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ABSTRACT

Generative recommendation has emerged as a promising paradigm aiming at di-
rectly generating the identifiers of the target candidates. Most existing methods
attempt to leverage prior knowledge embedded in Pre-trained Language Mod-
els (PLMs) to improve the recommendation performance. However, they of-
ten fail to accommodate the differences between the general linguistic knowl-
edge of PLMs and the specific needs of recommendation systems. Moreover,
they rarely consider the complementary knowledge between the multimodal in-
formation of items, which represents the multi-faceted preferences of users. To
facilitate efficient recommendation knowledge transfer, we propose a novel ap-
proach called Multimodal Quantitative Language for Generative Recommenda-
tion (MQL4GRec). Our key idea is to transform items from different domains
and modalities into a unified language, which can serve as a bridge for trans-
ferring recommendation knowledge. Specifically, we first introduce quantitative
translators to convert the text and image content of items from various domains
into a new and concise language, known as quantitative language, with all items
sharing the same vocabulary. Then, we design a series of quantitative language
generation tasks to enrich quantitative language with semantic information and
prior knowledge. Finally, we achieve the transfer of recommendation knowledge
from different domains and modalities to the recommendation task through pre-
training and fine-tuning. We evaluate the effectiveness of MQL4GRec through ex-
tensive experiments and comparisons with existing methods, achieving improve-
ments over the baseline by 11.18%, 14.82%, and 7.95% on the NDCG metric
across three different datasets, respectively. Our implementation is available at:
https://anonymous.4open.science/r/MQL4GRec-ED65/.

1 INTRODUCTION

Vocabulary

18 Piece Acrylic 

Paint Set
A_4 B_3 C_8 D_6

a_3 b_4 c_1 d_5

A_1 B_4 C_2 D_6

a_2 b_3 c_1 d_6

Arts

Movies

Domains Multi-modal

Sengoku Basara: 

The Last Party

Items

Quantitative Language

Figure 1: Illustration of our MQL4GRec. We translate
items from different domains and modalities into a new
unified language, which can then serve as a bridge for
transferring recommendation knowledge.

Recommendation systems (RS) aim to
recommend items to users that they may
be interested in, and are widely used
on many online platforms, such as e-
commerce and social networking (Chaves
et al., 2022; Covington et al., 2016).
For a long time, recommendation mod-
els that represent users and items using
their unique IDs (known as IDRec) have
been dominant in the field of RS (Kang &
McAuley, 2018a; Sun et al., 2019; Zhang
et al., 2024). However, IDRec may en-
counter cold start and knowledge transferability issues due to its inherent properties. To address
these limitations, some literature (Hou et al., 2022; Sun et al., 2023) employs modal encoders (De-
vlin et al., 2018; He et al., 2016) to learn universal representations of items or sequences. While
promising, these modal encoders are typically not specifically designed for recommendation tasks,
resulting in suboptimal performance.

Recently, generative recommendation has emerged as a promising paradigm, which employs an end-
to-end generative model to directly predict identifiers of target candidates (Geng et al., 2022; Rajput
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et al., 2023). Due to the success of PLMs in natural language generation (NLG) (Raffel et al., 2020a;
Brown et al., 2020; Touvron et al., 2023), most existing methods attempt to leverage the prior knowl-
edge of PLMs to improve the recommendation performance (Bao et al., 2023; Zhang et al., 2023;
Zheng et al., 2023). They formalize the recommendation task as a sequence-to-sequence genera-
tion process, where the input sequence contains data of items interacted with users, and the output
sequence represent identifiers of target items. Then they enable PLMs to perform recommendation
tasks by adding instructions or prompts. Despite achieving decent performance, they suffer from
the following limitations: 1) There are significant task differences between PLMs and RS, which
may lead to inconsistencies between the general linguistic knowledge of PLMs and the specific re-
quirements of RS; 2) They often overlook the complementary knowledge between the multimodal
information of items, which is crucial for capturing the multi-faceted preferences of users.

To address these limitations, it is crucial to bridge the gaps between different domains and modali-
ties, leveraging their recommendation knowledge to enhance the performance of the target domains.
Inspired by significant advancements in NLG, such as pretraining-finetuning (Devlin et al., 2018;
Raffel et al., 2020b) and prompt-tuning (Brown et al., 2020; Touvron et al., 2023), we propose the
idea of transforming items from various domains and modalities into a new and unified language. A
key factor contributing to these significant advances is the use of a shared vocabulary, where tokens
are endowed with rich semantic information and prior knowledge across various tasks, which can
then be effectively transferred to downstream tasks. Thus, we aspire for this new language to en-
compass a vocabulary in which tokens can represent items from various domains and modalities, as
depicted in Figure 1. Specifically, this language not only serves as a bridge for knowledge transfer
but also as identifiers of items, and should be more concise than the original modalities (text and
image) to avoid issues in generation (Hua et al., 2023).

To this end, we propose a novel approach known as Quantitative Language for Multimodal Gen-
erative Recommendation (MQL4GRec). Specifically, we first introduce quantitative translators to
convert the content of items (text and images) into the quantitative language. We train a separate
quantitative translator for each modality of the item, each consisting of a modal encoder and a vec-
tor quantizer. Together, the codebooks of the two quantitative translators constitute the vocabulary.
Then, we design a series of quantitative language generation tasks aiming at endowing quantitative
language with rich semantic information and prior knowledge, and these tasks can be viewed as
microcosms of NLG tasks. Specifically, we additionally incorporate some special tokens as task
prompts. Finally, we transfer the source domain and multimodal recommendation knowledge to
the recommendation tasks through pre-training and fine-tuning. To evaluate the effectiveness of
our proposed MQL4GRec, we conduct extensive experiments and comparisons with existing meth-
ods. Relative to the baseline, we observe improvements of 11.18%, 14.82%, and 7.95% on the
NDCG metric across three datasets, respectively. In summary, our proposed MQL4GRec achieves
the transfer of recommendation knowledge by breaking down barriers between items across differ-
ent domains and modalities, demonstrating strong scalability and potential. Our main contributions
can be summarized as follows:

• We propose MQL4GRec, a novel approach that translates items from various domains and
modalities into a unified quantitative language, thereby breaking down the barriers between them
and facilitating the transfer of recommendation knowledge.

