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ABSTRACT

Identifying the extent to which every temporal segment influences a model’s pre-
dictions is essential for explaining model decisions and increasing transparency.
While post-hoc explainable methods based on gradients and feature-based attribu-
tions have been popular, they suffer from reference state sensitivity and struggle
to generalize across time-series datasets, as they treat time points independently
and ignore sequential dependencies. Another perspective on explainable time-
series classification is through interpretable components of the model, for instance,
leveraging self-attention mechanisms to estimate temporal attribution; however,
recent findings indicate that these attention weights often fail to provide faithful
measures of temporal importance. In this work, we advance this perspective and
present a novel explainability-driven deep learning framework, TimeSliver,
which jointly utilizes raw time-series data and its symbolic abstraction to construct
a representation that maintains the original temporal structure. Each element in this
representation linearly encodes the contribution of each temporal segment to the
final prediction, allowing us to assign a meaningful importance score to every time
point. For time-series classification, TimeSliver outperforms other temporal
attribution methods by 11% on 7 distinct synthetic and real-world multivariate
time-series datasets. TimeSliver also achieves predictive performance within
2% of state-of-the-art baselines across 26 UEA benchmark datasets, positioning it
as a strong and explainable framework for general time-series classification.

1 INTRODUCTION
Deep-learning (DL) models such as Convolutional Neural Network (CNN), Long Short-Term Mem-
ory (LSTM), and Transformer have proven to be successful as predictive models for time series
classification tasks. However, while most DL models offer strong predictive performance, they are not
interpretable, limiting our understanding of their decision-making process (Rudin, 2019; Doshi-Velez
& Kim, 2017). Interpretable DL models are essential for trust and transparency, particularly in
high-stakes domains such as healthcare, law, and finance, where explanations support informed
decision-making and regulatory compliance (Rudin, 2019). They also help detect biases in training
data, ensure fairer outcomes (Caruana et al., 2015; Molnar, 2020), and facilitate the extraction of new
scientific knowledge (Pandey et al., 2025).

Over the past few years, several methods have been developed to explain the decisions of DL models.
Popular methods like DeepLift and Integrated Gradients attribute predictions via baseline-based
backpropagation or path integrals but require careful baseline selection (Shrikumar et al., 2017;
Sundararajan et al., 2017). Another method called Grad-CAM, a purely gradient-based approach,
attributes importance via output–feature derivatives, but is tailored for CNNs and performs poorly on
temporal attribution tasks (Selvaraju et al., 2017; Saha et al., 2024). SHAP-based approaches leverage
game-theory-based Shapley scores to provide consistent explanations via a unified framework, but
they assume feature independence and scale poorly with dimensionality (Lundberg & Lee, 2017). All
these post-hoc interpretability methods face shared challenges of high parametric sensitivity and
explanations that often vary significantly across datasets (Turbé et al., 2023).

Another set of approaches advocates explainability based on the model’s inherent components. For
instance, some works leverage self-attention weights (Wu et al., 2020; Clark et al., 2019; Rogers et al.,
2021; Vig et al., 2021) in Transformers (Vaswani et al., 2017) as a key tool for model explainability.
Grad-SAM (Barkan et al., 2021) enhances this by weighting attention scores with their output
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gradients. However, due to the non-linearities in Transformers, attention weights often fail to align
(unfaithful) with ground-truth attribution (Chefer et al., 2021; Serrano & Smith, 2019; Jain & Wallace,
2019; Wiegreffe & Pinter, 2019). Another instance is a recent Multiple Instance Learning (MIL)-based
temporal attribution method (Early et al., 2024), which shows promising results in identifying the
importance of each time point. However, it has not been extended to multivariate time-series settings
and has limited experimental comparisons only to Grad-CAM and DeepLiftSHAP. Some more recent
approaches use self-supervised model behavior consistency (Queen et al., 2023) or the modified
information bottleneck (Liu et al., 2024) to compute attribution scores, but they either depend on a
pretrained model (Queen et al., 2023) or are computationally complex due to multiple components
and hyperparameters (Liu et al., 2024). In protein modeling, COLOR (Pandey et al., 2025) enhances
explainability by segmenting protein sequences into motifs for representation learning. However, it
cannot differentiate between positively and negatively attributing segments, and protein sequences
are inherently univariate and composed of categorical variables, unlike multivariate continuous time
series data. These limitations (non-linearities leading to unfaithful attributions, inapplicability to
multivariate time series, sensitivity to hyperparameters) of prior methods motivate us to explore
an explainability-driven predictive modeling approach capable of handling multivariate time
series with robust attribution capabilities across domains.

In this work, we introduce TimeSliver, a novel deep learning model that computes Temporal
attribution using Symbolic–Linear Vector Encoding for Representation. TimeSliver processes
raw (uni- or multi-variate) time series and their symbolic counterparts (via binning) to produce
localized, segment-level representations. These representations are then linearly combined into a
sequence-length-independent, explainable representation that enables the computation of temporal
attribution scores and facilitates insight into the model’s predictions. Our main contributions are as
follows:

▶ We propose an explainability-driven deep learning framework, TimeSliver, which learns
compact representations through a novel linear composition of symbolic and latent representations
of temporal segments to provide temporal importance for multivariate Time Series Classification
(TSC) tasks while maintaining state-of-the-art predictive capacity (Section 2.2.3).

▶ TimeSliver provides positive and negative temporal attribution scores to offer a complete
explanation of different time points for the model’s prediction (Section 2.2.4).

▶ We evaluate TimeSliver’s explainability across three diverse real-world applications—audio,
sleep-stage classification, and machine fault diagnosis—as well as on four synthetic datasets,
against nine baseline methods, which place TimeSliver consistently as a top-performing
model for identifying positively and negatively influencing temporal segments under various
settings (Section 3.1).

▶ We demonstrate TimeSliver’s competitive predictive performance on 26 multivariate time-
series classification tasks from the UEA benchmark (Section 3.2).

