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Abstract

Pretrained language models have achieved state-of-the-art performance when
adapted to a downstream NLP task. However, theoretical analysis of these mod-
els is scarce and challenging since the pretraining and downstream tasks can be
very different. We propose an analysis framework that links the pretraining and
downstream tasks with an underlying latent variable generative model of text —
the downstream classifier must recover a function of the posterior distribution over
the latent variables. We analyze head tuning (learning a classifier on top of the
frozen pretrained model) and prompt tuning in this setting. The generative model
in our analysis is either a Hidden Markov Model (HMM) or an HMM augmented
with a latent memory component, motivated by long-term dependencies in nat-
ural language. We show that 1) under certain non-degeneracy conditions on the
HMM, simple classification heads can solve the downstream task, 2) prompt tuning
obtains downstream guarantees with weaker non-degeneracy conditions, and 3)
our recovery guarantees for the memory-augmented HMM are stronger than for
the vanilla HMM because task-relevant information is easier to recover from the
long-term memory. Experiments on synthetically generated data from HMMs back
our theoretical findings.

1 Introduction

Natural language processing (NLP) has been revolutionized by large-scale pretrained language
models such as BERT [4] and GPT [25], which are adapted to a variety of downstream NLP
tasks. Although a large body of empirical work seeks to understand the effectiveness of pretrained
models [7, 5, 12, 35, 34, 11, 27, 15], theoretical understanding is scarce. Theoretically analyzing the
relationship between the pretraining and downstream tasks is challenging because pretraining and
downstream settings can greatly differ.

The key starting point for our analysis is to link the pretraining and downstream settings through an
underlying generative model of the data. We model the data distribution as a latent variable model
and the downstream task as a function of the latent variables. Assuming that pretraining on a large
corpus allows us to learn the generative model, the conditional token probabilities predicted by the
pretrained model carry information about the hidden variables. In downstream adaptation, we aim to
recover this information to solve the downstream task.

Though full finetuning is the de facto empirical standard, analyzing it is challenging because it
requires characterizing the weights of the pretrained model. In this paper, we focus on head tuning
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and prompt tuning, which both freeze all pretrained parameters and allow us to treat the pretrained
model as a black box. Head tuning [22] trains task-specific heads on top of the pretrained model
outputs. Prompt tuning [31, 19, 9, 21] optimizes a task-specific “prompt” that is concatenated to the
model input. Studying prompt tuning is particularly interesting since it can match the performance of
full finetuning with less computation time [19, 9, 21].

Our work contrasts with prior theoretical work [28], which assumes that downstream labels are
recoverable via a linear head applied to the conditional token probabilities, and analyze how errors
in pretraining or model misspecification propagate downstream. We consider specific generative
distributions for which we can prove these assumptions, showing that head and prompt tuning can
recover the downstream labels.

Our analysis considers two data-generating distributions with increasing realism. First, we consider
data generated from a Hidden Markov Model (HMM), where the downstream task is to learn a linear
classifier on the posterior distribution over the hidden states (Section 3). We prove that, under strong
non-degeneracy conditions on token emission probabilities, a linear head applied to a pretrained
model G which outputs exact conditional token probabilities (Gipxq “ P rXi |x´is) can recover the
downstream label (Theorem 3.3). Furthermore, we can prove better recovery guarantees with relaxed
non-degeneracy assumptions (Assumption 3.1) by using continuous prompt tuning (Theorem 3.6),
reflecting the strong empirical performance of prompt tuning [19, 9, 21]. Intuitively, prompt tuning
conditions the latent variables so that nonessential information for the downstream task can be ignored
during the tuning phase, making task-essential information easier to recover.

Second, we also strengthen our analysis by leveraging additional structure in the data. Motivated
by long-range dependences in natural language, we analyze HMM variants with additional latent
“memory” variables that can store long-term information more easily than vanilla HMMs (Section 4).
Here, the downstream task is to learn a linear classifier on the posterior distribution of the memory
variables. We show that, under weaker non-degeneracy conditions than the first setting, an attention-
based classification head can recover ground-truth downstream labels from pretrained model outputs
(Theorem 4.3). Intuitively, our recovery guarantees improve because the classification head can
focus on the persistent, task-essential information in the memory while ignoring other transient and
nonessential aspects of the latent variables. As with the vanilla HMM, we analyze prompt tuning for
relaxing the non-degeneracy conditions even further (Theorem 4.6).