• We design a series of quantitative language generation tasks that endow quantitative language
with rich semantic information and prior knowledge, and enhance the performance of recom-
mendation tasks through pre-training and fine-tuning.

• We conduct extensive experiments and analyses on three public datasets, and the results validate
the effectiveness of our proposed method.

2 RELATED WORKS

Generative Recommendation. Generative models are one of the hottest research topics in ma-
chine learning, resulting in some representative works such as Variational AutoEncoders (VAEs)
(Kingma & Welling, 2014), Generative Adversarial Networks (GANs) (Goodfellow et al., 2014)
and Diffusion models (Ho et al., 2020). Generally, generative models aim to learn the distribution
of the training data P(x)and generate new samples z ∼ P(x). These generative models have also
been applied to recommendation, resulting in many remarkable works of VAE-based (Cai & Cai,
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2022; Shenbin et al., 2020), GAN-based (He et al., 2018; Guo et al., 2022; Wang et al., 2022) and
diffusion-based (Jiang et al., 2024; Wang et al., 2023c) recommendation.

Recently, Transformer-based PLMs such as LLaMA (Touvron et al., 2023) and GPT (Brown et al.,
2020) have also shown promising capabilities in language generation. With the help of such power-
ful generative PLMs, some PLM-based recommendation methods have also been proposed. Some
early works, such as P5 (Geng et al., 2022) and M6-Rec (Cui et al., 2022), attempt to transform
recommendation into a language generation task by designing prompts to bridge the gap between
the downstream task and the pretraining task of PLMs. Some works focus on leveraging the prior
knowledge in PLMs for recommendation by various tuning techniques such as parameter-efficient
fine-tuning (PEFT) (Bao et al., 2023) and instruction tuning (Zhang et al., 2023).

One of the most important tasks in PLM-based recommendation is how to assign an unique se-
quence of tokens to each item as its ID. Early works (Geng et al., 2022; Cui et al., 2022) directly
use the original name of the item or randomly assign an integer for each item, which have weak
transferability and are sometimes unintelligible to PLMs. SEATER (Si et al., 2023) constructs tree-
structured item IDs from a pretrained SASRec (Kang & McAuley, 2018b) model. P5-ID (Hua et al.,
2023) investigates the effect of different item IDs on recommendation. ColaRec (Wang et al., 2024)
captures the collaborative signals between items to construct generative item IDs. Notably, TIGER
(Rajput et al., 2023) is the first attempt to use RQ-VAE to construct item IDs by quantizing the item
embeddings.

Multi-modal Recommendation. Multi-modal side information of items, such as descriptive text
and images, has been shown to be effective in improving recommendations by providing richer
contexts for interactions. Early works such as VBPR (He & McAuley, 2016) extract visual features
by matrix factorization to achieve more personalized ranking. Some works (Wei et al., 2019; Sun
et al., 2020; Wei et al., 2020) leverage various types of graph neural network (GNN) to fuse the multi-
modal features. For example, LATTICE (Zhang et al., 2021) designs a modality-aware learning layer
to learn item-item structures for each modality and aggregates them to obtain latent item graphs.
DualGNN (Wang et al., 2023b) proposes a multi-modal representation learning module to model
the user attentions across modalities and inductively learn the user preference. MVGAE (Yi &
Chen, 2022) uses a modality-specific variational graph autoencoder to fuse the modality-specific
node embeddings.

Recently, with the profound development of foundation models in different modalities (Radford
et al., 2021; Brown et al., 2020; Raffel et al., 2020b), some recent works attempt to leverage pre-
trained foundation models as feature encoders to encode the multi-modal side information. Follow-
ing P5 (Geng et al., 2022), VIP5 (Geng et al., 2023b) extends it into a multi-modal version which
encodes the item images by a pretrained CLIP image encoder. MMGRec (Liu et al., 2024) utilizes a
Graph RQ-VAE to construct item IDs from both multi-modal and collaborative information. More-
over, IISAN (Fu et al., 2024) propose a simple plug-and-play architecture using a Decoupled PEFT
structure and exploiting both intra- and inter-modal adaptation.

3 METHOD

In this section, we elaborate on the proposed MQL4GRec, a novel approach of transferring rec-
ommendation knowledge across different domains and modalities. We first translate item content
into a unified quantitative language, which bridge the gaps between different domains and modal-
ities. Then, we design a series of quantitative language generation tasks, and achieve the transfer
of recommendation knowledge through pre-training and fine-tuning. The overall framework of the
method is illustrated in Figure 2.

