodec, $T \approx 50$ with $d=128$, so attention/MLPs still operate on
785 $\sim 32 \times$ smaller latents than complex STFTs.

786 **B.1 WHY NAC LATENTS (VS. SPECTROGRAMS) AND HOW THE CODEC PRIOR ENABLES
787 SEPARATION?**

789 **STFT vs. NAC encoding.** The STFT is a *linear* projection from $x(t)$ to $X \in \mathbb{C}^{F \times T}$ and
790 does not explicitly preserve or organize the intrinsic semantic structure of audio. Consequently,
791 spectrogram-based separators (e.g., AudioSep) require an additional learned encoder-decoder (typ-
792 ically CNN/ResUNet) to first compress X into high-dimensional latent features and then decode
793 spectrogram masks that are discriminatively trained for separation. This couples *semantic abstraction*
794 and *separation* into one network, increasing parameters and MACs and forcing the model to learn
795 structure “from scratch” in a redundant, noisy representation.

796 **NAC encoder as a semantic prior.** Neural audio codecs (DAC) are trained with perceptual, adver-
797 sarial, and codebook objectives that encourage the encoder $\text{Enc}(\cdot)$ to map x into compact, structured
798 latents:

$$799 \quad \text{Enc}(\cdot) : x \mapsto Z \in \mathbb{R}^{d \times T}.$$

800 These latents lie on a *discriminative compressed manifold* $\mathcal{M}_{\text{latent}}$ in which semantically meaningful
801 factors (e.g., pitch, timbre, transients) are disentangled and aligned for downstream use. In our system,
802 we operate directly on the *continuous* latents Z (from Enc), use a FiLM-conditioned transformer
803 masker to predict a separation mask M_k from a textual query τ_k , and form the estimate

$$804 \quad \tilde{Z}_k = M_k \odot Z, \quad \tilde{y}_k = \text{Dec}(\tilde{Z}_k),$$

806 thereby leveraging the codec’s structured manifold for masking instead of learning a new representa-
807 tion.

808 **Separation mapping in latent vs. spectrogram space.** In CodecSep, the separator learns
809

$$Mask(\cdot, \cdot) : Z \in \mathcal{M}_{\text{latent}} \rightarrow \hat{Z}_k,$$

810 which is easier to optimize because the input is denoised, compressed, and semantically organized by
 811 the codec. In contrast, spectrogram models must learn

$$812 \quad g(\cdot, \cdot) : X \in \mathbb{C}^{F \times T} \rightarrow \hat{Y}_k,$$

814 over a noisier, higher-dimensional space *without* semantic compression.

815 **Hierarchical (RVQ) structure that benefits separation.** The codec applies Residual Vector
 816 Quantization (RVQ) to Z , producing discrete codes $A = [a_t \in [K]^{N_q}]_{t=1}^T$ with $K = 1024$ and N_q
 817 quantizers. Codebook lookup yields embeddings

$$818 \quad e_t = \sum_{i=1}^{N_q} \text{lookup}(a_t^{(i)}), \quad E = [e_t | t \in [T]] \approx Z,$$

822 and $\text{Dec}(E)$ reconstructs the waveform. The RVQ cascade induces a natural coarse-to-fine hierarchy:
 823 the first quantizer captures coarse structure (e.g., low-frequency content, speaker/instrument timbre,
 824 global acoustic traits), while later quantizers refine residual details (e.g., high-frequency components,
 825 onsets/transients, background textures). This hierarchy mirrors the discriminative cues needed for
 826 separation and is directly exploitable by a mask-based transformer.

827 **Loss-induced organization of the latent space.** The DAC objective shapes Z using complementary
 828 terms:

- 830 • *Multi-scale spectral loss* \mathcal{L}_{mel} to preserve perceptually relevant frequency content at multiple
 831 time scales;
- 832 • *Time-domain reconstruction loss* $\mathcal{L}_{\text{feat}} = \|x(t) - \tilde{y}(t)\|_1$ for fidelity and stability;
- 833 • *Multi-resolution adversarial loss* \mathcal{L}_{adv} with (i) multi-period waveform discriminators
 834 (pitch/periodicity) and (ii) multi-band STFT discriminators (fine spectral detail), plus a
 835 *feature-matching* term $\mathcal{L}_{\text{feat}}^C$;
- 836 • *Codebook loss* $\mathcal{L}_{\text{code}}$ to ensure compact, diverse, well-utilized codes and reinforce RVQ’s
 837 coarse-to-fine disentanglement.
- 838 • *Quantizer dropout (RVQ stage dropout)*: randomly disabling a subset of RVQ stages during
 839 training to discourage over-reliance on late codebooks and encourage smoother coarse-to-fine
 840 residual allocation, yielding more bitrate-robust and well-structured RVQ representations.

841 The overall loss is

$$843 \quad \mathcal{L}_{\text{DAC}} = \lambda_{\text{mel}} \mathcal{L}_{\text{mel}} + \lambda_{\text{feat}} \mathcal{L}_{\text{feat}} + \lambda_{\text{adv}} \mathcal{L}_{\text{adv}} + \lambda_{\text{code}} \mathcal{L}_{\text{code}},$$

844 yielding latents that are (i) *denoised* (robust to low-level artifacts), (ii) *semantic* (preserve pitch,
 845 timbre, temporal structure), (iii) *disentangled* (coarse-to-fine RVQ), and (iv) *efficient* (bitrate-aware
 846 constraints).

847 **Separation benefits from the codec prior (and contrast to spectrogram baselines).** Because
 848 Z is already semantically organized, the FiLM-conditioned masker operates on a representation
 849 that encodes the right factors for selection, not generation. This (i) reduces compute and memory
 850 (the separator acts on compact Z instead of X), (ii) accelerates convergence and improves stability
 851 (masking over a clean manifold), and (iii) improves robustness to prompt variation (text FiLM
 852 modulates semantically aligned channels). In contrast, spectrogram systems must learn a task-specific
 853 latent from X and perform separation *jointly*, which increases parameter count and MACs, slows
 854 convergence, and can lead to overfitting in the absence of the codec’s inductive bias.