Additional Related Works. Decomposing time-series inputs into human-understandable patterns
also contributes to explainability. Recent works explore approaches such as shapelet decomposi-
tion (Wen et al., 2025b), reinforcement learning-based subsequence selection (Gao et al., 2022a),
and abstracted shape representations (Wen et al., 2024). In particular, learnable shapelet-based
methods (Wen et al., 2025b; Li et al., 2021a; Qu et al., 2024a; Ma et al., 2020) for encoding subse-
quences are popular pattern-based explainable models. These methods are generally better suited
for qualitative assessment and exhibit varied performance metrics, making them challenging to
benchmark (Wen et al., 2024; 2025b). Another class of self-explainable methods uses neuro-symbolic
approaches (Yan et al., 2022) with signal temporal logic (Mehdipour et al., 2020) to output soft-logic
predicates at each time step. Architecturally, explainability can also be incorporated through concept
bottleneck networks (CBMs) (Koh et al., 2020), which introduce human-understandable concepts as
intermediate predictions. However, CBMs typically require dense concept annotations and manual
editing, practices often impractical in high-stakes applications. Some recent works address this by
proposing data-efficient CBMs (Koh et al., 2020) and exploring their applicability in time-series
settings (van Sprang et al., 2024; Wen et al., 2025b).
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2 METHODOLOGY

2.1 PRELIMINARIES AND NOTATIONS

Although DL models such as 1D CNNs, LSTMs, and Transformers have proven effective for time-
series prediction, they often lack explainability, particularly in terms of temporal attribution.

Definition 2.1 (Temporal Attribution-Based Explainability). Temporal attribution-based explainabil-
ity in time series refers to a model’s ability to assign importance score to each time point in an input
sequence, thereby identifying which time steps most significantly influence the model’s prediction.

Problem Statement. Given a dataset D = {(xi, yi)}Ni=1 with N samples, where xi ∈ RL×v is
a multivariate time-series input of length L with v features (or number of input channels), and
yi ∈ {0, . . . , C−1} is the corresponding class label, we aim to learn an explainable model f
comprising two components:

ŷi = fcls(xi) ∈ {0, . . . , C−1}, αi = fatt
(
fcls(xi)

)
∈ RL,

where ŷ corresponds to the predictive class and α
(t)
i denotes the importance of the t-th time step in

xi for the model’s prediction.

2.2 OUR APPROACH

In this section, we present our explainability-driven novel deep learning model, TimeSliver,
illustrated in Figure 1 which comprises of three key modules:(I) conversion of the raw time-series
input xi into temporal segments and learning their representations Q, (II) construction of a latent
temporal vector Z using symbolic abstraction of xi, and (III) a linear composition of Q and Z to
yield a representation of xi that maintains initial temporal structure. This combined representation is
fed to a linear layer to predict the target label yi.

Definition 2.2 (Temporal Segment). Given a multivariate time series instance xi ∈ RL×v , a temporal
segment is defined as a contiguous sub-sequence of xi of length m (with m ≤ L). Formally, a
segment is xs = xi[t : t+m] ∈ Rm×v , where t is its start index in xi

2.2.1 MODULE I: LATENT REPRESENTATION OF TEMPORAL SEGMENTS

Given a multivariate time-series input xi ∈ RL×v, this module partitions xi into κ = L −m + 1
overlapping temporal segments of size m using a 1D convolutional operator with kernel size m and
stride 1. Each segment captures a localized temporal context within the time series. The 1D CNN
is parameterized by learnable weights θ and transforms each segment into a q-dimensional latent
representation, resulting in a matrix Q ∈ Rκ×q. Formally, this is defined by a learnable mapping,
gθ : xi 7→ Q = [q1;q2; . . . ;qκ]

T , where qj ∈ Rq is the latent vector for the jth segment, enabling
end-to-end learning of localized temporal patterns.

Figure 1: Overview of TimeSliver: (Module I) temporal segment extraction and latent representation
learning; (Module II) symbolic composition of temporal segments; and (Module III) global linear interaction
between latent and symbolic representations to generate P , a representation of xi preserving temporal structure.
P is then passed through a linear layer to predict yi and used to compute temporal attribution. The right
column compares ground truth attribution scores with baseline methods and TimeSliver, where darker
regions indicate positive influence.
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2.2.2 MODULE II: SYMBOLIC COMPOSITION-BASED REPRESENTATION

In this module, each variate x
(j)
i ∈ RL, for j ∈ {0, . . . , v − 1}, is independently discretized into

one of n categorical bins using a fixed binning strategy, as proposed by Lin et al. (2007). This
yields a symbolic matrix si ∈ {1, . . . , n}L×v, where each element s(t,j)i indicates the symbolic
bin index assigned to the jth variate at time step t. The symbolic representation is formally de-
fined as si = h(xi;n,w), where h(·) is a deterministic discretization function parameterized by
the number of bins n and the compression window size w. In this work, we choose w = 1.

Figure 2: (a) shows a raw time series in-
put, (b) is the symbolic composition ma-
trix, Z and (c) shows some sample rows
of Z which serve as the Bag-of-Stencils
to modulate P .

Next, we convert si into a one-hot encoded matrix O ∈
RL×(n·v) by independently applying one-hot encoding to
each variate and concatenating the results along the feature
dimension. Specifically, for each variate j ∈ {0, . . . , v − 1},
we construct a one-hot matrix O(j) ∈ {0, 1}L×n, where
the tth row O(j)

t corresponds to the one-hot encoding of the
symbolic value s

(t,j)
i . The final matrix is formed as:

O =
[
O(1) ∥O(2) ∥ · · · ∥O(v)

]
∈ RL×(n·v),

where ∥ denotes concatenation along the column (feature)
axis. In alignment with past works (Esmael et al., 2012; Com-
bettes et al., 2024) noting that using a shared symbolic embed-
ding space across variates can lead to semantic ambiguity and
information loss, this structured symbolic encoding ensures
that each variate-specific semantic identity is retained.

To obtain a segment-wise symbolic representation aligned
with the temporal segments extracted in Section 2.2.1, we
apply average pooling over the one-hot encoded matrix O ∈
RL×(n·v) using a sliding window of size m and stride 1.
This yields a symbolic composition matrix Z ∈ Rκ×(n·v)

as shown in Figure 2b, where each entry Zij captures the
normalized frequency of the jth symbolic feature within the
ith segment as shown in Figure 2c. Formally, this is computed
as:

Zij =
1

m

m−1∑
l=0

Oi+l, j , for i ∈ {0, . . . , κ− 1}, j ∈ {0, . . . , n · v − 1}, (1)

where Ot,j denotes the jth one-hot dimension at time step t. Thus, each row Zi: represents the
symbolic distribution over the ith temporal segment.