3.1 QUANTITATIVE LANGUAGE

The original modal content of items is complex, which can affect the efficiency and performance
of recommendations (Hua et al., 2023). Therefore, we translate item content from various domains
and modalities into a concise and unified quantitative language. In this subsection, we introduce a
quantitative translator to accomplish the aforementioned conversion.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

…

…

…

…

a_4 b_3 c_8 d_6

A_4 B_3 C_8 D_6

a_4 b_3 c_8 d_6

A_4 B_3 C_8 D_6

a_2 b_3 c_1 d_6*_0 *_1 *_2 a_4 b_3 c_8 d_6

A_2 B_3 C_1 D_6 A_4 B_3 C_8 D_6

a_2 b_3 c_1 d_6 A_4 B_3 C_8 D_6

A_2 B_3 C_1 D_6 a_4 b_3 c_8 d_6

a_2 b_3 c_1 d_6 A_1 B_4 C_2 D_6

A_1 B_4 C_2 D_6 a_2 b_3 c_1 d_6

*_3 *_4 *_5

*_6 *_7 *_8

*_9 *_10 *_11

*_12 *_13 *_14

*_15 *_16 *_17

Next Item Generation:

Asymmetric Item Generation:

Quantitative Language Alignment:

A_n

*_n

a_n

Prompt Token

Image Token

Text Token
Transformer Encoder

A_1 B_4 C_2 D_6*_15 *_16 *_17

Transformer Decoder

a_2 b_3 c_1 d_6 <\s>

<s> a_2 b_3 c_1 d_6

Task Prompt Source Sequence

Target Sequence

ME D ෠ℎ𝑟1 − =2 𝑟2

1 2 3 4 5 6

Codebook  1

z Ƹ𝑧

2 3

2 3

a_2 b_3 c_1 d_6

4

1 6

ℎ E

+

Item:

Translator

18 Piece Acrylic 

Paint Set

Sengoku Basara: 

The Last Party

a_3 b_4 c_1 d_5

A_4 B_3 C_8 D_6

a_2 b_3 c_1 d_6

A_1 B_4 C_2 D_6

Translator

Pre-training and Fine-tuning

Image

Text

Items

Figure 2: The overall framework of MQL4GRec. We regard the quantizer as a translator, convert-
ing item content from different domains and modalities into a unified quantitative language, thus
bridging the gap between them (left). Subsequently, we design a series of quantitative language
generation tasks to facilitate the transfer of recommendation knowledge through pre-training and
fine-tuning (right).

Quantitative Translator. Vector Quantization (VQ) is an information compression technique
widely utilized across various domains (Van Den Oord et al., 2017; Zeghidour et al., 2021), which
maps high-dimensional data onto a finite set of discrete vectors, known as the codebook. In this
paper, we treat the quantizer as a translator that converts complex item content into a concise quan-
titative language. Here, the codebook serves as the vocabulary of the quantitative language.

To obtain a unified quantitative language, we first employ a frozen modal encoder (LLaMA or ViT
(Dosovitskiy et al., 2020)) to encode item content (text or image), and to obtain the item represen-
tation. Further, we take the item representation as input, and train a Residual-Quantized Variational
AutoEncoder (RQ-VAE) (Zeghidour et al., 2021) for generating item tokens. RQ-VAE is a multi-
level vector quantizer that applies quantization on residuals to generate a tuple of codewords (i.e.,
item tokens). As shown in Figure 2 (left), for an item representation h, RQ-VAE first encodes it into
a latent representation z. At each level l, we have a codebook Cl =

{
vl
k

}K

k=1
, where each codebook

vector is a learnable cluster center. The residual quantization process can be represented as:

ci = argmin
k

∥∥ri − vi
k

∥∥2
2
, (1)

ri+1 = ri − vi
ci , (2)

where ci is the codeword of the i-th level, ri is the residual vector of the i-th level, and r1 = z. As-
suming we have L-level codebooks, the quantization representation of z can be obtained according
to ẑ =

∑L
i=1 v

i
ci . Then ẑ will be used as decoder input to reconstruct the item representation h.

The loss function can be represented as:

Lrecon = ∥h− ĥ∥22, (3)

Lrqvae =

H∑
i=1

∥∥sg [ri]− vi
ci

∥∥2
2
+ β

∥∥ri − sg
[
vi
ci

]∥∥2
2
, (4)

L(h) = Lrecon + Lrqvae, (5)

where ĥ is the output of the decoder, sg[*] represents the stop-gradient operator, and β is a loss
coefficient. The overall loss is divided into two parts, Lrecon is the reconstruction loss, and Lrqvae is
the RQ loss used to minimize the distance between codebook vectors and residual vectors.
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Items typically encompass content from multiple modalities, representing various aspects of user
preferences. In our setup, each item comprises two modalities: text and image. We train a quantita-
tive translator for each modality, then add prefixes to the codewords from each of the two codebooks
to form a dictionary. Specifically, for the text quantitative translator, we prepend lowercase letter
prefixes to the codewords to obtain Vt = {a_1, b_2, . . . , d_K}; for the image quantitative transla-
tor, we prepend uppercase letter prefixes to the codewords to obtain Vv = {A_1, B_2, . . . , D_K}.
Here, a/A represents the 1-th level codebook, d/D represents the 4-th level codebook, etc. Subse-
quently, the dictionary can be represented as V = {Vt, Vv}. With each quantitative translator having
LK codewords, the size of our dictionary is 2LK, enabling us to represent a total of KL items.

Once the quantitative translators are trained, we can directly use them to translate new items into
quantitative language. For example, for the item text "Sengoku Basara: The Last Party", after
encoding it through the text encoder and RQ-VAE, we obtain a set of codewords (2, 3, 1, 6). Then,
by appending lowercase letters before each number, we can get the text quantitative language of
the item as <a_2><b_3><c_1><d_6>. Similarly, for the item’s image, we can obtain its image
quantitative language as <A_1><B_4><C_2><D_6>.