856 B.2 TRANSFORMER-BASED MASKER VS. DECODER-STYLE GENERATION (SPECIFIC DESIGN 857 CHOICE).

859 In CodecSep, we replace decoder-style source generation (as in CodecFormer, which directly predicts
 860 the target waveform/spectrogram) with a *Transformer-based, FiLM-conditioned masker* that outputs
 861 a soft mask over the codec latents. Concretely,

$$862 \quad M_s = \text{Mask}(Z, e_\tau) \in [0, 1]^{d \times T}, \quad \tilde{Z}_s = M_s \odot Z, \quad \tilde{y}_s(t) = \text{Dec}(\tilde{Z}_s).$$

863 This choice has the following concrete advantages (all in the NAC latent domain):

- **Efficient and stable training.** Predicting M_s to *modulate* existing latent content is a simpler, more constrained learning problem than end-to-end *generation* of \tilde{Z}_s or $\tilde{y}_s(t)$ with a decoder head. Working in Z avoids the instability commonly observed in direct waveform/spectrogram prediction, leading to faster convergence and lower training variance under the same optimization settings.
- **Direct leverage of codec-disentangled latents.** DAC/RVQ pretraining organizes Z into a coarse-to-fine, semantically disentangled manifold (periodicity, timbre, transients). The masker exploits this structure by *gating along* these axes to isolate sources, rather than using Z merely as input to a decoder that *generates* new latents/waveforms. This turns separation into selection on a well-structured space, improving identifiability while reducing parameters and data demands.
- **Minimal distortion through modulation (no hallucination).** The separator does not synthesize new content; it rescales and selects what is already encoded in Z . Forming $\tilde{Z}_s = M_s \odot Z$ preserves the mixture’s latent structure and reduces artifacts relative to encoder–decoder separation pipelines that generate source signals from scratch, thereby limiting hallucinations and leakage.
- **Preservation of long-term temporal/spectral structure.** The NAC encoder has already organized periodicity, timbre, and transient structure in Z . Masking retains this organization across long contexts, whereas fully convolutional decoders trained to *generate* sources often exhibit long-term inconsistencies (e.g., drift over time or loss of periodic cues) when reconstructing from scratch.
- **Efficient use of Transformer capacity.** Instead of *synthesizing* source signals, the masker learns to *gate* semantically organized channels in Z , which is a substantially lighter optimization problem than decoder-style generation. FiLM conditioning steers the transformer to decide *where/how much* information to pass—not *what* to generate—so parameters and compute in the $Q/K/V$ and MLP projections are concentrated on selection and attenuation.

890 B.3 WHY WE INTEGRATED FiLM CONDITIONING INTO NAC-BASED SEPARATION

891 We deliberately integrate *Feature-wise Linear Modulation (FiLM)* Perez et al. (2018) *inside* the
 892 transformer masker to inject text semantics while preserving the codec manifold and keeping
 893 $Enc(\cdot)/Dec(\cdot)$ frozen.

894 **Targeted placement (masker, mid-layers).** Given a CLAP text embedding e_τ , a lightweight query
 895 network $query(\cdot)$ produces per-layer affine parameters

$$896 (\gamma^l, \beta^l)_{l=1}^L = query(e_\tau), \quad \gamma^l, \beta^l \in \mathbb{R}^d,$$

897 which modulate intermediate activations $H^l \in \mathbb{R}^{d \times T}$ for $l \in \{2, \dots, L-1\}$:

$$898 \tilde{H}_s^l = \text{FiLM}(H^l; \gamma^l, \beta^l) = \gamma^l \odot H^l + \beta^l.$$

900 Placing FiLM in the *masker* (not in *Enc* or *Dec*) keeps the codec latent distribution intact and
 901 confines conditioning to the *selection* step.

902 **Lightweight computation (overhead and parameterization).** FiLM adds only small per-layer
 903 vectors (γ^l, β^l) and a compact $query(\cdot)$ MLP; it does *not* increase sequence length, attention heads,
 904 or the quadratic attention cost. The extra FLOPs/params are negligible relative to multi-head attention
 905 and MLP blocks, aligning with CodecSep’s efficiency goals.

906 **Non-iterative inference (single forward pass).** FiLM applies in a single pass through the masker.
 907 Unlike iterative conditioning mechanisms (e.g., flow-matching-based sampling), there are *no* sampling
 908 steps, thus preserving low latency for edge and hybrid deployments.

909 **Manifold preservation and stability.** Because FiLM scales/shifts existing channels of H^l rather
 910 than rewriting Z or generating \tilde{Z}_s from scratch, the NAC manifold structure (periodicity, timbre,
 911 transients) is preserved. Empirically this reduces training variance and mitigates long-horizon
 912 inconsistencies common with generator-style heads.

918 B.4 WHY REPORT RESULTS ON Z (CONTINUOUS LATENTS) AND HOW TO EXTEND TO CODE
919 STREAMS $A \rightarrow E$
920921 **Why we evaluate on continuous latents Z .** We choose to perform—and therefore report—separation on the *continuous* DAC encoder latents $Z = Enc(x) \in \mathbb{R}^{d \times T}$ for the following 922 concrete reasons:
923924 1. **End-to-end gradient flow for separation.** Our training updates only the masker and query
925 networks while keeping the codec frozen. Using Z allows straightforward backpropagation through
926 $Mask(\cdot, e_\tau)$ and $Dec(\cdot)$ without dealing with discrete indices or straight-through estimators;
927 gradients are well-behaved and convergence is consistently stable.
928 2. **Representational fidelity and disentanglement.** During codec pretraining, the RVQ cascade
929 *regularizes* Z so that pitch, timbre, onsets/transients, and background textures are cleanly and
930 hierarchically organized. Z therefore provides a richer, more disentangled signal for FiLM-
931 conditioned masking than hard code indices, which are subject to quantization coarsening.
932 3. **Training stability and variance.** In our setting (frozen codec), operating on Z avoids variability
933 from codebook utilization dynamics (e.g., late-stage RVQ sensitivity, bitrate truncation). Empirically,
934 this reduces run-to-run variance and removes the need for specialized regularizers when
935 training the separator.
936937 **How to extend the same model to discrete code streams.** For deployment scenarios where the
938 input is a compressed bitstream, we operate on the *reconstructed embeddings* E obtained from the
939 codes A via codebook lookup, and train the masker on E instead of Z :
940