Remark (Approximate Structural Analogy of Z with Spectral Representation). The Short-Time
Fourier Transform (STFT) (Oppenheim et al., 1999) for a segment i (of length m) for an input x
computes the energy at frequency f as,

Sif =
1

m

∣∣∣∣∣
m−1∑
l=0

x[i+ l] e−j2πfl/m

∣∣∣∣∣
2

providing a localized decomposition of x onto the orthonormal sinusoidal basis {e−j2πfl/m}n−1
f=0 ,

with Sif encoding the segment-level power for each frequency bin f . Analogously, from Equation 1,
Zij represents the average count of symbolic pattern j within segment i, derived from the columns of
O, which are orthogonal, approximately paralleling Sif as a segment-level "power" measure. This
structural analogy illustrates the similarity between the symbolic-linear composition matrix and spec-
trogram representations, both encoding the presence and intensity of discrete components—symbolic
patterns and spectral frequencies, respectively—across temporal segments. While this architectural
correspondence offers valuable intuition, it is important to note that the underlying mathematical
principles of these methodologies are fundamentally distinct.

Generality of Z with other discretizers, h(·). In this case, we have chosen h(·) based on Lin
et al. (2007). We explore other strategies such as Adaptive Brownian Bridge-based Approximation
(ABBA) (Elsworth & Güttel, 2020) and Symbolic Fourier Approximation (SFA) (Schäfer & Högqvist,
2012) to construct the categorical representation and follow the same operations to obtain Z. On
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a synthetic dataset, our explainability scores are almost similar across different discretizers (0.94
AUPRC score, approximately 10% better than the next best model; see Table 1 in Section 3.1). More
datasets, evaluation metrics, and further results are given in Sections 3.1 and D.2. This highlights
the generality of constructing the composition matrix Z via symbolic representation O for better
explainability. In the next section, we show how this matrix enables the construction of a global
interaction-based representation that enhances temporal attribution scores.
2.2.3 MODULE III: GLOBAL INTERACTION OF TEMPORAL SEGMENTS

Modules I and II capture local temporal patterns through segmentation, producing latent segment
embeddings Q ∈ Rκ×q and symbolic composition vectors Z ∈ Rκ×(n·v), respectively. Now to
predict the target label yi, it is important to consider possible interactions among different segments,
and those interactions can be captured by constructing a cross-representation matrix P = Z⊤Q,
where P ∈ R(n·v)×q. P aggregates the linear relationships between symbolic and latent segment
features, and its size is independent of the sequence length L; thereby assisting in making models
with fewer trainable parameters (model details are demonstrated in Appendix B).

Each element Pij of the matrix can be expressed as:
Pij =

κ∑
k=1

Zki ·Qkj , (2)

where Zki is the ith symbolic feature of the kth segment and Qkj is the jth latent feature of the same
segment. Thus, each entry in P represents a linear weighted contribution from all temporal segments,
providing a global weighted summary of the time-series input.

Supporting Multiple Segment Sizes. The 2D representation P ∈ R(n·v)×q, derived previously,
corresponds to a fixed segment size m. However, a single segment size may not capture the diverse
temporal patterns needed to accurately predict the output label yi. To address this, we extend the
computation of P to multiple segment sizes {m1,m2, . . . ,m|m|}, and stack them along a new axis to
obtain a 3D tensor:R ∈ R(n·v)×q×|m|, where each slice P (mℓ) ∈ R(n·v)×q is computed as described
in Section 2.2.3, and |m| denotes the number of distinct segment sizes. Although R is a 3D tensor,
its dimensions do not reflect a spatial topology; hence, we do not apply any convolutional operations
across this representation.

Intuition of constructing P . Prior works such as SAX-VSM (Senin & Malinchik, 2013) demonstrate
the effectiveness of representing each time-series sample as an unordered set (Bag-of-Words) of
symbolic patterns and leveraging discriminative statistics of symbol occurrences, which enhance
predictive performance. Motivated by this, our approach, in contrast, utilizes the collection of
segment-wise symbolic occurrences across an input sample—i.e., the rows of Z—as a Bag-of-
Stencils (as shown in Figure 2(c)). Through the linear aggregation in Equation 2, each entry of P
aggregates segments weighted by symbolic pattern occurrence (a stencil), which masks the segments
where a symbol is absent and enhances the ones where it occurs more frequently, thereby modulating
the corresponding latent features from Q. This formulation enables P to capture relevant global
discriminative interactions across the sequence linearly. This serves as the foundation for the temporal
attribution scoring detailed in the following section while maintaining predictive performance.

2.2.4 CALCULATING TEMPORAL ATTRIBUTION

Once the model is trained to predict y, the elements of P , which capture the global discriminatory
features through linear operations on the learned Q (Eq. 2), enable the computation of temporal
attributions. To explain the temporal attribution, we consider the case where |m| = 1, such that
R ≡ P , although it can be extended to |m| > 1 without loss of generality.

Let ŷpc denote the logit output corresponding to the class label of the input xc. We first compute the
influence of the element Pij ∈ P on ŷpc as gij =

∂ŷp
c

∂Pij
. We then define the gradient directionality

of gij by σij = sign(gij), which indicates whether perturbations in Pij are expected to increase
(σij = +1) or decrease (σij = −1) the logit. Based on Equation 2, each Pij can be decomposed into
κ components corresponding to κ temporal segments. Therefore, we estimate the normalized positive
and negative contributions of the kth (k ∈ [0, κ− 1]) segment for a given gij and σij as:

ζ+k,ij = |gij | ×
ReLU

(
σijZkiQkj

)
max

l
ReLU

(
σijZliQlj

) and ζ−k,ij(gij , σij) = |gij | ×
ReLU

(
− σijZkiQkj

)
max

l
ReLU

(
− σijZliQlj

) (3)
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While determining the contributions, it is crucial that the ZkiQkj terms in Equation 3
remain agnostic to the absolute scale of the terms; otherwise, this can lead to spu-
rious attributions caused by high-magnitude but semantically irrelevant input segments.

FreqSum SeqComb-
UV

SeqComb-
MV

LOWVAR

Synthetic Datasets

0.0
0.2
0.4
0.6
0.8
1.0

AU
PR

C 
Sc

or
e

+
k  with Z
+
k  with raw X

Figure 3: Explainability performance when
using raw X instead of Z for computing
P and thereby ϕ+

k .

Our construction of the Z matrix, composed of the frequency of sym-
bolic component occurrences within a segment, helps in determining
a scale-invariant attribution score. A more formal representation of
this property is provided in Section A of the Appendix. This design
choice is motivated by our observation in experiments, where we
incorporate the raw input directly, xi ∈ X , by projecting it to the
same dimension as the Z matrix, and observing an average drop of
17% across four synthetic datasets as shown in Figure 3 (details of
the datasets and the AUPRC metric are provided in Section 3).