Handling Collisions. Translating item content into quantitative language may lead to item colli-
sions, where multiple items possess the same tokens. To address this issue, some methods (Rajput
et al., 2023; Hua et al., 2023) append an additional identifier after the item indices, which may
introduce semantically unrelated distributions. LC-Rec (Zheng et al., 2023) introduces a uniform
distribution constraint to prevent multiple items from clustering in the same leaf node. However,
this method does not completely resolve collisions, such as when items have the same modality in-
formation or when the number of collisions exceeds the size of the last level codebook, which can
lead to inflated performance metrics. (More discussion in Appendix E.1.)

To address the above issue, we reallocate tokens for colliding items based on the distance from
the residual vector to the code vectors. Specifically, for N colliding items, we first calculate the
distances D ∈ RN×L×K between the residual vectors and the code vectors for each level based
on di

k =
∥∥ri − vi

k

∥∥2
2
, and sort the distances to obtain the indices I = argsort(D, axis = 2) ∈

RN×L×K . Then, we sort the colliding items based on their minimum distance to the code vectors
of the last level, i.e., (item1, item2, . . . , itemN ) = sortmin(dL)(colliding items). Finally, we re-
allocate tokens for the sorted colliding items based on I , following these principles: 1) Start from
the last level to assign the nearest token to each item. If collisions occur, assign the next nearest
token. 2) If there are insufficient tokens in the last level, for the remaining colliding items, reallocate
tokens from the second last level based on distance, and then reallocate tokens from the last level.
We repeat this process until all colliding items are handled.

3.2 QUANTITATIVE LANGUAGE GENERATION TASKS

In this subsection, we design several quantitative language generation tasks with the aim of imbuing
quantitative language with more semantic information, thereby transferring prior knowledge to the
target task, as illustrated in Figure 2 (right). Specifically, we additionally include some special
tokens in the dictionary, which can serve as prompts to differentiate the types of tasks.

Next Item Generation. Since our primary goal is to predict the next item, the next item genera-
tion task is our main optimization objective. Specifically, each item contains both text and image
modalities, so we have two subtasks: 1) Next Text Item Generation; 2) Next Image Item Generation.
In this context, the input sequence is the item tokens sequence from the user interaction history, and
the output sequence is the target item tokens corresponding to the respective modality. Different
modal sequences reflect different aspects of user preferences.

Asymmetric Item Generation. In the next item generation task, the input and output are to-
kens of the same modality, and we refer to this task as symmetric. To facilitate the interaction
of recommendation knowledge between two modalities, we introduce asymmetric item generation
tasks. Here, there are two subtasks: 1) Asymmetric Text Item Generation, where the input is the
image tokens of the interaction history items, and the output is the text tokens of the target item;
2) Asymmetric Image Item Generation, where the input is the text tokens of the interaction his-
tory items, and the output is the image tokens of the target item. For example, for the input se-
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quence "<*_6><*_7><*_8><a_2><b_3><c_1><d_6><a_4><b_3><c_8><d_6>", in human-
understandable language, it can be described as follows: "Based on the user’s text interaction se-
quence, please predict the next item’s image quantitative language: <a_2><b_3><c_1><d_6>,
<a_4><b_3><c_8><d_6>".

Quantitative Language Alignment Asymmetric item generation tasks enable the interaction of
knowledge between two modalities, but they fall under the category of implicit alignment of the
two modalities. We further introduce explicit Quantitative Language Alignment tasks to directly
achieve alignment between the text and image quantitative languages of items. Here, we also have
two subtasks: 1) Text-to-Image Alignment; 2) Image-to-Text Alignment. For example, for the
input sequence "<*_12><*_13><*_14><a_2><b_3><c_1><d_6>", in human-understandable
language, it can be described as follows: "Please provide the image quantitative language for the
following item: <a_2><b_3><c_1><d_6>".

3.3 TRAINING AND RECOMMENDATION

Training. Quantitative language can be viewed as a microcosm of natural language. We employ a
two-stage paradigm of pre-training and fine-tuning to optimize the model, which is similar to NLG
tasks. For pre-training, we utilize the source domain datasets, where the pre-training task consists
of two sub-tasks for next item generation. The purpose is to transfer recommendation knowledge
from the source domains to the target domains. For fine-tuning, we conduct it on the target domain
dataset, with tasks encompassing all quantitative language generation tasks. The aim is to leverage
recommendation knowledge from different modalities to explore users’ multifaceted preferences.
The tasks mentioned above are conditional language generation tasks performed in a sequence-to-
sequence manner. We optimize the negative log-likelihood of the generation target as follows:

Lθ = −
|Y|∑
j=1

logPθ (Yj | Y<j ,X) , (6)

where θ is the model parameters, X is the input sequence of encoder, and Yj is the j-th token of Y.

Re-ranking for recommendation. There are two sub-tasks in the next item generation task, rep-
resenting different user preferences. Although fine-tuning tasks can facilitate the transfer of recom-
mendation knowledge between them, there might be some information loss. Therefore, we re-rank
items by utilizing the recommendation lists generated from the two sub-tasks. The basic idea is that
items appearing in both lists should be ranked higher. Specifically, we first obtain recommendation
lists Rt and Rv for each sub-task through beam search, which include scores for each item. Then,
the new score for each item can be formalized as:

s(x) =


(st(x) + sv(x))/2 + 1 x ∈ Rt, x ∈ Rv

st(x) x ∈ Rt

sv(x) x ∈ Rv

, (7)

where si(x) is the score of item x in the list Ri, and i ∈ {t, v}.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate the proposed approach on three public real-world benchmarks from the
Amazon Product Reviews dataset (Ni et al., 2019), containing user reviews and item metadata from
May 1996 to October 2018. In particular, we use six categories for pre-training, including “Pet
Supplies”, "Cell Phones and Accessories", “Automotive”, “Tools and Home Improvement”, “Toys
and Games”, “Sports and Outdoors”, and three categories for sequential recommendation tasks, in-
cluding “Musical Instruments”, “Arts Crafts and Sewing”, “Video Games”. We discuss the dataset
statistics and pre-processing in Appendix A.