941
942
$$A = [a_t \in [1024]^{N_q} \mid t \in [T]], \quad e_t = \sum_{i=1}^{N_q} \text{lookup}(a_t^{(i)}), \quad (3)$$

943

944
945
$$E = [e_t]_{t=1}^T \approx Z, \quad \tilde{E}_s = M_s \odot E, \quad \tilde{y}_s(t) = Dec(\tilde{E}_s) \quad (4)$$

946

947 **Compressed bitstream path (codes-in, codes-out).** Given $E \approx Z$ and the element-wise masking
948 operation, the estimated source embeddings satisfy
949

950
$$\tilde{E}_s = M_s \odot E \approx M_s \odot Z = Z_s$$

951

952 When a uniform codec pathway (or codes-out interface) is required, we re-quantize the masked
953 embeddings and optionally decode via the codec:
954

955
$$\hat{A}_s = Quant(\tilde{E}_s), \quad \hat{E}_s = \text{lookup}(\hat{A}_s), \quad \tilde{y}_s(t) = Dec(\hat{E}_s)$$

956

957 In deployments that only need to return a bitstream, the server can emit \hat{A}_s directly and defer decoding
958 to the client; otherwise, decoding $Dec(\tilde{E}_s)$ or $Dec(\hat{E}_s)$ yields the waveform on-device or server-side,
959 respectively.
960961 *Embedding alignment (CodecFormer-EL Yip et al. (2024a)).* To tighten $\tilde{E}_s \approx Z_s$, we can optimize
962 an embedding-level consistency loss as in CodecFormer-EL Yip et al. (2024a) instead of our SI-SDR
963 objective:
964

965
$$\mathcal{L}_{\text{emb}} = \sum_s \|\tilde{E}_s - Z_s\|_1$$

966

967 **Why this works.** By design of the codec, E approximates Z at the operating bitrate; the decoder
968 already reconstructs $\hat{x}(t) = Dec(E)$ with high fidelity. Since our separator is a *masker* (selective
969 modulation) rather than a generator, replacing Z with E preserves the semantics needed for separation
970 while enabling direct operation on bitstreams. In practice, the extension amounts to training (or
971 fine-tuning) the same FiLM-conditioned transformer on E with unchanged objectives.
972973 **Summary of scope.** We present results on Z to (i) isolate separator performance without discrete-
974 index training complications, (ii) leverage continuous gradient flow and stable optimization, and
975 (iii) align FiLM conditioning with a smooth latent manifold. The deployment-ready path to discrete
976 code streams is immediate: switch the masker input to E via lookup from A and train/fine-tune
977 accordingly, with optional distribution alignment and bitrate-robustness augmentation.
978

972 B.5 DEPLOYMENT ADVANTAGES OF CODECSep OVER SPECTROGRAM-DOMAIN SEPARATORS
973 (AUDIOSEP)
974975 **Central motivation.** In realistic deployments, edge devices already run a neural audio codec; they
976 transmit *code streams* rather than raw waveforms. CodecSep treats the codec backbone as part of
977 the separation stack and operates *directly* on codec representations, thereby eliminating redundant
978 $decode \rightarrow separate \rightarrow re-encode$ cycles required by spectrogram-domain systems.979 **Pipeline comparison (server-side separation).** *Traditional (spectrogram) pipeline:*

980
$$\underbrace{\text{Edge: } Enc(\cdot)}_{\text{codec}} \Rightarrow \text{Code} \Rightarrow \underbrace{\text{Server: } Dec(\cdot) + g(\cdot, e_\tau) + Enc(\cdot)}_{\text{decode + separate + re-encode}} \Rightarrow \text{Code} \Rightarrow \text{Edge: } Dec(\cdot)$$
 981
982
983

CodecSep pipeline:

984
$$\underbrace{\text{Edge: } Enc(\cdot)}_{\text{codec}} \Rightarrow \text{Code} \Rightarrow \underbrace{\text{Server: } Mask(\cdot, e_\tau)}_{\text{mask on } E \approx Z} \Rightarrow \text{Code} \Rightarrow \text{Edge: } Dec(\cdot)$$
 985
986
987

988 CodecSep performs FiLM-modulated masking in the codec latent domain and returns separated code
989 streams for edge-side decoding; spectrogram systems must decode to waveform (or magnitude/phase),
990 separate in X , and re-encode.991 **Complexity accounting.** Let C_{enc} and C_{dec} be codec encode/decode costs, C_{spec} the spectrogram
992 separator cost, and C_{mask} the CodecSep masker cost.993 **Code-stream input (typical):** AudioSep: $C_{dec} + C_{spec} + C_{enc}$, CodecSep: C_{mask} .994 **Audio-stream input (edge-only):** AudioSep: C_{spec} , CodecSep: $C_{enc} + C_{mask} + C_{dec}$.995 In the common (code-stream) case, CodecSep removes both decode and re-encode on the server.
996 Moreover, *within* the separator, CodecSep operates on Z/E with $|Z| \ll |X|$ (cf. Sec. B), reducing
997 activation memory and bandwidth throughout attention and MLP blocks.998 **Interface compatibility with codec bitstreams.** When only quantized codes $A = [a_t | t \in [T]]$
999 are available, we reconstruct embeddings by codebook lookup $E = [e_t | t \in [T]]$ with $e_t =$
1000 $\sum_{i=1}^{N_a} \text{lookup}(a_t^{(i)}) \approx Z$ and apply the same masker:

1001
$$A \Rightarrow E \approx Z \xrightarrow{\text{Mask}(\cdot, e_\tau)} \tilde{E}_s \Rightarrow \text{Code stream out.}$$
 1002
1003

1004 No architectural change is required; separation remains in the codec latent domain and stays fully
1005 compatible with streaming/edge ecosystems.1006 **Why spectrogram-domain systems incur extra overhead.** Spectrogram separators (e.g., Au-
1007 dioSep) are defined on $X = \text{STFT}(x)$. Given code-stream inputs, they must first run $Dec(\cdot)$ to
1008 obtain a waveform, compute X , perform separation, and then run $Enc(\cdot)$ to return codes. This
1009 decode + separate + re-encode loop adds latency, memory traffic, and energy cost on the server path
1010 and scales poorly with concurrent streams.1012 **Operational advantages of CodecSep.**1013
1014

- **Eliminates redundant codec cycles in server workflows:** With code streams, we recon-
1015 struct embeddings $E \approx Z$ by codebook lookup (Sec. B.4), avoiding server-side decode/re-
1016 encode; only the edge decodes the final stems.
- **Smaller working representation during separation:** masking in Z/E (e.g., $d=64$) reduces
1017 intermediate activations, lowering memory bandwidth and enabling tighter batching.
- **Non-iterative, single-pass conditioning:** FiLM-conditioning within the masker adds negli-
1018 gible overhead and preserves low latency (no iterative sampling).
- **Seamless edge/server hybrid and edge-only modes:** identical separator logic serves both
1019 modalities; with code-stream inputs, the server path remains *separator-only*.
- **Maintains codec manifold structure:** by modulating Z/E rather than rebuilding X ,
1020 CodecSep preserves periodicity/timbre/transients already organized by the codec, supporting
1021 stable, high-fidelity stems at deployment.

1026
1027

C DATASET DETAILS

1028
1029

C.1 DIVIDE AND REMASTER V 2.0 (DNR-V2)

1030

dnr-v2 Petermann et al. (2022) dataset consists of 60s-duration artificial mixtures of speech, music, and SFX sampled from LibriSpeech Panayotov et al. (2015), Free Music Archive (FMA) Defferrard et al. (2017), and Freesound Dataset 50K (FSD50K) Fonseca et al. (2022), respectively. It includes 3,406 (56.7hrs) training, 487 (8.13hrs) validation, and 973 (16.22hrs) test mixtures, each provided with its three individual source audios. The mixtures are generated by normalizing each source to fixed Loudness Units Full-Scale (LUFS) levels: -17 dB (speech), -24 dB (music), and -21 dB (SFX), with ± 2 dB random perturbations. Any source exceeding a peak threshold is normalized to 0.5 dB. The sources are mixed and normalized to -27 dB LUFS with additional random perturbations. The validation and test sets are trimmed for silence and split into 5s or 10s segments. Segments where sources are present for less than 50% of the duration are removed, resulting in 2,852 (≈ 3.96 hrs) validation and 1,840 (≈ 5.11 hrs) test mixtures.

1040

While originally developed for 3-stem separation, we adapt dnr-v2 to the USS setting by replacing fixed source labels with natural language descriptions. For speech or music stem, we use broad, category-level prompts (e.g., “speech,” “music”), reflecting realistic usage in production workflows. In contrast, SFX sources are more complex—often containing three or more overlapping events. We generate prompts to query the SFX stem using FSD50K’s hierarchical annotations, combining fine-grained class labels with their parent categories. This results in long-form, compositional queries that reflect the structure of the mixture (e.g., “dog barking, Animal, engine rumbling, motor vehicle”).

1047

1048
1049

C.2 OPEN-DOMAIN BENCHMARKS

1050

We benchmark on five open-domain datasets spanning captioned audio, environmental sounds, and large multi-event corpora: AudioCaps Kim et al. (2019), an AudioSet-derived collection of $> 46k$ 10 s YouTube clips paired with human-written captions describing the dominant sound events (used by us to synthesize training and test mixtures); ESC-50 Piczak, a curated environmental sound dataset of 2,000 clips (5 s each) organized into 50 classes with 40 examples per class across five meta-categories (animals, natural, human non-speech, domestic, exterior/urban); Clotho-v2 Drossos et al. (2020), 6,974 audio samples (15–30 s) each annotated with five human captions (8–20 words) covering open-domain events; AudioSet Gemmeke et al. (2017), the evaluation split of AudioSet comprising human-labeled 10 s YouTube clips over an ontology of 632 audio event classes in a multi-label setting; and VGGSound Chen et al. (2020a), an AudioSet-derived audio–visual corpus with 550+ hours of 10 s segments covering a wide variety of everyday sound categories. For AudioCaps we form both training and testing mixtures (same scale of test data as dnr-v2) by summing three clips (validation segmented into 5 s, test preserves clips up to 20 s), while for ESC-50, Clotho-v2, AudioSet-eval, and VGGSound we construct test-only mixtures using the same three-clip protocol.