Since, P ∈ R(n·v)×q is a 2D matrix, the final positive (ϕ+
k ) and negative (ϕ−

k ) attribution score of the
kth temporal segment in xc is calculated as:

ϕ+
k =

n.v−1∑
i=0

q−1∑
j=0

ζ+k,ij and ϕ−
k =

n.v−1∑
i=0

q−1∑
j=0

ζ−k,ij (4)

2.2.5 METRICS TO EVALUATE TEMPORAL ATTRIBUTION

Evaluating on synthetic dataset. The salient time points in synthetic datasets are known (Queen
et al., 2023; Liu et al., 2024) and represented by a binary vector G ∈ {0, 1}L×1. Temporal attribution
scores (ϕ+) are softmax-normalized into probabilities and evaluated against G using the area under
the precision-recall curve (AUPRC), where higher values indicate a better method.

Evaluating on real-world datasets. To quantitatively evaluate temporal attribution scores and
compare them against contemporary methods, we adapt masking-based evaluation techniques from
prior work in time series (Queen et al., 2023), and protein (Pandey et al., 2025). To evaluate positive
attributions, time points are first ranked based on ϕ+. All the time points except the top u% are then
masked (xt

i=0 if masked) in both the training and test sets. The model is re-trained and evaluated
using only the unmasked time points. Given that all datasets are class-balanced (see Appendix C for
details), we use accuracy as the evaluation metric. Training quality with partial unmasking is sensitive
to the masking method (zeroing or imputation) (Hooker et al., 2019). To ensure a fair comparison
across explainable methods, re-training is performed on four different architectures, and the mean
accuracies are reported. The value of u is incrementally increased, and with each step, the model is
re-trained and the accuracy e(u) on the test data is recorded. The area under the e(u) versus u curve,
I, calculated as:

I(U) =
∫ U

0

e(u)du, (5)

is used to quantitatively compare different interpretable models. We use I(100) and I(20) for the
comparison in our experiments. The former captures the entire area under the curve, reflecting overall
explainability, while the latter emphasizes the model’s effectiveness in identifying the most critical
time points. The higher these values, the more interpretable the method. Unmasking time points from
best to worst is more appropriate for time series data, as the discriminative information in time series
is often distributed across many timesteps (Queen et al., 2023).

To assess negative attributions, we mask the top 2% and 5% of time points with the largest ϕ−. The
model is then re-trained and evaluated using the same protocol as for positive attributions, with
accuracy normalized by e(u = 100). Normalized accuracy near 1 indicates minimal impact, while
values >1 suggest that removing noisy time points improves performance; both trends are observed
in our results.

3 EXPERIMENTAL RESULTS

We evaluate TimeSliver against nine temporal attribution methods across 7 datasets, using the
explainability metrics from Section 2.2.5. We also report its accuracy on the UEA benchmark to
demonstrate predictive performance.

Datasets. We use four synthetic datasets from Turbé et al. (2023) and Queen et al. (2023): FreqSum,
SeqComb-UV, SeqComb-MV, and LowVar which capture a wide variety of temporal dynamics within
univariate and multivariate settings (more details in Section B.1 of the Appendix). We leverage three
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Table 1: Comparison of mean±std AUPRC on synthetic datasets.
Bold: best, underlined: second-best.

Method FreqSum SeqComb-UV SeqComb-MV LOWVAR
Random 0.35±0.06 0.23±0.04 0.22±0.04 0.08±0.03

Grad-CAM 0.64±0.09 0.61±0.02 0.61±0.02 0.55±0.01

Integrated Gradient 0.59±0.10 0.36±0.16 0.36±0.13 0.73±0.34

GradientSHAP 0.54±0.09 0.57±0.09 0.39±0.16 0.50±0.20

DeepLift 0.61±0.08 0.61±0.03 0.57±0.10 0.54±0.06

DeepLiftShap 0.61±0.08 0.61±0.04 0.58±0.09 0.54±0.05

Attention Tracing 0.35±0.06 0.24±0.06 0.23±0.05 0.08±0.03

Grad-SAM 0.67±0.03 0.61±0.02 0.61±0.02 0.54±0.01

COLOR 0.53±0.13 0.90±0.05 0.72±0.13 0.96±0.09
TimeX++ 0.59±0.01 0.85±0.02 0.76±0.01 0.95±0.01

TimeSliver 0.94±0.05 0.97±0.03 0.94±0.01 0.99±0.04

10 20 30 40 50 60 70 80 90 100
Unmasking u%

0.6

0.7

0.8

0.9

1.0
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cu

ra
cy

 e
(u

)

Random
Integrated Gradient
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Figure 4: Positive attribution study. Accuracy
curves e(u) plotted against the unmasking
percentage u% for EEG dataset.

real-world TSC applications: (1) single-channel electroencephalogram (EEG) data for sleep stage
classification from 20 healthy individuals, with a sequence length of 3000; (2) the FordA machine
fault diagnosis dataset for binary classification (Bagnall et al., 2018), with a sequence length of
500; and (3) an animal sound classification dataset from the Environmental Sound Classification
corpus (ESC-50) (Piczak), consisting of 5-second audio clips. The audio data is processed using
mel-frequency spectral representation, following standard practice (Piczak). More details about
datasets are provided in Appendix B.

Baselines. TimeSliver is compared with several gradient- and sampling-based post-hoc methods
originally developed for computer vision—Grad-CAM (Selvaraju et al., 2017), DeepLIFT (Shrikumar
et al., 2017), Integrated Gradients (Sundararajan et al., 2017), GradientSHAP (Lundberg & Lee,
2017), and DeepLiftSHAP (Lundberg & Lee, 2017)—as well as TimeX++ (Liu et al., 2024), an
information-bottleneck-based explainable approach. We also include self-attention-based explainable
models—Attention Tracing (Wu et al., 2020), which estimates temporal importance from Transformer
attention weights, and Grad-SAM (Barkan et al., 2021), adapted from the language domain—as well
as another explainable model from the protein domain, COLOR (Pandey et al., 2025). A Random
baseline, assigning uniform attribution scores across time points, is also included.

Explainability Study. Each dataset has three distinct splits (80% train, 10% valid and 10% test), with
three trials per split. For each split, we first train the predictive model using four different backbones:
1D CNN, Transformer, COLOR, and TimeSliver (details in Appendix B). TimeSliver achieves
predictive performance within 3–4% of the other backbones, indicating that all models are trained
comparably well and enabling a fair comparison. Subsequently, Attention Tracing and Grad-SAM are
implemented on the Transformer backbone, while all other explainable methods, except COLOR, are
applied to the CNN backbone. We evaluate the temporal attribution scores computed using different
explainable methods on all four backbones using the metrics discussed in Section 2.2.5. The results
are then averaged across all backbones for each explainable method.