6
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Table 1: Performance comparison of different methods on the three datasets. The best and second-
best performances are indicated in bold and underlined font, respectively.

Dataset Metrics GRU4Rec BERT4Rec SASRec FDSA S3-Rec VQ-Rec MISSRec P5-CID VIP5 TIGER MQL4GRec Improv.

Instruments

HR@1 0.0566 0.0450 0.0318 0.0530 0.0339 0.0502 0.0723 0.0512 0.0737 0.0754 0.0833 +10.48%
HR@5 0.0975 0.0856 0.0946 0.0987 0.0937 0.1062 0.1089 0.0839 0.0892 0.1007 0.1115 +2.39%
HR@10 0.1207 0.1081 0.1233 0.1249 0.1123 0.1357 0.1361 0.1119 0.1071 0.1221 0.1375 +1.03%
NDCG@5 0.0783 0.0667 0.0654 0.0775 0.0693 0.0796 0.0797 0.0678 0.0815 0.0882 0.0977 +10.77%
NDCG@10 0.0857 0.0739 0.0746 0.0859 0.0743 0.0891 0.0880 0.0704 0.0872 0.0950 0.1060 +11.58%

Arts

HR@1 0.0365 0.0289 0.0212 0.0380 0.0172 0.0408 0.0479 0.0421 0.0474 0.0532 0.0672 +26.32%
HR@5 0.0817 0.0697 0.0951 0.0832 0.0739 0.1038 0.1021 0.0713 0.0704 0.0894 0.1037 -
HR@10 0.1088 0.0922 0.1250 0.1190 0.1030 0.1386 0.1321 0.0994 0.0859 0.1167 0.1327 -
NDCG@5 0.0602 0.0502 0.0610 0.0583 0.0511 0.0732 0.0699 0.0607 0.0586 0.0718 0.0857 +17.08%
NDCG@10 0.0690 0.0575 0.0706 0.0695 0.0630 0.0844 0.0815 0.0662 0.0635 0.0806 0.0950 +12.56%

Games

HR@1 0.0140 0.0115 0.0069 0.0163 0.0136 0.0075 0.0201 0.0169 0.0173 0.0166 0.0203 +1.00%
HR@5 0.0544 0.0426 0.0587 0.0614 0.0527 0.0408 0.0674 0.0532 0.0480 0.0523 0.0637 -
HR@10 0.0895 0.0725 0.0985 0.0988 0.0903 0.0679 0.1048 0.0824 0.0758 0.0857 0.1033 -
NDCG@5 0.0341 0.0270 0.0333 0.0389 0.0351 0.0242 0.0385 0.0331 0.0328 0.0345 0.0421 +8.23%
NDCG@10 0.0453 0.0366 0.0461 0.0509 0.0468 0.0329 0.0499 0.0454 0.0418 0.0453 0.0548 +7.66%

Table 2: Ablation study of handling collisions.
Methods Instruments Arts Games

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

TIGER 0.1221 0.0950 0.1167 0.0806 0.0857 0.0453
TIGER w/o user 0.1216 0.0958 0.1159 0.0810 0.0863 0.0464
Handling Collisions 0.1277 0.0987 0.1163 0.0844 0.0885 0.0473

Evaluation Metrics. We use top-k Recall (Recall@K) and Normalized Discounted Cumulative
Gain (NDCG@K) with K = 1, 5, 10 to evaluate the recommendation performance. Following previ-
ous works (Geng et al., 2022; Hua et al., 2023), we employ the leave-one-out strategy for evaluation.
We perform full ranking evaluation over the entire item set instead of sample-based evaluation. For
the generative methods based on beam search, the beam size is uniformly set to 20.

4.2 OVERALL PERFORMANCE

In this section, we compare our proposed approach for generative recommendation with the follow-
ing sequential recommendation methods (which are described briefly in Appendix B): GRU4Rec
(Hidasi et al., 2015), BERT4Rec (Sun et al., 2019), SASRec (Kang & McAuley, 2018b), FDSA
(Zhang et al., 2019), S3-Rec (Zhou et al., 2020), VQ-Rec (Hou et al., 2023), MISSRec(Wang et al.,
2023a), P5-CID (Hua et al., 2023), VIP5 (Geng et al., 2023a), and TIGER (Rajput et al., 2023).
Results are shown in Table 1. Based on these results, we can find:

For non-generative recommendation methods, MISSRec often achieves better performance in most
cases, demonstrating that introducing multimodal information of items can enhance recommenda-
tion performance. For generative baseline methods, VIP5 with image information does not achieve
good results, which may be due to the modal differences between PLMs and image information.
Furthermore, TIGER performs well on the Instruments and Arts datasets but does not exhibit supe-
riority on the Games dataset. This may be due to TIGER’s lack of auxiliary content information. In
contrast, our proposed method introduces recommendation knowledge from different domains and
modalities.

Compared to baseline methods, our proposed MQL4GRec achieves the best performance in most
cases, especially with significant improvements on the NDCG metric. This superior performance
can be attributed to two factors: 1) We translate item content from different domains and modalities
into a unified quantitative language, breaking down barriers between them; 2) The series of QLG
tasks we designed enable the transfer of recommendation knowledge to target tasks through pre-
training and fine-tuning methods.

4.3 ABLATION STUDY

Handling Collisions. We propose a method based on the distance between the residual vector and
the codeword vector to resolve item collisions. To validate the effectiveness of our method, we com-
pare it with the collision resolution approach in TIGER, which directly adds an item index layer to
resolve item collisions, thereby introducing a semantically unrelated distribution. The experimental
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Table 3: Ablation study of various quantitative language generation tasks without pre-training.