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

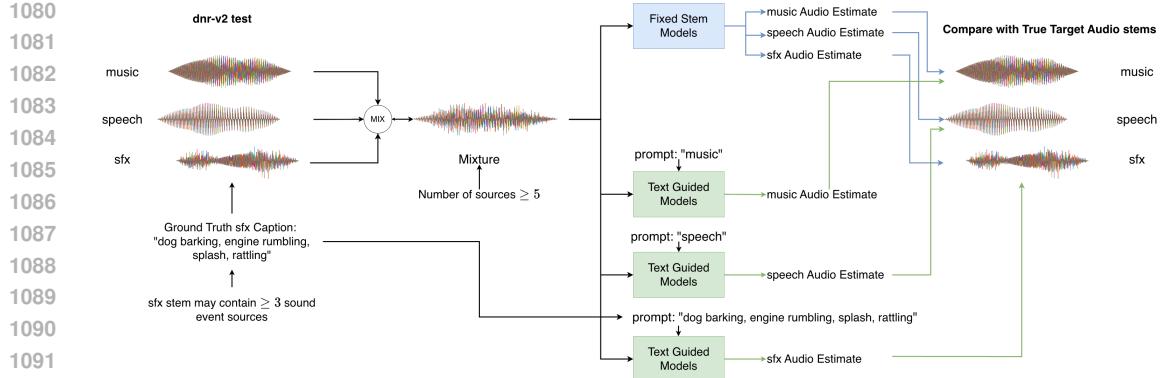


Figure 3: Evaluation workflow for dnr-v2. Each mixture contains multi-source stems: speech (often multi-speaker), music (multi-instrument), and SFX (≥ 3 overlapping events). Fixed-stem baselines predict a fixed set of outputs (e.g., 3 stems), whereas CodecSep and other text-guided models generate only the prompted source. Speech and music are evaluated using generic prompts, while SFX uses long-form compositional prompts listing all SFX events in each mixture. Extracted signals are compared with ground-truth category stems using SI-SDR and ViSQOL.

D EVALUATION DETAILS

D.1 DIVIDE AND REMASTER V 2.0 (DNR-V2)

The dnr-v2 benchmark presents a challenging open-domain separation setting: although the dataset provides three category labels—speech, music, and sound effects—each category represents a multi-source stem. A single mixture frequently contains five to ten underlying acoustic sources, including overlapping speakers, multiple musical instruments, and several sound-effect events occurring either concurrently or in sequence. The three reported stems are therefore semantic groupings that support interpretability and reproducibility, rather than an indication that the mixture contains only three sources. Any evaluation methodology must respect this structure. Figure 3 provides an overview of our dnr-v2 evaluation workflow and highlights how these multi-source stems are handled across fixed-stem un-guided and text-guided models.

For fixed-stem unguided architectures, evaluation is performed by mapping each predicted output stem to one of the three ground-truth stems and computing SI-SDR and ViSQOL on a per-category basis. Importantly, we do not employ PIT or MixIT training objectives for these baselines; instead, we train dedicated three-stem models that directly predict speech, music, and SFX stems.

Text-guided models, including CodecSep, follow a fundamentally different inference and evaluation paradigm. Speech and music stems are recovered using generic prompts (“speech,” “music”), which reliably capture their multi-source content. In contrast, SFX stems require mixture-specific prompts because sound effects span a wide and open-domain label space. For each mixture, we use a long-form compositional prompt enumerating all SFX events present in the ground truth. This ensures that the model has sufficient semantic context to extract the full SFX stem. The number of sfx events present in a mixture varies considerably. We additionally perform an ambiguous-prompt evaluation, where deliberately underspecified prompts for speech and music are used to assess robustness to vague or incomplete semantic queries. After inference, the extracted waveform for each category is directly compared with the corresponding ground-truth stem using SI-SDR and ViSQOL. This evaluation design ensures fairness between fixed-stem and text-guided systems while faithfully reflecting the multi-source structure of dnr-v2 mixtures

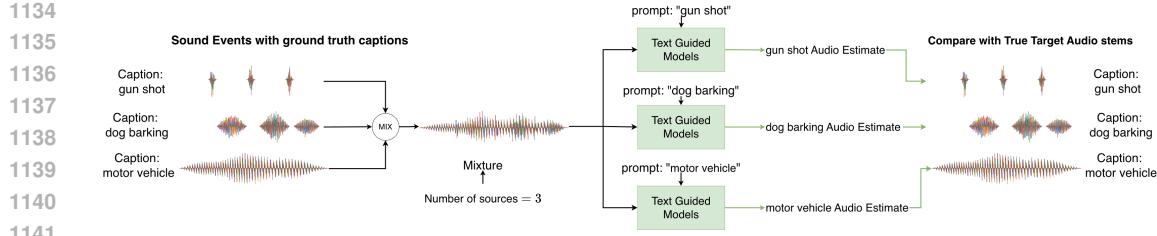


Figure 4: Evaluation workflow for the standardized three-source benchmarks (AudioCaps, ESC-50, Clotho, VGGSound, and AudioSet-eval). Following prior USS protocols, each mixture is constructed by combining three isolated events drawn from distinct classes. For each class, the corresponding textual prompt is supplied to the separator (e.g., “dog barking,” “gun shot,” “motor vehicle”), and the extracted signal is compared with the ground-truth isolated source using SI-SDR and ViSQOL.

D.2 OPEN-DOMAIN BENCHMARKS

For AudioCaps, ESC-50, Clotho, VGGSound, and AudioSet-eval, we adopt the standardized three-source mixture protocol. Following established practice, each mixture is constructed by combining three isolated events drawn from different classes. Each source is then extracted by the text-guided models using its corresponding textual caption as prompt, and evaluation metrics are computed against the ground-truth isolated audio. Figure 4 illustrates the evaluation workflow used for these benchmarks, highlighting how class-specific prompts are applied and how the resulting predictions are matched against the ground-truth isolated sources. Although these datasets do not reflect the complex multi-source structure of dnr-v2, the standardized 3-way protocol enables direct benchmarking against prior work (AudioSep) under consistent conditions.