3.1 IMPROVEMENT OF TIMESLIVER OVER BASELINES ON EXPLAINABILITY (TEMPORAL
ATTRIBUTIONS)

Table 1 reports the AUPRC values computed as described in Section 2.2.5 for various explainable
methods for all four synthetic datasets. TimeSliver achieves an average of 18% improvement
Table 2: Positive attribution results, with the mean±std I(100) and I(20) values. Bold: best, underlined:
second-best. ↑ denotes higher is better.

Method Audio EEG FORD-A
I(100)↑ I(20)↑ I(100)↑ I(20)↑ I(100)↑ I(20)↑

Random 67.90±0.30 9.06±0.02 62.66±1.85 9.33±0.38 73.89±1.96 8.89±0.25

Grad-CAM 69.79±0.38 10.05±0.07 67.23±0.96 10.70±0.33 81.43±0.04 11.07±0.04

Integrated Gradient 63.69±0.04 8.34±0.46 83.19±0.89 14.24±0.29 93.65±0.19 14.76±0.14
GradSHAP 69.53±0.31 10.48±0.17 63.76±2.27 10.41±0.26 78.54±0.64 11.44±0.03

DeepLift 63.35±0.39 8.15±0.11 80.43±0.70 13.63±0.32 93.11±0.08 14.41±0.07

DeepLiftShap 70.55±0.40 10.70±0.08 65.34±1.78 10.66±0.34 85.30±0.27 13.30±0.07

Attention Tracing 69.15±0.49 9.75±0.42 63.16±2.42 9.28±0.30 76.47±0.36 9.60±0.42

Grad-SAM 69.00±0.12 9.89±0.24 62.11±2.92 9.38±0.34 74.17±0.01 9.17±0.14

COLOR 71.46±0.67 10.47±0.14 66.48±1.47 10.85±0.34 83.95±0.85 12.12±0.22

TimeX++ 73.24±0.35 11.20±0.12 74.10±0.49 11.84±0.09 87.85±0.53 13.83±0.18

TimeSliver 74.30±0.68 11.35±0.15 83.99±0.61 14.52±0.15 93.87±0.01 14.99±0.01
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over the leading baseline. To quantitatively evaluate different explainable methods on real-world
datasets, we report I(100) and I(20) values, as defined in Section 2.2.5, computed across three splits
for all three datasets (Table 2 and Appendix D). TimeSliver consistently outperforms baselines
by 2% in I(20), demonstrating superior ability to identify key positive time points. To further
demonstrate the effectiveness of TimeSliver in capturing positive critical time steps, we present
the e(u) versus u% curve for the EEG dataset in Figure 4. TimeSliver outperforms the strongest
baselines, namely Integrated Gradients and DeepLIFT.
Table 3: Negative attribution results showing mean±std accuracy with 2% and 5% of the sequence masked by ϕ−

(normalized by e(100)). Bold: best; underlined: second-best. ↑ indicates higher is better.

EEG Audio FordA

Methods 2%
Masking↑

5%
Masking↑

2%
Masking↑

5%
Masking↑

2%
Masking↑

5%
Masking↑

Random 1.06±0.03 1.09±0.05 0.99±0.04 0.96±0.01 0.99±0.01 1.00±0.01

Grad-CAM 1.06±0.03 1.07±0.05 1.00±0.05 0.97±0.02 1.00±0.00 1.01±0.00

Integrated Gradient 1.25±0.03 1.31±0.02 1.02±0.04 1.00±0.05 1.07±0.00 1.08±0.00
GradSHAP 1.08±0.02 1.07±0.02 0.98±0.01 0.95±0.02 0.97±0.01 0.97±0.01

DeepLift 1.20±0.01 1.27±0.02 1.02±0.07 1.01±0.01 1.07±0.00 1.07±0.00

DeepLiftShap 1.08±0.05 1.07±0.03 0.99±0.04 0.98±0.00 0.98±0.01 0.99±0.01

Attention Tracing 1.08±0.01 1.06±0.03 0.98±0.04 0.98±0.01 0.99±0.01 0.98±0.01

Grad-SAM 1.10±0.03 1.08±0.01 0.99±0.00 0.97±0.01 0.98±0.01 0.98±0.00

COLOR 1.08±0.06 1.05±0.07 0.99±0.02 0.99±0.05 1.03±0.01 1.02±0.01

TimeX++ 1.12±0.02 1.11±0.01 0.99±0.04 0.98±0.04 1.01±0.01 1.00±0.02

TimeSliver 1.31±0.00 1.36±0.01 1.02±0.04 1.01±0.01 1.08±0.00 1.09±0.00

Interestingly, Figure 4 shows a sharp accuracy drop when all time steps are unmasked (e(100)),
revealing negatively contributing segments. Table 3 compares TimeSliver with baselines on
computing negative temporal attributions (Section 2.2.5), with masked accuracies normalized
to full-input performance (e(100)). On EEG, TimeSliver achieves about 33% higher accu-
racy than the full input, confirming strongly detrimental features and its ability to detect them.

Table 4: TimeSliver vs. 16 baselines on 26 UEA
datasets. Bold: best, Underlined: second-best.

Type Method Bio. Motion Audio Coord. Misc. All

Distance-
Based

DTW_D 46.9 87.5 44.5 95.4 63.9 66.8
DTW_I 47.9 77.1 34.4 90.7 59.2 61.3
DTW_A 45.4 88.1 63.3 95.4 71.3 69.7

Dictionary-
Based

MUSE 55.7 88.3 51.8 96.0 81.7 72.3
gRSF 49.0 84.3 46.1 88.3 71.7 63.8
CIF 54.0 85.4 55.1 96.2 83.0 71.5

Feature-
Based ML

MrSEQL 52.3 87.8 47.6 94.2 76.6 69.2
ROCKET 53.8 90.1 48.7 96.6 75.6 70.2

Deep-
Learning

TapNet 49.9 84.5 51.5 91.5 65.4 64.8
ResNet 48.3 90.6 47.5 97.3 57.2 63.3
IncTime 60.3 96.4 61.6 95.0 69.1 74.3

FCN 56.76 90.8 58.4 97.8 63.4 72.2
TS2Vec 48.57 87.4 53.2 94.7 65.0 68.0

TimesNet 61.06 77.9 42.1 91.3 61.9 67.3
ShapeNet 55.28 86.3 59.3 94.0 53.3 68.2
RLPAM 66.75 89.5 55.1 90.0 67.4 74.3

ShapeConv 61.24 89.0 54.1 95.0 64.8 72.4
SBM 59.8 86.0 45.8 94.1 66.7 70.5

InterpGN 58.73 91.4 52.6 98.3 70.7 73.7

Ours TimeSliver 66.9 90.9 55.2 93.6 76.1 75.6

The results in Table 3 highlight TimeSliver’s
strength in enhancing performance by remov-
ing detrimental time points—achieving no-
table gains on EEG (4% over baselines) and
FordA (1% over baselines)—while maintain-
ing stable accuracy on the audio dataset, suggest-
ing a lower presence of negatively contributing
segments.