In summary, we relate the pretraining and downstream tasks by assuming that the downstream task
is to learn a classifier on the posterior distributions of the latent variables defined by an underlying
generative model of text. Our theoretical contributions are: 1) in this setting we analyze an HMM
generative model show that simple classification heads can recover the true downstream labels under
certain non-degeneracy assumptions, 2) we prove that soft prompt tuning can relax the non-degeneracy
assumptions needed for downstream recovery making it easier to extract task-specific information,
and 3) our recovery guarantees are stronger for memory-augmented HMMs in comparison to the
vanilla HMM when tuning an attention-based classfication head.

We empirically evaluate our theoretical results with language models pretrained on synthetically
generated data from HMMs. We find that prompt tuning obtains good downstream performance
when our non-degeneracy conditions are relaxed, whereas head tuning performs poorly. Furthermore,
we show that head tuning obtains better downstream performance when data is generated from a
memory-augmented HMM, compared to a vanilla HMM, as is predicted by our theory.

1.1 Related works

The black box nature of BERT and related models has inspired a variety of empirical works which
seek to understand them. Probing papers study whether a pretrained model computes various types of
structured information (e.g., syntactic [35, 11]) by evaluating the performance of simple classifiers, or
probes, on the representations [7, 12, 34, 27, 15]. Other papers ablate various aspects of pretraining,
such as changing the masking scheme [14, 20, 40] or permuting the word order [32].

In comparison, theoretical analysis of pretrained language models is limited. Besides [28], which
we discussed in Section 1, Zhang and Hashimoto [40] analyze using a linear classifier to approxi-
mately recover the latent variable in a Gaussian graphical model with sparse dependencies between
observed variables. However, their analysis and setting are focused towards understanding syntactic
dependencies between tokens, whereas we directly model and analyze downstream performance.
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Prompt-based tuning [31, 19, 9, 21, 13, 6, 41, 2, 23], which has improved empirical downstream
performance for lightweight adaptation methods beyond head tuning to approach full finetuning, is
an important focus of our theoretical analysis. Shin et al. [31] employ task-specific prompts that are
optimized over the discrete token space. Schick and Schütze [29, 30] reformulate natural language
tasks as cloze-style phrases to enable few-shot learning. Subsequent methods [19, 9, 21] optimize
“soft” prompts, or continuous embedding vectors. Lester et al. [19] employ soft prompts on pretrained
large-scale T5 [26] models and show that as the model size increases, prompt tuning performance
can eventually match finetuning. Hambardzumyan et al. [9] applies a variant of soft prompt tuning to
MLM models. Li and Liang [21] propose prefix tuning, which prepends a trainable prefix embedding
sequence to all layers of the transformer.

More broadly, Lee et al. [18] analyze reconstruction-based self-supervised learning methods in a
general setting and show that under certain conditional independence assumptions, predicting one
observed variable from another allows recovery of the latent with a linear head. Other theoretical
works analyzing self-supervised or constrastive learning include [1, 10, 36, 38, 37], but they do not
directly relate to our particular setting.

2 Formulations and notations

We analyze models pretrained on masked language modeling (MLM) objectives. Let X denote
a finite vocabulary of input tokens, X ˚ the set of variable-length sequences of tokens, and X “

pX1, . . . , XT q P X ˚ a random sequence of T tokens. Let ∆|X | denote the space of probability
distributions over tokens.

Pretraining and downstream task. Let Gpxq “ pG1pxq, G2pxq, . . .q denote the masked language
model which predicts a probability vector for each timestep in the input x. Our theoretical abstraction
is that Gi perfectly computes the distribution of Xi, the i-th token, conditioned on all other tokens:
Gipxq “ P rXi|X´i “ x´is. Here P rXi |X´i “ x´is P ∆|X | is a probability vector. In particular,
Gipxq does not depend on xi. The downstream task involves labeled examples px, F ‹pxqq P X ˚ˆY ,
where F ‹ : X ˚ Ñ Y provides ground-truth downstream labels and Y is a discrete set of labels for
classification.

Head and prompt tuning. Head tuning trains a classification head f on top of fixed model outputs,
resulting in the classifier F pxq “ 1pfpGpxqq ě 0q. We expect f to be a simple function such as
a linear or one layer attention model. We also analyze variants where f also takes the tokens x
or embeddings of x as input, which provides additional information. Soft prompt tuning requires
viewing the pretrained model G as a function of the token embeddings; we refer to this model by
G. Letting epxq “ epx1q, . . . , epxtq denote the token embeddings, we have Gpepxqq “ Gpxq. Soft
prompt tuning concatenates a trainable prompt u so that the model output isGppu, epxqq. We consider
simultaneously training the prompt parameter u and a classification head to fit the downstream task.