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 E TRAINING DETAILS
11891190 The complete model, including the query module $query(\cdot)$, is trained for $400K$ iterations with DAC
1191 Kumar et al. (2023) and CLAP Wu et al. (2023) modules frozen. Validation is conducted every $5K$
1192 iterations and test every $10K$ iterations. We use ADAM Kingma & Ba (2017) as our optimizer and
1193 train with a batch size of 4 examples, each 2 seconds in duration, and a learning rate of $1.5e^{-4}$ on
1194 a single 24GB NVIDIA A-30 GPU. Training employs a *ReduceLRonPlateau* Mukherjee et al.
1195 (2019) scheduler, which reduces the learning rate by a factor of 0.5 if the validation loss does not
1196 improve for two consecutive validation checks. We train two versions of CodecSep, one using the
1197 dnr-v2 dataset and the other using AudioCaps, to evaluate performance across different training
1198 distributions. We refer to these models using the suffixes +dnr-v2 and +AudioCaps, respectively, to
1199 indicate which dataset each model was trained on.
12001200 Since TDANet and CodecFormer were originally designed for speech separation, we re-train newly
1201 initialized 3-stem versions on the dnr-v2 training set using the same configuration as CodecSep. We
1202 also train a 3-stem Sudo rm-rf model to compare against compute-efficient separators. For AudioSep,
1203 we evaluate both the publicly available pretrained model—trained on diverse datasets—and versions
1204 re-trained on dnr-v2 and AudioCaps for consistency. We include SDCodec using the official pretrained
1205 checkpoints released by the authors. Finally, we incorporate the USS-pretrained variant of BiModalSS
1206 and re-train SudoRmRf+FiLM on dnr-v2 with CLAP text conditioning. To ensure a fair comparison,
1207 all inputs to TDANet, Sudo rm-rf, AudioSep, BiModalSS, and Sudo rm-rf+FiLM undergo codec
1208 processing with a full-band stereo-capable 48 kHz EnCodec during training and inference. This
1209 accounts for codec-induced distortions and artifacts, reflecting realistic deployment scenarios where
1210 audio is typically processed through compression pipelines in cloud-based systems.
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 Table 6: Results: Using ambiguous prompts for Speech and Music (**dnr-v2-test**)
1243

1244 Model	1245 Metric (\uparrow)	1246 Music	1247 Speech
1248 AudioSep + dnr-v2	SI-SDR	-6.4 ± 3.29	4.1 ± 3.77
	ViSQOL	2.5 ± 0.57	2.6 ± 0.47
1249 CodecSep + dnr-v2	SI-SDR	-5.6 ± 3.61	4.2 ± 4.18
	ViSQOL	2.6 ± 0.58	2.7 ± 0.51

1250
1251 **F ROBUSTNESS TO PROMPT PARAPHRASING.**
1252

1253 To probe lexical sensitivity, we re-evaluated both CodecSep + dnr-v2 and AudioSep + dnr-v2 on the
1254 dnr-v2 test split by replacing the generic training-time prompts for *speech* and *music* with three unseen
1255 paraphrases per class—*speech*: {“spoken voice”, “human conversation”, “people talking”}; *music*:
1256 {“instrumental music”, “band playing”, “melody with instruments”}. This constitutes a zero-shot
1257 paraphrase generalization test: models are trained with generic category cues but must respond
1258 to synonymous, potentially broader descriptors at inference. We observe a consistent qualitative
1259 pattern (cf. Table 6): (i) both systems exhibit the expected degradation when moving from generic
1260 to paraphrased prompts, confirming that lexical ambiguity weakens query–audio alignment; (ii)
1261 CodecSep degrades more gracefully overall, maintaining stronger separation and perceptual quality
1262 for *speech*, and retaining a small but persistent advantage for *music*; and (iii) the gap between models
1263 narrows under paraphrasing, yet the relative ranking is preserved, suggesting that FiLM-conditioned
1264 masking over structured codec latents confers robustness to synonym-level shifts. Notably, this study
1265 isolates lexical paraphrases; we did not incorporate paraphrases with explicit temporal qualifiers (e.g.,
1266 “applause follows a song”), which we leave to future work.

1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296 Table 7: Generalization and transfer results for universal sound separation.
1297
1298 (a) Generalization on **AudioCaps-test**.
1299

Model	Separation	
	SI-SDR (\uparrow)	ViSQOL (\uparrow)
AudioSep	$-2.5^{\pm 12.14}$	$2.4^{\pm 1.08}$
AudioSep + dnr-v2 (zero-shot)	$-6.4^{\pm 11.48}$	$2.3^{\pm 1.08}$
CodecSep + dnr-v2 (zero-shot)	$-6.1^{\pm 11.62}$	$2.2^{\pm 1.16}$
AudioSep + AudioCaps	$-9.2^{\pm 18.71}$	$2.3^{\pm 1.11}$
CodecSep + AudioCaps	$-6.2^{\pm 10.58}$	$2.1^{\pm 1.00}$

1308 (b) Transfer to **dnr-v2-test** when trained on AudioCaps (zero-shot on dnr-v2).
1309

Model	Metric (\uparrow)	Music	Speech	Sfx
AudioSep + AudioCaps (zero-shot)	SI-SDR	$-14.9^{\pm 23.08}$	$-7.1^{\pm 25.80}$	$-14.6^{\pm 23.26}$
	ViSQOL	$2.4^{\pm 0.71}$	$2.4^{\pm 0.70}$	$2.2^{\pm 0.79}$
CodecSep + AudioCaps (zero-shot)	SI-SDR	$-8.5^{\pm 2.78}$	$2.5^{\pm 2.91}$	$-5.9^{\pm 4.33}$
	ViSQOL	$2.3^{\pm 0.53}$	$2.6^{\pm 0.47}$	$2.1^{\pm 0.72}$

1316

G CROSS-BENCHMARK PERFORMANCE: AUDIOCAPS AND DNR-V2.

1319 Table 7a reports generalization results on the AudioCaps-test set derived from AudioSet. AudioSep
1320 benefits from distributional alignment, having been trained on diverse datasets, including AudioSet,
1321 and consequently achieves the strongest separation performance. CodecSep+dnr-v2 generalizes well
1322 to AudioCaps and outperforms AudioSep+dnr-v2 in SI-SDR while maintaining competitive ViSQOL
1323 scores. When retrained on AudioCaps, CodecSep again outperforms AudioSep in separation quality,
1324 demonstrating strong cross-domain robustness. Table 7b further supports this trend on the more
1325 challenging dnr-v2 test set, where CodecSep+AudioCaps outperforms AudioSep+AudioCaps in
1326 SI-SDR across all sources while maintaining comparable perceptual quality. However, both models
1327 experience a performance drop on dnr-v2 due to its increased mixture complexity, often containing
1328 speech, music, and three or more overlapping SFX sources—making it significantly more challenging
1329 than the simpler mixtures seen during AudioCaps training.