3.2 COMPETITIVE PERFORMANCE
OF TIMESLIVER ON MULTIVARIATE
TIME SERIES CLASSIFICATION

We evaluate the predictive performance
of TimeSliver on 26 datasets from the
UEA multivariate time-series classification
archive (Ruiz et al., 2021), which span 8
electrical biosignal (Bio.) datasets, 3 audio
datasets, 7 accelerometer-based motion datasets,
3 gesture and digit recognition datasets in
Cartesian coordinates (Coord.), and other
miscellaneous datasets and evaluate TimeSliver against five methodological categories:
Distance-based methods (Bagnall et al., 2016); Dictionary/interval-based methods (Schäfer & Leser,
2017); Feature-based ML models; Deep learning models including ResNet (Wang et al., 2017),
InceptionTime (Fawaz et al., 2020), FCN (Karim et al., 2017), TS2vec (Yue et al., 2022), TimesNet
(Wu et al., 2022), ShapeNet (Li et al., 2021b), RLPAM (Gao et al., 2022b), ShapeConv (Qu et al.,
2024b), SBM (Wen et al., 2025a), InterpGN (Wen et al., 2025a); and Ensemble-based methods.
More details are provided in Section E of the Appendix. We observe that: (1) TimeSliver
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demonstrates superior performance on datasets with long sequences (length > 1000), achieving an
average absolute improvement of 4.4% over the best-performing baselines (details in Appendix E);
(2) it improves performance on electrical biosignals by 6.3% on average; and (3) overall,
TimeSliver delivers competitive predictive performance, staying within 2% of the best
baselines across diverse applications. To further showcase TimeSliver’s strong performance, we
report its average rank, top-1, and top-3 counts compared to all baselines in Appendix E.

To empirically demonstrate TimeSliver’s ability to capture temporally disjoint yet jointly infor-
mative patterns, we construct a synthetic dataset with multiplicative interactions in disjoint segments
(Appendix D.3) and evaluate its predictive performance against multiple architectures. As shown
in Appendix D.3, TimeSliver achieves performance within 1% of the baselines, confirming its
effectiveness in modeling temporally disjoint interactions.

3.3 UNDERSTANDING THE COMPONENTS OF TIMESLIVER

We assess the impact of TimeSliver’s core design choices through ablation and sensitivity analysis
to gain deeper insights.

Ablation Study (Figure 5). The framework of Boureau et al. (2010) shows that average pooling
lowers feature map resolution, reducing sensitivity to local perturbations and acting as a regularizer.
We verify this by removing average pooling after R or replacing it with max pooling, which causes
a ∼5% drop in accuracy with negligible impact on explainability. To assess the role of ReLU in
Equations 4 in identifying positive and negative attributing time points, we replace ReLU with abs.
This assigns equal importance to time points with equal abs(ZkiQkj) but opposite signs. This
modification leads to a 13% drop in explainability, underscoring the importance of ReLU in correctly
distinguishing positive and negative contributions.

Figure 5: Impact of model vari-
ants on prediction (Predict.) and
explainability (Explain.).
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Figure 6: Effect of (a) segment size m, (b) latent dimension q, and (c) number of bins n on predictability
(Accuracy) and explainability (AUPRC); (d) GFLOPs variation with n and |m|.

Sensitivity Analysis (Figure 6). The final architecture of TimeSliver is determined by three
key hyperparameters: the segment size m, the latent representation dimension q (both defined in
Section 2.2.1), and the number of bins n used to discretize raw inputs xi into symbolic representations
si (described in Section 2.2.2). On the FreqSum dataset, Figure 6a shows that explainability declines
for m > 10, as larger segments can lead the model to over-attribute importance to regions where only
a small part is relevant. Conversely, setting m = 1 results in poor predictability and explainability, as
the segment is too short to capture meaningful temporal patterns. The effect of the latent dimension q
and the bin count n is minimal beyond values of 4, with both explainability and predictive accuracy
remaining stable (see Figures 6b and 6c). Although this analysis is based on FreqSum data, the
relative sensitivity trends are expected to generalize across a wide range of real-world datasets.
Figure 6d shows that TimeSliver’s GFLOPs only scale linearly with n ∈ [2, 500] and |m| ∈ [1, 5],
remaining 5–10 times lower than those of Transformers (GFLOP = 0.2), highlighting its efficient
scalability.

4 CONCLUSION

In this work, we presented TimeSliver—a novel deep learning framework that linearly combines
raw time series with their symbolic counterparts to construct a global representation facilitating
temporal attribution calculation. Our importance scores offer insights into positively and negatively
influencing time segments. The effectiveness of TimeSliver is demonstrated by its average
improvement of 11% over the best baselines across seven diverse datasets, spanning real-world and
synthetic, univariate and multivariate time series with varied temporal dynamics, while maintaining
high predictive performance. In the future, it will be interesting to consider human-in-the-loop
expert validation (for tasks like sleep-stage classification using EEG) to harness TimeSliver’s
explainability for practical applications. Additionally, TimeSliver’s principles can be extended to
provide feature attribution, identifying which input features are most influential at each time segment,
especially by considering a time-frequency representation of time-series data.
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ETHICS STATEMENT.

This work does not involve human subjects, sensitive data, or issues related to fairness, discrimination,
or legal compliance. TimeSliver is designed to identify influential temporal segments in time
series, providing more transparent and interpretable model predictions. By improving explainability,
particularly for applications such as healthcare time-series classification, TimeSliver supports
responsible and trustworthy deployment of machine learning models.

REPRODUCIBILITY STATEMENT

All source code to reproduce experimental results (with instructions for running the code) is provided
in the Supplementary Materials. We use public datasets and include implementation details in the
Appendix. All baselines either adopt published hyperparameters or are tuned when unspecified.

LLM USAGE STATEMENT

The usage of LLMs in this work is limited to paper writing support, language refinement, and
experimental data processing. Specifically, LLMs assisted in improving the clarity and coherence of
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APPENDIX

This appendix provides additional details for "TimeSliver: Symbolic-Linear Decomposition for
Explainable Time Series Classification". Additional implementation details for TimeSliver and
the backbone models are presented in Section B. Class distribution for the four datasets used in the
interpretability study are provided in Section C. Detailed results on interpretability and predictive
performance are given in Sections D and E, respectively.