Notations. Let ∆d denote the space of d-dimensional probability vectors. We work with discrete
random variables V taking values in a finite set V . We use P rV s P ∆|V| to denote the distribution
of V and P rU |V “ vs P R|U | the conditional distribution of U given V “ v. PrpV “ vq P r0, 1s
will denote the probability that V takes values v. We also let P rU “ u |V s P R|V| denote the
vector with entries PrpU “ u |V “ vq. P rU |V s P R|U |ˆ|V| will describe the matrix with entries
P rU |V su,v “ PrpU “ u |V “ vq.

For a sequence v “ pv1, . . . , vtq, we use the notation vi:j for i ď j to denote pvi, . . . , vjq, and v´i to
denote pv1:i´1, vi`1:tq. We let 1 denote the indicator function. For set V , we let V˚ “ V1YV2Y¨ ¨ ¨

denote variable-length sequences of elements of V . Let d denote elementwise product. Let 1d,0d
denote the d-dimensional all-1’s and all-0’s vector. We omit the subscript if the dimension is clear
from context. For two vectors a, b P Rd, we let a{b denote their element-wise division. We use
supppaq to denote the set of indices where vector a is non-zero.

3 Analysis for Hidden Markov Models

Defining a relation between pretraining and downstream tasks is the foremost challenge for analysis.
We propose to link the two via latent variable generative assumptions on the input distribution. We
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Figure 1: Left: Illustration of HMM graphical model. Right: Overview of the formulation and
analysis setting for prompt (and head) tuning. To abstractify soft prompt tuning, we note that every
token has a natural embedding, the corresponding row of the emission probability matrix. We view
prompt tuning as adding a fake token rz to the vocabulary, assigning it a row u in the emission matrix,
and prepending it to the input embedding sequence. More details are provided in Section 3.1.

model the downstream task as a function of the posterior distribution of the latent variables. Towards
a first result, this section studies the case where inputs are generated by HMMs (see Figure 1 (left)),
which have been well-studied in the context of language and speech processing (see e.g. [24, 17, 3]).

Data distribution. Let H denote the hidden state space of the HMM. We use H “

pH0, H1, . . . ,HT q P H˚ to denote the sequence of hidden states. For all timesteps i ą 0, the
transition probabilities are time-invariant, i.e. P rHi |Hi´1s “ A for A P R|H|ˆ|H|. For each
timestep i ě 1, tokens Xi are emitted following some time-invariant probability: P rXi |His “W
for W P R|X |ˆ|H|. The joint probability of X,H is

PrpX,H “ x, h |T “ tq “ PrpH0 “ h0q
t
ź

i“1

PrpHi “ hi |Hi´1 “ hi´1qPrpXi “ xi |Hi “ hiq.

Downstream tasks. We assume that H0 has the meaningful information for the downstream task,
which is a binary classification task where the ground-truth labeling F ‹ is assumed to be a linear
classifier on the posterior P rH0 |X1:T “ xs:

F ‹pxq “ 1pµJP rH0 |X1:T “ xs ě 0q (3.1)

for µ P R|H|. Our results are easily extended to the multiclass setting. We consider tuning a linear
head for the downstream classifier, which formally computes 1pbJG1pxq ě 0q for b P R|X |. The
following non-degeneracy condition is crucial for our recovery result in this setting.
Assumption 3.1 (Non-degeneracy, vanilla HMM). The token emission probability matrix W has
linearly independent columns.

We also require the following regularity conditions on H0 and the state transitions.
Assumption 3.2 (Regularity). The Markov chain H0, H1, . . . is ergodic, and P rH0s has full support.

We show that if W has linearly independent columns, a linear head fits downstream labels.
Theorem 3.3. Assume that non-degeneracy (Assumption 3.1) and regularity (Assumption 3.2) hold.
Then any downstream task F ‹pxq of the form (3.1) can be computed by a linear head onG applied to a
shifted sequence. That is, there exists linear head weights b P R|X | such that for all x P supppP rXsq,

F ‹pxq “ 1pbJG1px
1q ě 0q

where x1 “ p∅, x1:tq is the concatenation of a special token ∅ with x.1

The key for the proof is to leverage the following general statement about random variables U, V, Z
such that U K V |Z, which decomposes the expression for P rU |V s.

1We note that G1px
1
q does not depend on x11 and therefore x11 can be any token.
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Proposition 3.4. Let U, V, Z be random variables such that U K V |Z. Then for any v, P rU |V “
vs “ P rU |Zs ¨ P rZ |V “ vs. Thus, if P rU |Zs has a left inverse pP rU |Zsq:, then P rZ |V “

vs “ pP rU |Zsq:P rU |V “ vs.