1350 Table 8: Relative gains (%) of **CodecSep** over **AudioSep** under matched training/prompt settings.
 1351 Each sub-table reports percent improvements for a specific evaluation setup.

(a) DnR-v2 test set			(b) Ambiguous prompts (speech & music paraphrases)			
Metric	Relative Gain (%)			Metric	Relative Gain (%)	
	Speech	Music	SFX		Speech	Music
SI-SDR	+29.8	+120.7	+119.1	SI-SDR	+1.2	+13.0
ViSQOL	+26.1	+10.5	+0.5	ViSQOL	+3.8	+1.2

(c) Additional open-domain benchmarks					
Metric	AudioCaps	ESC-50	Clotho-v2	AudioSet	VGGSound
SI-SDR	+5.5	+24.3	+30.0	+16.4	+13.0
ViSQOL	-4.3	+2.2	+2.4	+2.9	+2.9

Metric	AudioCaps-test	dnr-v2		
		Music	Speech	SFX
SI-SDR	+32.5	+43.1	+134.7	+59.5
ViSQOL	-6.5	-3.8	+5.4	-4.2

H DISCUSSION OF RELATIVE-GAIN SUMMARIES.

Tables 8a–8d consolidate relative improvements of CodecSep over AudioSep under matched training data and prompt protocols, complementing the absolute results in the main text. On dnr-v2 (cf. Table 8a), CodecSep delivers large SI-SDR gains—especially for music and SFX—together with a clear perceptual lift. Under paraphrased prompts (cf. Table 8b), gains are smaller but remain positive, indicating robustness to lexical variation. Across additional open-domain benchmarks (cf. Table 8c), SI-SDR gains are consistent while ViSQOL deltas are modest, aligning with cross-domain trends reported earlier. Finally, when trained on AudioCaps (cf. Table 8d), CodecSep maintains an advantage on AudioCaps-test and yields strong improvements on dnr-v2, supporting the claim that codec-latent masking generalizes well across datasets and prompt regimes.

Table 9: Results: Extending CodecSep to 48 kHz full-band (**dnr-v2-test**)

Model	Sampling Rate	Metric (\uparrow)	Music	Speech	Sfx
AudioSep (zero-shot)	32 kHz	SI-SDR	-2.5 ± 4.06	4.9 ± 4.21	-0.3 ± 5.39
		ViSQOL	2.9 ± 0.63	3.1 ± 0.56	2.6 ± 0.77
AudioSep + dnr-v2	32 kHz	SI-SDR	-5.6 ± 2.89	7.7 ± 3.0	-4.5 ± 3.68
		ViSQOL	2.6 ± 0.57	2.5 ± 0.37	2.3 ± 0.7
CodecSep + dnr-v2 (DAC Backbone)	16 kHz	SI-SDR	1.2 ± 3.29	10.0 ± 2.92	0.9 ± 4.22
		ViSQOL	2.9 ± 0.57	3.1 ± 0.45	2.3 ± 0.73
CodecSep + dnr-v2 (DAC Backbone)	24 kHz	SI-SDR	0.2 ± 3.3	8.8 ± 2.9	0.6 ± 4.2
		ViSQOL	2.7 ± 0.56	3.0 ± 0.44	2.3 ± 0.72
CodecSep + dnr-v2 (DAC Backbone)	44.1 kHz	SI-SDR	-2.3 ± 3.27	5.9 ± 2.48	-0.3 ± 3.79
		ViSQOL	2.5 ± 0.46	2.7 ± 0.42	2.4 ± 0.68
CodecSep + dnr-v2 (EnCodec Backbone)	48 kHz	SI-SDR	-2.8 ± 3.5	5.4 ± 2.36	-0.5 ± 3.83
		ViSQOL	2.4 ± 0.5	2.6 ± 0.41	2.4 ± 0.65

I BANDWIDTH SCALING: EXTENDING CODECSEP TO FULL-BAND AUDIO

Table 9 studies bandwidth scaling by swapping the frozen codec backbone from a 16 kHz DAC to a 48 kHz EnCodec (stereo-capable), while keeping the FiLM-conditioned masker and training objective unchanged. Although our paper targets *mono* separation, we evaluate the 48 kHz backbone in the same mono setting for apples-to-apples comparison. As expected, increasing the sampling rate F_s makes separation harder: higher bandwidth introduces more high-frequency structure and lengthens the latent sequence ($T \uparrow$), which raises modeling difficulty and compute, and tends to reduce absolute SI-SDR/ViSQOL compared to the 16 kHz setting. Nevertheless, the codec-latent formulation remains intact— $\tilde{Z}_s = M_s \odot Z$, $\tilde{y}_s = Dec(\tilde{Z}_s)$ —and the system continues to operate in a compact, perceptually aligned representation, preserving the same deployment pathway. Practically, complexity scales with bandwidth due to longer latent timelines and richer spectral content, but in code-stream regimes the masker-only path is unchanged; improving high-bandwidth performance is thus a matter of codec/backbone choice, capacity tuning, and data scale rather than architectural redesign. Extending this study, we additionally evaluate 24 kHz and 44.1 kHz DAC variants. The results reveal a consistent trend: for a fixed masker capacity, performance decreases monotonically as sampling rate increases—reflecting the rising difficulty of full-band, wide-bandwidth separation—yet DAC reliably outperforms EnCodec at comparable bandwidths. We attribute this to DAC’s architectural advantages (factorized RVQ codes, ℓ_2 -normalized codebooks, and Snake activations), which yield more structured and perceptually aligned latents, enabling the FiLM-conditioned masker to operate more effectively even as bandwidth increases. We view these results as an initial step toward full-band (and stereo/spatial) operation within the same masking interface.