A SCALE-INVARIANCE PROPERTIES OF TIMESLIVER

Remark (Determining Scale-Invariant Attributions). Let Praw = XQ and Psym = ZQ, where
Q are learned weights. Suppose X = ZD for a diagonal scaling matrix D. Then, for any position t,

∥P(t)
raw∥2 = dt∥P(t)

sym∥2,

where dt is the t-th diagonal entry of D. Thus, only Psym yields attributions invariant to input scaling,
and explanations depend solely on the symbolic pattern, not on the magnitude of the input.

Implication. This property prevents spurious attributions caused by high-magnitude but semantically
irrelevant input segments, and is essential for robust and interpretable explanations. The effectiveness
of this property is further validated by our ablation study, where replacing the one-hot encoding
representation O with raw data x in Equation 1 results in an average 17% decrease in explainability
as shown in Figure 3.

B ADDITIONAL IMPLEMENTATION DETAILS

B.1 DATASET DESCRIPTION

FreqSum is a multivariate time series with randomly embedded sine-wave segments; classes indicate
whether the sum of their frequencies exceeds a threshold. As described in (Turbé et al., 2023),
each sample in the dataset consists of 6 features and 500 time steps. To simulate realistic temporal
dependencies, each feature includes a baseline sine wave with a frequency uniformly sampled from the
range [2, 5]. Two randomly selected features per sample are injected with discriminative sine waves,
each supported over 100 time steps, with frequencies drawn from a discrete uniform distribution
in the range [10, 50]. In the remaining four features, a square wave is optionally added with 50%
probability, also using frequencies sampled from the same range. The classification task is binary:
the model must predict whether the sum of the two discriminative frequencies exceeds a predefined
threshold, set to τ = 60.

SeqComb-UV, SeqComb-MV, and LowVar are generated using the exact technique dsicussed in
Queen et al. (2023). SeqComb-UV is a univariate series with two non-overlapping increasing or
decreasing subsequences, with four classes defined by their trend combinations. SeqComb-MV is the
multivariate extension of SeqComb-UV. LowVar is a multivariate series with four classes determined
by the presence of a low-variance subsequence in a specific channel.

Audio Dataset. We use a manually curated subset of the ESC-50 audio dataset, focusing exclusively
on animal sounds. This subset was selected to leverage the temporal localization of animal sounds,
which typically occur within short bursts in the observation window, as opposed to environmental
sounds that span the entire duration and yield robust results even with randomly sampled segments.
This temporal sparsity makes animal sounds particularly useful for evaluating interpretability methods
that rely on temporal attribution. For preprocessing, we extract Mel-frequency cepstral coefficients
(MFCCs) from the audio using a Mel spectrogram with 40 Mel bands, employing standard settings
such as centered windowing and normalization.

EEG Dataset. This dataset comprises single-channel EEG recordings collected from 20 subjects,
with the objective of classifying five sleep stages: wake, N1, N2, N3 (non-REM stages), and REM
(rapid eye movement). The temporal structure of EEG signals makes this dataset well-suited for tasks
requiring time-series modeling and interpretation. We balance all the classes in the dataset before
using it for the study.
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FordA Dataset. We adopt the data preprocessing and train-test splits for the FordA dataset as defined
in the MTS-Bakeoff benchmark Ruiz et al. (2021).

B.2 DATASET DETAILS

Information such as the number of variates (v), maximum sequence length, and dataset splits is
provided in Table 5.

Table 5: Summary of the four datasets used in the interpretability study.

Dataset Num. of
Variates, v

Max
Seq. Length Train Valid Test

FreqSum 6 500 5000 500 500
SeqComb-UV 1 200 5000 1000 1000
SeqComb-MV 4 200 5000 1000 1000
LowVar 2 200 5000 1000 1000
Audio 40 501 280 60 60
EEG 1 3000 5005 1295 3515
Ford-A 1 500 853 106 119

B.3 MODEL DETAILS

The complete details of TimeSliver for all four datasets are given in Table 6. Additionally, the
details for the other three backbones used in the interpretability study are given in Table 7.

Table 6: Architecture details of TimeSliver used for different datasets.

Dataset Num. of
categorical bins, n

Num. of columns
in O, n× v

Latent vector
size, q

Segment
size, m

Trainable
parameters

FreqSum 15 90 36 7 5,858
SeqComb-UV 20 20 36 [4,7] 14,518
SeqComb-MV 10 40 36 [4,7] 20,576
LowVar 20 40 36 4 5,078
Audio 10 400 12 1 20,110
EEG 25 25 12 10 6,441
Ford-A 70 70 36 10 8,280

Table 7: Number of trainable parameters for different model architectures across datasets.

Dataset CNN COLOR Transformer
FreqSum 42,378 2,660 46,714
SeqComb-UV 42,076 16,844 361,156
SeqComb-MV 42,268 21,452 361,540
LowVar 42,140 16,880 361,284
Audio 224,938 8,206 370,498
EEG 74,981 43,309 230,805
Ford-A 42,058 26,536 361,090

B.4 TRAINING AND OPTIMIZATION DETAILS

All experiments are conducted on a server running Ubuntu OS, equipped with NVIDIA RTX A6000
GPUs, using the PyTorch framework. During model training, we employ the Adam optimizer with a
learning rate ranging from 3× 10−4 to 1× 10−3. Validation accuracy is used for early stopping and
to save the best model checkpoint.
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B.5 PREDICTIVE RESULTS ON DIFFERENT BACKBONE

Table 4 presents the predictive performance of the four deep learning models used as backbones in
the interpretability study. The CNN backbone is used for all post-hoc interpretability methods, while
the Transformer is employed for attention tracing and the Grad-SAM method. COLOR, originally
developed for protein sequence design, is inherently interpretable. The predictive performance of
TimeSliver on the four datasets used in the interpretability study is within 3–4% of the best-
performing model. All the post-hoc methods are implemented using the Captum library 1 in PyTorch.

Table 8: Accuracy (mean±std) over 3 runs for different predictive backbone and dataset (supporting
results for Section 3 in the main paper).

Dataset CNN COLOR Transformer TimeSliver

FreqSum 0.93±0.028 0.93±0.014 0.95±0.0071 0.93±0.014

SeqComb-UV 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

SeqComb-MV 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

LowVar 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Audio 0.78±0.0071 0.80±0.021 0.80±0.000 0.81±0.0071

EEG 0.78±0.019 0.73±0.039 0.68±0.038 0.72±0.042

FordA 0.92±0.0071 0.93±0.000 0.83±0.0071 0.88±0.000

C CLASS DISTRIBUTION

The class distribution for all four datasets is shown in Figure 7, indicating that there is no class
imbalance in any of the datasets used in the explainability study.