By the conditional independence structure of the HMM, Proposition 3.4 immediately implies

G1px
1q “WP rH1|X2:T`1 “ xs ùñ P rH1|X2:T`1 “ xs “W :G1px

1q

where W : is the left inverse for W , guaranteed to exist by Assumption 3.1. This lets us recover
P rH1|X2:T`1 “ xs by applying a linear function to G1px

1q. Additional linear functions will be
sufficient to obtain µJP rH0|X1:T “ xs from P rH1|X2:T`1 “ xs. We provide the full proof in
Section B.

Proposition 3.4 is reminiscent of the arguments of [18], which leverages the independence structure in
the same way. Subsequent sections will require more complicated analyses and recovery procedures.

A drawback of Theorem 3.3 is that it relies heavily on assuming W has full column rank, which
implies the necessary condition that |H| ď |X |. Without this assumption, it is unclear how to recover
P rH0 |X1:T “ xs from Gpxq alone. However, in realistic settings we would expect |H| ą |X |, as
increasing the size of the hidden state space improves language modeling capabilities of HMMs [3].

3.1 Relaxed non-degeneracy assumptions via prompt tuning

In this section, we study applying soft, or continuous, prompt tuning [19, 9] to the setting above. We
show that by using soft prompt tuning, we can recover F ‹ using a linear head on G for HMMs where
the non-degeneracy assumptions on W are relaxed. Our analysis provides insight into the empirical
successes of prompt-tuning: intuitively, prompt tuning enables better recovery of the downstream
task by conditioning the output of G to only contain task-specific information.

Soft prompt tuning trains task-specific embedding vectors, but analyzing how the model processes
embedding vectors is challenging because it requires opening up the black box of the pretrained
model. Thus, we require additional abstractions about how the pretrained model processes the
embedding vectors. We will extend the mask language model G to a model G that maps a sequence
of embeddings e1, . . . , et to conditional probabilities G1pxq, . . . , Gtpxq as follows. We observe that
each token z in the vocabulary X naturally corresponds to a |H|-dimensional vector: the z-th row of
the emission probability matrix W , or equivalently, P rXi “ z |His. We denote this embedding by
epzq and call the family of embeddings tepzq : z P X u proper embeddings. A fundamental property
of HMMs is that the conditional probability P rXi |X´i “ x´is only depends on x1, . . . , xt through
their embeddings epxq “ pepx1q, . . . , epxtqq. In other words, there exists a function Gi such that

Gipx1, . . . , xtq “ Gipepx1q, . . . , epxtqq

In particular, we let Gi compute the standard message passing algorithm [16] that computes the
conditional probability of HMMs. This ensures thatGi is well defined on all sequences of nonnegative
vectors in r0, 1s|H|, beyond sequences of proper embeddings.We assume that pretraining produces
this Gi, which we treat as a blackbox for prompt tuning.

In particular, for prompt tuning we can consider the case where we pass an arbitrary nonnegative
vector u P r0, 1s|H| to G in the first argument and proper embeddings at positions i ą 1. We can
interpret u as the embedding of a fake token rz. Concretely, consider adding a new token rz to the
vocabulary X , and changing the emission probability at position 1 to satisfy P rX1 “ rz |H1s “ u and
for all z ‰ rz, P rX1 “ z |H1s9p1 ´ uq d epzq. Then Gipu, epx1q, . . . , epxtqq precisely computes
the conditional probability P rXi |X´i “ prz, x1, . . . , xtq´is under the modified HMM. We refer the
readers to Section C for the formal definition of Gi and formal proofs of the interpretation above.

We consider a downstream training algorithm which trains the prompt tuning parameter u described
above and a linear classification head. Letting u denote the trainable prompt parameter and b P R|X |
the trainable linear head weights, the model uses the embedding sequence

pepxq fi pu, ep∅q, epx1q, . . . , epxtqq (3.2)

and outputs the prediction F pxq “ 1pbJG2ppepxqq ě 0q. We can provide recovery guarantees for this
model if the ground-truth classifier weights µ (defined in (3.1)) and columns of the HMM transition
matrix A satisfy the following relaxation of the requirement in Theorem 3.3 that W is nondegenerate.
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Assumption 3.5 (Relaxed non-degeneracy condition). There exists a set of essential hidden states
H‹ Ď H, so that the columns of W corresponding to H‹, tW:,huhPH‹ , are linearly independent.
Furthermore, H‹ covers all meaningful information for the downstream tasks: supppµq Ď H‹.
In addition, a last technical requirement on H‹ is as follows: there exists a set B Ď H such that
H‹ “ YhPBsupppA:,hq. In other words, H‹ must be the set of all states reachable by starting from
some state in B and transitioning one step in the hidden Markov chain.