Modal Tasks Instruments Arts Games

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

Text

NIG1 0.1277 0.0987 0.1163 0.0844 0.0885 0.0473
NIG 0.1275 0.0986 0.1205 0.0877 0.0928 0.0493
+ AIG 0.1279 0.0987 0.1249 0.0895 0.1002 0.0529
+ QLA 0.1282 0.0993 0.1293 0.0913 0.1010 0.0531

Image

NIG2 0.1243 0.0968 0.1117 0.0812 0.0881 0.0478
NIG 0.1262 0.0986 0.1158 0.0848 0.0899 0.0487
+ AIG 0.1299 0.0998 0.1218 0.0878 0.1002 0.0534
+ QLA 0.1280 0.1001 0.1259 0.0901 0.1017 0.0540

Table 4: Ablation study of pre-training and quantitative language generation tasks.

Methods Instruments Arts Games

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

(0) NIG1 0.1277 0.0987 0.1163 0.0844 0.0885 0.0473
(1) QLG 0.1282 0.0993 0.1293 0.0913 0.1010 0.0531
(2) NIG1w/ pre-training 0.1334 0.1043 0.1305 0.0959 0.0950 0.0508
(3) QLG w/ pre-training 0.1362 0.1051 0.1314 0.0944 0.0995 0.0521
(4) MQL4GRec ((3) + re-ranking) 0.1375 0.1060 0.1327 0.0950 0.1033 0.0548

results are shown in Table 2. "TIGER w/o user" refers to the removal of the user ID token from the
input sequence, which is also done to facilitate a fairer comparison. From the experimental results,
it can be seen that our method of handling collisions is more rational and effective. Furthermore,
results indicate that including a user ID token in the input degrades model performance, particularly
on the Games dataset. We attribute this to TIGER representing tens of thousands of users with only
2000 tokens, leading to numerous user ID collisions.

Quantitative language generation tasks. We initially assess the effect of different QLG tasks on
performance without the use of pre-training, and the results are shown in Table 3. (For more detailed
results, please refer to Appendix D.1.) Various tasks include: (1) NIG: the next item generation task
introduced in Section 3.2; (2) AIG: the asymmetric item generation task; (3) QLA: the quantitative
language alignment task. In this list, tasks without subscripts indicate that two subtasks are used
simultaneously. "Text" denotes evaluating performance by utilizing the next text item generation
subtask (i.e., NIG1); "Image" signifies evaluating performance by utilizing the next image item
generation subtask (i.e., NIG2).

The results indicate that several quantitative language generation tasks designed by us can signifi-
cantly improve performance. Specifically, as the number of tasks increases, the performance of both
NIG1 and NIG2 improves. This indicates that these tasks can enrich the quantitative language by
incorporating semantic information and knowledge across different modalities. In summary, con-
verting the multimodal content of items into a unified quantitative language effectively facilitates
the transfer of recommendation knowledge.

Pre-training. We transfer recommendation knowledge from the source domain datasets to the
target dataset through pre-training. Here, we employ NIG1 to evaluate the recommendation perfor-
mance, with the results shown in Table 4. (Additional results can be found in Appendix D.2.) QLG
represents the quantitative language generation tasks without pre-training. Specifically, the pre-
training task labeled "NIG1 w/ pre-training" employs only NIG1 from the source domain datasets.
On the other hand, the "QLG w/ pre-training" task uses both NIG1 and NIG2.

The results indicate that, under a single modality, pre-training enhances the performance across three
downstream datasets, demonstrating that prior knowledge from the source domain can be effectively
transferred to downstream tasks. Under dual modalities, pre-training significantly improves perfor-
mance on the Instruments and Arts datasets; however, it does not yield a notable improvement for
the Games dataset, potentially due to overfitting. A more intuitive analysis of this phenomenon is
provided in Section 4.4. Finally, we re-rank the items according to Equation (7) to generate the final
recommendation list.
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Figure 3: The impact of varying amounts of pre-training datasets on recommendation performance.

4.4 FURTHER ANALYSIS

Pre-training datasets. In this subsection, we investigate the impact of varying amounts of pre-
training datasets on downstream tasks, and the results are shown in Figure 3. From the results, it
can be observed that: 1) Exclusively in the context of text quantitative language, as the number
of pre-training datasets increases, the performance of downstream tasks also gradually improves.
This suggests that larger numbers in pre-training datasets provide more transferable recommenda-
tion knowledge. 2) Following pre-training with quantitative language under two modalities, fine-
tuning shows varying trends across different downstream datasets. Specifically, while increasing
pre-training datasets enhances performance on the Instruments and Arts datasets, it leads to a grad-
ual decline in performance on the Games dataset. This could indicate either overfitting or significant
domain differences between the Games dataset and the source domain datasets.

Pre-training epochs In this subsection, we investigate the impact of varying the number of pre-
training epochs on downstream tasks, with the results displayed in Figure 4. From the figure, it
can be observed that: 1) When pre-training is performed solely with text quantitative language,
the performance of downstream tasks gradually increases with the number of pre-training epochs
and stabilizes around 25 epochs. 2) When pre-training involves both text and image quantitative
languages, the Instruments and Arts datasets reach peak performance early, and further training may
impair the transfer of recommendation knowledge. In contrast, for the Games dataset, performance
deteriorates as the number of pre-training epochs increases. This suggests that for the Games dataset,
recommendation knowledge from different modalities might be more crucial than that from the
source domain dataset, and there may be conflicts between the two.

0 5 10 15 20 25 30
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Figure 4: The impact of different pre-training epochs on recommendation performance.