0 1 2 3 4 5 6 7 8 90.00
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0 1 2 3 40.0
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Figure 7: Class distribution among different datasets.

D DETAILED EXPLAINABILITY RESULTS

D.1 EVALUATING POSITIVE TEMPORAL ATTRIBUTION

Figure 8 shows the mean e(u) versus unmasking percentage (u%) curves obtained using different
interpretability methods, along with their standard deviations. The trend of the curves clearly
demonstrates that TimeSliver outperforms the baseline methods in the lower unmasking range
(5–20%), highlighting its effectiveness in identifying the most critical time points.

1https://github.com/pytorch/captum
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Figure 8: Positive attribution study. Accuracy curves e(u) plotted against the unmasking percentage u% for
various methods on three datasets: a) Audio, b) Ford-A, and c) EEG SSC. Each curve represents the mean
accuracy over three runs (supporting results for Section 3.1 in the main paper).

The areas under the curves shown in Figure 8, I(100) and I(20), are used to quantitatively compare
the different interpretability methods.

D.2 IMPACT OF OTHER SYMBOLIC REPRESENTATIONS

In Table 9, we show the impact of choosing different discretization functions, h(·), defined in
Section 2.2.1, to convert the continuous time series data into symbolic representation as si =
h(xi;n,w). Both ABBA and SFA preserve explainability (AUPRC remains unchanged). However,
if we do not convert x into symbolic representation and utilize the higher dimensional projection
of x, xproj), to calculate Z, the explainability drops by 38%. This highlights that discretizing the
continuous time series x into a symbolic representation (s) yields an input value-agnostic encoding,
ensuring that all time points are treated uniformly without dependence on input scaling.

Symbolic
Representation

Explainability
AUPRC(∆%)

TimeSliver
with binning 0.94±0.045

ABBA 0.94±0.048 (0%)
SFA 0.93±0.068 (-1.0%)

O → xproj 0.66±0.13 (-38.7%)

Table 9: Impact of symbolic representations on explainability.

D.3 TIMESLIVER’S EFFECTIVENESS IN CAPTURING FAR-FIELD INTERACTION

Although P in Equation 2 is formulated as a linear aggregation of temporal segments, it does not
significantly affect the ability of TimeSliver to capture far-field multiplicative interactions. To
demonstrate this, we construct a synthetic dataset designed specifically to exhibit strong far-field
dependencies.
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Input Construction. We generate N = 1000 samples, each of length L = 100. Each sample xi is
defined as:

xi(t) = sin(fit+ ϕi) + ηi(t) ·
(
t− L

2

)
, t = 1, . . . , L, (6)

where:

• fi ∼ U(1, 10) is a randomly sampled frequency,
• ϕi ∼ U(0, 2π) is a random phase shift, and

• ηi(t) is Gaussian noise scaled by the time component
(
t− L

2

)
to amplify far-field interac-

tions.

Output Property (Far-Field Interaction). For each sample xi, we define the far-field interaction
property:

pi =

L/2∑
j=1

xi[j] · xi[L− j + 1], (7)

where xi[j] is the jth element and xi[L − j + 1] is its far-field pair from the opposite end of the
sequence.

A binary label yi is then assigned:

yi =

{
1, if pi > 0,

0, if pi ≤ 0,
(8)

resulting in a balanced class distribution with a 0:1 ratio of 1:1.

Results. Table 10 compares the predictive performance of TimeSliver with Transformer, LSTM,
and FCN baselines. The results empirically confirm that TimeSliver effectively captures multi-
plicative far-field interactions, which we attribute to the fully connected neural network layer present
after P in the architecture.

Metric Transformer LSTM TimeSliver FCN

Balanced Accuracy 0.68 (0.014) 0.73 (0.04) 0.76 (0.02) 0.77 (0.05)
Table 10: Predictive performance on the synthetic far-field interaction dataset. Results are reported as
mean (std) accuracy over three runs.

E DETAILED PREDICTABILITY RESULTS

We evaluate TimeSliver against five methodological categories: (1) Distance-based methods,
including DTW variants (Bagnall et al., 2016); (2) Dictionary/interval-based methods, such as
MUSE (Schäfer & Leser, 2017) and gRFS/CIF (Middlehurst et al., 2020); (3) Feature-based ML
models like ROCKET (Dempster et al., 2020) and MrSEQL (Karlsson et al., 2016); (4) Deep learning
models including ResNet (Wang et al., 2017), InceptionTime (Fawaz et al., 2020), FCN (Karim et al.,
2017), TS2vec (Yue et al., 2022), TimesNet (Wu et al., 2022), ShapeNet (Li et al., 2021b), RLPAM
(Gao et al., 2022b), ShapeConv (Qu et al., 2024b), SBM (Wen et al., 2025a), InterpGN (Wen et al.,
2025a); and (5) Ensemble-based approaches such as CBOSS, STC (Bagnall et al., 2016; 2017), RISE,
TSF, and HC (Lines et al., 2018). The predictive performance of TimeSliver on all 26 UEA
datasets, along with the results of the baseline methods, is presented in Table 11. The comparison of
TimeSliver with baseline methods in terms of average rank, top-1, and top-3 counts is presented
in Table 12.
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1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
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1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 12: TimeSliver vs. 16 baselines on 26 UEA datasets, evaluated using Average Rank, Top-1
Count, and Top-3 Count. Bold indicates the best result, underlined indicates the second-best. ↑ and ↓
denote that higher and lower values are better, respectively.

Type Method Average Rank ↓ Top-1 Count ↑ Top-3 Count ↑

Distance-Based
DTW_D 16.88 0 0
DTW_I 18.65 0 0
DTW_A 14.67 1 1

Dictionary-Based
MUSE 10.50 3 6
gRSF 16.88 0 0
CIF 11.31 1 3

Feature-Based ML MrSEQL 12.88 0 0
ROCKET 9.31 4 7

Deep Learning

TapNet 17.77 1 1
ResNet 15.38 1 1
IncTime 7.69 4 7
FCN 9.92 1 5
TS2Vec 16.88 0 0
TimesNet 15.92 0 0
ShapeNet 12.58 1 2
RLPAM 10.23 4 10
ShapeConv 11.19 1 4
SBM 11.15 1 3
InterpGN 7.08 3 7

Ours TimeSliver 7.00 6 11
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