Compared to Assumption 3.1, which required that all columns of W are linearly independent,
Assumption 3.5 only requires linear independence on a subset H‹ of essential states. In the setting
where |H| ą |X |, the condition for Theorem 3.3 can never hold. On the other hand, Assumption 3.5
could still hold, for example, if |supppµq| ă |X | and the set of columns of W corresponding to
hidden states in supppµq is linearly independent. The last technical requirement in Assumption 3.5 is
also required, which could be satisfied if columns of A are sparse. The following theorem shows that
when Assumption 3.5 holds, we can recover F ‹ using soft prompt tuning with a linear head.

Theorem 3.6. In the above setting, assume that Assumptions 3.2 and 3.5 hold. Then F ‹ can be
computed using soft prompt tuning with a linear head on G. Concretely, there is a continuous prompt
parameter u P R|H| and weight vector b P R|X |, such that for all x P supppP rXsq,

F ‹pxq “ 1pbJG2ppepxqq ě 0q

where pe prepends u to the input embedding sequence, as defined in (3.2).

Theorem 3.6 provides a stronger recovery result than Theorem 3.3, which only used a linear head.
This is also reflected in our synthetic experiments (Section 5), and prior work which shows that
variants of prompt tuning can perform much better than only training the last few layers of the
model [21]. Our theory suggests that prompt tuning could help by conditioning the hidden variables
to remove nonessential information for the task from the output of G. This makes task-essential
information easier to recover.

The key proof intuition is that although recovering P rH0 |X1:T “ xs is impossible without strong
non-degeneracy conditions (Assumption 3.1), we can aim to recover P rH0 |X1:T “ xs on the subset
of essential states H‹ defined in Assumption 3.5, which suffices for computing µJP rH0 |X1:T “ xs,
since H‹ Ě supppµq. To recover P rH0 |X1:T “ xs on H‹, we observe in Lemma C.2 that
prepending the prompt u is equivalent to introducing a modified random sequence pX and fake token
rz which influences the posterior of H2 as follows:

G2ppepxqq “ rxWDpP rH2 | pX1 “ rzs d P rH0 |X1:T “ xsq (3.3)

for invertible diagonal matrix D and positive scalar rx. We choose u so P rH2 | pX1 “ rzs d
P rH0 |X1:T “ xs is supported only on H‹. As corresponding columns of W are linearly in-
dependent (Assumption 3.5), we recover PrpH0 “ h |X1:T “ xq for h P H‹ via a linear function of
G2ppepxqq. This suffices for computing µJP rH0 |X1:T “ xs. For more details, see Section C.

4 Analysis for memory-augmented Hidden Markov Models

We study a memory-augmented HMM which explicitly disentangles the evolution of hidden states
from a persistent “memory” variable. Inspired by natural sentences, this model is intended to better
capture the distinction between syntax, which constantly evolves, and semantics, which changes less.
This additional structure in the generative model allows us to strengthen our results by relaxing the
non-degeneracy conditions on W , the token emission probabilities. Thus, both head and prompt
tuning are more powerful in this setting compared to Section 3 and can recover the downstream label
with weaker non-degeneracy assumptions on W . In Section 4.2, we show that soft prompt tuning
also provides an advantage over head tuning alone.

Data distribution. The memory-augmented HMM, depicted in Figure 2, can be viewed as a
generative variant of memory networks [39, 33] and is closely related to Hidden Topic Markov
Models [8]. There are two sets of latent variables in the memory-augmented HMM: a Markov chain
on hidden states H0, H1, . . ., meant to model the evolution of syntax, and a persistent “memory”
M “ pM1, . . . ,MN q with N total cells, where each Mi takes values in a finite set M. The full joint
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Figure 2: Left: Memory-augmented HMM with a single memory cell. The memory M and hidden
state Hi determine the emission probabilities for each state Xi. Right: Memory-augmented HMM
with multiple memories M1, . . . ,MN . The hidden state Hi consists of a cell index Ji and syntax
state Si. To sample Xi, we first look up the Ji-th memory cell MJi . The token emission probability
is then determined by the tuple pMJi , Ji, Siq.

probability is as follows:
PrpX,H,M “ x, h,m|T “ tq “

PrpM “ mqPrpH0 “ h0q
t
ź

i“1

PrpHi “ hi|Hi´1 “ hi´1qPrpXi “ xi|M “ m,Hi “ hiq

The hidden state is modified to explicitly consist of a disentangled cell index J P rN s and syntax
state S P S, such that Hi “ pJi, Siq and H “ rN s ˆ S. To sample the token at timestep i given the
hidden state Hi “ pJi, Siq, we first use Ji to index the memory M , obtaining the random variable
MJi . Xi is then sampled according to some time-invariant probability depending on MJi , Ji, Si:

P rXi |M “ m,Hi “ pj, sqs “ P rXi |MJi “ mj , Hi “ pj, sqs “W:,pmj ,j,sq

Here W P R|X |ˆ|M||H| stores the emission probabilities for each choice of memory cell value and
hidden state. Note that in particular, the conditional probabilities for Xi only depend on a single
memory cell for each timestep. We also note that memory-augmented HMMs can be viewed as
vanilla HMMs with structured transitions because pH0,Mq, pH1,Mq, . . . can be viewed as a Markov
chain where the memory component does not change.
Example 4.1 (Generating natural sentence with memory-augmented HMM). We consider how this
model may generate the sentence “The cow in the pasture rolled on the grass’ happily.” M1 could
store the subject (“cow”), M2 the location (“pasture”), M3 the sentiment (“happily”), and Si could
determine part-of-speech. For timesteps where “cow” and “rolled” are emitted Ji “ 1 because we
emit information related to the sentence subject. Timesteps for “pasture” and “grass” have Ji “ 2.

Downstream tasks. We consider downstream tasks where ground-truth labels are obtained via
a linear classifier on the posterior distribution of a particular memory cell j‹ P rN s: F ‹pxq “
1pµJP rMj‹ |X1:T “ xs ě 0q, where µ P R|M|. Intuitively, this formulation models downstream
tasks which depend on a particular aspect of the semantics but not on syntax (e.g. in the setting of
Example 4.1, if j‹ “ 3, the task is sentiment analysis).

4.1 Tuning attention head for recovering ground-truth downstream labels

To recover the downstream labeling, we require an attention-based classification head, which is a
function of both the input embeddings and outputs of G. Formally, let q P R|H|`1 denote a query
parameter and β1, . . . , βt P R|H|`1 denote trainable position embeddings. Given pretrained model
outputs Gipxq and trainable token embeddings epxiq, the attention head Attnp¨q applies key and value
functions K,V to compute the output as follows:

I fi arg max
i

tqJpKpGipxqq ` βiqu (4.1)

AttnppGipxq, epxiqqti“1q fi
1

|I|
ÿ

iPI
V pGipxq, epxiqq (4.2)
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where arg max refers to the set of indices achieving the maximum in (4.1). We note that standard
attention heads in practice rely on the softmax function, but the expression based on arg max above
captures the limiting behavior as }q}2 Ñ8. We consider linear key functions given by KpGipxqq “
ΘpKqGipxq. The value function V : R|X | ˆ R|M||H| Ñ R uses parameters ΘpV q P R|M||H|ˆ|X | and
b P R|M||H| and computes V pGipxq, epxiqq “ bJppΘpV qGipxqq d epxiqq.

Because our generative model disentangles H and M , we can relax the non-degeneracy assumption
on the token emission probabilities W , compared to Theorem 3.3. The relaxed assumption only
requires the columns tW:,pm,hqumPM,hPH‹ to be linearly independent in a subset H‹ of “recoverable”
hidden states, whereas Assumption 3.1 required all columns to be linearly independent.
Assumption 4.2 (Existence of “recoverable” hidden states). There exists a set of recoverable hidden
states H‹ “ tj‹u ˆ S‹, such that the collection of token emission probabilities from M ˆ H‹,
tW:,pm,hqumPM,hPH‹ , is a linearly independent set of vectors.

Furthermore, the span of these vectors must be disjoint from the span of token emission probabilities
from Mˆ pHzH‹q: spanptW:,pm,hqumPM,hPH‹q X spanptW:,pm,h1qumPM,hPHzH‹q “ t0|X |u.

Note that the non-degeneracy condition of Theorem 3.3 would require tW:,pm,hqumPM,hPH to be
linearly independent, whereas Assumption 4.2 only requires linear independence for h P H‹. The
second condition states that H‹ and HzH‹ are distinguishable by the token emission probabilities.

We explain Assumption 4.2 in the setting of Example 4.1. For natural language, there might be choices
of h “ pji, siq for which the set tW:,pm,hqumPM of token emission probabilities is fundamentally
not very diverse, and therefore not linearly independent. For example, if the syntax si indicates
“article”, i.e. words such as “a”, “an”, and “the”, the token emission probabilities would carry
little information about Mji because the choice of article does not depend much on semantics, so
columns corresponding to si “ “article” would not be linearly independent, violating Assumption 3.1.
However, Assumption 4.2 allows us to avoid this issue by placing such h in HzH‹, a set of hidden
states which we can ignore, and only including hidden states which carry a lot of information about
M in H‹. In Example 4.1, when Ji “ 2 (location), Si “ “noun”, the position i should convey a lot
about the location (in this case, “pasture”), so it is more reasonable to assume that tW:,m,humPM is
linearly independent for this hidden state.