4.5 ZERO-SHOT CAPABILITY

We investigate whether models pre-trained on the source domain dataset have zero-shot capabilities,
as shown in Table 5. Here, "Number" represents the number of pre-training datasets, with "0" indi-
cating model parameters randomly initialized. We use NIG1 to evaluate performance. The results

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Zero-shot capabilities under different number of pre-training datasets.

Number Instruments Arts Games

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

0 0.00099 0.00046 0.00113 0.00052 0.00066 0.00031
2 0.00240 0.00137 0.00140 0.00063 0.00109 0.00058
4 0.00310 0.00170 0.00298 0.00132 0.00054 0.00027
6 0.00345 0.00171 0.00311 0.00138 0.00116 0.00047

demonstrate that pre-trained models exhibit preliminary zero-shot capabilities on the Instruments
and Arts datasets, although they are still weak. However, this capability is not evident on the Games
dataset. We attribute this primarily to the scarcity of pre-training data and the limited parameters
of the model, resulting in insufficient generalization. In the future, we aim to delve deeper into this
phenomenon.

5 CONCLUSION

In this paper, we propose a novel approach named MQL4GRec, which transforms item content
from different domains and modalities into a unified quantitative language to facilitate the effective
transfer of recommendation knowledge. We first train a quantitative translator for each modality,
converting items into the quantitative language and breaking down the barriers between them. Then,
we design a series of quantitative language generation tasks aiming at endowing quantitative lan-
guage with rich semantic information and prior knowledge. Finally, we transfer the source domain
and multimodal recommendation knowledge to the recommendation tasks through pre-training and
fine-tuning. Our proposed MQL4GRec achieves superior performance compared to the baseline
method. Moreover, MQL4GRec possesses strong scalability and potential as it does not rely on
traditional item IDs and bridges the gap between different domains and modalities. We believe this
represents a significant step towards universal recommendation models.
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A DATASET STATISTICS

Table 6: Statistics of the preprocessed datasets. “Avg. len” represents the average length of item
sequences.

Datasets #Users #Items #Interactions Sparsity Avg. len

Pet 183697 31986 1571284 99.97% 8.55
Cell 123885 38298 873966 99.98% 7.05
Automotive 105490 39537 845454 99.98% 8.01
Tools 144326 41482 1153959 99.98% 8.00
Toys 135748 47520 1158602 99.98% 8.53
Sports 191920 56395 1504646 99.99% 7.84

Instruments 17112 6250 136226 99.87% 7.96
Arts 22171 9416 174079 99.92% 7.85
Games 42259 13839 373514 99.94% 8.84

To evaluate the performance of the proposed approach, we conduct experiments in the pre-trained
source and target domain settings. We use six categories from from the Amazon Product Reviews
dataset (Ni et al., 2019) for pre-training, including “Pet Supplies”, "Cell Phones and Accessories",
“Automotive”, “Tools and Home Improvement”, “Toys and Games”, “Sports and Outdoors”,
and three categories for sequential recommendation tasks, including “Musical Instruments”, “Arts
Crafts and Sewing”, “Video Games”.

Each item in the dataset is associated with a title, a description, and an image. Following previous
work (Rajput et al., 2023), we first filter out unpopular users and items with less than five interac-
tions. Then, we create user behavior sequences based on the chronological order. The maximum
item sequence length is uniformly set to 20 to meet all baseline requirements. The statistics of our
preprocessed datasets are shown in Table 6.

B BASELINES

We compare the proposed approach with the following baseline methods:

• GRU4Rec (Hidasi et al., 2015) introduces Gating Recurrent Unit (GRU) to model user action
sequences for session-based recommendations.

• SASRec (Kang & McAuley, 2018b) uses a directional self-attentive model to capture item cor-
relations within a sequence.

• BERT4Rec (Sun et al., 2019) employs a bi-directional self-attentive model with the cloze ob-
jective for modeling user behavior sequences.

• FDSA (Zhang et al., 2019) uses a self-attentive model to capture item and feature transition
patterns.

• S3-Rec (Zhou et al., 2020) pre-trains sequential models with mutual information maximization
to learn the correlations among attributes, items, subsequences, and sequences.

• VQ-Rec (Hou et al., 2023) learns vector-quantized item representations for transferable sequen-
tial recommenders.

• MISSRec (Wang et al., 2023a) is a multi-modal pre-training and transfer learning framework
for sequential recommendation.

• P5-CID (Geng et al., 2022; Hua et al., 2023) organizes multiple recommendation tasks in a text-
to-text format and models different tasks uniformly using the T5 model. Here, we employ P5
with collaborative indexing as the baseline.

• VIP5 (Geng et al., 2023a) is a multimodal foundation model considering visual, textual, and
personalization modalities under the P5 recommendation paradigm, to unify various modalities
and recommendation tasks.

• TIGER (Rajput et al., 2023) adopts the generative retrieval paradigm for sequential recommen-
dation and introduces a semantic ID to uniquely identify items.
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Table 7: Detailed ablation study of various quantitative language generation tasks without pre-
training

Modal Tasks Instruments Arts Games

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

Text

NIG1 0.1277 0.0987 0.1163 0.0844 0.0885 0.0473
NIG1 + QLA 0.1275 0.0986 0.1166 0.0831 0.0871 0.0465
NIG 0.1275 0.0986 0.1205 0.0877 0.0928 0.0493
NIG + QLA 0.1263 0.0983 0.1204 0.0867 0.0919 0.0492
NIG + AIG 0.1279 0.0987 0.1249 0.0895 0.1002 0.0529
NIG + AIG + QLA 0.1282 0.0993 0.1293 0.0913 0.1010 0.0531

Image

NIG2 0.1243 0.0968 0.1117 0.0812 0.0881 0.0478
NIG2 + QLA 0.1237 0.0978 0.1143 0.0826 0.0877 0.0468
NIG 0.1262 0.0986 0.1158 0.0848 0.0899 0.0487
NIG + QLA 0.1265 0.0988 0.1164 0.0849 0.0945 0.0505
NIG + AIG 0.1299 0.0998 0.1218 0.0878 0.1002 0.0534
NIG + AIG + QLA 0.1280 0.1001 0.1259 0.0901 0.1017 0.0540

C IMPLEMENTATION DETAILS.