1458
1459Table 10: Results: Reconstruction Performance, Universal Sound Separation (**dnr-v2-test**)

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Model	Metric (\uparrow)	Reconstruction			
		Mixture	Music	Speech	Sfx
3-Stem: Fixed Stem, Non Text-guided					
TDANet	SI-SDR	-3.3 ± 7.78	8.0 ± 5.29	11.1 ± 3.32	4.7 ± 5.11
	ViSQOL	3.9 ± 0.35	4.2 ± 0.46	4.5 ± 0.32	4.1 ± 0.39
CodecFormer	SI-SDR	-47.6 ± 9.51	-47.1 ± 10.97	-47.8 ± 9.65	-48.2 ± 9.87
	ViSQOL	1.0 ± 0.07	1.0 ± 0.12	1.0 ± 0.06	1.2 ± 0.47
CodecSep + dnr-v2 (unguided, 3-stem)	SI-SDR	3.4 ± 1.85	4.1 ± 3.97	6.2 ± 2.87	0.8 ± 5.16
	ViSQOL	3.2 ± 0.20	3.0 ± 0.33	3.5 ± 0.24	3.2 ± 0.46
SDCodec	SI-SDR	7.0 ± 2.49	7.7 ± 4.60	8.3 ± 3.26	2.5 ± 5.65
	ViSQOL	4.3 ± 0.15	4.0 ± 0.28	4.4 ± 0.15	4.0 ± 0.34
Text-guided					
AudioSep (zero-shot)	SI-SDR	5.5 ± 1.96	4.7 ± 5.36	11.0 ± 2.99	-2.0 ± 5.68
	ViSQOL	4.1 ± 0.38	3.8 ± 0.65	4.6 ± 0.13	3.2 ± 0.77
AudioSep + dnr-v2	SI-SDR	6.5 ± 2.26	8.0 ± 4.55	8.1 ± 3.35	2.3 ± 5.95
	ViSQOL	4.2 ± 0.18	4.1 ± 0.21	3.0 ± 0.29	3.8 ± 0.47
CodecSep + dnr-v2 (ablate Masker)	SI-SDR	4.1 ± 2.06	3.9 ± 3.93	6.1 ± 2.86	0.7 ± 5.29
	ViSQOL	3.7 ± 0.22	3.4 ± 0.33	3.8 ± 0.24	3.5 ± 0.44
CodecSep + dnr-v2 AudioCaps	SI-SDR	12.2 ± 2.42	12.6 ± 3.81	13.6 ± 2.59	8.7 ± 4.17
	ViSQOL	4.4 ± 0.14	4.1 ± 0.31	3.9 ± 0.34	3.8 ± 0.54
AudioSep + AudioCaps (zero-shot)	SI-SDR	6.7 ± 2.52	8.1 ± 4.63	8.4 ± 3.21	2.4 ± 6.12
	ViSQOL	4.2 ± 0.19	4.1 ± 0.21	4.2 ± 0.21	3.8 ± 0.46
CodecSep + AudioCaps (zero-shot)	SI-SDR	0.6 ± 1.89	-0.2 ± 5.15	$-11. \pm 5.21$	1.2 ± 4.84
	ViSQOL	3.3 ± 0.23	2.9 ± 0.64	1.7 ± 0.48	3.4 ± 0.41

J FURTHER STUDIES: RECONSTRUCTION PERFORMANCE.

Table 10 assesses performance under a single-source reconstruction setting on the dnr-v2-test set, where each model is prompted to reproduce the input source. In addition, we report mixture reconstruction scores obtained by summing the separated sources and comparing them to the original mixture.

Among non-text-guided models, TDANet yields the best single-source reconstruction, while SDCodec performs better on mixture reconstruction. Replacing decoder-style generation in CodecFormer with a Transformer masker over codec latents in CodecSep+ dnr-v2, (unguided 3-stem) markedly improves both per-stem and mixture reconstruction fidelity and perceptual quality. Masking modulates information already organized in the codec manifold (Z) rather than re-synthesizing it from scratch, avoiding collapse/artifacts and yielding tighter mixture consistency.

Among the text-guided models, CodecSep achieves reconstruction performance comparable to the pre-trained and retrained AudioSep variants across all source types. AudioSep consistently excels in reconstruction due to its STFT-based masking pipeline, which enables more controlled and artifact-free waveform synthesis. However, CodecSep surpasses the pretrained AudioSep in SFX reconstruction—across both SI-SDR and ViSQOL on dnr-v2. Notably, the masker ablated CodecSep variant delivers the best reconstruction performance on dnr-v2. With isolated single-source input and matching prompts, direct conditioning minimally disturbs the NAC latent space, allowing high-fidelity reconstruction in this variant. However, strong mixture reconstruction despite poor separation suggests source leakage across separated outputs.

1512 **K LIMITATIONS AND CLARIFICATIONS.**
15131514 We discuss the limitations of our work as follows–
15151516 (1) *Data and prompts.* Training data scale and prompt diversity are modest relative to open-domain
1517 audio. As shown in Table 2, finer SFX supervision sharpens SFX extraction *and* improves
1518 speech/music stems; larger, more heterogeneous corpora spanning multiple prompt granulari-
1519 ties—including temporal/relational cues—should yield further gains.
1520 (2) *Temporal prompting.* While CodecSep is robust to synonymous paraphrases, we did not evaluate
1521 prompts with explicit temporal structure (e.g., causal ordering), which remains an open direction.
1522 (3) *Perceptual SFX quality.* In some settings, SFX perceptual quality trails the best competing scores
1523 despite superior SI-SDR; improving SFX naturalness without sacrificing separation is future
1524 work.
15251526 **L DECLARATION OF LLM USAGE.**
15271528 LLM is used only to aid or polish writing and does not impact the core methodology, scientific
1529 rigorosity, or originality of the research.
15301531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565