Thus, our aim is to focus on recovering information for the downstream task from positions i where
Hi P H‹. Formally, we define the following set of input sequences containing positions i where the
posterior of Hi given x´i concentrates on H‹:

R fi tpx1, . . . , xtq P supppP rXsq : Di with supppP rHi |X´i “ x´isq Ď H‹u (4.3)

The following theorem shows that under Assumption 4.2, we can recover F ‹ using the attention head
described above, if x P R is nonempty. Note that R is nonempty if the posterior of Hi concentrates
on H‹ for some i. For natural language, it is realistic to assume this can occur because syntactic
aspects of a sentence are typically low-entropy when the full sentence is observed.
Theorem 4.3. Assume that non-degeneracy (Assumption 4.2) and regularity (Assumption 3.2) hold.
Define R as in (4.3). Then there exist an attention head on Gpxq and token embeddings epxiq such
that the following holds for any x P R:

F ‹pxq “ 1pAttnppGipxq, epxiqqti“1q ě 0q

where the function Attn is in the form described in (4.2).

The idea is to use the attention mechanism to attend to positions i where supppP rHi |X´i “ x´isq Ď
H‹. The intuition of Assumption 4.2 is that such positions are more informative for recovering the
latent posteriors; indeed, from the outputs Gipxq at such i, the value function in the attention will be
able to recover P rMj‹ |X1:T “ xs. A full proof is provided in Section D.1.

4.2 Guarantees for prompt-tuning

Though the generative modeling assumptions in this section already allowed relaxed non-degeneracy
assumptions, applying soft prompt tuning allows us to relax them even further. For simplicity, we
consider the setting where there is a single memory cell, so M P M, and the downstream task is
a linear classifier on the posterior of the memory: F ‹pxq “ 1pµJP rM |X1:T “ xs ě 0q. This
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simplified setting doesn’t require the explicit disentanglement between Ji and Si in Hi. We analyze
continuous prompt-tuning in a setting where the pretrained model G follows the same abstraction as
in Section 3.1. We modify the model to take |M||H|-dimensional vectors, so the proper embedding
for token z is given by epzq “ P rXi “ z|M,His “ WJ

z,:. In Section D.3, we describe the formal
construction and interpretation of G in the more general setting with more memories.

Letting u P R|M||H| denote the trainable prompt parameter, we define the input embeddings

pepxq fi pu, epx1q, . . . , epxtqq (4.4)

The downstream model applies an attention head to the output of G: F pxq “

1pAttnppGippepxqq, peipxqqt`1
i“1q ě 0q, where Attn is defined in (4.2). An additional stationarity

assumption on P rH0s will simplify the recovery procedure (though it can be removed).
Assumption 4.4 (Stationarity). Assumption 3.2 holds on the Markov chainH0, H1, . . .. Furthermore,
P rH0s is the stationary distribution: P rH0s “ AP rH0s, where A is the transition matrix.

As before, we assume sparsity of µ and some non-degeneracy of W , though the assumption is more
relaxed and easier to state compared to the vanilla HMM setting.
Assumption 4.5 (Relaxed version of Assumption 4.2). Let M‹ fi supppµq denote the set of non-zero
coordinates in µ. There exists a set of recoverable hidden states H‹, such that the collection of token
emission probabilities from M‹ ˆH‹, tW:,pm,hqumPM‹,hPH‹ , is linearly independent.

Furthermore, the span of these vectors must be disjoint from the span of token emission probabilities
from M‹ ˆ pHzH‹q: spanptW:,pm,hqumPM‹,hPH‹q X spanptW:,pm,h1qumPM‹,hPHzH‹q “ t0|X |u.

We note that Assumption 4.5, and Assumption D.5 for multiple memories, are relaxations of Assump-
tion 4.2, as they only consider memory values in supppµq, whereas Assumption 4.2 considers all
m PM. An additional advantage of the memory-augmented HMM is that Assumption 4.2 is simpler
than Assumption 3.1 and does not require any conditions on the transition matrix A. We now state
our result for recovering F ‹ with soft prompt tuning and an attention head.
Theorem 4.6. In the setting above, suppose that non-degeneracy Assumption 4.5 and stationarity
Assumption 4.4 hold. Then there exists a prompt u and attention head on Gppepxqq and the token
embeddings which can compute the ground-truth F ‹pxq for any x P R, defined in (4.3):

F ‹pxq “ 1pAttnppGippepxqq, peipxqqt`1
i“1q ě 0q

where pe is the embedding in (4.4) and Attn is defined in (4.2).