To obtain textual representations, we employ LLaMA to encode the title and description of the item
as its embedding and use mean pooling to aggregate multiple representations. To obtain visual
representations, we utilize CLIP’s (Radford et al., 2021) image branch as an encoder to encode the
images of items, and we employ ViT-L/14 as the backbone. Both the encoder and decoder of RQ-
VAE are implemented as Multi-Layer Perceptrons (MLPs) with ReLU activation functions. The
level of codebooks is set to 4, with each level consisting of 256 codebook vectors, and each vector
has a dimension of 32. The model is optimized using the AdamW optimizer, employing a learning
rate of 0.001 and a batch size of 1024.

Following previous work (Rajput et al., 2023), we use the T5 (Raffel et al., 2020b) framework
to implement our transformer based encoder-decoder architecture. We use 4 layers each for the
transformer-based encoder and decoder models with 6 self-attention heads of dimension 64 in each
layer. The MLP and the input dimension was set as 1024 and 128, respectively. The number of
prompt tokens for every task is set to 4. We employ the AdamW (Loshchilov & Hutter, 2019)
optimizer for model optimization, setting the weight decay to 0.01. During pre-training, we utilize
a batch size of 4096 with a learning rate set to 0.001. For alignment tuning, we employ a batch size
of 512 with a maximum learning rate of 5e-4, and utilize a cosine scheduler with warm-up to adjust
the learning rate.

Our experiments utilize the Tesla V100 GPU. For pretraining, we use four cards, and for fine-tuning,
we use two cards. Since the model has around 13 million parameters, there is still a substantial
amount of GPU memory remaining.

D MORE ABLATION STUDIES

D.1 QUANTITATIVE LANGUAGE GENERATION TASKS.

We have supplemented Table 7 with more detailed ablation experiments of quantitative language
generation tasks without pre-training. We study the impact of each task on recommendation perfor-
mance through a combination of different tasks. We find that: 1) the AIG task always results in a
significant performance improvement; 2) the QLA task needs to be paired with the AIG task in order
to achieve better results. This suggests that quantitative language serves as a bridge for knowledge
transfer in recommendations, but we need to design appropriate quantitative language tasks.

D.2 PRE-TRAINING.

We further provide the results of using NIG2 to evaluate the performance of recommendations in Ta-
ble 8. From the results, it can be seen that: 1) On the Instruments and Arts datasets, both pre-training
and Quantitative Language Generation (QLG) tasks are useful for improving recommendation per-
formance. This indicates that quantitative language can migrate recommendation knowledge from
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Table 8: Detailed ablation study of pre-training and quantitative language generation tasks.

Modal Methods Instruments Arts Games

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

Text

(0) NIG1 0.1277 0.0987 0.1163 0.0844 0.0885 0.0473
(1) QLG 0.1282 0.0993 0.1293 0.0913 0.1010 0.0531
(2) NIG1w/ pre-training 0.1334 0.1043 0.1305 0.0959 0.0950 0.0508
(3) QLG w/ pre-training 0.1362 0.1051 0.1314 0.0944 0.0995 0.0521

Image
(4) NIG2 0.1243 0.0968 0.1117 0.0812 0.0881 0.0478
(5) QLG 0.1280 0.1001 0.1259 0.0901 0.1017 0.0540
(6) QLG w/ pre-training 0.1322 0.1029 0.1265 0.0914 0.0987 0.0526

All (7) MQL4GRec 0.1375 0.1060 0.1327 0.0950 0.1033 0.0548

the source domain and other modalities to the target task. 2) On the Games dataset, QLG with
pre-training impairs performance, which might be due to some conflict of recommendation knowl-
edge between the source domain and another modality. In the future, we will further explore this
phenomenon.

E DISCUSSION

E.1 HANDLING COLLISIONS.

To address the issue of item collisions, some methods (Rajput et al., 2023; Hua et al., 2023) append
an additional identifier to the item indices, which may introduce semantically unrelated distributions.
LC-Rec (Zheng et al., 2023) introduces a uniform distribution constraint to prevent multiple items
from clustering in the same leaf node. Although the LC-Rec achieves better performance in handling
collisions compared to previous approaches, it has an inherent problem: it cannot completely resolve
item collisions when item modal content is identical or when the number of collisions exceeds the
size of the last level’s codebook. This leads to another issue: multiple items sharing the same
indices results in an unfair comparison of performance.

In contrast, our method of dealing with collisions is more rational and can essentially solve the
aforementioned problems. From the experimental results, our approach achieved similar outcomes
to LC-Rec, hence we did not use a dedicated table to list the experimental results.

E.2 LIMITATIONS.

Although our method achieves state-of-the-art performance, there are still some inherent limitations.
For example: 1) The inference time is longer compared to traditional recommendation methods.
This is an inherent flaw of generative recommendation systems, as such methods typically employ
beam search and auto-regressive techniques to generate the next token. 2) Our method requires item
content information, and the scenario where item content is missing has not yet been studied in the
paper. This is an issue that we need to further analyze in our next steps.
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