The intuition for this proof is similar to Theorem 3.6: the soft prompt conditions the memory M to
concentrate on supppµq. As a result, all irrelevant information to the task is removed from Gippepxqq,
making it easier to recover the task-specific information about the posterior of M . A more general
theorem statement for the multiple memories setting, and the full proof, is provided in Section D.3

5 Simulations

We empirically evaluate our theoretical results by pretraining a BERT-like masked language model
(MLM) [4] on synthetic data generated by an HMM. Our goal is to verify key implications of our
theory in a more realistic setting where some assumptions, such as that G outputs exact conditional
probabilities, may not hold. First, we compare head and prompt tuning and show that prompt tuning
improves downstream performance, especially when the recovery problem is degenerate. Second,
we compare the effect of changing the data distribution from vanilla HMMs to memory-augmented
HMMs on head tuning with an attention layer. We find that the downstream performance improves
when the data has a long-term memory component. These observations support our theory.

Pretraining data and downstream task. We generate pretraining data from an HMM with randomly
generated transition matrix, emission probabilities, and start distributions. In all experiments, the
HMMs have 10 vocabulary symbols, while the hidden state size varies. The downstream task uses
input sequences X1:T of length 129, where the first token X1 “ [MASK]. We consider binary
classifcation where labels are generated using linear functions of the analytically-computed posteriors
in the HMMs. In all experiments, the ground truth linear weight is sparse with 6 nonzero entries at
uniformly random locations with Gaussian values. More details are in Appendix E.
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Figure 3: Left: Head vs. prompt tuning with a linear head on synthetically-generated HMM data,
with varying hidden state sizes. Prompt tuning improves downstream accuracy especially when the
problem is degenerate (|H| ą |X |). Right: Downstream accuracy of head tuning on data from vanilla
HMM vs. memory-augmented HMM, across varying values of |M||H|. Long-term dependencies in
the memory-augmented HMM data improve downstream recovery with attention. We average over
20 trials (left) and 5 trials (right) of pretraining and finetuning, with 95% intervals shown.

Head vs. prompt tuning. We compare head and prompt tuning as the hidden state size of the
HMM varies. The downstream label is computed via µJP rH1 |X´1 “ x´1s, where µ is a random
ground-truth linear weight. Head tuning learns a linear head on top of the softmax probabilities
predicted by the pretrained model for filling in the first [MASK] token. Prompt tuning uses the same
setup but also optimizes a length 20 continuous embedding prepended to the input sequence.

Figure 3 (left) shows that prompt tuning improves downstream performance substantially across all
hidden state sizes ({4,8,10,15,25,30}). Prompt tuning improves especially when the hidden state
size increases beyond the vocabulary size, which makes the recovery problem degenerate. Thus, as
suggested by Theorem 3.6, prompt tuning helps relax the non-degeneracy conditions.

Memory-augmented HMMs. We investigate the effect of augmenting the data-generating HMM
with a long-term memory. We consider the single memory case with |H| “ 4 and varying memory
sizes |M| P t2, 3, 5, 7u. The downstream label is generated by computing µJP rM |X´1 “ x´1s,
where µ denotes the ground-truth weights. Viewing the memory HMM as a HMM where the
component on M never changes, we can compare against the vanilla HMMs from the previous
setting. For the memory-augmented HMM, we use head tuning with a single-cell attention layer on
the entire sequence of softmax probability outputs. For the vanilla HMM in the comparison, we use a
linear head on the output at the first position, as an attention head would perform worse since the
downstream task depends only on H1 and not any other timesteps.

Figure 3 (right) verifies that head tuning recovers the downstream task better when there is more
structure in the data, as predicted by Theorem 4.3. Head tuning achieves near 100% downstream
accuracy on all hidden state sizes.

6 Conclusion

We analyze how pretraining on generic language modeling tasks can improve performance on diverse
downstream tasks. In our analysis framework, the downstream task requires predicting properties of
the posterior distribution over latent variables in an underlying generative model. When the generative
model is a standard HMM, downstream recovery is possible with a simple classification head under
strong non-degeneracy assumptions. We also show that we can relax the non-degeneracy conditions
by changing the generative model to a memory-augmented HMM or using prompt tuning. The
distributions studied here are meant to provide a first-cut result – we also expect similar theorems to
hold for other generative models, which we leave as an interesting direction for future work.
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